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ABSTRACT This paper explores the optimization of power control in both cellular (CL) and cell-free (CF) massive MIMO 

(mMIMO) systems using a hybrid approach combining support vector machine (SVM) and radial basis function (RBF). The 

traditional WMMSE method, while effective, exhibits high computational complexity and suboptimal convergence in large-

scale systems. The proposed SVM/RBF method addresses these challenges by significantly reducing the computational 

overhead, as detailed in the computational complexity analysis in Section IV. To address these challenges, we propose an 

SVM/RBF-based method for power control (PC) that leverages SVM regression to predict optimal PC vectors and utilizes 

RBF kernels to enhance prediction accuracy by transforming input features into higher-dimensional spaces. The proposed 

method dynamically adjusts transmission power levels of user devices based on real-time channel conditions, thereby 

optimizing resource utilization and system performance. Simulation results demonstrate that the SVM/RBF approach 

significantly outperforms the WMMSE method in both spectral efficiency and computational efficiency. In terms of Area 

Under the Curve (AUC) metric, the SVM-RBF method shows a substantial performance gain with AUC values of 24,931 for 

CL-mMIMO systems compared to 12,698 for WMMSE. Additionally, the SVM-RBF method reduces execution time by 

approximately 30% in both CL and CF-mMIMO scenarios. This paper confirms that the SVM/RBF method offers a robust, 

efficient, and scalable solution for optimizing PC in complex wireless communication environments. 

INDEX TERMS Cellular network, cell-free network, massive MIMO system, power control, radial basis function, support 

vector machine, WMMSE

I. INTRODUCTION 

Cell-free (CF) massive MIMO (mMIMO) systems excel in 

the concept of collaboratively and cohesively catering to a 

relatively small number of users through a multitude of 

straightforward multi-antenna access points (APs). In 

contrast to conventional cellular (CL) mMIMO systems, 

CF systems have the potential to offer a more consistent 

service performance to the users within the network due to 

the distributed nature of the antennas. For instance, the 

95th percentile per-user spectral and energy efficiencies of 

CF systems are significantly higher, being five and ten 

times greater than those of CL systems, respectively [1]. 

Recent advances in massive MIMO systems, such as 

tensor-based channel estimation techniques [2, 3] and 

training-aided sensing methods [4], have demonstrated 

significant potential in improving communication 

efficiency. While these approaches focus on specific 

estimation challenges, our proposed SVM/RBF method 

emphasizes optimizing power control to reduce 

computational complexity and enhance scalability. 

Additionally, the challenges of fronthaul overhead in cell-

free systems [5] underline the importance of efficient 

power allocation, a focus of this work. 

The optimization of PC is a critical task in wireless 

systems, dating back to the era of single-antenna wireless 

setups. It plays a pivotal role in ensuring effective data 

transmission while adhering to quality-of-service (QoS) 

constraints, especially in the presence of fading channels. 

On one hand, increasing transmission power levels can 

mitigate temporary communication failures caused by 

deep fades. On the other hand, energy consumption in 

wireless communication is a pressing concern due to 

limited energy supplies in wireless devices. Therefore, PC 

is essential in maximizing the longevity of wireless devices 

while maintaining QoS requirements for various wireless 

applications. Additionally, PC is crucial for interference 

management and optimizing downlink performance. 
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The PC problem remains challenging to solve optimally, 

particularly in multi-user scenarios where interference 

from other users complicates the task. Achieving the sum 

performance maximization objective, even in single-

antenna wireless systems with single-carrier transmission, 

has been proven to be a difficult task [6]. As a practical 

approach, suboptimal algorithms with reasonable 

complexity are developed to achieve acceptable 

performance. However, obtaining perfect instantaneous 

channel knowledge in mMIMO systems, which is 

commonly assumed in PC literature, is challenging due to 

the large number of antennas. Thus, there is a need to 

consider channel estimation errors in the design of PC 

algorithms for mMIMO systems [7]. 

The literature on the PC problem can be categorized into 

three main areas: 1) max-min fairness, 2) maximization of 

energy efficiency (EE), and 3) maximization of sum SE. 

Max-min fairness solutions aim to provide equal SE [8], 

[9-11] to all user equipments (UEs), but in distributed 

systems, this may result in significantly reduced overall 

network performance by prioritizing UEs with "poor" 

channels. The EE optimization for CF-mMIMO systems 

has been explored [12, 13], and maximizing sum SE has 

also been a focus, prioritizing UEs with good channels to 

maximize data throughput. However, these approaches 

may lack guarantees of fairness among UEs. To address 

the limitations of sum SE, unequal PC can be employed, 

taking advantage of the different propagation conditions of 

UEs to improve the sum SE. Moreover, alternative utility 

functions have been proposed to strike a balance between 

aggregate throughput and fairness [7]. Ensuring fairness 

among UEs is crucial to avoid substantial unfairness in the 

system. The unique characteristic of channel hardening in 

mMIMO systems allows for the adaptation of transmit 

powers based on large-scale fading rather than small-scale 

fading variations, making advanced PC schemes 

practically feasible without excessive complexity. 

Studies such as [2-5] provide a foundation for 

addressing challenges in channel estimation and power 

allocation. Our work differentiates itself by leveraging 

machine learning techniques to dynamically optimize 

power control while addressing computational efficiency, 

making it highly applicable to real-world deployments of 

massive MIMO systems. 

Various PC-based ML approaches have been previously  

presented in the literature [14]. For example, in a 

heterogeneous network with picocells underlaying macro-

cells, [15] aimed to achieve a target SINR for each UE 

under total transmission power constraints using a two-

level Q-learning method, which significantly improved the 

average throughput. In a small cell network, [16] focused 

on optimizing the data rate of each SBS with distributed 

Q-learning, resulting in increased long-term expected data 

rates for SBSs. In cognitive radio networks, [17] sought to 

keep interference at the primary receivers below a 

threshold with distributed Q-learning, outperforming 

comparison schemes in terms of outage probability. For a 

heterogeneous network comprised of FBSs and MBSs, 

[18] used reinforcement learning (RL) with joint utility and 

strategy estimation to optimize the throughput of fractional 

UEs under QoS constraints of main UEs, achieving 

convergence to the logit equilibrium and higher SE when 

FBSs consider system performance as their utility. In this 

paper [19], the authors discuss the importance of PC in 

mMIMO systems. Traditional heuristic algorithms like the 

weighted mean square error (WMMSE) algorithm, which 

are used to optimize PC, require high computational 

power. To address this, the authors propose using machine 

learning (ML)-based algorithms that can achieve near-

optimal solutions with much lower computational 

complexity. Specifically, the authors suggest employing 

transfer learning with deep neural networks (TLDNN) to 

maximize the sum SE. Evaluation results indicate that the 

TLDNN approach not only outperforms the deep neural 

network (DNN) based PC but is also twice as fast as the 

WMMSE based PC. 

In a D2D enabled CL system, [20] employed distributed 

Q-learning to optimize the reward of each D2D pair, 

demonstrating significant improvements in average 

throughput and convergence to optimal Q values. In 

cognitive radio networks, [21] used SVM to optimize 

transmit power level selection, achieving a balance 

between EE and satisfaction index while adhering to 

probabilistic interference constraints. In a CL system, [22] 

aimed to minimize total transmit power using SVM, 

balancing transmit power selection with user SINR. In a 

heterogeneous network with femtocells and macro-cells, 

[23] optimized femtocell capacity under transmit power 

and QoS constraints of MUEs using knowledge transfer-

based Q-learning, outperforming conventional PC 

algorithms in multi-user OFDMA networks. In scenarios 

with multiple transceiver pairs, [24] used convolutional 

neural networks to optimize SE and EE, achieving similar 

or better performance than WMMSE with faster 

computing speed. For a downlink CL system with multiple 

cells, [25] utilized a multi-layer neural network based on 

auto-encoders to optimize system throughput, successfully 

predicting genetic algorithm (GA) solutions in most cases. 

