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Abstract—Wideband acoustic immittance (WAI) technology
has been known for over a decade, delivering an enhanced
diagnosis of middle ear (ME) diseases across a wider frequency
range than standard tympanometry. Nevertheless, its clinical
usage confronts the limitations of restricted interpretation and in-
sufficient explanation of the WAI outcomes. This paper proposes
a multimodal machine learning (MML) approach for classifying
ME diseases into normal ear and ear with abnormalalty i.e., otitis
media with effusion. The proposed MML model is grounded on
the integration of a 3 layered convolutional neural network and
a multi-layer perception network. The outcomes exhibited that
the proposed MML model surpasses the available methods by
achieving 98.27% accuracy for classifying ME diseases using the
WAI measurements.

Index Terms—Accuracy, convolutional neural network, ma-
chine learning, multi-layer perception , Wideband acoustic im-
mittance.

I. INTRODUCTION

Otitis media (OM) is a middle ear (ME) inflammation that
is split clinically into two diagnostic classes: otitis media
with effusion (OME) and acute otitis media (AOM). AOM
is defined as a critical disease with a prompt onset, whereas
OME is defined as a liquid in the ME. Both of these classes
are prevalent among kids but OM is a considerably common
reason for consultations in the case of kids at primary care
doctors [1]. The lack of apparent contagious symptoms i.e.,
fever and earache, and inadequate investigative precision can
lead to delayed investigation. Therefore, it can cause lan-
guage and speech growth delays with potential behavioral and
academic issues [2]. At the 2012 Eriksholm workshop, the
Wideband Acoustic Immittance (WAI) term was selected to
define a class of middle-ear measurements based on acoustic
power and immittance, including energy absorbance (EA) and
energy reflectance. Interacoustics (Denmark) introduced the
Titan system, a commercially available instrument developed
for assessing middle-ear conditions. The system estimates the
acoustic transfer function, represented as EA, across a broad
frequency span (226 Hz-8000 Hz). The system’s (Titan) results
are displayed via both 2D and 3D plots of EA, spanning
various pressures and frequencies [3]. Contemporary investiga-

tions have also demonstrated the significant benefits of WAI in
delivering added information on ME function employing a vast
frequency range as a function of pressure at ambient pressure
and peak pressure, plotted in 2D and 3D graphs. These graphs
from WAI allow the clinician to sufficiently comprehend the
dynamic features of the ME by identifying specific tympa-
nometric patterns related to the ME pathologic change [4].
The primary hurdle in maximizing the WAI application lies
in the extensive amount of data, which contains thousands of
absorbance values across the pressure-frequency plane. While
this data is useful for comprehending ME conditions, it poses
problems for physicians in investigating, understanding, and
classifying ears as abnormal or normal.

II. RELATED WORK

Artificial Intelligence (AI) including its subclasses such
as machine learning (ML), and deep learning (DL) are em-
ployed for feature engineering, prediction, and classification
in different applications including medical imaging [5]. To
handle the current problem of analyzing the ME conditions,
AI, ML, and DL techniques have been used for the processing
of complex WAI data [6]. A CNN-based model using an
augmentation technique is presented to enhance the accuracy
of the classification of OM using WAI measurements. The
1014 measurements (WAI) were collected from patients ages
ranging from two months to twelve years and were divided into
3 classes of diagnosis such as AOM, OME, and normal ear.
The outcomes demonstrated an accuracy of 92.6% in specify-
ing OM. Nevertheless, the accuracy for classification was low
to 79% in distinguishing the OME and AOM [7]. Moreover,
for tackling the noise within ear images, a DL-based approach
integrated with Bayesian optimization is implemented where
the input images were labeled either infected or not infected.
The results demonstrated effective outcomes with the other
benchmarked models [8].

Furthermore, the ML approach is employed to specify the
WAI absorbance features across different frequency-pressure
regions in the ears with OME and normal ME to allow
the diagnosis of ME conditions automatically [9]. Employing



Fig. 1: A depiction of 3D WAI imaging and data pre-processing: (a) 3D WAI data with normal ME function from an adult
participant; (b) 2D frequency-absorbance plot at peak pressure from the same participant; (c) 2D frequency-pressure image

transformed from (a); (d) 2D frequency-pressure image from (a) after Y-axis pressure interpolation.

class activation mapping, a two-stage DL-based classifica-
tion approach is implemented for the automatic diagnosis of
OM employing tympanic membrane images. The proposed
approach attained an overall accuracy of 93.4% employing
ResNet50 as the backbone network, while the F1 Score of
classification for OME was 96.8% and 94.3% for the normal
images. Our recent work presents a cascaded DL approach
that uses a convolutional neural network (CNN) followed by
a self-attention approach. The first stage classifies OME into
specific age groups followed by a self-attention approach that
classifies the data’s discriminative parts. The two-stage ML
technique achieved classification accuracy of 96.6%, 94.1%,
and 90.7% for the three age groups, respectively [3].

