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ABSTRACT

This paper presents a novel framework for emotion-controlled speech-to-animation, addressing the issue of emo-
tional mismatches between speech and facial expressions in existing methods. Our approach synchronises emo-
tional expression across audio and facial animations using State-of-the-Art (SOTA) pretrained models, eliminat-
ing the need for costly custom training while ensuring adaptability. A key contribution of our framework is the
creation of a novel a Speech-to-Speech (S2S) pipeline for emotional control over generated speech. In addition,
we introduce a novel evaluation metric, the Emotion Distribution Divergence (EDD), to assess our models ability
to modify the emotions in the original videos. Experimental results demonstrate significant improvements in
emotional expressiveness and realism over existing methods, establishing our approach as a major advancement
in human-machine interaction, virtual assistants, and emotion-aware IoT applications.

1. INTRODUCTION

Recent advancements in deep learning and generative models have significantly improved emotion generation
across facial expressions, speech, and text. These developments enable applications in smart home systems
and automotive technologies, enhancing human-device interactions through nuanced emotional understanding
and responsiveness. Emotion-adaptive visual chatbots in IoT and smart devices could respond appropriately
to users’ emotional states. While current systems enable emotionally responsive communication through audio,
animated facial expressions could improve engagement. Context-aware mechanisms enhance personalisation,
tailoring interactions to user needs. Additionally, these chatbots improve accessibility for individuals with hearing
impairments.! Emotion recognition and generation together enable proactive problem-solving by identifying
emotional cues such as frustration or distress and addressing issues preemptively. These advancements foster
empathy-driven interactions, encouraging trust and long-term adoption of IoT technologies.

Emotion-controlled visual chatbots in IoT devices support various applications. In smart homes, emotion
analysis enables adaptive experiences like mood-based lighting and security adjustments. In autonomous vehicles,
recognising driver emotions enhances safety by detecting fatigue, distraction, or stress and triggering appropriate
interventions. Linking facial animations and emotion generation to IoT devices improves intuitive and effective
human-device interactions. Despite these opportunities, current emotion control approaches are limited. Many
focus on generating facial animations without incorporating speech, leading to a disconnect between expressions
and vocal emotions. Additionally, these methods often require large datasets or are computationally intensive,
limiting real-time applicability.

Existing speech-to-animation methods with emotion control frequently suffer from a significant disconnect
between audio and facial expressions, resulting in animations that feel unnatural, inconsistent, and emotionally
unconvincing. This mismatch disrupts viewer immersion, severely limiting the effectiveness of IoT applications,
visual virtual assistants, and smart devices. Without precise synchronisation, these systems fail to convey
emotions authentically, reducing user engagement, trust, and overall interaction quality in human-computer
communication.

We propose a novel speech-to-animation framework which provides fine-grained control over both generated
facial expressions and emotional modulation in speech. Our key contribution is an original speech-to-speech
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pipeline, enabling precise emotion-driven adjustments in speech synthesis—an advancement which sets a new
standard in expressive animation. This approach is the first to seamlessly integrate these modalities. Our method
uses SOTA pretrained models, eliminating the need for custom training while ensuring exceptional performance
and adaptability. This adaptability makes our pipeline future-proof, capable of incorporating emerging technolo-
gies as they develop. Additionally, we introduce a novel evaluation metric, the EDD, to quantitatively assess
the change in emotional intensity between original and generated videos. Experimental results demonstrate our
model’s advantageous capability in modifying emotional expressions, pushing the boundaries of speech-driven
animation.

2. RELATED WORK
2.1 Visual Virtual Assistant Chatbots in IoTs

A visual virtual assistant? was designed to integrate voice and text-based interactions with automation and ad-
vanced conversational artificial intelligence. User access begins with a secure registration process, and Firebase
manages user authentication. The system’s interface, developed using ReactJS, combines voice assistant func-
tionalities with features such as weather forecasts, news updates, and live sports scores. By combining Dialogflow
with Puppeteer for web automation, the system can handle tasks like booking cars and shopping online.

