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Despite extensive research on the relationship between systematic risk and expected returns, there
exists limited knowledge of how early-warning risk signals could capture investors’ expectations
about changes in systematic risk. Leveraging on graph theory and covariance matrices, this study
proposes a novel framework to develop risk signal patterns. Our approach not only discerns high-risk
periods from calmer ones but also elucidates the pivotal role of interconnections among securities
as indicators of systematic risk. The findings offer actionable insights for timely portfolio man-
agement and risk management responses in periods of transitions towards higher systematic risk.
Moreover, by leveraging on graph theory, regulators can take timely decisions about how much
liquidity to inject into the markets during periods of uncertainty. This study contributes to the liter-
ature by establishing a novel framework on linking investors’ expectations and expected changes in

systematic risk.

Keywords: Risk signaling; Covariance matrix; Graph theory; Systematic risk; Financial networks

1. Introduction

In 2020, the COVID-19 health crisis triggered a sudden shift
in the global economy and financial markets, with financial
impact comparable to the 2008 Global Financial Crisis (Ding
et al. 2020, Lustig and Mariscal 2020). During periods of
downturn and uncertainty, as financial markets grow in inter-
connectivity and complexity, it becomes highly challenging to
develop early-warning risk signals (Gencay et al. 2005, Aven
and Zio 2021). The history of financial markets is charac-
terized by sudden shifts in systematic risk due to economic
and political events. We define systematic risk as the vul-
nerability of financial markets to events which affect aggre-
gate outcomes such as broad market returns (Pelger 2020).
Recent examples are Brexit (Belke et al. 2018, Hohlmeier
and Fahrholz 2018), the US—China trade war (Xu and Lien
2020), the European debt crisis (Kousenidis et al. 2013), the

*Corresponding author. Email: monomita.nandy @brunel.ac.uk

China Real Estate bubble (Glaeser et al. 2017, Jiang et al.
2021), and the impact of major monetary policies in response
to post-pandemic and Russo-Ukrainian conflict.

The concept of systematic risk was first introduced by
Sharpe (1964) with the Capital Asset Pricing Model (CAPM),
proposing a novel relationship between systematic risk and
expected returns. Following this pioneering step, measures of
systematic risk have mostly revolved around the concept of
beta, the linear regression slope coefficient quantifying the
relationship between the risk of an individual asset and risk
measures of the broader market. For instance, Bowman (1979)
quantified systematic risk as the beta with respect to account-
ing variables such as firms’ leverage. For a long time, studies
on systematic risk relied on an approach proposed by Boller-
slev and Zhang (2003). The measure was based on Fama-
French 3-factor model on high-frequency data. Recently, Ball
et al. (2022) challenged the asset pricing theory in relation
to systematic risk (Roll 1977) and used firm’s earnings and
macro-economic variables to measure firm-level systematic
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risk. Pelger (2020) implemented a factor model based on a
high-frequency dataset to explain individual stock returns on
sector portfolios, such as oil, financial, and energy. However,
as financial markets evolved, financial theorists and practi-
tioners alike began to grapple with the strong assumptions
of CAPM and beta—such as efficient markets, normal dis-
tribution and linear relationship between risk and return. In
response, seminal studies began addressing the limitations of
beta estimation by borrowing on diverse mathematical fields.
For instance, some approaches employ the systematic risk
estimation on a wavelet approach that decomposes a given
time series on a scale-by-scale basis (e.g. Gencay et al. 2005).
Mestre (2023) indicated that a systematic risk varies in time
and frequency so wavelet approach should be used to estimate
betas of capital asset pricing model. However, most recently
by criticizing the non-parametric estimation of betas based
on high-frequency data, Liao and Todorov (2024) introduced
‘bias-mimicking statistic’ in relation to analyzing systematic
risk. Stock and Watson (2002) use a principal component anal-
ysis (PCA) to extract common trends and movements in a
large dataset of asset prices, isolating the systematic compo-
nents of risk. Thus, it is evident from the above literature that
there is a strong interconnection between return of securities
and systematic risks. However, volatility forecasting methods
remain the essential part of identifying and managing market
risk. Engle and Bollerslev (1986) introduce GARCH mod-
els that still represent a cornerstone in volatility forecasting
methods. On the other hand, Guo and Wohar (2006) provide
evidence to time-varying volatility, while Bucci and Ciciretti
(2022) offer a comparison of econometrics methods and clus-
tering ones for detecting periods of high volatility. In recent
years, the financial literature has shown a growing interest in
explaining systematic risk with the interconnection between
securities exemplified by networks. For instance, Onnela et al.
(2003) showed how the minimum spanning tree length shrinks
during periods of enhanced systematic risk—with a focus on
Black Monday. Coelho et al. (2007) show how the topol-
ogy of trees changes following market movements. Ciciretti
and Bucci (2023) propose a graph-theory based portfolio con-
struction methodology based on reflecting periods of high sys-
tematic risk in portfolio composition by means of eigenvector
centrality.

