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Abstract—Federated learning (FL) enables devices to collabo-
ratively build a shared machine learning (ML) or deep learning
(DL) model without exposing raw data. Its privacy-preserving
nature has made it popular for intrusion detection systems
(IDS) in the field of cybersecurity. However, data heterogeneity
across participants poses challenges for FL-based IDS. This paper
proposes statistical averaging (StatAvg) method to alleviate
non-independently and identically (non-iid) distributed features
across local clients’ data in FL. In particular, StatAvg allows
the FL clients to share their individual local data statistics with
the server. These statistics include the mean and variance of
each client’s feature vector. The server then aggregates this in-
formation to produce global statistics, which are shared with the
clients and used for universal data normalization, i.e., common
scaling of the input features by all clients. It is worth mentioning
that StatAvg can seamlessly integrate with any FL aggregation
strategy, as it occurs before the actual FL training process.
The proposed method is evaluated against well-known baseline
approaches that rely on batch and layer normalization, such as
FedBN, and address the non-iid features issue in FL. Experiments
were conducted using the TON-IoT and CIC-IoT-2023 datasets,
which are relevant to the design of host and network IDS,
respectively. The experimental results demonstrate the efficiency
of StatAvg in mitigating non-iid feature distributions across the
FL clients compared to the baseline methods, offering a gain in
IDS accuracy ranging from 4% to 17%.
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erated learning, data heterogeneity, statistical averaging
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I. INTRODUCTION

In the dynamic era of smart technologies, including the
Internet of Things (IoT) [1], artificial intelligence (AI) [2]
and future wireless networks [3], [4], the attack surface
increases significantly. In particular, from single-step attacks,
the attackers now have the ability to design and execute multi-
step attack scenarios, targeting multiple systems and domains
in a coordinated and synchronized manner. According to the
MITRE ATT&CK framework, notable examples of attack
campaigns include (a) C0034 - the 2022 Ukraine Electric
Power Attack, and (b) C0022 - Operation Dream Job. These
incidents highlight the increasingly complex and evolving
nature of cyber threats, which continue to pose significant
risks to critical infrastructure and organizational security. As
cyberattack strategies evolve and grow more complex, it is
evident that traditional methods are no longer sufficient to
safeguard critical infrastructure and organizational security.
Hence, there is now a strong demand for reliable, real-time
intrusion detection systems (IDS). In a cybersecurity landscape
where threats can quickly morph and adapt, efficient IDS are
not just important, but essential.

Traditionally, IDS rely on signature-based methods, where
predefined attack rules or patterns, referred to as signatures,
are identified and compared with the monitoring data, thus
alerting a potential threat if a match is found. For instance,
Snort and Suricata are popular IDS in this category. On
the other hand, in recent years, both machine learning (ML)
and deep learning (DL) models have already demonstrated
significant promise as a means to detect cyberattacks [5].
However, it is worth mentioning that these models need
the presence of appropriate security datasets that are often
not publicly available, especially for critical domains [5]. In
addition, appropriate adjustments are required to re-train and
integrate these models. Finally, conventional ML/DL methods
are conducted in a centralized fashion, where a central entity
collects all the necessary data from endpoints to construct
training datasets and afterwards generates the ML/DL models.
Although this approach successfully enables the detection of
intrusions, it raises privacy concerns since endpoints’ private
data are shared with third parties.

To alleviate privacy issues and mitigate communication
overhead, federated learning (FL) has been proposed as an
inherently privacy-preserving decentralized learning solution
[6], [7]. According to the FL principles, the participating
clients are building an ML/DL model collaboratively with
the aid of a central entity (e.g., a central server). The salient
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feature of FL is that clients transmit locally trained models
to the server rather than raw data. Afterwards, the server
aggregates the received parameters, updates the global model,
and subsequently broadcasts it to the clients. Consequently,
the server has no access to clients’ raw datasets. However,
despite the benefits of FL, a notable challenge in the design
of an FL-based IDS is the existence of non-independently
and identically distributed (iid) data among clients, commonly
referred to as data heterogeneity. In particular, if the data is
not representative across the clients, the global model may
become biased, thus working efficiently on some cases but
inaccurately on others. Also, the presence of non-iid data can
affect the federated training procedure in terms of delaying or
hindering convergence.

A. Related Work

The related work is organized into two subsections. The
first focuses on the design of general FL-based IDS, while the
second examines studies that address non-IID data challenges
in FL-based IDS. The latter will primarily be the driving factor
for the motivation behind our proposed approach.

1) FL-based IDS: Several works investigate the role and
impact of FL in cybersecurity and, more precisely, in the
scope of intrusion detection. Some survey papers in this
field are listed in [8]–[12]. In [8], the authors present a
comprehensive survey regarding the impact of FL within the
scope of intrusion detection, highlighting challenges and future
directions. In [9], a detailed comparison regarding centralized,
distributed and FL-driven intrusion detection mechanisms for
IoT environments was provided. Similarly, the authors in
[10] discuss advances of FL within cybersecurity applica-
tions in IoT ecosystems. [11], provide a comprehensive study
regarding FL-driven intrusion detection, game theory, social
psychology and explainable AI. Finally, in [12], the authors
focus their attention on security and privacy issues regarding
FL applications. Next, we further discuss recent works that
deliver FL-driven IDS.