2.2 Emotion Generation methods

Facial reenactment methods® have advanced with talking-head models like VASA* and EMO-Live,® enabling
fine control over facial expressions in animations. Speech-to-animation models generate facial expressions using
audio, video, or text inputs,>% focusing on mouth movements and overall realism. State-of-the-art models like
Wav2Lip” and diffusion-based approaches® achieve high quality expression synthesis with control over inten-
sity and duration. Speech Emotion Generation (SEG) techniques® transform vocal characteristics to modify
emotional expressions. Such systems utilise deep learning to produce realistic synthetic voices while maintain-
ing emotional nuance.”> ! Techniques such as adversarial training'' and latent diffusion models enable precise
control over emotional and stylistic variations in speech.!? Text Sentiment Generation involves generating emo-
tionally nuanced text responses using Large Language Models (LLMs) like ChatGPT!® and Gemini.'* These
models prioritise grammar and contextual understanding to produce human-like outputs. Recent advancements
use GANs and transformer-based architectures, enabling models to dynamically focus on relevant textual inputs
for emotionally aligned text generation.'®

2.3 Emotion Control Methods

Generative models with emotion control have advanced significantly across modalities like audio, video, and
text. Audio-driven face expression generation® utilises a comprehensive architecture that synchronises facial
expressions with audio input. However, it is computationally intensive and reliant on high quality audio. Video-
driven face expression generation methods'® tackle challenges like zero-shot editing by incorporating emotion
prompts for guided expression generation. However, these methods depend on pretrained models, which may
introduce biases in generated outputs. In SEG, a previously presented architecture!® employs state-of-the-art
feature extractors like Wav2Vec 2.0'7 for emotion-specific speech synthesis. While the model improves voice
fidelity and emotional expressiveness, its reliance on high quality speaker data limits its generalisation across
diverse datasets.

2.4 Emotion Control Evaluation Methods

Existing evaluation methods for emotion control models predominantly focus on assessing either the classifi-
cation accuracy of the generated emotional expressions'® or the perceptual realism of the synthesised facial
outputs.” Commonly employed metrics in this domain include Fréchet Inception Distance (FID), Structural
Similarity Index (SSIM), and SyncNet, which collectively quantify various aspects of video quality and audio-
visual synchronisation. Nonetheless, there remains a critical gap in current evaluation protocols: no existing
metric explicitly measures a model’s capacity to alter the emotional content of an input video or image.



3. PROPOSED METHOD

In this section, we introduce the Emotion-Driven Animation (EDA) framework (see Fig. 1), which synchronises
emotional changes across audio and facial expressions in generated animations. The EDA model takes a video
and an emotion prompt as input to generate a corresponding animation. It integrates a Speech-to-Speech (S2S)
module and a Facial Expression Animation Module (FEAM) to enhance the animation process. Our S2S module
begins with a speech-to-text component (S2T)!® to extract the spoken content from the original video. The
emotional content of the transcribed text is then changed by the Emotional Text Generation (ETG) component'?
to the specified emotion, before being processed by the Emotional Text to Speech component (ET2S)? to create
emotional speech using the target voice. The FEAM module processes N = 5 random frames from the video
and generates new frames of the face, with specified emotions, using the Emotional Face Generator component
(EFG).'6 The final part of our pipeline is the EFA'? which creates the final animations using the emotional
speech and emotional target face images.
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Figure 1: The input to our EDA model is a video and an emotion prompt. The audio from the video is
processed by a Speech-to-Speech module which combines a Speech-to-text component (S2T), an Emotional Text
Generation component (ETG) and an Emotional Text to Speech component (ET2S) to recreate the original
audio in the prompted emotion. The secondary module is the Facial Expression Animation module (FEAM),
which combines an Emotional Face Generator component (EFG) with an Emotional Face Animator component
(EFA), this module regenerates the target face with the prompted emotion. The EFA component generates the
final animation with synced emotions in the audio and face.

3.1 Speech-to-Speech Module

The Speech-to-Speech module transforms the original audio into an emotionally modified version through a
three-stage pipeline involving speech-to-text, text-to-emotional text, and text-to-speech. This process ensures
that the output speech aligns with the intended emotional tone while maintaining naturalness and intelligibility.
After extracting the audio, the speech-to-speech model is initiated (see Fig. 1). The process begins with the
S2T'® which process the original audio Si,(t) to generate a transcript 7. This transcript is then processed
by the ETG!? along with the emotion prompt, represented as I = [T, P], where T is the transcript, and P
is the emotion modification prompt (e.g., "Make this text very very very happy”). The input is tokenized as
Tiokens = Tokenizer(I). The altered transcript is then processed by the ET2S.? ElevenLabs synthesises the new
audio Syut(t) using the target voice and the modified speech content, thereby producing an emotionally adapted
version of the original audio.