To this day, the financial literature has fallen short in using
the interconnections between securities as proxies for eval-
uating systematic risk, especially during financial setbacks.
In few instances, the use of eigenvalues and eigenvectorst
to explain the complex correlation between financial assets
has offered useful insights (e.g. Noh 2000; Garcia-Jorcano
and Sanchis-Marco 2021). Yet, there exists a gap in their
application as systematic risk signals. In a quest to address
the limited research around early-warning systematic risk sig-
nals, our study poses the following research question: How
can early-warning risk signals explain investors’ expectations
about changes in systematic risk?

+ An eigenvector of a matrix is a nonzero vector that points to the
direction of change of the matrix when a linear transformation is
applied to it. The corresponding eigenvalue is the factor by which
the eigenvector is scaled.

To address this, our study utilizes graph theory: and matrix
theory—especially regarding eigenvalues and eigenvectors—
to develop proxies that not only capture but also provide early
warnings of changes in systematic risk. By leveraging on
graph theory, we represent the complex relationships among
securities. Specifically, minimum spanning trees§ (MST)
allow us to quantify the meaningful interactions (Di Cerbo
and Taylor 2021) by means of centrality measures. Despite
its great capability in explaining complex systems such as
financial markets, the application of graph theory to finance
remains yet to be fully explored.

Risk-averse investors reflect their expectations of sys-
tematic risk on portfolio compositions. For instance, when
investors expect a transition to a period of high systematic
risk, higher-risk securities—such as equities—are divested
to reposition the portfolio in a more defensive setup. The
rebalancing involves selling risky securities, thereby cre-
ating downward pressure on prices due to lower demand.
Amid high systematic risk, as investors release portfolio risk,
correlations among assets jump higher. As such, the eigen-
vector and eigenvalues of the covariance matrix also grow
higher, as the matrix stretches to account for higher levels
of systematic risk. This observable market behavior indicates
that the covariance matrix—which encapsulates asset return
correlations—serves as a viable metric for gauging systematic
risk. In financial terms, eigenvalues are the factor by which
asset returns jointly change in response to changes in sys-
tematic risk. As investors’ demand changes based on their
expectation of systematic risk, it alters the covariances among
assets; this is reflected in the eigenvalues and eigenvectors
of the covariance matrix, which effectively encapsulate the
market expectation of systematic risk.

These aspects are incorporated in this paper to produce
early-warning risk signals based in covariances and minimum
spanning trees. Specifically, we build four metrics that act
as early-warning risk signals; namely, the variance explained
by the largest eigenvalue, the variance explained by the first
five largest eigenvalues in excess of the first, the mean of
the eigenvector centralities, and their standard deviations.
The risk signals can neatly separate periods of high sys-
tematic risks from calm ones. As such, we showcase how
their application can improve a mean-reverting investment
strategy.

The novelty of our study is associated with its twofold con-
tribution. First, we find that eigenvectors and eigenvalues can
signal the expected changes in systematic risk with higher
precision, especially during financial setbacks.] Specifically,
we show that the changes in systematic risk can be cap-
tured through graph centrality measures, such as eigenvector

1 Graph theory is the study of graphs, which are structures used to
model pairwise relations between objects. A graph in this context
is made up of vertices which are connected by edges. See Bollobas
(1998) and Bollobés and Bela (2001) for a general introduction to
graph theory.

§ A minimum spanning tree is a subset of the edges of a con-
nected, edge-weighted undirected graph that connects all the vertices
together, without any cycles and with the minimum possible total
edge weight. That is, it is a spanning tree whose sum of edge weights
is as small as possible.