In this paper [26], the authors discuss the significance of 

PC in m-MIMO systems, typically optimized using 

heuristic algorithms like the WMMSE algorithm, which 

require high computational power. To address this, the 

paper explores the application of various ML-based 

algorithms, which can achieve near-optimal solutions with 

lower computational complexity. The authors evaluate 

several ML methods, including deep neural networks 

(DNN), deep Q-learning (DQL), SVM with RBF, K-

nearest neighbours (KNN), linear regression (LR), and 

decision trees (DT), aiming to maximize the sum SE. The 

results indicate that ML-based approaches can 
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approximate the performance of the WMMSE-based 

method. Lastly, [27] applied densely connected neural 

networks in a scenario with multiple transceiver pairs to 

optimize system throughput, matching WMMSE 

performance at faster computing speeds, while [28] in a 

cognitive radio system optimized power efficiency and 

network convergence with deep reinforcement learning, 

showing better performance than DQN-based PC schemes. 

In this paper, we propose a novel approach to optimize 

PC in both CL and CF-mMIMO systems using a hybrid 

method that combines SVM and RBF. Traditional 

methods, such as the WMMSE algorithm, while effective, 

suffer from high computational complexity and suboptimal 

convergence in large-scale systems. To address these 

challenges, we introduce an SVM/RBF-based method for 

PC that leverages SVM regression to predict optimal PC 

vectors and employs RBF kernels to enhance prediction 

accuracy by transforming input features into higher-

dimensional spaces. This proposed method dynamically 

adjusts the transmission power levels of user devices based 

on real-time channel conditions, optimizing resource 

utilization and system performance. The reasons for 

proposing this hybrid approach include the ability of SVM 

to handle high-dimensional data efficiently and the power 

of RBF kernels to improve prediction accuracy. By 

combining these strengths, our approach not only reduces 

the computational burden but also achieves superior 

performance in terms of SE and computational efficiency. 

The advantages of the SVM/RBF method are evident in the 

simulation results, which demonstrate a significant 

improvement over the WMMSE method. In terms of the 

area under the curve (AUC) metric, the SVM-RBF 

approach shows a substantial performance gain, with AUC 

values of 24,931 for CL-mMIMO systems compared to 

12,698 for WMMSE. Additionally, the SVM-RBF method 

reduces execution time by approximately 30% in both CL 

and CF-mMIMO scenarios. The superiority of the 

SVM/RBF method over traditional algorithms like 

WMMSE is confirmed by these findings, highlighting its 

robustness, efficiency, and scalability. This paper 

demonstrates that the SVM/RBF method offers a highly 

effective solution for optimizing PC in complex wireless 

communication environments. 

The rest of the paper is organized as follows. In Section 

II, we introduce the system model of CF-mMIMO systems. 

In Section III, the problem formulation is introduced. In 

Section IV, the proposed SVM/RBF methods are 

presented. In Section V, the simulation results of SVM-

RBF methods for CL/CF-mMIMO systems are illustrated. 

Finally, the paper is concluded in Section VI. 

 
II. SYSTEM MODEL 

We consider the downlink transmission of the CF-

mMIMO systems, where N APs serve K UEs using the 

same time-frequency resources in time division duplex 

(TDD) mode. The CF system is equipped with Z fronthaul 

links connecting all APs to the central processing unit 

(CPU). Each AP is equipped with M antennas, while each 

UE has a single antenna. The channel gain vector between 

AP n and UE k is defined as follows: 

𝐠𝑛,𝑘(𝑘) = 𝛽𝑛,𝑘

1

2 𝐡𝑛,𝑘                         (1) 

where the channel gain vector is defined as follows: 

𝛽𝑛,𝑘 ≥ 0 represents the large-scale fading coefficient 

between AP n (n = 1, …, N) and UE k (k = 1, …, K). The 

small-scale fading vector, 𝐡𝑛,𝑘 ∈ ℂ
𝑀×1 consists of 

elements that follow a complex Gaussian distribution with 

zero mean and unit variance, representing Rayleigh fading. 

It is important to note that the channels between UEs and 

AP antennas are typically not identical, and each channel 

follows a correlated Rayleigh fading model. In simple 

word, in a CF-mMIMO wireless system, there are many 

APs serving multiple UEs at the same time and frequency. 

The system uses time division duplex (TDD) mode, where 

APs and UEs take turns transmitting and receiving. In the 

context of a TDD model, it is important to consider the 

presence of errors associated with the estimation of 

reciprocal channels. These imperfections in channel 

estimation can introduce adverse effects that influence the 

overall performance of the system. It becomes necessary 

to account for the impact of imperfect channel estimation 

on system performance. Each AP has multiple antennas 

(M), and each UE has just one antenna. The 

communication between an AP and a UE is affected by two 

types of fading: Large-scale fading: This represents the 

effect of distance and obstacles between an AP (n) and a 

UE (k). It shows how the signal weakens as it travels 

through the environment. Small-scale fading: This 

represents the random fluctuations in the wireless signal 

due to reflections and scattering. It follows a complex 

Gaussian distribution with zero mean and unit variance, 

which is called Rayleigh fading. It is important to know 

that each UE has a different channel to each AP, and the 

wireless channels are not the same for all UEs. The fading 

of each channel follows a correlated Rayleigh model, 

which means that the fluctuations are somewhat related 

between antennas and UEs. 

A. CHANNEL ESTIMATION 

The estimation of channels in the uplink is carried out by 

the APs using uplink pilots. The estimation process 

employs minimum mean-square error (MMSE) estimation, 

resulting in an estimate �̂�𝑛,𝑘 that comprises M independent 

Gaussian elements with similar statistical characteristics. 

The mean square of the m-th element is denoted as follows: 

𝛾𝑛,𝑘 =
𝜏𝑝𝑝𝑝𝛽𝑛,𝑘

2

𝜏𝑝𝑝𝑝 ∑ 𝛽𝑛,𝑘′‖𝝍𝑘′𝝍𝑘
𝐻‖

2𝐾
𝑘′=1

+ 1           (2)     
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It is considered 𝑝𝑝 as a normalized pilot power and a 

time sequence 𝝍𝑘 consisting of pairwise orthogonal 

elements, satisfying the condition ||𝝍𝑘|
2 = 1. 

Additionally, it is assumed that 𝜏𝑐 represents the coherence 

time, where a duration of 𝜏𝑝 < 𝜏𝑐  is allocated for channel 

estimation, while the remaining section 𝜏𝑐 − 𝜏𝑝 is 

dedicated to downlink data transmission. It should be 

noted that due to the limited coherence time 𝜏𝑐, there may 

be instances where pilot sequences are reused, resulting in 

𝜏𝑝 < 𝐾. The presence of pilot contamination in CF-

mMIMO systems has a detrimental effect on their SE, 

leading to performance degradation.  

In a TDD system, the coherence block (𝜏𝑐) represents 

the time over which the channel can be considered 

constant. This coherence time is divided into three key 

components: 

1. Uplink Pilot Transmission (𝜏𝑝): A portion of the 

coherence block is allocated for uplink pilot signals, 

used for accurate channel estimation. The normalized 

pilot power (𝑝𝑝) plays a critical role in determining 

the quality of this estimation. 