Multimodal machine learning (MML) is a class of DL
operating on the combination of images, videos, data, audio,
and signals such as (heart rate). In distinction, unimodal
models can process exclusively one data type, such as im-
ages or text (commonly defined as feature vectors). MML is
distinct from fusing unimodal models trained independently. It
integrates information from other modalities to produce better
predictions [10]. Although the MML has shown considerable
success in diagnostics and medical imaging, its application
to WAI data for the classification of ME conditions remains
unexplored. WAI, which supplies a vast spectrum of acoustic

responses, has displayed the potential to differentiate between
normal and pathological ears. Yet, existing models often fail
to effectively fuse WAI data with other modalities that could
improve diagnostic precision. The lack of a robust multi-
modal framework integrating temporal, acoustic, and visual
data shows a critical research gap, making it challenging for
physicians to leverage all available data for precise middle-
ear disease prediction. To address this gap, this initial work
proposes an MML framework for this first using WAI data for
the classification of ME conditions into normal and abnormal
as OME.

III. PROPOSED MML APPROACH FOR THE
CLASSIFICATION

This section details the materials and methods adopted for
the classification of ME diseases into normal and abnormal as
OME.

A. Dataset Specification

The WAI dataset comprises 1177 sets of WAI measurements
and was collected from volunteers and clients in 7 hospitals
in China i.e., Chongqing, Shanghai, Xuzhou, Beijing, and
Guangzhou. Of the total data set, 551 WAI measurements
are normal while 626 WAI measurements are OME ears.In



Fig. 2: Illustration of the proposed MML model where (a) display the general flow of the MML while (b) display the
proposed MML model.

addition to the inadequate quality of the measurements of
WAI i.e., having missing pressure weights exclusion, the data
from infants and neonates younger than 1-year-old were also
removed [3]. The development of an ML-based model using
the WAI plots of pressure- -frequency has been detailed in our
previous work i.e., Interacoustic from Denmark provided Titan
IMP440. It is operated to estimate EA for a broad spectrum
of frequencies (Hz) and pressure, spanning from +200 daPa
to -300 daPa. Figure. 1a depicts an instance of a plot for
WAI in 3D for a normal ME function having an age of 25
years of participants. The first dimension represents frequency,
varying from 226 Hz to 8000 Hz in intervals of 1/24-octave;
the second dimension represents pressure, running from -300
to +200 daPa; and the third dimension represents EA, ranging
from 0 to 1. Fig. 1b depicts an EA curve at peak pressure
across a broad frequency range while Fig. 1c illustrates a 2D
image employing preprocessing pressure and the domains of
frequency that correspond to the WAI data as in Fig. 1a. More
detailed explanation can be found in [3].

B. Implementation of the proposed MML Model

The general flow of the proposed MML for the classification
of WAI data into normal ear and ear with OME is shown in
Fig. 2(a) where it can be seen that the input is fed both in
the form of numeric structured and image (grayscale) data.
Before implementation of the proposed MML model, extensive
preprocessing is done to remove outliers in the WAI data.
The relationship of pressure, frequency, and absorbance aided

TABLE I: Simulation parameters for the proposed MML
model

Network parameter Configuration values
Input size 128 x 128

Learning rate ((η)) 0.001
Batch size 64
Optimizer Adam

Activation function ReLU
Decay 1e− 3/200

in this process. It was found that some of the columns in
the WAI measurements were missing due to the handling of
the Titan IMP440 device and patient comfort. The data was
divided into 70. 20, and 10 percent for training, testing, and
validation. A multi-layer perception (MLP) and CNN model
is employed that is concatenated after operating on the WAI
measurements. The detailed architecture of the proposed MML
is depicted in Fig. 2(b). For the CNN model, it employs a 3-
layered convolutional layer of two dimensions while the MLP
has one layer followed by two dense layers. For both CNN and
MLP, the rectifier linear unit (ReLU) is used as an activation
function. The features extracted from both CNN and MLP
are then concatenated generating a feature vector having a
size of 8 i.e., 4 from each CNN and MLP. These features are
further processed by a dense layer and ReLU to integrate the
information both from the grayscale image and structure data.
Finally, a dense layer having a sigmoid activation is used for
binary classification of the WAI measurements into normal



Fig. 3: Confusion matrix where (a) represents confusion matrix for all data while (b) represents confusion matrix for training
data.