J Estimated risk signals in this study are validated in an out-of-
sample setup.
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Figure 1. The link between investors’ risk aversion, systematic risk, and eigenvalue-eigenvector based early-warning risk signals.

centrality. Our early-warning risk signal framework can dis-
tinguish periods of high volatility from calm ones and, as
such, can improve the performance of investment strategies.
Secondly, we demonstrate how graph theory can be a pros-
perous research field to represent the hierarchical structure of
financial markets. Our graph theory approach extends exist-
ing research (e.g. Savona 2014) and encourages scholars to
examine other critical questions related to systematic risk.

The societal and economic implications of detecting sys-
tematic risk changes in highly volatile periods are far-
reaching. Early signals allow investors, risk managers, and
regulators to respond in a timely manner to any adverse
impact of crises on economic stability. Our research implies
that investors and risk managers as well as regulators may
incorporate the above-mentioned four metrics in their prac-
tices, to build resilient, regime-switching portfolios, to allow
a more precise evaluation of risk, and to address the needed
regulation adaptations in terms of monetary policy or banking
regulations in response to early-spotted changes in systematic
risk.

The rest of the paper is organized as follows. Section 2
illustrates the theoretical background, while section 3 intro-
duces the methodology to build and validate the early-warning
risk signals. Section 4 introduces the dataset. Section 5 shows
the results. Section 6 offers a discussion and section 7 con-
cludes.

2. Identifying the early-warning risk signals

Figure 1 outlines the economic theory underpinning our
risk signals. Investors’ appetite for risky assets is embed-
ded into the covariance matrix of asset returns (Agrawal
et al. 2022). The covariances of asset returns jump higher

during periods of transition towards high systematic risk
(Haugen et al. 1991). Asset prices move ahead of market
events because of changes in investors’ implied risk expec-
tations. Thus, changes in covariance matrices embed changes
in investors’ expectations—assumed to be risk-averse—due
to changes in the demand for risky assets. As such, we
posit that changes in investors’ expectations are mirrored
by changes in eigenvalues and eigenvectors. Laloux et al.
(1999) and Potters et al. (2005) show that the largest eigen-
values of a covariance matrix reflect more systematic sources
of risk.

When financial markets are adversely affected by a down-
turn in economy, all assets become more correlated with each
other (Junior and Franca 2011). As a result, the covariances
among the assets jump higher. Hence, a large portion of vari-
ance is explained by the change in the systematic risk. As
such, the eigenvalues and eigenvectors grow higher com-
pared to each other, becoming a proxy that capture investors’
expectations about systematic risk. Therefore, we use the vari-
ance explained by the largest eigenvalue and the variance
explained by the five largest eigenvalues in excess of the first
as early-warning risk signals.

Moving to the graph theory side, Mantegna (1999) was
the first to apply this discipline to explain the dynamic rela-
tionships among assets in financial markets. We show the
capabilities of graph theory in explaining the systematic risk
through minimum spanning trees, which is a collection of
nodes (in our study, different securities in the market) con-
nected to each other by links. The value of any link is
proportional to the strength of the connections between nodes
tied in that link. The connections are exemplified by distance
measures between each pair of stocks, which are inversely
proportional to linear correlations. In other words, then two
securities display a high linear correlation, then their distance
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Figure 2. The link between investors’ risk aversion, systematic risk, and graph theory based early-warning risk signals.

in the spanning tree is lower, hence are placed closer to each
other. As during financial setbacks investors become more
risk-averse, the changes in the investors’ demand for risky
assets can be captured by changes in the distances between
pairs of nodes in the minimum spanning tree. Graph central-
ity measures, such as eigenvector centrality, are proxies for
the degree of cross-connectivity across securities in a finan-
cial market, which can capture the expectation of the investors
about changes in systematic risk. In fact, when the connec-
tions of a security to others become stronger, we observe a
higher centrality value. At the same time, securities that are
poorly connected show lower centrality values are placed at
the peripheries of the tree—showing lesser connections to the
rest of the market. As a consequence, securities that are placed
at the center of the tree are better proxies of systematic risk,
due to the stronger connections to the rest of the securities in
the market.