2. Uplink Data Duration (𝜏𝑈𝐿): Another portion is 

reserved for uplink data transmission, supporting 

uplink traffic, such as control signaling and user data. 

3. Downlink Data Transmission (𝜏𝑐  − 𝜏𝑝 − 𝜏𝑈𝐿): The 

remaining time is allocated for downlink data 

transmission, which directly impacts the spectral 

efficiency (SE). 

The division of 𝜏𝑐   among these components introduces 

trade-offs that significantly influence system performance. 

For example, increasing 𝜏𝑝 improves channel estimation 

accuracy but reduces the time available for data 

transmission. Similarly, allocating more time to 𝜏𝑈𝐿 

enhances uplink throughput but reduces the downlink data 

transmission duration. These trade-offs must be carefully 

managed to achieve optimal system performance. 

Equation (2) expresses the estimated channel gain as a 

function of the pilot power and the large-scale fading 

coefficient. The denominator accounts for pilot 

contamination due to the reuse of pilot sequences across 

users. The equation represents the normalized trace of the 

covariance matrix for i.i.d. channel entries, ensuring a 

statistically accurate representation of the channel 

estimation process. 

 

B. DOWNLINK DATA TRANSMISSION 

Based on the channel estimation, the AP employs 

normalized conjugate beamforming (NCB) to transmit 

signals towards the UEs. Assuming 𝑞𝑘 with 𝔼{|𝑞𝑘|
2} = 1 

represents the intended signal for user k, the transmitted 

signal from AP n, denoted as  𝐱𝑛, can be expressed as 

follows: 

𝐱𝑛 = ∑ √𝑝𝑛,𝑘′
�̂�
𝑛,𝑘′

√𝔼{‖�̂�𝑛,𝑘′‖
2
}

𝐾
𝑘′=1 𝑞𝑘′ =                  

           ∑ √𝑝𝑛,𝑘′
�̂�
𝑛,𝑘′

√𝑀𝛾𝑛,𝑘′

𝐾
𝑘′=1 𝑞𝑘′           (3) 

Let 𝑝𝑛,𝑘′ denote the downlink transmission power from 

AP n to user 𝑘′, subject to the constraint 𝑝𝑛,𝑘′ ≤ 𝑝𝑚𝑎𝑥 , 

where 𝑝𝑚𝑎𝑥 represents the transmission power limit. 

𝑀𝛾𝑛,𝑘′shows the average received signal-to-noise ratio 

(SNR) at the receiver. In simple words, after estimating the 

wireless channel between each AP and UE, the AP uses a 

technique called NCB to transmit signals to the UEs. The 

goal is to improve the signal quality and reduce 

interference. Each user has an intended signal that the AP 

wants to send to them. The transmitted signal from AP n is 

a combination of all the intended signals for all users, 

scaled by certain factors. The formula for 𝐱𝑛 looks a bit 

complicated, but it basically says that 𝐱𝑛 is the sum of 

contributions from all users (k') multiplied by the square 

root of the power allocated for each user (𝑝𝑛,𝑘′) and a term 

related to the channel gain estimation (�̂�𝑛,𝑘′). This term 

makes sure that the signals are properly scaled to achieve 

the best possible signal quality. The variable 𝑝𝑛,𝑘′ 
represents the downlink transmission power from AP n to 

user k', and it is subject to a maximum power limit (𝑝𝑚𝑎𝑥). 

𝑀𝛾𝑛,𝑘′ shows the average received SNR at the receiver, 

which tells us how strong the signal is compared to the 

background noise.  

 The received signal 𝑦𝑘  by user k is a composite of the 

signals transmitted by all APs in the network, given by the 

following expression: 

   𝑦𝑘 = ∑ ∑ √𝑝𝑛,𝑘′
𝐠𝑛,𝑘
𝑇 �̂�

𝑛,𝑘′

√𝑀𝛾𝑛,𝑘′
𝑞𝑘′ +𝑤𝑘     

𝐾
𝑘′=1

𝑁
𝑛=1    (4)                                                  

where the additive noise at UE k is denoted by 

𝑤𝑘~𝒞𝒩(0,1). In simple words, the signal received by user 

k (𝑦𝑘) is a combination of signals from all the APs in the 

network. Each AP transmits a signal to user k, and the 

signals from different APs and users get added together at 

user k. The formula for 𝑦𝑘  looks a bit complex, but it is just 

a sum of contributions from all APs (n) and all users (k'). 

Each contribution is scaled by the square root of the power 

allocated for each AP-user pair (𝑝𝑛,𝑘′)) and a term related 

to the channel gain estimation (𝐠𝑛,𝑘
𝑇 �̂�𝑛,𝑘′). This term 

ensures that the signals are properly combined to achieve 

the best possible reception at user k. The term 𝑤𝑘 

represents the noise at user k, which is a random variable 

with a Gaussian distribution. In summary, the equation 

describes how the received signal at user k is formed by 

combining signals from different APs and users, 

considering their transmission power, channel conditions, 

and the noise present in the communication environment. 

Table I shows the parameters of the proposed system 

model. 
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TABLE I 

PARAMETERS OF THE PROPOSED SYSTEM MODEL 

Parameters Value 

Coverage volume 300m × 300m square 

N, number of APs 36, 40 

M, number of antennas per AP 100, 120 

K, number of UEs 10 

𝜎2, Noise power -95 dBm 

Carrier frequency 3.4 GHz 

𝑃𝑝, Pilot power 20 dBm 

Bandwidth 20 MHz 

𝑃max, maximum power constraint 15 dBm 

𝜏𝑝, Length of pilot in symbols 6 

𝜏𝑐, length of coherence time in symbols  

[8] 

200 

 

The dataset consists of NT = 50,000 samples of 

independent realizations of the UEs' positions for each 

system. The large-scale fading was modelled as a 

combination of pathloss and shadowing, following the 

approach in [29]. All other network parameters used in the 

simulations were set the same as in [30] for the CL systems 

and [29] for the CF-mMIMO systems. 

III. PROBLEM FORMULATION 

In contrast to existing studies that focus on power control 

for either downlink or uplink in isolation, this work 

addresses the joint optimization of PC for both downlink 

and uplink transmissions in CF and CL massive MIMO 

systems. This holistic approach reflects the practical 

requirements of real-world systems, where uplink and 

downlink transmissions coexist and must be optimized 

together to achieve efficient resource utilization. By 

considering both CF and CL architectures, this study 

provides a comprehensive framework applicable to a wide 

range of massive MIMO scenarios. These aspects 

differentiate our work from existing solutions, such as 

[31], which focus solely on downlink power allocation for 

CF systems. 