In [13], the authors introduce DeepFed, an FL-driven IDS
for cyber-physical systems. In this method, a trust authority is
introduced, whose role is to produce the encryption keys for
the proposed Pailier public-key cryptosystem utilized for the
communication between the server and the industrial clients.
For the detection process, the authors leverage a combined
convolutional neural network (CNN) - gated recurrent unit
(GRU), while special attention is paid to the proposed Pailier-
based secure communication protocol for the communication
between the server and the clients. Finally, three evaluation
metrics are considered, namely accuracy, precision, recall and
F1-score, demonstrating the detection efficiency of DeepFed.

In [14], authors describe MV-FLID, a multi-view FL-based
IDS which focuses on the detection of attacks against message
queuing telemetry transport (MQTT) communications within
IoT environments. In particular, MV-FLID adopts a multi-
view approach, combining bi-directional flow features, un-
directional flow features and packet features. An FL model
is generated for each of the previous viewpoints. Regarding
the feature selection process, the authors leverage the grey

wolf optimizer introduced in [15]. Next, the federated training
procedure follows. Finally, an ensemble-based technique is
used to combine the outcomes of the FL models in order to
provide a unified prediction outcome. Traditional performance
evaluation metrics are considered to demonstrate the overall
detection effectiveness of MV-FLID.

In [16], a semisupervised FL scheme for intrusion detec-
tion within IoT environments was introduced. The proposed
scheme relies on CNN models, while four phases are followed
in an iterative manner within the FL fashion, namely (a) client
training, (b) knowledge distillation, (c) discrimination between
familiar and unfamiliar traffic packets and (d) hard-labeling
and voting. During the first phase, the clients train their
CNNs with private local data. In the second phase, knowledge
distillation follows a teacher-student approach, where a teacher
model guides the training of a student model, providing soft
targets or logits. Next, a discrimination network is used from
the FL server to evaluate further the predicted labels of each
client’s CNN. Finally, hard labeling and voting mechanisms
take place in order to consider only the labels from the
majority of the FL clients and proceed with the aggregation
process.

2) Non-iid data in FL-based IDS: Non-iid data and data
heterogeneity refers to the variation in the distribution, types,
or characteristics of data across different clients. This variation
poses challenges when creating FL models, as they need
to generalize across diverse datasets. Towards tackling the
above challenge in FL-based IDS, [17] proposes the FL-
based Attention-Gated Recurrent Unit (FedAGRU) to ad-
dress, among others, the issue of different label distribution
across clients’ data, thus demonstrating performance gains
over conventional FL aggregation strategies. Moreover, in
[18], the authors propose a peer-to-peer algorithm, namely
P2PK-SMOTE, to train FL-driven anomaly detection models
in non-iid data scenarios. The latter refers to inter and intra-
imbalanced classes across the FL clients. Numerical results
indicated performance gain of the proposed strategy against
non-rebalancing approaches. Additionally, [19] leveraged the
Fed+ method [20] for FL-driven intrusion detection in het-
erogeneous networks. The clients own datasets from various
types of networks, such as industrial IoT, wireless networks
and wireless vehicular networks, while Fed+ facilitates the
generation of personalized local models with enhanced attack
classification performance. The concept of non-iid data was
supported by the assumption that the data stem from different
network devices. In addition to this, in [21], the authors
take Fed+ a step further by incorporating differential privacy
techniques. Next, in [22], data augmentation techniques to
address class imbalance and non-iid settings are investigated.
Specifically, data augmentation methods such as SMOTE,
ADASYN and adversarial generative networks were invoked
to support upsampling of the imbalanced client data. The eval-
uation results indicate a performance improvement compared
with baselines that do not rely on data augmentation strategies.
Finally, in [23], authors propose a clustering-enabled FL meta-
learning framework to tackle class imbalance and non-iid data.
Specifically, they design a data- and model-agnostic meta-
sampler that adaptively balances local data sets, and thus,
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mitigating the data imbalance problem. Hence, the focus of
this work lies mainly in dealing with class imbalance in FL-
based IDS.

B. Motivation

Undoubtedly, the previous works offer valuable insights and
methodologies. However, in the majority of them, the assump-
tion of iid data across the clients is not valid within realistic
FL conditions. Conventional FL strategies like FedAvg are
not designed for handling non-iid data and may experience
notable performance degradation or even divergence when
applied in such situations [24]. Although the works [17], [18]
and [16], [22], [23] successfully examine and design FL-based
IDS considering non-iid data, emphasis was mainly given to
the following cases: (a) class imbalance across clients datasets
and/or different label distributions and (b) different number
of samples per client. Therefore, the aforementioned works
mainly address class and data imbalance issues. The case of
non-iid features among clients’ data is underrepresented, while
its impact on the global model convergence remains vague.
On the contrary, the authors in [19] study a broader aspect of
non-iid settings by considering heterogeneous datasets across
the clients. However, personalized FL methods such as Fed+
are employed, generating multiple personalized local models
instead of a unified global one. Such approach prevents the
generation of a single global model, that can be further
distributed to third parties.