3.2 Facial Expression Animation Module

The Facial Expression Animation module (FEAM) comprises two key components: Facial Expression Generator
component (FEGC)!® and Facial Expression Animation component (FEAC).'® The FEGC model is utilised to



generate still images of a target face conditioned on a specified emotion prompt. This ensures that the facial
expressions accurately reflect the intended emotional state before animation.

We use FEGC to generate the target face with specified prompted emotions. The model is trained using an
emotion-agnostic pretraining stage that refines 3D latent keypoints to capture facial attributes, using datasets
like MEAD and AffectNet to enhance expression diversity. An Audio-to-Expression Transformer (A2ET) maps
audio features to keypoints, using PCA for dimensionality reduction to ensure computational efficiency. In the
second stage, lightweight modules adapt the model for emotional tasks, integrating Emotional Prompts and an
Emotional Deformation Network (EDN) to refine expression deformations. The Emotional Adaptation module
(EAM) further enhances visual quality through learned scaling and shifting parameters. The model is trained
with objectives including latent loss for keypoint alignment, synchronisation loss for audio-visual coherence, and
CLIP? loss for text-image embedding alignment, ensuring high-fidelity and generalisable emotional expression
generation.

These generated images serve as input to EFA, which synthesises a talking-head animation by integrating the
emotionally conditioned facial images with corresponding audio. By utilising this two-stage approach, our system
ensures both accurate emotion representation and natural motion dynamics. The EFA component is trained in
three stages to generate realistic talking face animations from a single image and input speech audio. First, the
model learns to predict accurate facial expressions from audio by distilling lip-only motion coefficients from a
pretrained model” while using perceptual losses such as lip-reading loss and landmark loss to enhance accuracy.
Second, a conditional variational autoencoder is trained to generate diverse identity-aware head motions by
learning residual head pose changes and incorporating adversarial and KL-divergence losses for realism. Third,
a 3D-aware face renderer is trained to map the generated 3D motion coefficients to an unsupervised 3D keypoint
space, allowing natural video synthesis. During inference, the system takes input audio and a reference image,
extracts motion coefficients, maps these coefficients to the learned 3D keypoints, and uses the face renderer to
warp the image accordingly. This end-to-end process produces high-quality talking face videos with synchronized
lip movements, natural head motions, and strong identity preservation, outperforming existing methods in video
realism and expressiveness.

4. EXPERIMENTS
4.1 Dataset

The evaluation of our method was conducted using an existing dataset of edited YouTube videos.® The videos
were edited to focus on one person, and are approximately 45 seconds long. We selected two videos, Al Pacino
and Julia Roberts, to serve as test cases for our model. For additional consideration we used a YouTube clip of
Robin Williams. We generated 520 animated samples, comprising 7 target emotions: Anger, Contempt, Disgust,
Fear, Happiness, Neutral, and Sad. Due to cost restraints with using the E2TS component we generated only
one sample per emotion, per subject, for a total of 21.

4.2 Experimental design

First, we evaluated our work for accuracy of the generated emotions in faces, text, and speech using pretrained
emotion recognition models. The evaluation of the S2S components was conducted by XLM-Emo text sentiment
recognition model?! and SpeechBrain speech emotion recognition model.??> The generation capabilities of the
FEAM components were individually evaluated using EmoFAN facial expression recognition (FER) model.?3
Each of these emotion detection models evaluates different emotions, EmoFan evaluates 8 target emotions:
Anger, Contempt, Disgust, Fear, Happiness, Neutrality, Sadness, and Surprise. However, due to a bias towards
surprise in the training data for the FER model, we removed this emotion to allow the under-represented emo-
tions neutral, fear, disgust, and contempt to be detected.?* XLM-Emo evaluates anger, fear, happy, and sad,
and SpeechBrain evaluates anger, happiness, sadness, and neutral. Secondly, we used EDD to assess the effec-
tiveness of our model at generating emotions, based on the distance between the distribution of emotion in the
original video and generated videos. In addition, we assessed our model using standard metrics CPBD, PSNR,
FID, Head Motion, and Beat Align comparing our results to those obtained by the SOTA methods in our pipeline.