A. SPECTRAL EFFICIENCY (SE) 

Sum SE maximization is a fundamental objective in the PC 

problem, with the aim of optimizing the allocation of 

transmit power levels in communication systems. The 

primary goal is to maximize the overall SE, which 

quantifies the effectiveness of utilizing the available 

spectrum for data transmission. Achieving sum SE 

maximization necessitates the implementation of 

intelligent PC techniques that consider various factors such 

as channel conditions, interference levels, and power 

limitations. Through optimal PC, the system can enhance 

data rates, capacity, and overall performance, thereby 

ensuring efficient utilization of the limited spectrum 

resources. Furthermore, sum SE maximization plays a 

crucial role in modern communication systems, enabling 

improved system efficiency and enhanced user 

experiences [32]. The downlink spectral efficiency 𝑆𝐸𝑘 for 

user k is denoted as follows:  

𝑆𝐸𝑘

= (1 −
𝜏𝑝 + 𝜏𝑈𝐿

𝜏𝑐⁄ ) log2

(

 1

+
𝑀(∑ √𝑝𝑛,𝑘𝛾𝑛,𝑘

𝑁
𝑛=1 )

2

𝑀∑ (∑ √𝑝𝑛,𝑘′𝛾𝑛,𝑘′
𝛽𝑛,𝑘

𝛽𝑛,𝑘′
⁄𝑁

𝑛=1 )
2

|𝜓𝑘𝜓𝑘′
𝐻 |
2
+∑ ∑ 𝑝𝑛,𝑘′𝛽𝑛,𝑘 + 1

𝑁
𝑛=1

𝐾=1

𝑘′=1𝑘′≠𝑘 )

  

                                                        

(5) 

The term (1 −
𝜏𝑝 + 𝜏𝑈𝐿

𝜏𝑐⁄ ) represents a penalty factor 

that accounts for the pilot overhead in the system and 𝜏𝑈𝐿 

represents the uplink data duration. Pilots are known 

signals used for channel estimation, and their presence 

reduces the available resources for data transmission. The 

log2 function calculates the logarithm base 2, which is 

used to convert the signal-to-noise ratio (SNR) into a 

measure of how efficiently it can be transmitted data over 

the channel. The numerator inside the logarithm 

(𝑀(∑ √𝑝𝑛,𝑘𝛾𝑛,𝑘
𝑁
𝑛=1 )

2
) represents the effective signal 

power, which is the sum of the power from all the APs (𝑁) 

at the transmitter, multiplied by the 𝛾𝑛,𝑘, which represents 

the mean square of the m-th element of the channel 

estimate for a specific user k and AP n. The denominator 

inside the logarithm represents the total interference and 

noise in the system. It includes two terms: The first term 

represents the interference from other users (k') in the 

system. It considers the power transmitted by other users, 

multiplied by the channel gains and the path loss ratio 

between user k and other users. The second term represents 

the noise power in the system, which is contributed by all 

users and background noise.  

In summary, the equation calculates the SE for a specific 

user's communication link by comparing the effective 

signal power to the total interference and noise in the 

system. A higher SE value indicates that the system is more 

efficient in transmitting data for that particular user. It is 

an important metric used in wireless communication to 

evaluate the performance of a wireless link. 

B. MAXIMIZATION OF SUM SE-PC 

As the constant pre-log factor does not impact the 

optimization process, the sum SE maximization problem 

was formulated by the authors [32] as follows: 

max𝑝𝑛,𝑘
∑ SE𝑘
𝐾
𝑘=1                      (6) 

𝑠. 𝑡. 𝑝𝑛,𝑘 ≤ 𝑝max,       ∀𝑛,𝑘 

where the goal is to maximize the total data transmission 

rate (sum SE) in the system. Each user (k) wants to receive 

as much data as possible. However, there is a constraint 

that limits the maximum power (𝑝max) that each AP can 

use for transmission. So, the objective is to find the best 
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power allocation (𝑝𝑛,𝑘) for each AP-user pair that 

maximizes the total data rate, while respecting the 

constraint that the power used by each AP does not exceed 

the maximum allowed value. 

C. WMMSE METHOD FOR PC PROBLEM IN MMIMO 
SYSTEMS 

The WMMSE method is a widely recognized and 

commonly used technique employed in PC for 

communication systems. It addresses the task of 

optimizing PC to maximize system performance. In this 

method, the objective is to minimize the MSE between 

received and desired signals, taking into account both the 

channel conditions and the interference introduced by 

other users. Through iterative adjustments of transmit 

power levels, the WMMSE method optimizes various 

aspects of the system's performance, such as signal quality, 

capacity, and SE. It offers an efficient computational 

solution that effectively distributes power among users, 

mitigates interference, and enhances overall system 

performance in diverse communication scenarios. 

The WMMSE method is an iterative algorithmic 

approach utilized to solve sum SE maximization problems. 

When applied to equations (5) - (6), the WMMSE method 

initiates by defining the MSE in data detection. 

Subsequently, the MSE is expanded and formulated to 

express the optimization problem in terms of minimizing 

the MSE while adhering to power constraints. Through 

iterative adjustments in PC, the WMMSE method strives 

to find a local optimum that maximizes the sum SE. This 

iterative process allows the WMMSE method to 

effectively balance the trade-off between maximizing the 

system's SE and minimizing the interference caused by 

multiple users, ultimately resulting in enhanced overall 

performance of the communication system. 

The PC problem can be addressed using various 

heuristic algorithms such as the WMMSE [33], max-min 

fairness [34], or fractional programming [35]. For instance, 

the WMMSE heuristic algorithm estimates the allocated 

power 𝑃𝑛,𝑘 based on the channel gain vector 𝐠𝑛,𝑘. 

 𝑃𝑛,𝑘 = 𝐷(𝐠𝑛,𝑘)                           (7) 

In Equation (7), 𝐷(𝐠𝑛,𝑘) denotes the mapping function 

derived from the WMMSE algorithm, which calculates the 

allocated power 𝑃𝑛,𝑘   based on the channel gain vector 𝐠𝑛,𝑘 

This function encapsulates the heuristic rules used in the 

WMMSE optimization process to iteratively balance 

spectral efficiency and interference mitigation. 

The maximization problem presented in equation (6) is 

non-convex, and its computational complexity increases 

exponentially with the escalation of N and K. A widely 

recommended approach to address equation (6) is the 

WMMSE algorithm [33, 36], which transforms the 

problem of maximizing sum SE into a minimization 

problem of MSE. Specifically, the algorithm can be 

formulated as follows: 

𝑚𝑖𝑛
{𝜔𝑛,𝑘,𝜇𝑛,𝑘,𝜐𝑛,𝑘}𝑛=1,𝑘=1

𝑁,𝐾
∑∑𝛼𝑛,𝑘(𝜔𝑛,𝑘𝑒𝑛,𝑘

𝐾

𝑘=1

𝑁=1

𝑛

− log(𝜔𝑛,𝑘)) 

𝑠. 𝑡.       0 ≤ 𝜐𝑛,𝑘 ≤ √𝑃𝑛,𝑘
𝐷𝐿 , 𝑛 = 1,… , 𝑁, 𝑘 =

                                                     1, … , 𝐾               (8)                        

The optimization variables 𝜔𝑛,𝑘 , 𝜇𝑛,𝑘 and 𝜐𝑛,𝑘  are real 

numbers in the given equation. The parameter 𝛼𝑛,𝑘 

represents the priority of AP n and user k, while 𝜔𝑛,𝑘 

defines positive weights. The transmit and receive 

beamformer coefficients are denoted as {𝜇𝑛,𝑘, 𝜐𝑛,𝑘 ∈ ℝ }. 

Additionally, the term 𝑒𝑛,𝑘 is used to represent the MSE, 

which is defined as follows: 

𝑒𝑛,𝑘 = (𝜇𝑘|ℎ𝑘𝑘|𝜐𝑘 − 1)
2 + ∑ (𝜇𝑛|ℎ𝑛𝑘|𝜐𝑛)

2
𝑛≠𝑘 +

                                                    𝜎𝑛,𝑘
2 𝜇𝑛,𝑘

2                                  

(9) 

 

To enhance the sum SE using the WMMSE algorithm, 

the algorithm initiates the search for a local optimum by 

updating one of the three variables: 𝜇𝑛,𝑘, 𝜔𝑛,𝑘, or  ,n k  at 

each time step t, while keeping the other two variables 

constant. The algorithm computes the optimal value for 

𝜇𝑛,𝑘 based on a given set of variables {𝜔𝑛,𝑘 , 𝜐𝑛,𝑘}. The 

specifics of the WMMSE algorithm for the CF system are 

outlined in Algorithm 1. The algorithm terminates when 

the condition 𝜔𝑛,𝑘 < 𝜀 is satisfied, where 𝜀 is a threshold 

dependent on the convergence behavior of the WMMSE 

algorithm. In this context, ℎ𝑘𝑘 ∈ ℂ represents the direct 

channel between transmitter k and receiver k, ℎ𝑛𝑘 ∈ ℂ 

denotes the interference channel from transmitter n to 

receiver k, and 𝜎𝑛,𝑘
2  refers to the noise power at AP n and 

user k. 