Well-known techniques in the literature that address non-
iid data issues include FedProx [25], which stabilizes local
training by introducing a proximal term, FedNova [26],
which considers that each client may conduct a different
number of local training steps, and SCAFFOLD [27], which
uses control variates both at server and clients to estimate the
model update direction. However, as mentioned previously, a
particular example of non-iid data among clients is the case of
non-iid features, which has generally received less attention in
the FL-related literature. Methods addressing this issue mainly
rely on layer normalization [28] and batch normalization
[29] techniques. Specifically, [29] proposes FedBN, a method
that incorporates batch normalization layers on local clients’
model, which are not included in the aggregation step at
the server side. Although FedBN has shown potential in
mitigating non-iid features, it assumes that clients possess
batch normalization layers and have been actively involved
in the FL training. Consequently, non-participating clients
that may want to access the global model are excluded, as
the method cannot generate a universally applicable global
model. This fact implies limitations in distributing the global
model to additional entities. Moreover, the work in [30],
proposed a FL/split learning method to address non-iid data in
a user authentication scenario. The method involves splitting
a global model trained initially on a public dataset, into
two parts: a feature extractor subnetwork and a classifier
head. Clients compute the mean and variance of the feature
extractor based on their local datasets and send these statistics
to the server. The server then generates a synthetic dataset
by sampling from the aggregated client statistics. While this

method proved effective, it assumes the availability of a pre-
existing public dataset on the server and depends on data
augmentation techniques. Finally, as per [31] experimental
study, none of the existing state-of-the-art FL methods and
aggregation strategies for non-iid data outperform the other
ones in all cases. Therefore, exploring novel techniques to
address the impact of data heterogeneity in terms of non-
iid features, particularly within FL-based IDS, which is still
immature in the context of the mentioned challenge, is an
interesting and promising topic. To the best of our knowledge,
limited attention has been given to the issue of non-iid features
among clients in FL-based IDS. Notably, the works [17]–[23]
do not particularly focus on this subject.

C. Contribution

In light of the aforementioned motives, in this paper, we
introduce the Statistical Averaging (StatAvg)
method to circumvent the challenges of non-iid features of
clients in FL. Due to different feature distributions across
clients, the local data normalization process may differ from
client to client. It is noted here that data normalization refers
to the scaling of the input data, e.g., the scaling of features
through methods such as standard scaling. Inconsistencies in
feature distribution can hinder or even prevent the convergence
of the federated global model, as each local model is trained
on a different input data distribution. To this end, StatAvg
aims at producing global data statistics that can serve as a
universal normalization for the local data of each client. This
approach enables clients to scale their input data (features)
based on this unique global scaler. To achieve this, the server
is responsible for collecting the local data statistics of the
clients and afterwards aggregating them properly to produce
global data statistics. In this way, clients use a shared global
normalization scale, based on the aggregated data statistics, to
standardize their local data, helping to reduce the impact of
non-iid features in their individual datasets. The contributions
of our work are summarized as follows:

• The StatAvg method is proposed to alleviate the ef-
fects of non-iid feature distributions in FL. According
to StatAvg, the FL clients calculate their local data
statistics, specifically the mean and variance of the input
feature vector, and transmit them to the server. The server
aggregates the clients’ local statistics to generate global
statistics. We prove mathematically that the aggregated
global statistics represent the true mean and variance
of the combined datasets across all clients. Afterwards,
the server broadcasts the global statistics to all clients,
normalizing their input features based on these global
statistics.

• StatAvg enables the generation of global data statistics
that can be interpreted as a universal input data nor-
malization process and applied before feeding the data
into the global model. It is important to emphasize that
typically, a trained model should be accompanied by the
corresponding normalization technique on the input data.
Otherwise, the model will be ineffective during inference,
without the proper input data normalization. However,
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this aspect is often overlooked in the existing literature.
Therefore, StatAvg serves as a means to offer a global
data normalization technique that can be applied to the
global model by external entities that are not necessarily
involved in the training procedure.

• The performance of StatAvg is evaluated through ex-
periments on two open datasets for host and network
intrusion detection, namely the TON-IoT and CIC-IoT-
2023. Various FL aggregation strategies are used as
baseline methods for comparison, including FedAvg,
FedLN [28], and FedBN [29]. The demonstrated results
showcase the prevalence of StatAvg over the baselines
in terms of evaluation metrics such as the detection accu-
racy and the F1 score. Finally, some illustrative insights
are provided that justify the presence of clients’ non-iid
features on the examined intrusion detection datasets.

D. Structure

The structure of the paper comes as follows. Section II
provides preliminary information regarding FL and non-iid
features. Next, section III presents and analyzes StatAvg.
Finally, section IV focuses on the evaluation analysis of
StatAvg, while section V concludes this paper.

II. PRELIMINARIES OF FEDERATED LEARNING

A. FL System

We consider an FL environment consisting of N clients,
indexed as i ∈ N = {1, 2, ..., N} and a server. Each client
owns a dataset Di = {(xj

i , y
j
i ) ∈ RS × C}Di

j=1, where xj
i is

the j-th input sample, Di = |Di| is the number of samples
and S denotes the number of features. Here, R denotes the
set of real numbers. Additionally, we denote C as the set to
which the label yji belongs, e.g., it could be a subset of the real
numbers, a set of categorical values for classification tasks, etc.
In this paper, C contains the labels of cyberattacks and will
be described below in this work, along with the description of
the datasets used in the evaluation experiments.

The overall dataset across all clients is denoted as D =
∪

i∈N
Di and the size of all training data is D =

∑N
n=i Di. The

loss function of client i, is defined as:

Fi(w) ≜
1

Di

Di∑
j=1

ϕ
(
w,xj

i , y
j
i

)
, ∀i ∈ N , (1)

where ϕ(w,xj
i , y

j
i ) captures the error of the model parameter

w ∈ RK for the input-output pair (xj
i , y

j
i ), where K is the

size of model parameters. The ultimate goal of the FL process
is to obtain the global parameter w, which minimizes the loss
function on the whole dataset.

