Paul, Parneet and Jones, Franck Anderson (2015) Development of a comprehensive fouling model for a rotating membrane bioreactor system treating wastewater. Water, 7(2), pp. 377-397. ISSN (online) 2073-4441
Abstract
Membrane bioreactors (MBRs) are now main stream wastewater treatment technologies. In recent times, novel pressure driven rotating membrane disc modules have been specially developed that induce high shear on the membrane surface, thereby reducing fouling. Previous research has produced dead-end filtration fouling model which combines all three classical mechanisms that was later used by another researcher as a starting point for a greatly refined model of a cross flow side-stream MBR that incorporated both hydrodynamics and soluble microbial products’ (SMP) effects. In this study, a comprehensive fouling model was created based on this earlier work that incorporated all three classical fouling mechanisms for a rotating MBR system. It was tested and validated for best fit using appropriate data sets. The initial model fit appeared good for all simulations, although it still needs to be calibrated using further appropriate data sets.
Actions (Repository Editors)
Item Control Page |