Emotion Accuracy Emotion Accuracy

Anger 100% Anger 50% Method CPBDt PSNRT FID|
Fear 100% Neutral 25% m
Joy 100% Happy 75% EFG19 21.8 11.52 5.3
Sad 89% Sad 50% EFA 0.33 138 4.9
Table 3: Comparison of the SOTA
Ave 97% Ave 50% components on standard metrics.
Table 1: ETG component Table 2: ET2S component
emotion accuracy. emotion accuracy.

4.3 Evaluation of Speech-to-Speech Module Components

We performed emotion recognition on the components of our S2S model to evaluate whether the intended emo-
tions were accurately generated. Table 1 presents the results for the ETG component, while Table 2 shows the
performance of the ET2S component. Our results demonstrate that the method successfully generated the target
emotion in 97% of cases for emotional text and 50% for emotional speech. However, some emotions were lost
during the transition from text to speech, highlighting a limitation in the ET2S component’s ability to convey
emotions effectively in speech synthesis. Future work should explore the integration of emotionally expressive
speech synthesis models or the fine-tuning of ET2S on emotion-labelled corpora to enhance affective fidelity.

4.4 Evaluation of Facial Emotion Animation Module Components

Original Disgust Angry Contempt Neutral Happy Fear Sad

Figure 2: Comparison of frames from the original video (left) with EDA-generated frames across seven emotional
expressions.

Fig.2 presents a comparative analysis of first frames extracted from the original video (left) and first frames
generated using the EDA model, depicting seven distinct emotional expressions: disgust, anger, contempt,
neutral, happy, fear, and sad. To evaluate the performance of individual components within the FEAM module,
we conducted an emotion classification analysis on the frames generated by both the EFG component (see Fig.3)
and the EDA model (see Fig.4). Our findings indicate a loss in emotion intensity on the final stage of our
pipeline for some emotions. Emotions with strong facial distortions, such as Disgust and Fear, appear to be
better preserved, whereas more subtle or nuanced emotions, such as Anger and Sadness, may degrade due to the
constraints of the animation model.

4.5 Emotion Distribution Divergence Metric

Since our goal is not to reconstruct the original video but rather to generate a video that effectively portrays
a user-defined emotion, conventional evaluation metrics such as emotion accuracy and FID are insufficient. A
successful transformation should result in a video where the individual exhibits the intended emotion more
prominently than in the original, even if the video appears visually different. To quantify this, we introduce the
Emotion Depiction Distance (EDD) as our evaluation metric.
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Figure 5: Visualisation of the EDD metric, illustrating how emotion probabilities are extracted, smoothed, and
compared between the original and generated videos.

To assess whether our method successfully generates faces that express the target emotion (denoted as the iz,
emotion), we compare the generated video with the original using a Facial Emotion Recognition (FER) model.
Given an original video X, € R*"*H*W and a generated video X, € R>*™*H*W "where ¢ is the number of
channels, n and m are the respective frame counts, and H x W is the resolution, we pass both through FER,
obtaining Y, € R"*? and Y, € R™*?_ Each row in these matrices represents the probability distribution of d
possible emotions for a given frame.

As FER operates on individual frames without contextual awareness, temporal inconsistencies may arise. To
mitigate this, we apply a sliding window averaging technique that smooths the emotion probabilities across a
sequence of frames. From the smoothed outputs, we extract the values corresponding to the target emotion
(ign, emotion), yielding two distributions: Y for the original video and Y;j for the generated one. A successful
transformation should result in higher values in Ygi compared to Y, indicating that the generated video expresses
the desired emotion more strongly.

To quantify the difference, we measure how well-separated these two distributions are using the Area Under
the Receiver Operating Characteristic Curve (AUROC).?> We construct a label vector V' by concatenating a
zero vector for the original frames and a one vector for the generated frames, while Y is formed by concatenating
Y} and Ygi. AUROC(Y, V) provides a measure of separation, with higher values indicating greater distinction



between the original and generated emotion distributions. The EDD metric is defined as:

EDD =1— AUROC(Y,V) = |V1||V0 Y D ooy > wk) (1)
Y; €V1 Yk €Yo

where V; and V), represent the indices of frames from the generated and original videos, respectively, while )y
and ) contain their corresponding emotion scores. The indicator function co(y; > yx) returns 1 if the generated
frame exhibits a stronger presence of the target emotion than the original frame, and 0 otherwise. An overview
of EDD can be seen in Fig.5.