F (w) =

N∑
n=1

niFi(w), (2)

where ni =
Di

D is the proportion of data samples owned by
client i relative to the entire dataset.

In a nutshell, the FL process is executed for a specified
number of communication rounds. At the t-th round, the server

firstly broadcasts the global model w(t) to all clients. Each
client i updates its local model w

(t)
i via a gradient-based

method on the loss function Fi and uploads it to the server.
Finally, the server generates the global model w(t+1) by using
an aggregation strategy of its preference. The aforementioned
process is repeated for the selected number of rounds until the
convergence of the global model is achieved.

B. Non-iid features in FL

In line with the definitions provided by [24] and [29], the
presence of non-iid features across clients can be expressed
through the following concepts:

• Feature distribution skew (covariate shift): The marginal
distributions Pi(x) varies across clients, even if Pi(y|x)
is the same for all clients.

• Same label, different features (concept drift): The condi-
tional distributions Pi(x|y) may vary across clients even
if Pi(y) is common. As such, the same label y can have
different features x for different clients.

Non-iid features can significantly degrade the performance
of FL, by introducing inconsistencies in model updates across
clients. Since each client is exposed to different input dis-
tributions, their local models may learn patterns that do not
generalize well to other clients. This inconsistency can result
in unstable training, where the global model struggles to
converge in a timely manner. In extreme cases, the divergence
between local models can be so severe that the global model
completely fails to converge. These challenges make it difficult
for the server to effectively aggregate the locally trained
models into a coherent global model that performs well across
all clients. Consequently, the presence of non-iid features
requires specialized techniques or modifications to standard
FL algorithms to ensure successful training and generalization.

III. STATAVG - STATISTICAL AVERAGING

A. Description and Algorithm

Traditionally, individual FL clients normalize their local
data based on their own local statistics, with the most promi-
nent normalization technique being the z-score normalization,
i.e., clients subtract the mean from each data sample of a given
feature and then divide it with the standard deviation. This is
equivalent to shifting the input feature distribution to have a
zero mean and unit variance. Accordingly, in the testing phase,
the testing dataset is scaled based on the aforementioned
normalization, individually per client. In the presence of non-
iid features between clients, the local normalization process
may significantly differ from client to client. As a result,
this variability may affect the convergence of the global
FL model since each local model is trained on a different
input data distribution. To tackle the issue of non-iid features
across clients, our objective is to discover global statistics that
clients can share without requiring access to their raw data.
Typical statistical metrics include the mean and variance of the
features, whereas this study investigates the impact of these
particular metrics.

In the light of the previous discussion, we proceed to
compute the mean and variance for each client’s features. The
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mean value across all samples of a feature s ∈ S of client i,
where S is the entire feature set, is given as:

µi,s =
1

Di

Di∑
j=1

xj
i,s (3)

and µi = (µi,1, µi,2, ..., µi,S) is the vector with all the means
of each feature. Its is worth noting that xj

i,s is the s-th entry
of xj

i . Accordingly, the corresponding variance is calculated
as:

σ2
i,s =

1

Di

Di∑
j=1

(
xj
i,s − µi,s

)2

(4)

and σ2
i = (σ2

i,1, σ
2
i,2, ..., σ

2
i,S). Hereinafter, with the term

local statistics of client i, we refer to the tuple {µi,σ
2
i }.

The StatAvg strategy aims at obtaining the global statistics
{µG,σ

2
G} of the overall dataset D by aggregating the local

statistics {µi,σ
2
i }i∈N . In this manner, all clients can normal-

ize their data based on global statistics, which guarantees a
common normalization/scaling of the input data. The detailed
process of StatAvg is described in Algorithm 1.

Algorithm 1 StatAvg

Input: N , {Di}i∈N ,w(1)

Output: w, {µG,σ
2
G}

1: for t = 0, 1, 2, ... do
2: if t = 0 then
3: for each client i ∈ N do
4: calculate µi,σ

2
i according to (3), (4)

5: send µi,σ
2
i to the server

6: server calculates the global statistics as:
µG =

∑
i∈N niµi,

σ2
G =

∑
i∈N ni

(
σ2

i + (µi − µG)
2
)

7: server sends {µG,σ
2
G} to all clients

8: for each client i ∈ N do
9: normalize input features as:

x̃j
i,s =

xj
i,s−µG,s

σG,s
, ∀j ∈ {1, ..., Di}, ∀s ∈ S

10: D̃i = {(x̃j
i , y

j
i )}

Di
j=1

11: else ▷ standard FL procedure
12: server sends w(t) to all clients i ∈ N
13: for each client i ∈ N do

14: w
(t)
i = w

(t)
i −η∇Fi

(
w

(t)
i , ξ

(t)
i

)
, ξ

(t)
i ⊆ D̃i

15: send w
(t)
i to the server

16: w(t+1) =
∑

i∈N niw
(t)
i

17: w = w(t)