We illustrate the underlying assumption of minimum span-
ning trees and their application in this study in figure 2. A
minimum spanning tree is built from a covariance matrix.
Under graph theory, the eigenvector centrality—explaining
degree of connectivity among securities—becomes the eigen-
vector of a transformed covariance matrix, which is known as
an adjacency matrix. Hence, the same conclusions regard-
ing the covariance matrix with respect to eigenvalues can
be extended to the minimum spanning trees for the eigen-
vector centrality. In other words, when a transition to high
systematic risk is expected by risk-averse investors, their
muted demand for risky assets is mirrored in stronger connec-
tions between nodes—hinting at higher correlations between
securities, which is reflected in higher eigenvector central-
ity values. Thus, graph theory allows us to derive the mean

T An adjacency matrix is a square matrix used to represent a graph.
The elements of the matrix indicate whether pairs of vertices are
adjacent or not in the graph.

of the eigenvector centralities and their standard deviations.
Appendix A illustrates the different shapes of minimum span-
ning trees in periods of high systematic risk against calm
periods.

3. Methodology

We split the methodology into three phases. Phase 1 calculates
the early-warning risk signals. Phase 2 validates the choice of
the risk signals in an in-sample setup. Phase 3 deals with the
out-of-sample validation and performance analysis.

The following sections delve into the greater details of each
phase.

3.1. Phase I—Extracting early-warning risk signals

We start by calculating the linear returns of the futures asset
prices as:

Pri

—1Lvi=1,....,.T;Vi=1,...,n, (1)

where, r;; is the linear return of asset i at hour ¢ and p;; is the
hourly open price of the future contract on the asset i. Suc-
cessively, we estimate the realized covariance matrix through
non-parametric realized covariances. As realized covariances
converge in probability to the quadratic variation of the price
process (Shephard and Barndorff-Nielsen 2004), we calcu-
late weekly realized covariances, RC,, as the aggregation of
cross-products of hourly returns, such that:

N;
RC, =) 1, )
=1
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Phase 1: Extract early-warning risk signals
Calculate the returns
Estimate the realized covariance matrix
Extract the first two early-warning risk signals:
Variance explained by the largest eigenvalue,
Variance explained by the largest five eigenvalues
in excess of the first,
Transform the covariances into distances
Calculate the adjacency matrix
Calibrate the Minimum Spanning Tree (MST)
Calculate the eigenvector centrality of the MST
Extract two additional early-warning risk signals:
Arithmetic average of eigenvector centrality
Standard deviation of eigenvector centrality
Phase 2: In-sample validation
1. Extract two sub-datasets from whole dataset:
a. 52 consecutive weeks starting 8 weeks before
the second week of October 2008 (when S&P
500 recorded the lowest value during the Global
Financial Crisis)
b. 52 consecutive weeks starting 8 weeks before
the second week of March 2020 (when S&P 500
recorded the lowest value during the COVID-19-
triggered financial setback)
Validation 1: Hierarchical clustering:
Run AGNES hierarchical clustering algorithm on

the two datasets
Plot dendrograms and check clustering quality,

Calculate Dunn index,
Validation 2: Mean-reversion investment strat-
egy:

a. Build a naive mean-reversion investment strat-
egy,

b. Compare three filtering rules to improve the naive
strategy:

i. Sample realized volatility,

ii. eGARCH volatility,

iii. our four early-warning risk signals,

c. Calculate the Sharpe ratio, Sortino ratio and
(Value-at-Risk) VaR of the naive and each strat-
egy filtered strategy.

Phase 3: Out-of-sample validation and performance analysis

1. Use a Variational Autoencoder (VAE) to generate
one thousand synthetic datasets

2. Re-run Phase 2 on each synthetic dataset

e =

Br @ o =G P g

S

wo o

where N, is the number of weekly observations in the t-week,
Vt=1,...,T, and r; is the nxl vector of asset returns for
the t-th observation. This ensures positive definite realized
covariance matrices and makes volatility fully observable and
moldable with any time series model. The realized covari-
ance matrix RC; is the first source from which we extract two
metrics:

e The variance explained by the largest eigenvalue:
Al
,"1:1 Aj
e The variance explained by the first five eigenvalues
. HIY
in excess of the first: =22
Zj:] Aj

where A; is the eigenvalue in position  in the sorted eigen-
values vector A extracted from the realized covariance matrix
RC,.