Fig. 4: Confusion matrix where (a) represents confusion matrix for validation while (b) represents confusion matrix for
testing data.

ears and ears with OME. The loss function is the binary-
entropy loss and is given as:

L(y, ŷ) = − 1

N

N∑
i=1

[yi log (ŷi) + (1− yi) log (1− ŷi)] (1)

where yi is the true label i.e., either 0 or 1, ŷi is for the
predicted probability i.e., output from the sigmoid function,
and N is the number of samples in the batch.

z = concat (zCNN, zMLP) (2)

where zCNN and zMLP are the resultant vectors from the re-
spective CNN and MLP branches. The simulation parameters
used for the proposed MML model are given in Table 1.

IV. RESULTS AND DISCUSSION

Accuracy, precision, sensitivity or recall, specificity, and F1-
score are employed for the model evaluation. The following

parameters are defined as follows:

• True Positive (TP): The TP stands for the case/cases
when the model correctly predicts the positive class. In
other words, if there is a normal ear or ear with OME,
the proposed model accurately classifies it.

• False Positive (FP): The FP stands for the case/cases
when the model incorrectly predicts the positive class. In
other words, if there is no ear with OME or normal ear,
the proposed model accurately classifies.

• True Negative (TN): The TN stands for the case/cases
when the model correctly predicts the negative class.

• False Negative (FN): The FN stands for the case/cases
when the model incorrectly predicts the negative class.

Employing these parameters, the subsequent metrics of
performance can be computed to assess the performance of
the presented MML mode.



TABLE II: Simulation parameters for the proposed MML model

Model Performance Metrics
Accuracy Precision Recall Specificity F1-score

CNN [9] 82.00 83.00 89.00 X 86.00
2D network [7] 92.60 X 92.20 92.90 92.60

FNN 81.00 83.00 89.00 X 86.00
2-stage attention DL [3] 96.80 X 97.70 95.40 96.80
Proposed MML model 98.27 99.00 97.20 99.20 98.10

Precision: This metric of performance assess how precisely
the model classify normal ear or ear with OME.

Precision (Pre) =
TP

TP + FP
× 100 (3)

• Sensitivity: This metric of performance is also called
recall and assesses the proportion of the actual normal
or ear with OME classified correctly.

Sensitivity or recall (recall) =
TP

TP + FN
× 100 (4)

• F1-score: This performance metric is the harmonic aver-
age among precision and recall and spans between 0 to
1. F1-score is calculated as:

F1-score =
2× Sen × Pre

recall + Pre
× 100 (5)

Figure 3 depicts the confusion matrix after implementing the
proposed MML model for the classification of ME conditions
into normal and ear, where Fig. 3(a) shows the confusion
matrix for overall data while Fig. 3 shows the confusion
matrix for the training data. Furthermore, Fig. 4 illustrates
the confusion matrix for validation (Fig.4(a)) while Fig. 4
(b) illustrates the confusion matrix for the testing phase. The
performance of the model is reflected in the form of high
accuracy and the model achieved accuracy of 99.6%, 98.27%,
and 86.52% for training, validation, and testing, respectively.

Furthermore, performance metrics such as accuracy, preci-
sion, sensitivity (recall), specificity, and F1-score are selected
to evaluate the performance of the proposed MML model.
As shown in Table 2, the presented MML is extensively
benchmarked with the available methods employed for the
classification of ME disease. Unlike the previous approaches,
this paper uses specificity and precision to evaluate the model
performance.

V. CONCLUSION

This paper is an initial attempt in the development of a
multi-modal framework by proposing a DL-based approach
i.e., MMML for the classification of ME disease into normal
ear and ear with OME employing WAI measurements. The
proposed MML model takes input both in the form of numeric
and images using WAI measurements and performing the de-
cision process. The initial results demonstrated outperformed
results in terms of the performance metrics such as accuracy,
precision, recall, specificity, and F1-score. These results are
benchmarked with the current available studies and models.

For future work, age categorization is an issue where the
specific dataset comprises three age categories and the future
work will focus on generating a higher accurate prediction,
especially for the age category less than 3 years.
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