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Abstract—A novel method for airport pavement inspection 

was proposed, combining multi-static Ground Penetrating 

Radar (GPR) data with deep learning techniques. The study 

utilized the Markov Transition Field (MTF) to transform GPR 

time-series data into two-dimensional images suitable for 

analysis by Convolutional Neural Networks (CNNs). This 

framework enabled the automatic detection and classification of 

interlayer debonding in pavements. Experimental validation 

was conducted using real-world data from Haneda 

International Airport, demonstrating the capability of the 

proposed method to accurately identify debonding regions. The 

results highlighted the framework’s efficiency and reliability in 

monitoring airport pavements, making it a promising tool for 

infrastructure maintenance and management. 
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I. INTRODUCTION

The structural integrity and functionality of airport 
pavements are considered essential for ensuring the safety and 
efficiency of air transport systems. Significant stresses are 
experienced by these pavements due to high aircraft loads and 
frequent traffic, necessitating regular monitoring and 
maintenance activities. Traditional inspection methods, 
including visual inspections and core sampling, are regarded 
as time-consuming and disruptive while often being limited in 
providing a detailed understanding of subsurface conditions. 
In recent years, the use of non-destructive testing (NDT) 
techniques such as Ground Penetrating Radar (GPR) has been 
increasingly adopted. These techniques are valued for their 
ability to provide rapid and high-resolution subsurface data 
without causing damage to the pavement structure [1][2]. 

GPR surveys are employed to utilize electromagnetic 
wave propagation for the detection of subsurface anomalies, 
including voids, cracks, and moisture infiltration within 
pavement layers. The application of multi-static GPR 
configurations has been designed to enhance data richness, as 
multiple antennas are used for both transmission and reception 
of signals simultaneously. This approach ensures that diverse 
perspectives on the subsurface features are obtained, which 
contributes to a more comprehensive understanding of the 
underground conditions [3]. However, despite these 
advancements in technology, the interpretation of GPR data 

continues to pose significant challenges. The complexity and 
high-dimensional nature of the data require sophisticated 
processing and analysis techniques to extract meaningful 
insights effectively. As a result, ongoing efforts are being 
made to refine methods for data interpretation and improve the 
reliability and accuracy of GPR surveys in various 
engineering and construction applications.  

The field of GPR data analysis has been significantly 
transformed by the emergence of deep learning, which has 
introduced innovative methods for automation and 
enhancement. The application of Convolutional Neural 
Networks (CNNs) has been widely recognized for achieving 
exceptional performance in various domains, including image 
classification, object detection, and semantic segmentation. 
These advanced capabilities allow CNNs to excel in 
identifying and extracting meaningful patterns from complex 
GPR datasets. It is believed that these methods have the 
potential to surpass traditional signal-processing techniques in 
both efficiency and accuracy. Despite these advancements, the 
use of CNNs in the context of GPR data analysis for the 
purpose of airport pavement inspection has not been 
sufficiently explored. Considerable opportunities remain to 
investigate how these technologies can be applied effectively 
in this area. The underutilization of CNNs in such a critical 
application highlights the need for further research to fully 
leverage their potential for improving inspection processes 
[4][5]. 

A novel framework for airport pavement inspection is 
introduced in this paper, integrating multi-static GPR surveys 
with deep neural networks. The spatial diversity of multi-static 
GPR data is utilized alongside the powerful feature extraction 
capabilities of CNNs. Through this integration, the approach 
seeks to provide accurate and automated assessments of 
pavement health. The methodology involves several key steps, 
including data preprocessing, network training, and validation. 
Real-world GPR datasets, collected from airport pavements, 
are employed to validate the framework. The findings indicate 
that the proposed framework enhances both efficiency and 
reliability in airport pavement inspections. This approach 
demonstrates its potential to streamline the inspection process, 
reduce manual intervention, and deliver consistent evaluations. 
The results underline the importance of combining advanced 
imaging techniques with machine learning to address 
challenges in infrastructure monitoring and maintenance. 



II. METHODOLOGY 

A. Airport pavement structure 

An airport pavement shallow structure is regarded as a 
simplified system developed to accommodate the movement 
of aircraft while distributing loads effectively to the layers 
beneath. This structure is engineered to maintain both 
durability and functionality over time. Typically, it is 
composed of several key layers, including a surface layer 
made of either asphalt or concrete, a semirigid base course 
formed from granular or stabilized material, and a subbase 
layer, as shown in Figure 1. These components rest on a 
carefully compacted earth subgrade. The layers are designed 
to work in unison to endure the significant stresses imposed 
by heavy aircraft loads. Additionally, resistance to 
environmental factors, such as freeze-thaw cycles, is provided, 
ensuring longevity and reliability. Smooth, skid-resistant 
surfaces are also delivered by this system, contributing to safe 
aircraft operations. The shallow pavement structure plays a 
vital role in maintaining operational safety and efficiency, 
meeting the rigorous demands placed on modern airport 
facilities [6].  