As can be seen, the StatAvg strategy occurs solely during
the first round (t = 0), prior to the actual FL training. Firstly,
in steps 2 - 4, each client calculates its local statistics and
sends them to the server. Following that, in steps 5 - 6, the
server calculates the global statistics based on the received
local statistics and broadcasts them back to the clients. It
is worth mentioning that the operations in step 5 are car-
ried out element-wise. The rationale behind the aggregation

technique used to obtain µG and σ2
G is explained later in

this work. Afterwards, in steps 7 - 8, the clients normalize
their input features based on the global statistics by utilising
conventional z-score normalization. It should be highlighted
that the communication overhead for exchanging the local
and global statistics between the clients and the server is
negligible since it takes place solely during the first round.
Additionally, the size of the local statistics tuple is negligible
compared to the size of the local model, because the number
of features is typically much smaller than the number of model
parameters (weights) used during training, i.e., 2S ≪ K. At
step 10 and afterwards, a conventional FL process follows,
e.g., FedAvg, that will ultimately generate the global FL
model. However, the selection of the aggregation strategy
is not limited to FedAvg and can vary according to the
particularities of the underlying FL task. Note also that during
the client local update in step 13, η is the learning rate
and ξ

(t)
i ⊆ D̃i is a randomly sampled mini-batch from the

normalized local dataset D̃i. Finally, if the local dataset Di

changes dynamically in each round (it can be denoted as D(t)
i ),

applying StatAvg in such case is straightforward. This can
be done by computing the local statistics in each round and
constructing the normalized dataset D̃(t)

i , based on the global
statistics of the given round.

It should be again clarified that StatAvg focuses on the
aggregation of statistical metrics rather than local models w(t)

i ,
facilitating its integration with any model aggregation strategy.
Fig. 1 provides an illustration of StatAvg’s implementation.
Finally, we stress that through StatAvg, a universal input
data normalization technique is provided. This is a crucial
remark since a trained model should be paired with the ap-
propriate data normalization technique (also known as scaler)
to render it effective during inference.

In the continue, we will show that µG and σ2
G are the mean

and variance of the overall dataset D. First, we assume that
Di ∩ Dk = ∅, ∀i, k ∈ N , i ̸= k. This implies that all local
datasets are pairwise disjoint. The assumption is reasonable,
considering that each dataset originates from a distinct client,
thus making it highly unlikely - if not impossible - for identical
samples to appear across different local datasets. To this end,
we proceed to formulate the following proposition.

Proposition 1: Let xi,s ∈ RDi be the vector containing
the s-th feature across all samples of Di. Also, let zs =
(x1,s, ...,xN,s) be the concatenation of all clients vectors, with
zs ∈ RD. The mean and variance of zs are given as

µG,s =
∑
i∈N

niµi,s

σ2
G,s =

∑
i∈N

ni

(
σ2
i,s + (µi,s − µG,s)

2
)
.

(5)

Proof:

First, the notation of s is dropped for the simplicity of
presentation. It is straightforward to compute the mean of z
as:
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µG =
1

D

D∑
l=1

zl =
1

D

N∑
i=1

Di∑
j=1

xj
i =

1

D

N∑
i=1

Di

Di∑
j=1

xj
i

Di

=

N∑
i=1

niµi.

(6)

Before examining σ2
G, first, it is noted that for the local

variances, it holds:

σ2
i ni =

Di∑
j=1

(xj
i − µi)

2, ∀i ∈ N . (7)

Similarly, for z we get

σ2
GD =

D∑
l=1

(zl − µG)
2 =

N∑
i=1

Di∑
j=1

(xj
i − µG)

2

=
N∑
i=1

Di∑
j=1

(
(xj

i )
2 − 2xj

iµG + µ2
G

)
.

(8)

The inner sum in the last term of (8) can be expanded by
adding and subtracting µ2

i , as:

Di∑
j=1

(
(xj

i )
2 − 2xj

iµG + µ2
G + µ2

i − µ2
i

)

=

Di∑
j=1

(
(xj

i − µi)
2 + 2xj

i (µi − µG) + µ2
G − µ2

i

)

=

Di∑
j=1

(xj
i − µi)

2 + 2Diµi(µi − µG) +Diµ
2
G −Diµ

2
i

= Diσ
2
i +Diµ

2
G − 2DiµiµG +Diµ

2
i

= Diσ
2
i +Di(µi − µG)

2.

(9)

By combining (9) with (8) we conclude to

σ2
G =

∑
i∈N

ni

(
σ2
i + (µi − µG)

2
)
, (10)

which completes the proof.
Proposition 1 provides a way to obtain the global mean and

variance across the whole dataset D for a given feature s. The
proof can be easily generalized ∀s ∈ S, which gives rise to the
vector representation of the global mean and variance for each
feature, i.e., µG and σ2

G, respectively. This result is used in
step 5 of Algorithm 1 to derive the global mean and variance.

B. Differential Privacy Extension

It is clarified that the local statistics being shared with the
server are high-level, aggregated summaries of the data and
do not reveal individual data points or sensitive attributes.
Therefore, these statistics lack sufficient granularity to recon-
struct the underlying dataset or any individual client’s private
information. However, to further enhance privacy, differential
privacy (DP) strategies could be easily integrated into the
proposed method during the transmission of the local statistics
[32]. Specifically, by adding a controlled amount of random

noise to the local statistics, DP ensures that individual client
contributions cannot be easily inferred by the server.