As Laloux et al. (1999) describe, the largest eigenvalue
predominantly captures the market-wide factor of systematic

risk. Subsequently, the following three to four largest eigen-
values predominantly capture sector-specific risks, which are
not solely explained by the market factor (Potters et al.
2005). These eigenvalues tend to increase as systematic risk
increases. This is often a result of risk-averse investors shift-
ing their portfolios towards more defensive strategies, leading
to higher correlations, and thereby mirroring the increased
systematic risk in the eigenvalues of the correlation matrix.
Eigenvalues beyond the fifth are not used in this study as they
mostly represent idiosyncratic risk and tend to capture firm-
specific risk factors (Avellaneda 2020). As such, these are
more difficult to interpret and tend to be unstable over time.

The next two metrics are extracted by leveraging on graph
theory. To do so, we first build the adjacency matrix A; from
the realized covariance matrix RC;. As constructing an adja-
cency matrix requires that the covariances are transformed
into Euclidean metrics, following Kayo and Kimura (2011),
we first convert the covariances into linear correlations:

pij = 0,;0,0},Vi,] (3)
and then calculate the Euclidean distances as:
2
di,j =1- Pjj- €]

The distances are used to calculate the adjacency matrix A;,
whose diagonal is set equal to zero to avoid self-loops.T A
non-zero entry in the adjacency matrix indicates the existence
of a financial relationship between pairs of assets wherein the
strength of the link is measured by d;;. Given the adjacency
matrix, we estimate the minimum spanning tree (MST) with
the algorithm devised by Kruskal (1956). Kruskal’s algorithm
constructs a minimum spanning tree by initially sorting all
edges of the graph in ascending order of their weights, then
iteratively adding the shortest edge to the MST that does not
form a cycle, and continuing this process until the MST con-
tains V-1 edges, with V being the number of vertices in the
graph. The MST is a graph theory topological representation
to quantify the influence structure among the assets by means
of centrality measures (Brookfield et al. 2013). A centrality
measure is a function that assigns a non-negative value to
each node such that the higher the value, the more the node
is central. According to these, it is possible to distinguish
peripheral nodes that have a limited impact on the dynamics
of the network. As such, a node with higher centrality plays
a major role in risk-return determination, while a peripheral
node influences systematic risk to a lower degree.

In our methodology, we use the eigenvector centrality,
according to which an asset displays a high centrality either
by direct links to other assets or by being connected to other
securities that are themselves highly central. In mathematical
terms, the eigenvector centrality ¢ of node x is given by the
weighted average of the centrality values of its neighbors y:

1
(@i=— Y W) ©)

YEN (x)

T A self-loop is a link that connects a vertex to itself. We elimi-
nate self-loops since we deem self-relations as insignificant for the
purpose of this study.
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where A is a constant, W(x,y) is the weight of the edge
between x and neighboring node y, N (x) is the set of all nodes
directly connected to x and the summation iterates over all
such nodes y. In terms of the squared adjacency matrix A,, we
can re-write the eigenvector centrality as:

1
(@)=~ ZA,,-z(w (6)
J

where j € N represents the neighbor nodes. In matrix form,
this is equivalent to:

A = AL, (N

from where it is visible that ¢ is the eigenvector of the
adjacency matrix A; and A is its eigenvalue.

Minimum spanning trees connect nodes in a way that the
total weight (proportional to the correlation between assets) is
minimized across all edges. The minimal connectivity struc-
ture makes MSTs efficient in capturing the most significant
relationships between securities without the noise of less
significant connections. During periods of high systematic
risk, correlations between securities often increase, which is
reflected in larger eigenvalues and eigenvectors. As eigen-
vector centrality is the eigenvector of the adjacency matrix
connected to the largest eigenvalue—which is representative
of systematic risk (Laloux et al. 1999)—this centrality mea-
sure jumps higher too during periods of financial distress,
hence capturing systematic risk (Ciciretti and Bucci 2023).

The eigenvector centrality ¢ is used to calculate the last two
metrics for early-warning risk signaling, namely:

e the mean eigenvector centrality {: { = %
e the standard deviation of the eigenvector centrali-
ties o (¢):
> @G — )
o(f)=—""F—
n—1

Vi=1,...,nandVt=1,...,T.

3.2. Phase 2—In-sample validation

To assess the adequacy of the four metrics as early-warning
risk signals, we employ a twofold in-sample validation frame-
work. The first validation method aims at assessing whether
the metrics can be used to signal a change in systematic risk.
To do so, we check whether a clustering algorithm that uses
the metrics can correctly label high volatility periods and calm
ones. The second validation method aims at assessing whether
the metrics can be employed to improve the profitability of an
investment strategy.

