Epstein, Jonathan H, Baker, Michelle L, Zambrana-Torrelio, Carlos, Middleton, Deborah, Barr, Jennifer A, Dubovi, Edward, Boyd, Victoria, Pope, Brian, Todd, Shawn, Crameri, Gary, Walsh, Allyson, Pelican, Katey, Fielder, Mark D, Davies, Angela J, Wang, Lin-Fa and Daszak, Peter (2013) Duration of maternal antibodies against canine distemper virus and hendra virus in pteropid bats. PloS One, 8(6), e67584. ISSN (online) 1932-6203
Abstract
Old World frugivorous bats have been identified as natural hosts for emerging zoonotic viruses of significant public health concern, including henipaviruses (Nipah and Hendra virus), Ebola virus, and Marburg virus. Epidemiological studies of these viruses in bats often utilize serology to describe viral dynamics, with particular attention paid to juveniles, whose birth increases the overall susceptibility of the population to a viral outbreak once maternal immunity wanes. However, little is understood about bat immunology, including the duration of maternal antibodies in neonates. Understanding duration of maternally derived immunity is critical for characterizing viral dynamics in bat populations, which may help assess the risk of spillover to humans. We conducted two separate studies of pregnant Pteropus bat species and their offspring to measure the half-life and duration of antibodies to 1) canine distemper virus antigen in vaccinated captive Pteropus hypomelanus; and 2) Hendra virus in wild-caught, naturally infected Pteropus alecto. Both of these pteropid bat species are known reservoirs for henipaviruses. We found that in both species, antibodies were transferred from dam to pup. In P. hypomelanus pups, titers against CDV waned over a mean period of 228.6 days (95% CI: 185.4-271.8) and had a mean terminal phase half-life of 96.0 days (CI 95%: 30.7-299.7). In P. alecto pups, antibodies waned over 255.13 days (95% CI: 221.0-289.3) and had a mean terminal phase half-life of 52.24 days (CI 95%: 33.76-80.83). Each species showed a duration of transferred maternal immunity of between 7.5 and 8.5 months, which was longer than has been previously estimated. These data will allow for more accurate interpretation of age-related Henipavirus serological data collected from wild pteropid bats.
Actions (Repository Editors)
Item Control Page |