According to DP principles, instead of directly sending the
local statistics {µi,σ

2
i } to the server, the clients perturbs them

and send a distorted version. Specifically, to ensure (ϵ, δ)-DP
[32], for a given feature s ∈ S , client i adds Gaussian noise
to µi,s and σ2

i,s as follows:

µ̃i,s = µi,s + Gaussian
(
0, ζ2µi,s

)
,

σ̃2
i,s = σ2

i,s + Gaussian
(
0, ζ2σ2

i,s

)
,

(11)

where the variance of the noise for µi,s and σ2
i,s are described,

respectively as

ζ2µi,s
=

2 ln(1.25/δ)

ϵ2
∆2

µi,s
,

ζ2σ2
i,s

=
2 ln(1.25/δ)

ϵ2
∆2

σ2
i,s

(12)

and the sensitivities ∆2
µi,s

, ∆2
σ2
i,s

of the mean and variance
functions are given by

∆2
µi,s

=
maxj{xj

i,s} −minj{xj
i,s}

Di
,

∆2
σ2
i,s

=

(
maxj{xj

i,s} −minj{xj
i,s}

)2

Di
,

(13)

accordingly. By applying the above process for each feature
s ∈ S independently, each client i creates the peturbated local
statistics {µ̃i, σ̃

2
i } and sends them to the server, which then

proceeds with the conventional aggregation process.

IV. EVALUATION ANALYSIS

This section presents experiments conducted on different
datasets to detect intrusions in a federated setting. The effec-
tiveness of the proposed strategy StatAvg is evaluated by
comparing it with various baseline methods.

A. Evaluation Datasets

The experiments were conducted on the following well-
known public datasets.

TON-IoT Dataset: Among others, the TON-IoT Dataset
[33] includes operating system data of Ubuntu versions 14
and 18, which is adopted in our work. More specifically, it
includes audit traces documenting memory activities within
the operating system. The dataset is suitable for training and
designing host-based IDS. Also, the dataset is composed
of data stemming from various physical or virtual devices
belonging to the edge and cloud layers. The description of
the selected features is provided in Table II. Furthermore,
the attacks on the host system that serve as the labels of the
dataset are “dDoS”, “DoS”, “Injection”, “Password”, “Mitm”,
while also a class named “Normal” is included, indicating the
normal behaviour of the host system. More details regarding
the dataset can be found in [33] and [34].
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. . . . . .
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client 1 client N

server

z-score

client i

. . . . . .

t > 0

client 1 client N

server

Calculate local statistics

Send local statistics

Generate global statistics

Send global statistics

Normalize data

Send global model

Train local model

Send local model

Update global model

Fig. 1. Visual representation of StatAvg design and implementation.

TABLE I
LIST OF NOTATIONS

Parameter Description Parameter Description
N Set of clients P (·) Probability density function
i Indexing of clients µi The mean values vector of the features for the i-th client
Di Dataset of client i σ2

i The variances vector of the features for the i-th client
Di Dataset size of client i µG Global mean values vector
xj
i j-th input sample of client i σ2

G Global variances vector
S Number of features z Concatenated vector
s Index of features zl The l-th element of the vector z
yji j-th label of client i t FL round index
D Overall dataset of all clients ni Proportion of data samples owned by client i
D Size of the overall dataset w(t) Global model at round t

N Total number of clients w
(t)
i Local model of i-th client at round t

K Size of model parameters C Set of classes
D̃i Normalized dataset of client i ξ

(t)
i Random mini-batch of client i at round t

CIC-IoT-2023 Dataset: The CIC-IoT-2023 Dataset [35] is a
realistic IoT attack dataset, using an extensive topology com-
posed of multiple IoT devices designated as either attackers or
targets. The dataset entails 48 features that are characterized
by metrics such as packet flow statistics, employed application
layer protocols, TCP flags, etc. As we do not explicitly
describe all features for brevity, additional information can be
found in [35]. Furthermore, the dataset categorizes attacks into
eight classes, namely “Brute force”, “dDoS”, “DoS”, “Mirai”,
“Recon”, “Spoofing”, “Web-based”, and “Normal”.

B. Baseline Aggregation Methods

To evaluate the performance of StatAvg, we use the
following baseline aggregation strategies:
FedAvg: It is the de facto approach for FL [36]. Clients
perform local model updates and the server executes the
aggregation of the local models to generate the global model.

FedLN: The layer normalization is included in the local
models for mitigating the effects of non-iid features [28].
FedLN performs local updates and averages local models
similarly to FedAvg.

TABLE II
TON-IOT DATASET: FEATURE DESCRIPTION

Feature
name

Description

MINFLT The number of page faults issued by this process that have
been solved by reclaiming the requested memory page

from the free list of pages
MAJFLT The number of page faults issued by this process that have

been solved by creating/loading the requested memory
page

VSTEXT The virtual memory size used by the shared text of this
process

VSIZE The total virtual memory usage consumed by this process
RSIZE The total resident memory usage consumed by this process

VGROW The amount of virtual memory that the process has grown
during the last interval

RGROW The amount of resident memory that the process has
grown during the last interval

MEM Memory occupation percentage

FedBN: Employs local batch normalization (BN) to the local
models prior to averaging them towards alleviating feature
shift. Nonetheless, FedBN assumes that local models have BN
layers and omits their parameters from the aggregation step at
the side of the server [29].

