Contrasting effects of different cannabinoid receptor ligands on mouse ingestive behaviour

Grey, Jonathan, Terry, Phil and Higgs, Suzanne (2012) Contrasting effects of different cannabinoid receptor ligands on mouse ingestive behaviour. Behavioural Pharmacology, 23(5-6), pp. 551-559. ISSN (print) 0955-8810

Abstract

This study characterized the effects of seven diverse cannabinoid receptor agonists (and one antagonist) on ingestive behaviour in nondeprived adult, male CD1 mice. Microstructural analysis of licking for a range of concentrations of condensed milk (10, 15 and 20%) was carried out following administration of vehicle or: Δ-tetrahydrocannabinol (Δ-THC) at 1, 3 or 6 mg/kg; CP55,940 at 10, 30 or 50 µg/kg; Win 55,212-2 at 0.5, 1 or 3 mg/kg; HU-210 at 0.01, 0.03 or 0.1 mg/kg; methanandamide at 1, 3 or 6 mg/kg; arachidonyl-2'-chloroethylamide at 1, 3 or 6 mg/kg and JWH133 at 1, 3 or 6 mg/kg. The cannabinoid receptor antagonist/inverse agonist rimonabant was also tested at 0.3, 1 or 3 mg/kg. Test sessions comprised three 30 s presentations of the milk concentrations separated by 10 s interpresentation intervals. The nonselective CB1 receptor agonists Δ-THC, CP55,940 and Win 55,212-2 increased the number of licks for condensed milk, primarily by a significant increase in bout number. The potent and nonselective CB1 receptor agonist HU-210 and the selective CB1 receptor agonists methanandamide and arachidonyl-2'-chloroethylamide did not significantly affect licking behaviour but did significantly increase the latency to start licking. The CB1 receptor antagonist rimonabant produced effects that were opposite in direction to those produced by Δ-THC, CP55,940 and Win 55,212-2. Finally, the selective CB2 receptor agonist JWH133 had no significant effects on behaviour. These data add to reports that cannabinoid agonists can enhance the appetitive aspects of feeding, but they also demonstrate that not all CB1 receptor agonists do this, and therefore the relationship between action at CB1 receptors and appetitive feeding effects is not straightforward.

Actions (Repository Editors)

Item Control Page Item Control Page