Debonding in airport pavements is characterized by the 
weakening or failure of the bond between layers, such as the 
surface and base, resulting in reduced structural integrity and 
diminished performance. This issue is frequently encountered 
due to the improper application or substandard quality of 
bonding agents, including tack coats. The presence of 
contaminants, such as dust or moisture, at the interface during 
construction is known to exacerbate this problem. 
Furthermore, insufficient compaction during the construction 
process has been observed to increase the likelihood of 
debonding. Heavy aircraft loads and temperature fluctuations 
often lead to shear stresses and repetitive expansion-
contraction cycles, which intensify the separation between 
pavement layers. Aging, material incompatibility, and 
prolonged environmental exposure also contribute to the 
progressive deterioration of the bond. Debonding is typically 
observed at the interface between the asphalt layer and base 
layer or between the base layer and subbase layer. Preventive 
measures, such as meticulous surface preparation, careful 
material selection, and adherence to optimal construction 
practices, are considered essential to mitigate this issue. These 
steps are vital to ensuring the durability and long-term 
performance of airport pavements, thereby reducing 
maintenance costs and enhancing safety.  

B. Numerical modeling and interlayer debonding 

To generate the training data set, a three-dimensional 
forward modeling process based on the finite-difference time-
domain method was conducted. The dimensions of the road 
structure model were configured as 2.0 meters by 2.0 meters 
by 0.7 meters. This configuration was chosen to balance 
simulation accuracy and computational efficiency. Debonding 
commonly occurs at the interface between the asphalt layer 
and the base layer or between the base layer and the subbase 
layer. Two types of materials were introduced into the 
debonding region: water and air. 

Debonding may take place in a single area or in two areas 
simultaneously. Based on these possibilities, nine sets of 
forward modeling parameters were applied in this study. 
These include the following scenarios: no debonding, 
debonding at the interface between the asphalt layer and the 
base layer with either air or water as the infill material, 
debonding at the interface between the base layer and the 
subbase layer with either air or water as the infill material, and 
debonding at both interfaces with combinations of air-air, air-
water, water-air, and water-water as infill materials. 

Each forward model underwent 400 simulations. During 
these simulations, slight variations were introduced to the 
model parameters, such as the thickness of the structure, the 
size of the debonding region, the roughness of the interface 
boundary, and the dielectric constants of the materials. These 
variations were incorporated to ensure the model could adapt 
to diverse conditions. The arrangement of the transmitting and 
receiving antennas was aligned with the configuration of a 
practical multi-static GPR system. 

The antennas were positioned 2 centimeters above the 
surface of the roadbed, reflecting realistic measurement 
scenarios more closely. This approach ensured the fidelity of 
the simulations to actual conditions. Through this modeling 
process, a comprehensive set of training data was generated to 
support further analysis and applications. Simulations and 
parameter adjustments were carefully managed to achieve 
optimal outcomes. 

C. Markov Transition Field 

To maximize the benefits of CNNs in image processing, a 
method for converting multi-static GPR responses into two-

 

Fig. 1. Typical airport pavement structure.  

 

Fig. 2. Schematic of the 3D FDTD model. 

 



dimensional (2D) images must be developed. These images 
can then be effectively analyzed using CNNs. One promising 
approach involves the use of the MTF, which has been 
identified as an effective technique. Through this method, 
one-dimensional (1D) time series data are transformed into 2D 
images, enabling compatibility with machine learning models. 
CNNs, recognized for their superior performance in image 
data processing, particularly benefit from such 
transformations. The fundamental principle underlying MTF 
involves capturing temporal dynamics within the time series. 
This is achieved by encoding the transition probabilities 
between various states of a Markov process. The outcome of 
this process is a structured image representation that preserves 
the temporal features of the original data, ensuring suitability 
for advanced image analysis techniques [7]. 