It is worth noting that FedLN and FedBN are specially
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tailored to address the issue of non-iid features, justifying their
selection. As follows, in FedAvg, FedLN and FedBN, the
normalization of the local training data is performed based
on the local client statistics, aligning with the conventional
FL approach. Also, the testing data undergo scaling in accor-
dance with the respective local normalization for each client
individually. Finally, it is noted that the proposed technique
StatAvg utilizes FedAvg at step 9 of Algorithm 1 as the
default model aggregation strategy.

C. Experimental Setup

The following settings apply to all experiments unless spec-
ified otherwise. The number of clients has been set as N = 5
and N = 10, while all clients are considered to participate
in every FL round. Also, the number of FL rounds is set to
50 and 80, for N = 5 and N = 10, respectively. Each client
receives an equal proportion ni = 1

N of the original dataset
D. Moreover, the division is conducted through stratification
based on the labels of the original dataset, aiming to approx-
imate a common Pi(y) across all clients. This implies that
clients share a common label distribution. Following that, each
client splits its local dataset into training and testing subsets,
with a ratio of 4 to 1. Due to the significant class imbalance in
the datasets, each client generates synthetic instances from the
minority classes in the training set by using SMOTE [37]. It
is noted that SMOTE is applied independently on each client,
after the splitting of the overall dataset.

The local model of each client is a neural network consisting
of 3 Fully Connected (FC) hidden layers with 128 neurons
and ReLU activation, denoted as (FC(128), ReLU), followed
by a softmax activation on the output layer. In the case of the
baselines FedLN and FedBN, layer normalization (LN) and
batch normalization (BN) layers are incorporated into the local
models, resulting in each layer being structured as (FC(128),
ReLU, LN) and (FC(128), BN, ReLU), respectively. For the
local training updates, the Adam optimizer is adopted [38].
Finally, additional settings are summarized in Table III 1

D. Evaluation Results

Regarding the performance evaluation, we use common
evaluation metrics such as the confusion matrix, accuracy, and
F1 score. Given a specific attack/class, the confusion matrix
includes the following standard metrics: the True Positive (TP)
represents instances where the model correctly identifies a
sample as belonging to a specific attack type. True Negative
(TN) counts instances where the model accurately identifies
a sample as not belonging to a specific attack type when it
truly does not. False Positive (FP) denotes instances where
the sample is predicted as of a certain attack, but actually,
the sample does not belong to that attack type. False Negative
(FN) is the number of instances for which the model fails to
predict a sample as a specific attack type, even though the
sample actually belongs to that attack. Next, the accuracy and
F1 score are defined as:

1In the spirit of reproducible research, the code used for the numerical
results is available at: https://flower.ai/docs/baselines/statavg.html

ACC =
TP+ TN

TP+ TN+ FP + FN
(14)

and
F1 =

2TP

2TP + FP + FN
, (15)

respectively.
The evaluation metrics showcased in the results have been

averaged across all classes due to the multi-class nature of the
problems we are addressing. Finally, it is noted the evaluation
was performed using clients’ testing sets, and the demonstrated
results were also averaged across all clients.

First, the evolution of testing accuracy throughout the FL
rounds is evaluated, for both N = 5 and N = 10 clients.
In Fig. 2, 3, and Fig. 4, 5, the StatAvg strategy is com-
pared with the selected baselines on the TON-IoT and CIC-
IoT-2023 datasets, respectively. It is evident that StatAvg
significantly outperforms the baseline strategies across both
datasets in terms of accuracy. Moreover, the convergence curve
of StatAvg is more stable compared to that of the baseline
methods, which display higher variance. The exhibited per-
formance gain lies in the fact that StatAvg utilizes global
statistics to normalize the clients’ features. Although FedLN
and FedBN have been designed to minimize the effects of
non-IID features between clients, it is discernible that they
struggle to address this issue in certain datasets. The variations
in local client statistics, and consequently, the diverse local
normalization utilized, appear to degrade the performance of
FL. Additionally, it is observed that Statavg consistently
outperforms the baseline methods in both client settings,
demonstrating its robustness to client scaling.

Moreover, in Table IV and Table V, some evaluation metrics
for the case of TON-IoT and CIC-IoT-2023 datasets are
demonstrated, respectively. The considered metrics showcase
the performance of the best models encountered during the FL
training for each strategy. It can be observed that StatAvg
has superior performance against the baseline strategies.
Specifically, in the case of the TON-IoT dataset, StatAvg
demonstrates a notable improvement, for both settings of
clients, of over 17% and 16% in accuracy and F1 score, re-
spectively, compared to the second-best strategy FedLN. Also,
when considering the CIC-IoT-2023 dataset, the corresponding
increase is over 4% and 2% for accuracy and F1 score. The
detailed confusion matrices of the StatAvg metho, when
considering N = 5 clients, are presented in Fig. 6 and Fig.
7, for the TON-IoT and CIC-IoT-2023 datasets, respectively.
In both datasets, it is evident that some classes are easier to
classify, e.g., “DDoS”, “DoS”, “Mirai”, and “Normal”. This
can be attributed to the large number of samples that these
classes usually have (e.g., “DoS” and “Normal” are majority
classes in both datasets), as well as their more recognizable
traffic patterns. On the other hand, certain classes are often
misclassified, e.g., “Brute Force”, “Recon”, “Spoofing” in Fig.
7, likely due to the similarity in their underlying traffic patterns
[35].