3.2.1. Clustering. Clustering is an unsupervised learning
technique aimed at grouping a collection of objects into sub-
sets such that the objects within each cluster are more closely
related than they are to objects assigned to different clusters.
As such, clusters are formed upon a degree of similarity often
proxied for by a distance measure. By feeding the four met-
rics to a clustering algorithm, we question if it is possible to
separate weeks of downturns from calm weeks.

For the clustering algorithm, we choose the agglomera-
tive hierarchical clustering (AGNES) algorithm introduced
by Kaufman and Rousseeuw (1990) due to three reasons.
First, its results are reproducible, as opposed to other clus-
tering methodologies (Garge et al. 2005). In fact, partitioning
methods, such as k-means, produce clusters dependent on
an initial random seed. Second, financial markets have an
embedded nature of hierarchy (Simon 1991) which can be
reproduced through hierarchical methods, such as AGNES.
Finally, among the set of hierarchical clustering methods,
the AGNES algorithm is the least computationally expensive
while still granting an elevated clustering precision.

Starting with each object placed in a different cluster, at
each step AGNES merges the two least dissimilar clusters
with the objective of minimizing the inter-cluster dissimilar-
ity. The dissimilarity is defined upon some metrics inputted in
the clustering process. In our case, these are the four metrics
described in the previous section. The pairwise dissimilari-
ties are calculated by means of the Manhattan distance, which
is best suited for clustering problems with higher dimension-
ality (Sinwar and Rahul 2014). Since AGNES reduces the
number of clusters in each step by merging them, it is essen-
tial to redefine the dissimilarities between these newly formed
clusters and the remaining ones. This process involves drop-
ping one cluster at each step and merging it into another,
necessitating a reassessment of cluster distances to maintain
the integrity of the clustering algorithm. For this, a linkage
function is used that recalculates dissimilarities after each
merge. So, we use the Ward linkage function (Ward 1963)
due to its focus on minimizing the variance within clusters.
Unlike other linkage functions that directly measure distances,
Ward’s approach identifies and merges cluster pairs that result
in the least increase in total within-cluster variance, leading to
more homogeneous clusters.

3.2.1.1. Mean-reversion investment strategy. Mean- rever-
sion investment strategy: As a second validation method,
we assess whether the metrics can be employed to improve
the profitability of an investment strategy. We choose a uni-
variatef mean-reverting investment strategy as this class of
strategies is aimed at capturing upward directional moves—as
the momentum factor—while controlling for sudden breaks in
trends and reversions to the conditional mean. First, we assess
the baseline performance of a naive mean-reversion strategy
based on a mean-reverting stochastic process. We compare
the baseline performance to similar strategies enhanced by
the inclusion of a probability of imminent transitioning to a
period of high systematic risk. To calculate such probability,
we employ a logit model based on the four metrics. Addi-
tionally, we add to the comparison two models wherein the
probability of transition to a period of high systematic risk is
calculated with traditional early-warning risk signals, such as

+ Momentum and mean-reversion investment strategies are inher-
ently univariate, not aligned with portfolio construction purposes.
Evaluating persistent and anti-persistent behaviours should be asset-
specific, as varying persistency patterns across different assets do not
readily lend themselves to creating well-diversified portfolios. While
cointegration strategies are an exception, the rarity of finding signifi-
cantly cointegrated assets limits their practicality for robust portfolio
formation. Therefore, our focus remains on the univariate case.
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the sample volatility and the forecast volatility by means of
an eGARCH model. The performance of the four investment
strategies is assessed in terms of Sharpe ratio (Sharpe 1998),
Sortino ratio (Sortino and Price 1994) and VaR.