 

Algorithm 1 Pseudo Code of WMMSE Algorithm for 

CF-mMIMO Systems. 

 Input: {𝐠𝑛,𝑘}, {𝑃𝑚𝑎𝑥
𝑛,𝑘 }, ∀𝑛, 𝑘 

 Initialise 𝜐𝑛,𝑘
0  such that 0 ≤ (𝜐𝑛,𝑘

0 )2 ≤ √𝑃𝑚𝑎𝑥
𝑛,𝑘

, ∀𝑛, 𝑘  

Compute 𝜇𝑛,𝑘
0 =

|ℎ𝑘𝑘|𝜐𝑛,𝑘
0

∑ |ℎ𝑛𝑘|
2(𝜐𝑛

0 )2+𝜎𝑛,𝑘
2𝐾

𝑛=1
, ∀𝑛, 𝑘 

Compute 𝜔𝑛,𝑘
0 =

1

1
− 𝜇𝑛,𝑘

0 |ℎ𝑘𝑘|𝜐𝑛,𝑘
𝑜 , ∀𝑛, 𝑘 

Set 𝐼 = 0 

Repeat; 

Set 𝐼 = 𝐼 + 1             // iterations 

Update ,n k :  

𝜐𝑛,𝑘
𝐼 = [

𝛼𝑘𝜔𝑘
𝐼−1𝜇𝑘

𝐼−1|ℎ𝑘𝑘|

∑ 𝛼𝑛𝜔𝑛
𝐼−1(𝜇𝑛

𝐼−1)2+|ℎ𝑛𝑘|
2𝐾

𝑛=1
]0

√𝑃𝑚𝑎𝑥
𝑛,𝑘

, ∀𝑛, 𝑘  
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Update 𝜇𝑛,𝑘: 𝜇𝑛,𝑘
𝐼 =

|ℎ𝑘𝑘|𝜇𝑛,𝑘
𝐼

∑ |ℎ𝑛𝑘|
2(𝜐𝑛

𝐼 )2+𝜎𝑛,𝑘
2𝐾

𝑛=1
, ∀𝑛, 𝑘 

Update 𝜔𝑛,𝑘: 𝜔𝑛,𝑘
𝐼 =

1

1
− 𝜇𝑛,𝑘

𝐼 |ℎ𝑘𝑘|𝜐𝑛,𝑘
𝐼 , ∀𝑛, 𝑘 

Until 𝜔𝑛,𝑘 < 𝜀 

Output: 𝑝𝑛,𝑘 = (𝜐𝑛,𝑘)
2, ∀𝑛, 𝑘 

 

The WMMSE algorithm is a method used to allocate 

power in communication systems with many antennas and 

users. It aims to maximize the system's performance while 

considering the channel conditions and interference. The 

algorithm starts by setting initial power values and then 

iteratively adjusts them to find the best power distribution. 

It takes into account the quality of received signals, user 

priorities, and power constraints. In each iteration, the 

algorithm updates the power values based on calculations 

involving channel conditions and noise levels. The process 

continues until the power allocation stabilizes. Finally, the 

algorithm outputs the optimized power values, which are 

then used for data transmission, leading to improved 

system performance. 

 
D. Equivalence Between MMSE and SE 

The equivalence between Equation (6), which represents 

the sum spectral efficiency (SE) maximization, and 

Equation (8), which is the minimization of the weighted 

mean squared error (WMSE), can be established by 

leveraging the duality between MMSE and SE in wireless 

communication systems. 

1. Relationship Between MSE and SINR: 

The MMSE for user k is directly related to its SINR 

as: 

𝑒𝑛,𝑘 = 1 −
SINR𝑛,𝑘

1+SINR𝑛,𝑘
,                         (10) 

 

which indicates that minimizing 𝑒𝑛,𝑘 is equivalent to 

maximizing SINR𝑛,𝑘, and hence 𝑆𝐸𝑘. 

2. Weighted MMSE Objective and SE: 

The weighted MMSE objective includes the term 

− log(𝜔𝑛,𝑘), which corresponds to the logarithmic term in 

𝑆𝐸𝑘. This term ensures that minimizing the WMSE is 

equivalent to maximizing 𝑆𝐸𝑘 for each user, weighted by 

𝛼𝑛,𝑘. 

3. Lagrangian Dual Formulation: 

By introducing Lagrange multipliers, the constrained 

optimization problem in Equation 8 can be reformulated to 

include power control variables  𝑝𝑛,𝑘 as optimization 

parameters. This reformulation shows that the optimal 

weights 𝜔𝑛,𝑘 and MSE terms 𝑒𝑛,𝑘 align with the SINR 

expressions used in Equation 6. 

 
4. Iterative Optimization: 

Both the SE maximization (Equation 6) and WMSE 

minimization (Equation 8) are solved iteratively. At each 

iteration, optimal 𝜇𝑛,𝑘, 𝜔𝑛,𝑘, and  ,n k  are updated to 

maximize the SINR, which is equivalent to maximizing 

𝑆𝐸𝑘. 

By exploiting the MMSE-SE duality, we establish that 

minimizing the weighted MMSE in Equation 8 is 

mathematically equivalent to maximizing the sum SE in 

Equation 6. This equivalence is valid under the assumption 

of optimal beamforming and power allocation. 

 
E. Power Control Adjustment Based on Large-Scale 

Fading 

In this section, we present the PC adjustment policy, 

emphasizing its operation based on large-scale fading 

coefficients rather than fast fading. This approach allows 

for effective optimization without requiring frequent 

updates based on the fast-fading time scale, making the 

algorithm more practical for real-world scenarios. 

a) Time-Scale Considerations of Power Control 
Adjustment: 

In response to concerns about the practical feasibility of 

the PC adjustment policy, we clarify that the proposed 

algorithm is designed to operate based on large-scale 

fading coefficients. Unlike fast fading, which fluctuates 

rapidly and would require frequent updates, large-scale 

fading changes much more slowly. Therefore, the 

proposed algorithm does not require real-time adjustments 

on the fast-fading time scale but instead adjusts based on 

the more stable, slower variations in the channel 

conditions. This slower rate of change makes the algorithm 

practical for real-world implementations, as it reduces the 

need for frequent updates and allows for less complex 

computations. 

 
b) Incorporation of Large-Scale Fading into Power 

Control 

Furthermore, we propose practical implementations of this 

power control adjustment policy, which leverages large-

scale fading coefficients to make infrequent adjustments, 

thus maintaining system performance without requiring 

the computational overhead of fast fading adaptation. 