To shed light on the concept of non-iid features, we present
some illustrative examples derived from the examined datasets.
First, we take a deeper look into the training samples of the

https://flower.ai/docs/baselines/statavg.html
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TABLE III
EXPERIMENTAL SETTINGS

Datasets TON-IoT CIC-IoT-2023
training samples per client 19616 (N = 5) / 9808 (N = 10) 64050 (N = 5) / 32025 (N = 10)

training samples per client (SMOTE upsampling) 84000 (N = 5) / 42000 (N = 10) 373176 (N = 5) / 186584 (N = 10)
local training epochs 2 1

batch size 512 (N = 5) / 256 (N = 10) 1024 (N = 5) / 512 (N = 10)
learning rate 0.002 0.01
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Fig. 2. Testing accuracy on TON-IoT dataset (N = 5 clients).
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Fig. 3. Testing accuracy on TON-IoT dataset (N = 10 clients).

CIC-IoT-2023 dataset, focusing specifically on those labelled
with the attack category y = “Web-based”. Fig. 8 illustrates
the distribution of the feature “Flow Duration” for the clients
i = {1, 2}, formally written as Pi(xi,s|y = “Web-based”)
where s = “Flow Duration”. It can be observed from Fig. 8
(a) that the distributions of the clients differ. Nevertheless,
it remains uncertain whether this disparity in distributions is
inherent or if it is related to the limited number of samples
within the selected class. It is worth noting that the “Web-
based” class is indeed a minority class. From Fig. 8 (b), it
is evident that the difference in distributions persists after
upsampling the dataset via SMOTE. This example shows that
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Fig. 4. Testing accuracy on CIC-IoT-2023 dataset (N = 5 clients).
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Fig. 5. Testing accuracy on CIC-IoT-2023 dataset (N = 10 clients).

even if Pi(y) is approximately the same for all clients, as
previously explained in the experimental setup, the conditional
distributions Pi(x|y) can still differ. This phenomenon is re-
lated to the concept of Same label, different features, discussed
in Section II. Another example that highlights the differences
in the distributions of features is presented in Table VI. Here,
statistical metrics for selected features from the TON-IoT
dataset have been calculated. It can be observed that the feature
“VSIZE” demonstrates consistent mean and variance across
clients, while the feature “MINFLT” displays high variations
in the statistical metrics. This example highlights the statistical
differences that some features may exhibit among clients,
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TABLE IV
EVALUATION METRICS ON TON-IOT DATASET

N = 5 clients
Strategy ACC TPR FPR F1
StatAvg 83.93% 69.26% 3.13% 62.36%
FedAvg 63.68% 48.7% 8.22% 38.30%
FedLN 64.29% 48.9% 7.69% 40.73%
FedBN 62.60% 46.85% 8.66% 36.99%

N = 10 clients
Strategy ACC TPR FPR F1
StatAvg 83.38% 69.66% 3.26% 61.22%
FedAvg 65.73% 52.19% 7.49% 43.55%
FedLN 66.07% 53.27% 7.41% 44.58%
FedBN 64.38% 46.29% 8.14% 38.89%

TABLE V
EVALUATION METRICS ON CIC-IOT-2023 DATASET

N = 5 clients
Strategy ACC TPR FPR F1
StatAvg 97.64% 76.01% 0.33% 75.63%
FedAvg 89.71% 70.16% 3.34% 69.82%
FedLN 93.42% 73.41% 1.58% 73.59%
FedBN 78.34% 69.33% 4.10% 66.32%

N = 10 clients
Strategy ACC TPR FPR F1
StatAvg 98.11% 74.18% 0.28% 75.39%
FedAvg 86.81% 68.57% 3.84% 65.88%
FedLN 86.06% 70.78% 2.71% 70.27%
FedBN 74.73% 66.40% 4.44% 63.50%
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Fig. 6. Confusion matrix of StatAvg on TON-IoT dataset.

which in turn influences the local normalization of the features
and potentially hinders the FL stability and convergence.

V. CONCLUSIONS

This paper proposes the StatAvg technique for mitigating
the impact of non-iid features among clients in FL settings.
The key aspect of StatAvg is to produce global data statistics
based on the local data statistics of FL clients. The generation
of global statistics, which is carried out by the server, gives rise
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Fig. 8. Distribution of the feature “Flow Duration”, given the attack label
“Web-based”, on CIC-IoT-2023 dataset.

to a universal data normalization technique that is performed
by all clients. Particular attention is given to FL-based IDS,
which is the focus of the experiments that were conducted.
The results corroborate the effectiveness of StatAvg in
providing robust FL convergence and classifying cyber-attacks
compared to various baseline FL schemes. Moreover, valuable
insights are offered within the scope of non-iid features among
clients for the selected intrusion detection datasets. Finally,
as StatAvg precedes the actual FL procedure, it can be
combined with any FL aggregation strategy, a topic which
is left for future investigation. Moreover, the applicability of
StatAvg is not limited solely to FL-based IDS, as its efficacy

TABLE VI
STATISTICAL METRICS OF CLIENTS’ FEATURES ON TON-IOT DATASET

Feature name MINFLT VSIZE

Mean Variance Mean Variance

Client 1 694.1 5.8 · 106 8621.3 1.32 · 108
Client 2 694.8 3.5 · 106 8663.3 1.33 · 108
Client 3 735.7 5.8 · 107 8364.9 1.26 · 108
Client 4 691.3 3.9 · 106 8521.9 1.31 · 108
Client 5 769.8 1.8 · 108 8519.1 1.3 · 108
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may encompass any FL application associated with non-iid
features among clients.
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