Items where Kingston Author is "Bakas, Spyridon"

Up a level
Export as [feed] Atom [feed] RSS
Group by: Item Type | No Grouping
Number of items: 13.

Article

Bakas, Spyridon, Doulgerakis-Kontoudis, Matthaios, Hunter, Gordon, Sidhu, Paul S., Makris, Dimitrios and Chatzimichail, Katerina (2019) Evaluation of indirect methods for motion compensation in 2D focal liver lesion Contrast-Enhanced Ultrasound (CEUS) imaging. Ultrasound in Medicine and Biology, 45(6), pp. 1380-1396. ISSN (print) 0301-5629

Bakas, Spyridon, Makris, Dimitrios, Hunter, Gordon J.A., Fang, Cheng, Sidhu, Paul S. and Chatzimichail, Katerina (2017) Automatic identification of the optimal reference frame for segmentation and quantification of focal liver lesions in contrast-enhanced ultrasound. Ultrasound in Medicine & Biology, 43(10), pp. 2438-2451. ISSN (print) 0301-5629

Bakas, S., Chatzimichail, K, Hunter, G. J. A., Labbe, B., Sidhu, P and Makris, D. (2017) Fast semi-automatic segmentation of focal liver lesions in contrast-enhanced ultrasound, based on a probabilistic model. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 5(5), pp. 329-338. ISSN (print) 2168-1163

Bakas, Spyridon, Hunter, Gordon, Sidhu, Paul and Makris, Dimitrios (2015) Computer-aided solutions for the assessment of focal liver lesions in contrast-enhanced ultrasound. Oncology News, 10(2), pp. 58-61. ISSN (print) 1751-4975

Bakas, Spyridon, Chatzimichail, Katerina, Hoppe, Andreas, Galariotis, Vasileios, Hunter, Gordon and Makris, Dimitrios (2012) Histogram-based motion segmentation and characterisation of focal liver lesions in CEUS. Annals of the BMVA, 2012(7), pp. 1-14.

Conference or Workshop Item

Bakas, S., Makris, D., Sidhu, P.S. and Chatzimichail, K. (2014) Automatic Identification and Localisation of Potential Malignancies in Contrast-Enhanced Ultrasound Liver Scans Using Spatio-Temporal Features. In: Sixth International Workshop on Abdominal Imaging: Computational and Clinical Applications; 14 Sep 2014, Boston, U.S.A.. (Lecture Notes in Computer Science, no. 8676) ISBN 9783319136912

Bakas, S., Labbe, B., Hunter, G. J. A., Sidhu, P, Chatzimichail, K and Makris, D. (2014) Fast segmentation of focal liver lesions in contrast-enhanced ultrasound data. In: Medical Image Understanding and Analysis (MIUA); 9-11 Jul 2014, London, U.K.. ISBN 1901725510

Bakas, S., Hunter, G. and Labbe, B. (2014) Making the Best Use of Fifty (or More) Shades of Gray: Intelligent Contrast Optimisation for Image Segmentation in False-Colour Video. In: International Conference on Intelligent Environments; 30 June - 4 July 2014, Shanghai, China.

Bakas, S., Sidhu, P., Sellars, M., Hunter, G. J. A., Makris, D. and Chatzimichail, K. (2014) Non-invasive offline characterisation of contrast-enhanced ultrasound evaluations of focal liver lesions: dynamic assessment using a new tracking method. In: European Congress of Radiology; 6-10 Mar 2014, Vienna, Austria.

Bakas, S., Hunter, G. J. A., Thiebaud, C and Makris, D. (2013) Spot the best Frame: 'Towards intelligent automated selection of the “optimal” frame for initialisation of focal liver lesion candidates in contrast enhanced ultrasound video sequences'. In: 9th International Conference on Intelligent Environments - IE'13; 18-19 Jul 2013, Athens, Greece. (IEEE)

Bakas, S., Hoppe, A., Chatzimichail, K, Galariotis, V, Hunter, G. and Makris, D. (2012) Focal liver lesion tracking in CEUS for characterisation based on dynamic behaviour. In: 8th International Symposium on Visual Computing (ISVC); 16-18 July 2012, Rethymnon, Crete, Greece.

Bakas, Spyridon, Chatzimichail, Katerina, Autret, Awen, Hoppe, Andreas, Galariotis, Vasileios and Makris, Dimitrios (2011) Localisation and characterisation of focal liver lesions using contrast-enhanced ultrasonographic visual cues. In: Medical Image Understanding and Analysis; 14-15 July 2011, London, U.K..

Thesis

Bakas, Spyridon (2007) Discriminative vs. generative methods for face detection. (Other thesis), University College London, .

This list was generated on Sat Dec 14 02:44:06 2024 GMT.