4.6 EDD Results

Table 4 presents the average EDD scores for facial expressions in videos generated by our EDA framework,
compared to those produced without the EFG component. The EDD score measures the overlap between the
distribution of emotion classification results from frames in the generated video and those in the original video
(see Fig.6 and Fig.7 for examples). For each model, we report the lowest score achieved on each emotion. For
comparison, the EFA method'® was evaluated using frames extracted from the original video. The EDD score
quantifies the similarity between the two distributions by computing their statistical overlap.

A score of 1.0 indicates complete overlap, meaning the generated video retains the same emotional distribu-
tion as the original. In contrast, a lower score is better, as it signifies reduced overlap and greater emotional
change in the generated video. This metric effectively evaluates how much the emotional content in the generated
videos diverges from the original video, with lower scores indicating more successful emotional transformation.

Method Anger Contempt Disgust Fear Happy Neutral Sad

SadTalker!®  0.3521 0.2497 0.0933  0.0543  0.2503 0.3218 0.6032
EDA 0.3168 0.1821 0.0984 0.0103 0.0314 0.0294 0.6291

Table 4: EDD scores measuring the overlap between the emotion distributions of the original and generated
videos. Lower scores indicate greater emotional transformation, meaning less overlap between the two distribu-
tions. The results show that our method, EDA, achieves consistently lower or comparable scores across most
emotions compared to the baseline method, SadTalker,'? demonstrating its effectiveness in altering emotional
expressions.
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Figure 6: Example of a generated video with a low
EDD score, indicating a significant change in emo-
tional expression compared to the original video.
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Figure 7: Example of a generated video with a
high EDD score, indicating a large overlap in emo-
tion distribution between the original and gener-
ated video.

Our method demonstrated superior performance in synthesising Contempt, Fear, Happy, and Neutral expres-
sions, with the most notable improvements observed for Happy and Neutral, indicating enhanced refinement of
smiles and subtle emotional states. However, it exhibited lower performance for Sad expressions, where EFA



marginally outperformed EDA, suggesting that the EFG component may introduce distortions that reduce clar-
ity. Further analysis of the results revealed emotion bias present in the original videos influenced the outcomes
(see Fig.7 where the original video scored higher on the emotion anger, than the generated video did).

5. COMPARATIVE ANALYSIS OF STANDARD METRICS

Table 3 presents a detailed comparative evaluation of the state-of-the-art (SOTA) components within the FEAM
framework, specifically assessing EFG'6 and EFA.'® The results demonstrate that EFA consistently outperforms
EFG across all evaluated metrics. This superior performance emphasizes the critical need to integrate EFA, or
an even more advanced SOTA method, into our pipeline to improve the realism and fidelity of the generated
animations. The incorporation of a high performance method is essential for applications requiring accurate and
expressive visual representations, such as virtual avatars, human-computer interaction, and affective comput-
ing. Achieving superior results across key evaluation metrics directly contributes to enhanced visual coherence,
improved lip-sync accuracy, and more natural emotional expressiveness. By selecting the most effective SOTA
component, we aim to minimize artifacts, improve temporal consistency, and produce animations that are both
perceptually convincing and functionally robust.

6. CONCLUSION

This study introduced a novel methodology for emotion-controlled speech-to-animation, addressing the critical
challenge of synchronising emotional expression across text, speech, and facial animations. By using SOTA
pretrained models, our approach achieved high accuracy in emotion generation for text, demonstrated strong
results in speech modulation, and effectively modified facial expressions to match the intended emotion. A key
innovation of this work is the introduction of the Emotion Distribution Divergence (EDD) metric, based on
AUROC, providing a novel and rigorous evaluation method for emotional consistency. Our results show that
the model was able to affectively alter facial expressions to align with the desired emotions, validating the effec-
tiveness of our approach. This metric offers valuable insights into model performance and sets a new standard
for assessing emotional expressiveness in speech-driven animation. Another key contribution of this work is
the Speech-to-Speech (S2S) module, which effectively altered the emotions in the original speech, enhancing
the overall emotional coherence of the generated animations. This module plays a crucial role in ensuring that
the emotional expressions in speech align with the intended visual representation. Despite certain limitations,
including the constraints of pretrained models, our results underscore the significance of multimodal integration
in developing emotionally expressive avatars. Future work should focus on refining synthesis techniques, using
more diverse datasets, improving computational efficiency, and enhancing evaluation metrics to further push the
boundaries of emotion generation in speech-to-animation.
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