 

IV. PROPOSED SVM/RBF METHODS 

The proposed SVM/RBF methods for PC in CL/CF-

mMIMO systems is a hybrid optimization approach that 

combines the power of SVM for regression and RBF for 

approximation. In this method, SVM is employed to 

predict the optimal PC vector 𝑝𝑛,𝑘 for CF-mMIMO 

systems and 𝑝𝑙𝑘
𝑛  for CL-mMIMO systems for a given set 

of input features 𝑥, which include 𝐠𝑛,𝑘 for CF and 𝐡𝑙𝑘
𝑛  for 

CL system. The RBF kernel function is used to transform 

the input features into a higher-dimensional space, 

allowing SVM to learn non-linear decision boundaries and 

achieve more accurate predictions. Subsequently, the RBF 
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is applied to approximate the optimal PC settings for each 

set of input features, dynamically adjusting the 

transmission power levels of individual user devices. The 

iterative nature of the method enables it to adapt to 

changing wireless environments and improve PC decisions 

over time. By leveraging SVM regression and RBF 

approximation, the proposed method aims to enhance 

system performance, resource utilization, and overall 

wireless communication in complex CL/CF-mMIMO 

scenarios. The Pseudo code of the SVM/RBF method for 

the CF system is outlined in Algorithm 2. 

 

Algorithm 2 Pseudo Code of the SVM/RBF Method for 

CF-mMIMO Systems 

Input: Dataset containing features X and labels Y for 

CL/CF-mMIMO systems 

Output: Predicted power control vectors 𝑃𝑐𝑙 and 𝑃𝑐𝑓 

1. Data Preprocessing: 

   a. Normalize features X to ensure consistent scaling. 

   b. Perform feature extraction to identify key input 

parameters. 

2. Train SVM Model: 

   a. Select kernel type (Radial Basis Function - RBF). 

   b. Set hyperparameters: regularization parameter (C) and 

kernel width (γ). 

   c. Train the SVM model using training data (𝑋𝑡𝑟𝑎𝑖𝑛, 

𝑌𝑡𝑟𝑎𝑖𝑛). 

3. Predict Optimal Power Control Vectors: 

   a. Apply the trained SVM model to the test data 𝑋𝑡𝑒𝑠𝑡. 
   b. Compute predicted power control vectors 𝑃𝑐𝑙and 𝑃𝑐𝑓. 

4. RBF Kernel Transformation: 

   a. Transform input features 𝑋𝑡𝑒𝑠𝑡 into higher-

dimensional space. 

   b. Improve accuracy of predictions using RBF 

approximations. 

5. Iterative Adjustment: 

   a. Monitor convergence of power control vectors over 

iterations. 

   b. Stop when MSE between successive iterations is 

below a threshold. 

6. Output optimized power control vectors 𝑃𝑐𝑙  (for CL) and 

𝑃𝑐𝑓 (for CF). 

End 

 

The proposed hybrid SVM/RBF method offers several 

unique advantages over traditional and learning-based 

approaches: 

1. High Prediction Accuracy with Reduced Complexity: 

The hybrid SVM/RBF method leverages the 

strengths of both SVM regression and RBF kernel 

transformations to achieve accurate power control 

predictions. Unlike deep learning methods, it avoids 

the need for extensive hyperparameter tuning and 

large training datasets, making it computationally 

efficient. 

2. Non-Iterative Solution: In contrast to iterative 

methods like WMMSE and learning-based solutions 

that involve convergence checks, our method directly 

predicts optimal power control vectors in a single 

step, significantly reducing execution time. 

3. Broad Applicability: The proposed solution is 

designed to optimize power control in both CF and 

CL massive MIMO systems, making it more versatile 

than existing approaches focused solely on CF 

systems. 

These features make the hybrid SVM/RBF approach 

particularly well-suited for large-scale deployments 

where both performance and computational 

efficiency are critical. 

A. SVM REGRESSION MODEL 

In the context of PC as a regression problem, the SVM 

regression model aims to predict the optimal PC vector 

𝑝𝑛,𝑘 for CF-mMIMO system and 𝑝𝑙𝑘
𝑛  for CL-mMIMO 

system for a given set of input features 𝑥. The regression 

function is represented as follows: 

                             𝑝𝑛,𝑘  =  𝑓(𝐠𝑛,𝑘)               (11) 

 

                                 𝑝𝑙𝑘
𝑛  =  𝑓(𝐡𝑙𝑘

𝑛 )                             (12) 

 

where 𝑝𝑛,𝑘 and 𝑝𝑙𝑘
𝑛  are the predicted optimal PC vector. 𝑓 

is the SVM regression function. The input feature vector, 

which include 𝐠𝑛,𝑘 parameter for CF and 𝐡𝑙𝑘
𝑛  parameter for 

CL system that influence the PC decision.  

The SVM/RBF method efficiently models the PC 

problem by leveraging a one-pass prediction process for 

each input feature vector. Unlike iterative methods like 

WMMSE, which require convergence checks and matrix 

operations for each iteration, the SVM model directly 

outputs optimized PC vectors based on pre-trained 

parameters. This single-pass nature reduces the time 

complexity significantly. 

B. RADIAL BASIS FUNCTION (RBF) KERNEL 

As mentioned earlier, the RBF kernel function is used in 

the SVM regression to transform the input features 𝑥 (𝐠𝑛,𝑘  

and 𝐡𝑙𝑘
𝑛 ) into a higher-dimensional space. It measures the 

similarity between two feature vectors using the Gaussian 

function: 

 

                  𝐾(𝑥, 𝑥′)  =  𝑒𝑥𝑝(−𝛾 ∗  ||𝑥 −  𝑥′||2)         (13) 

 

where 𝑥 and 𝑥′ are two feature vectors. 𝛾 is the kernel 

width parameter, controlling the influence of each data 

point on the regression decision boundaries. ||𝑥 −  𝑥′||2 is 

the squared Euclidean distance between 𝑥 and 𝑥′. 
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C. POWER CONTROL APPROXIMATION 

The SVM/RBF method uses the SVM regression model to 

approximate the optimal PC settings for each set of input 

features 𝑥. 

D. POWER CONTROL ADJUSTMENT 

The predicted optimal PC vector 𝑝𝑛,𝑘 and 𝑝𝑙𝑘
𝑛 is used to 

adjust the transmission power levels of individual UEs in 

the CL/CF-mMIMO systems, based on the observed 

channel conditions and system requirements. 

E. ITERATIVE OPTIMIZATION 

Similar to the previous explanation, the method can be 

iteratively updated and retrained with new data to adapt to 

changing network conditions and improve the PC 

decisions over time. The raw data contains 𝐠𝑛,𝑘 for CF-

mMIMO systems and 𝐡𝑙𝑘
𝑛  for CL-mMIMO systems, 

forming the input feature vector 𝑥. The collected data 

undergoes pre-processing, where feature extraction and 

normalization are performed to prepare the data for SVM 

and RBF processing. The SVM regression model 

processes the pre-processed data to predict the optimal PC 

vector 𝑝𝑛,𝑘  and 𝑝𝑙𝑘
𝑛  for a given set of input features 𝑥. The 

RBF kernel function is used to transform the input features 

𝑥 into a higher-dimensional space, allowing SVM to learn 

non-linear decision boundaries and achieve more accurate 

predictions for 𝑝𝑛,𝑘 and 𝑝𝑙𝑘
𝑛 . The predicted optimal PC 

vector 𝑝𝑛,𝑘 and 𝑝𝑙𝑘
𝑛  is utilized to dynamically adjust the 

transmission power levels of individual user devices in the 

CL/CF-mMIMO systems, optimizing PC. Then, the final 

output of the proposed method is the predicted optimal PC 

vector 𝑝𝑛,𝑘 and 𝑝𝑙𝑘
𝑛  based on the SVM regression and RBF 

approximation, which can be used for PC in the wireless 

communication system. In summary, the proposed 

SVM/RBF method for PC is indeed a regression model, 

and it leverages the strengths of both SVM and RBF to 

approximate the optimal PC settings for different input 

feature vectors 𝑥. 