In this study, the MTF algorithm is applied to transform 
one-dimensional spectral data from GPR into a two-
dimensional image format. The process is carried out through 
several critical steps. Initially, multi-static GPR data from 
various types of debonding pavement structures is gathered 
and normalized. The GPR data for each offset is represented 
as 𝑋 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚}, where 𝑛 denotes the total number 
of signal points. Subsequently, reflection signal quantiles are 
defined. For the given data sequence X, a specific quantile Q 
is selected, and each signal value 𝑞𝑖  is assigned to a 
corresponding quantile 𝑞𝑗  , with 𝑗  belonging to the range 

[1, 𝑄]. 

The construction of a 𝑄 × 𝑄 Markov transition matrix is 
undertaken in the next step. This matrix is developed based on 
the quantiles derived in the previous step. Transition 
probabilities between first-order Markov chains are calculated 
to populate the matrix. As a result, a final representation of the 
transition dynamics of the GPR data is obtained in a two-
dimensional format. This transformed data is designed to be 
suitable for further analysis, particularly for use in deep 
learning applications. Through this method, the mapping of 
GPR spectral data into a two-dimensional space is effectively 
achieved [8]. 

𝑀 =

[
 
 
 
𝜔𝑖𝑗|𝑥1∈𝑞𝑖,𝑥1∈𝑞𝑗

⋯ 𝜔𝑖𝑗|𝑥1∈𝑞𝑖,𝑥𝑛∈𝑞𝑗

𝜔𝑖𝑗|𝑥2∈𝑞𝑖,𝑥1∈𝑞𝑗
⋯ 𝜔𝑖𝑗|𝑥2∈𝑞𝑖,𝑥𝑛∈𝑞𝑗

⋯
𝜔𝑖𝑗|𝑥𝑛∈𝑞𝑖,𝑥1∈𝑞𝑗

⋱
⋯

⋯
𝜔𝑖𝑗|𝑥𝑛∈𝑞𝑖,𝑥𝑛∈𝑞𝑗]

 
 
 

       (1) 

where, 𝑞𝑖 and 𝑞𝑗 are the quantiles corresponding to 𝑥𝑖 and 𝑥𝑗, 

respectively. Then, the final output 𝑀𝑠𝑢𝑚  will be generated 
with following formulation: 

𝑀𝑠𝑢𝑚 = ∑ 𝑀𝑘

𝑛

𝑘=1

 

where, 𝑘  indicates multi-static channel and n indicates the 
channel number. 

D. Convolution Neural Network 

CNN is recognized as one of the significant algorithms in 
the domain of deep learning. Its design allows for the sharing 
of receptive domains and weights, which reduces the number 
of neural network parameters requiring training. This 
reduction simplifies the overall complexity of the model when 
compared with traditional artificial neural networks. As a 
result, these networks exhibit unique strengths in tasks such as 
image processing, target detection, and target tracking. Over 

recent years, CNN learning algorithms have been applied 
successfully across numerous fields [9]. 

A complete convolutional neural network is typically 
composed of four key components: a convolutional layer, an 
activation layer, a pooling layer, and a fully connected layer. 
The convolutional layer consists of several convolution 
kernels. Within the network, this layer assumes the critical 
role of extracting features from input images. Initially, basic 
features, such as edges and shapes, are extracted in the early 
layers. As the depth of the network increases, subsequent 
layers focus on identifying increasingly complex and specific 
features. Following the convolutional layer, the activation 
layer is generally included to map results in a nonlinear 
manner. 

The pooling layer performs dimensionality reduction of 
feature vectors, contributing to enhanced efficiency. The fully 
connected layer, positioned toward the end of the network, is 
tasked with making final predictions or classifications. These 
layers work in harmony to optimize the performance of the 
network. Structures of convolutional neural networks, such as 
the one depicted in Figure 3, have been specifically designed 
to facilitate the efficient monitoring of airport pavement 
debonding. 

III. FIELD EXPERIMENTS AND RESULTS 

A. Field Experiement 

The measurement was carried out on the taxiway asphalt 
pavement at Haneda International Airport to test the feasibility 
of the proposed approach. The measurement site is shown in 
Figure 4. The size of the entire measurement area was around 
20 square meters. The data consisted of three parallel multi-

static GPR acquisitions along the direction of the aircraft 

 

Fig. 3. The designed structure of 2DMTF CNN.  

 

Fig. 4. Measurement map of Haneda International Airport. 



moving. We chose the survey area that contained the known 
sound pavement and the interlayer debonding pavement parts. 
The interlayer debonding occurring areas located at 4 to 6 m 
in the x-direction (survey direction) and 4.5 to 5.5 m in the y-
direction (the cross-survey direction), was shown as white 
circles in Figure 4. 