 
F. SCALIBILITY AND COMPUTATIONAL COMPLEXITY 

ANALYSIS 

To analyze the scalability of the proposed SVM/RBF-

based PC method, we consider different configurations of 

massive MIMO systems with varying numbers of antennas 

(M) and access points (N). The dataset consists of NT = 

50,000 samples of independent user position realizations, 

ensuring robustness across diverse network settings. The 

computational complexity of SVM training is higher due 

to solving a quadratic optimization problem, but inference 

scales linearly with the number of users (K), making it 

efficient for real-time applications. Conversely, WMMSE 

involves iterative updates, which increase computation 

time significantly as M and K grow. This makes 

SVM/RBF more suitable for large-scale deployments 

where computational efficiency is critical. 

The computational complexity of the proposed 

SVM/RBF method is a significant improvement over the 

WMMSE algorithm. While the WMMSE method requires 

iterative optimization involving matrix inversions and 

multiplications, which scale as O (𝑁3) with the number of 

antennas or users N, the SVM/RBF method eliminates the 

need for such iterative processes. 

For the SVM component, training involves solving a 

quadratic optimization problem, which scales as O (𝑛𝑓𝑛𝑠), 

where 𝑛𝑓 is the number of input features and 𝑛𝑠 is the size 

of the training dataset. During prediction, the complexity 

reduces to O (𝑛𝑓𝑛𝑠). The RBF kernel further enhances 

efficiency by mapping features to higher dimensions 

without significant computational overhead. 

In practical terms, for a system with 100 antennas and 

10 users, the SVM/RBF method achieves a reduction in 

execution time by approximately 30%, as demonstrated in 

our simulation results (Tables V and VI). This validates its 

computational efficiency and scalability for large-scale 

mMIMO systems. 

G. HYPERPARAMETER TUNING AND 
OPTIMIZATION 

To ensure optimal performance of the proposed SVM with 

RBF kernel, we conducted a systematic hyperparameter 

tuning process. The key hyperparameters optimized 

include the kernel width γ and the regularization parameter 

C. The following steps were taken to select these 

parameters: 

1. Grid Search: 

A grid search approach was used to identify the optimal 

values for γ and C. Specifically, we tested the following 

ranges: 

• 𝜸: [𝟏𝟎−𝟑, 𝟏𝟎−𝟐, 𝟏𝟎−𝟏, 𝟏, 𝟏𝟎, 𝟏𝟎𝟐, 𝟏𝟎𝟑] 
• C: [𝟏𝟎−𝟑, 𝟏𝟎−𝟐, 𝟏𝟎−𝟏, 𝟏, 𝟏𝟎, 𝟏𝟎𝟐, 𝟏𝟎𝟑] 

 

2. Cross-Validation: 

A 5-fold cross-validation technique was employed to 

evaluate model performance for each combination of γ and 

C. Cross-validation ensures robustness by reducing 

overfitting and providing reliable performance estimates 

across the dataset. 

3. Performance Metric: 

The optimal hyperparameters were selected based on 

maximizing the F1-score, which balances precision and 

recall. This was particularly relevant for the dataset as it 

contained class imbalances. Accuracy and precision were 

also monitored to assess performance trade-offs. 

4. Impact of Hyperparameters: 

A sensitivity analysis was conducted to evaluate the effect 

of varying γ and C on model performance. Results indicate 

that smaller values of γ result in smoother decision 

boundaries, while larger values allow the model to fit more 

complex data patterns. Similarly, higher values of C 

prioritize minimizing classification errors on the training 

data but may lead to overfitting. 
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5. Final Hyperparameters: 

The optimal parameters determined from the tuning 

process are 𝜸 = 𝟎. 𝟏 and C= 𝟎. 𝟏. These values provided 

the best balance between generalization and performance 

on the validation set. 

 

V. SIMULATION RESULTS 

The dataset consists of NT = 50,000 samples of 

independent realizations of the UEs' positions for each 

system. The large-scale fading was modeled as a 

combination of pathloss and shadowing, following the 

approach in [29]. All other network parameters used in the 

simulations were set the same as in [30] for the CL systems 

and [29] for the CF-mMIMO systems. The dataset was 

preprocessed by normalizing the input features to ensure 

consistent scaling. We split the dataset into 80% training 

and 20% testing sets, ensuring that the training set included 

a diverse range of channel conditions to generalize well 

across different scenarios. Additionally, feature extraction 

was performed to identify key input parameters for the 

SVM model, which were subsequently transformed using 

the RBF kernel for improved accuracy in power control 

prediction. 

The proposed model utilizes the SVM/RBF methods for 

PC in the CL/CF-mMIMO systems. Fig. 1 illustrates the 

proposed block diagram of SVM method for PC in CL/CF-

mMIMO systems and Fig. 2 depicts the block diagram of 

proposed SVM/RBF methods, highlighting the stages from 

input data preparation to integration into the mMIMO 

systems. Performance evaluation using the AUC metric in 

Table II shows that the SVM/RBF method significantly 

outperforms the WMMSE method, with AUC values of 

24,931 and 12,698, respectively, in CL-mMIMO systems. 

The AUC distances between WMMSE and SVM/RBF 

methods, presented in Table III for CL-mMIMO systems 

and Table IV for CF-mMIMO systems, are 12,233 and 

11,731, respectively, highlighting SVM/RBF's superior 

performance. Execution time comparisons on a CPU 

(Intel(R) Core i7-4790T @ 2.70 GHz, RAM: 32.0 GB) 

reveal that SVM-RBF is faster, with times of 10,880.267 

seconds versus 14,243.157 seconds for WMMSE in CL-

mMIMO (Table V), and 9,263.510 seconds versus 

12,569.432 seconds for WMMSE in CF-mMIMO (Table 

VI). Thus, SVM/RBF not only enhances performance but 

also executes more efficiently than WMMSE in these 

systems. 

Fig. 3 illustrates the convergence behavior of the 

SVM/RBF and WMMSE methods over time, providing a 

clear visual representation of how quickly each method 

reaches stability. In Fig 4, we have added histograms 

showing the distribution of errors for both methods. These 

visualizations help to highlight the accuracy and reliability 

of the SVM/RBF method compared to WMMSE. 

To further validate the effectiveness of the proposed 

approach, we conducted a convergence analysis to 

evaluate the training stability of the SVM/RBF model. Fig. 

5 illustrates the convergence behavior of the SVM/RBF 

and WMMSE methods over time, providing a clear visual 

representation of how quickly each method reaches 

stability. The results show that the SVM/RBF method 

converges within approximately 50 iterations, whereas the 

WMMSE method requires significantly more iterations, 

demonstrating the computational efficiency of the 

proposed approach. 

In addition, we examined the error distribution of both 

methods to assess their accuracy and reliability. Fig. 6 

presents histograms comparing the error distributions of 

the SVM/RBF and WMMSE methods. The SVM/RBF 

method exhibits a tighter distribution centered around zero, 

indicating lower prediction variance and improved 

accuracy. In contrast, WMMSE has a wider error 

distribution, reflecting higher variability in its power 

control predictions. 

 
TABLE II 

AUC FOR EACH PC METHOD IN CL-MMIMO SYSTEMS  

PC Method AUC 

WMMSE 1.2698e+04 

SVM-RBF 2.4931e+04 

 
TABLE III 

AUC DISTANCE BETWEEN WMMSE AND SVM/RBF-BASED PC 

METHODS IN CL-MMIMO SYSTEMS 

  PC Method AUC Distance From WMMSE 

SVM-RBF 1.2233e+04 

 
TABLE IV 

AUC DISTANCE BETWEEN WMMSE AND SVM/RBF-BASED PC 

METHODS IN CF-MMIMO SYSTEMS 

Methods AUC Distance From 

WMMSE 

SVM-RBF 1.1731e+04 

 
TABLE V 

EXECUSION TIME COMPARISON FOR WMMSE AND SVM/RBF-

BASED PC METHODS IN CL-MMIMO SYSTEMS, EXECUSION 
TIME (CPU: INTEL(R) CORE I7-4790T @ 2.70 GHZ, RAM: 32.0 

GB) 

PC Method Execution Time 

WMMSE 14,243.157 sec 

SVM-RBF 10,880.267 sec 

 

TABLE VI 

 EXECUSION TIME COMPARISON FOR WMMSE AND SVM/RBF-

BASED PC METHODS IN CF-MMIMO SYSTEMS, EXECUSION 

TIME (CPU: INTEL(R) CORE I7-4790T @ 2.70 GHZ, RAM: 32.0 
GB) 

PC Method Execution Time 

WMMSE 12,569.432 sec 

SVM-RBF 9,263.510 sec 
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VI. COMPARISON WITH EXISTING METHODS 

Compared to the work of Zaher et al. [31], which addresses 

learning-based downlink power allocation in CF systems, 

our study distinguishes itself in the following ways: 

• Scope: Zaher et al. focus exclusively on downlink 

power allocation in CF massive MIMO systems, 

whereas our work extends the scope to include both 

uplink and downlink power control in both CF and 

CL systems. 

• Methodology: While Zaher et al. use supervised deep 

learning methods, our hybrid SVM/RBF approach 

achieves comparable accuracy with significantly 

reduced computational complexity. Additionally, our 

method eliminates the need for iterative convergence 

during execution, unlike Zaher et al.’s approach, 

which relies on model training and iterative 

optimization. 

• Performance Analysis: Our study provides a detailed 

trade-off analysis of coherence time allocation and 

demonstrates the practical impact of uplink data 

duration on system performance, aspects that are not 

explored in Zaher et al.'s work. 

These distinctions highlight the broader applicability and 

computational efficiency of our proposed method, 

providing a unique contribution to power control strategies 

in massive MIMO systems. 

Table VI compares the AUC and execution time of 

different PC methods, showing that the SVM/RBF method 

outperforms WMMSE, DRL, CNN, and Gradient Descent-

based approaches in terms of AUC, demonstrating superior 

performance in both CL-mMIMO and CF-mMIMO 

systems. Additionally, the SVM/RBF method executes 

faster than WMMSE and the other reported methods, 

highlighting its computational efficiency and suitability for 

practical, real-time applications. 
TABLE VI 

THE RESULTS OF THE PERFORMANCE EVALUATION OF THE 

SVM/RBF-BASED PC METHOD IN CL-MMIMO AND CF-MMIMO 

SYSTEMS ARE PRESENTED IN THE FOLLOWING TABLES 

Methods AUC 

(CL- 
mMIMO) 

AUC (CF- 

mMIMO) 

Execution 

Time (CL-
mMIMO) 

Execution 

Time (CF-
mMIMO) 

SVM-

RBF 

24.931 - 10,880.267 

sec 

9,263.510 

sec 

WMMSE 12,698 - 14,243.157 
sec 

12,569.432 
sec 

DRL 24,256 23,855 15,658.112 

sec 

14,503.659 

sec 

CNN 23,525 23,346 13,001.256 
sec 

12,827.754 
sec 

Gradient 

Descent 

22,869 22,532 12,508.691 

sec 

12,248.998 

sec 

     

VII. DISCUSSION 

Despite the advantages of the proposed SVM/RBF-based 

pc method, certain limitations must be acknowledged. One 

key challenge is the method's sensitivity to input feature 

noise. Since the SVM model relies on extracted features 

for decision-making, any inaccuracies or fluctuations in 

the dataset can affect prediction reliability. In practical 

wireless environments, channel conditions vary 

dynamically, and noise in the input features, such as 

measurement errors or environmental interference, may 

reduce the effectiveness of the learned model. While 

preprocessing techniques like normalization and feature 

extraction help mitigate some of these issues, future 

enhancements could explore more robust noise-resilient 

ML techniques [37, 38]. 

Another limitation is the method’s dependency on 

accurate channel state information (CSI). The proposed 

approach assumes reasonably precise CSI during both 

training and real-time application, but in practice, CSI 

estimation errors are inevitable. Such inaccuracies could 

lead to suboptimal power control decisions, affecting 

system performance. Additionally, although the 

SVM/RBF method significantly reduces computational 

complexity compared to iterative techniques like 

WMMSE, the offline training phase requires careful 

hyperparameter tuning, which can increase the initial setup 

time. Future research could explore adaptive learning 

mechanisms that adjust to varying CSI quality and 

investigate transfer learning techniques to reduce the need 

for extensive retraining in different network scenarios [39]. 
 
 

VIII. CONCLUSION 

In conclusion, this paper introduces a novel approach for 

optimizing PC in CL/CF-mMIMO systems, utilizing a 

hybrid SVM/RBF methodology. By combining the 

predictive power of SVM regression with the flexibility of 

RBF kernels, our proposed method achieves superior 

performance in terms of SE and computational efficiency 

compared to traditional WMMSE methods. Through 

extensive simulations, we have demonstrated that the 

SVM/RBF approach not only enhances system 

performance but also reduces execution time significantly, 

making it a promising solution for real-world deployment 

in large-scale wireless networks. Our findings underscore 

the importance of leveraging advanced ML techniques for 

addressing the evolving challenges of PC in next-

generation communication systems. Overall, this paper 

contributes to the advancement of wireless communication 

technology by offering a robust, efficient, and scalable 

solution for optimizing PC in complex mMIMO 

environments. 

While our method focuses on optimizing power control, 

future research could explore the integration of tensor-

based techniques, such as those discussed in [2, 3], to 

enhance channel estimation and further improve system 

performance. By combining the strengths of machine 

learning-driven optimization with advanced estimation 

methods, we can address more complex scenarios and 

extend the applicability of the proposed approach to 

emerging communication technologies such as terahertz 

sensing [4]. Additionally, challenges related to fronthaul 
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overhead in cell-free systems, as highlighted in [5], could 

be mitigated through the incorporation of such advanced 

techniques, further enhancing computational and 

communication efficiency. 

In the future, we will explore the application of different 

ML algorithms for PC, such as multi-layer perceptron 

neural networks (MLPNN) with imperialist competitive 

algorithm (ICA) [40] or MLPNN with particle swarm 

optimization (PSO) algorithms [41]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Proposed block diagram of SVM/RBF methods for PC in CL/CF-mMIMO systems. 
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Figure 1. Proposed block diagram of SVM method for PC in CL/CF-mMIMO systems. 
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Figure 3. Convergence plots of SVM/RBF and WMMSE methods. 

 

 
 
Figure 4. Error distribution of SVM/RBF and WMMSE methods. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3554433

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

8 VOLUME XX, 2017 

 
Figure 5. Convergence analysis of the SVM/RBF and WMMSE methods. The SVM/RBF method converges faster, requiring fewer iterations to reach 

stability compared to WMMSE 
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Figure 6. Error distribution of SVM/RBF and WMMSE methods. The SVM/RBF method exhibits lower variance and more accurate power control 

predictions compared to WMMSE. 
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