B. Training Results of CNN Models 

An NVIDIA GeForce RTX3080 GPU, along with the 
MATLAB deep learning toolbox, was utilized for the training, 
validation, and testing of the proposed approach for detecting 
debonding layers. The training process employed all MTF 
images generated from the nine simulation group models, as 
shown in Figure 5. None indicates no debonding occurs in this 
region, Air or water indicate that air or water were filled in the 
debonding region. In Figure 6, the loss function associated 
with the proposed model during training is depicted. Similarly, 
Figure 7 illustrates the accuracy function of the model 
throughout the training process. A continuous decrease in the 
loss value was observed as the training iterations progressed, 
accompanied by a steady increase in the accuracy value. Both 
metrics exhibited stabilization after 400 iterations. This 
stabilization highlights the strong training performance of the 
proposed model. Moreover, a high convergence rate was 
achieved through the application of pretraining parameters. 
These results demonstrate the effectiveness of the training 
methodology and indicate that the model is well-suited for the 
intended task. The ability of the model to achieve stability and 
optimal performance in a relatively small number of iterations 
reflects the robustness of the approach employed. Overall, the 
training process ensured the reliable development of a model 
capable of accurately detecting debonding layers in simulation 
images. 

After the training process, the CNN model was saved and 
tested using a real measurement GPR dataset. The identified 
types and positions of debonding layers were presented in 
Table I by the proposed methodology. From the results, it can 
be observed that a significant portion of the measured 
pavement was detected as exhibiting debonding phenomena 
by the trained MTF-CNN model. Within the detected regions, 
two debonding layers were identified, and the filled material 
was classified as air-air and water-water. Meanwhile, the 
majority of the measurement area was recognized as healthy 
pavement, aligning more closely with the actual condition. 
This indicates that the trained model successfully 
distinguished between areas with and without debonding, 

demonstrating its effectiveness in identifying pavement health. 
The results highlight the model ability to provide accurate 
detection, making it suitable for real-world applications in 
pavement analysis and maintenance planning. 

IV. CONCLUSIONS 

In this study, a novel intelligent method for diagnosing 
airport pavement debonding was proposed, utilizing the 
Markov transition field (MTF) and a residual network. The 
process involved the encoding of multi-static GPR time-series 
signals into two-dimensional images through the use of 
Markov transition fields. This approach allowed the time 
dependence of the original signals to be preserved while 
eliminating the need for prior knowledge to set parameters 
during the conversion. On this foundation, a convolutional 
neural network (CNN) was employed to classify images and 
identify fault types effectively. Experiments conducted on the 
Hanada International Airport dataset demonstrated that the 
MTF-CNN method delivered excellent performance in 
identifying debonding layers with varying severities and 
locations. When compared to other methods, the MTF-CNN 
technique provided an automatic capability for feature 
extraction and classification, enhancing the accuracy and 
efficiency of the debonding diagnosis process.   

Fig. 7. The training images generate by MTF with simulated data.  

 

Fig. 6. Accuracy curve of  the proposed trainning CNN model. 

 

 

Fig. 5. Loss curve of  the proposed trainning CNN model. 



TABLE I.  DETECTED DEBONDING RESULTS 

Number 
Position 

Type 
X direction Y Direction 

1 5.12 m 4.56 m Air-Air 

2 5.36 m 4.56 m Air-Air 

3 4.08 m 4.92 m Air-Air 

4 4.58 m 4.92 m Air-Air 

5 4.78 m 4.92 m Air-Air 

6 5.24 m 4.92 m Air-Air 

7 2.92 m 5.64 m Air-Air 

8 4.50 m 5.04 m Air-Air 

9 4.62 m 5.04 m Air-Air 

10 4.76 m 5.04 m Air-Air 

11 2.84 m 4.44 m Water-Water 

12 2.88 m 4.44 m Water-Water 

13 2.90 m 4.44 m Water-Water 

14 2.92 m 4.44 m Water-Water 

15 3.06 m 4.56 m Water-Water 

16 2.84 m 4.56 m Water-Water 

17 2.94 m 4.56 m Water-Water 

18 3.14 m 4.56 m Water-Water 

19 3.22 m 4.68 m Water-Water 

20 2.76 m 4.68 m Water-Water 

21 2.88 m 4.68 m Water-Water 

22 1.24 m 5.88 m None-None 

23 5.64 m 6.00 m None-None 

24 3.28 m 3.26 m None-None 

25 2.36 m 3.48 m None-None 
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