We consider a mean-reversion investment strategy on the
following assets: SPY, Nasdaq, Apple, Google, JP Morgan,
Eurostoxx 50, EUR/GBP, German Bund 10 years and Ital-
ian BTP 10 years. We assume that each asset conditionally
follows the following (Euler discretized) Ornstein-Uhlenbeck
process (Uhlenbeck and Ornstein 1930):

Vi = ko(Or — yi—1) + 6:Z, ®)
where J, is the asset return at period ¢, ¥, is the conditional
long-term mean, & is the volatility, Z, ~ N(0, 1), and « is a
scalar parameter governing the speed of the reversion toward
the conditional mean ©%,. A Monte Carlo simulation of y allows
to calculate the confidence interval of the estimate as:

A

Oy
VT

where T is the number of observations in the simulation. To
find the optimal mean-reversion parameter xj, we employ a
grid-search algorithmf to minimize the Mean Squared Error

T

(MSE), MSE = % 3" (3 — y1)?, across the Monte Carlo simu-
=1

lations. Finally, the investment strategy is defined as follows:

CIV)a ~ Y £ Z1_ap )

buy y, and sell y.1  if yi—1 = 31 + Zi a&—’T

sell y, and buy y,v1  if yi—1 < — Zl—a/Z%

To filter the naive baseline strategy with the early-warning sig-
nals, we estimate the probability of imminent transitioning to
a high systematic risk, w;, with the following linear logistic
model:

wZZﬂTX[+u[ (10)

where x, represents the vector of early-warning signals, B
is the vector of coefficients of the logistic regression and
u; ~ N(0,1). To deal with multicollinearity, in each period,

T The grid to estimate ko ranges from 0 to + 1.5 with size steps of
0.05. The reasons for using grid-search rather than least square are
threefold:

e Grid search explores a range of parameter combinations,
which is particularly useful in applications to financial
markets, characterized by complex, non-linear relation-
ships. Unlike least squares, which is tailored for linear
regression with a convex loss function, grid search does
not assume a convex objective function and as such
works better when multiple local minima/maxima are
present (James et al. 2013).

e Financial time series often exhibit heteroskedasticity,
while methods like least squares assume homoscedas-
ticity (constant variance). In contrast, grid search, as
a non-parametric method, is not constrained by these
assumptions.

e Practical financial applications demand strategies that
are both effective and interpretable. Grid search pro-
vides a transparent and easily understandable approach
to parameter selection.

we apply a stepwise variable selection methodology (Hock-
ing 1976). In each application, the early-warning signals are
represented by sample volatility, eEGARCH volatility forecast
and our eigenvalue—eigenvector-based risk framework.

In the filtered strategies, we substitute the mean-reverting
parameter ko with:

k; = kole - I(w; > 0.5)] (11)
where I(w; > 0.5) is an index function that assumes a value
equal to 1 when the probability w, resulting from the logis-
tic model is higher than 0.5, or 0 conversely. The opti-
mal probability-scaling parameter, ¢, is obtained via grid
search.f One must notice that the mean-reversion parameter,
k;, becomes time-dependent in the filtered strategies, while kg
is a scalar in the baseline model.

3.3. Phase 3—out-of-sample validation of the
early-warning risk signals

In this section, we introduce the methodology for the out-
of-sample validation. This is particularly relevant to ensure
that the calibrated models avoid overfitting and exhibit a sim-
ilar behavior once applied in the real world (Bailey et al.
2014). As out-of-sample datasets, following literature, we use
one thousand synthetic datasets generated via a Variational
Autoencoder (VAE) (Kingma and Welling 2013). Succes-
sively, the two in-sample validation methods are re-applied
on the one thousand synthetic datasets for the out-of-sample
validation.

Consider a dataset X = {x?}¥ | composed of N i.i.d. (inde-
pendent and identically distributed) samples coming from a
random variable X. Let us assume that the data are gener-
ated by a random process involving an unobserved continuous
random variable z. The process consists of first generating a
value z from some prior distribution py(z) to then generat-
ing a value x' from the conditional distribution pg (x|z). Let
us assume that the Probability Density Functions (PDFs) of
Po(2) and py(x|z) are differentiable almost everywhere with
respect to z, 0. However, the true parameters 6 and the values
of the latent variable z are unknown. The objective is to find an
efficient neural network approximation for the latent variable
z as this would allow us to mimic the hidden random pro-
cess and generate a synthetic dataset that resembles the real
data. To do so, we employ a VAE. Assume the prior over the
latent variables to be a centered isotropic multivariate Gaus-
sian py(z) = N(z,0,1). Let py(x|z) be a multivariate Gaussian
with 6 estimated via a fully connected neural network with
a single hidden layer. The true posterior is intractable but,
assuming that it is approximated by a Gaussian distribution
with an approximately diagonal covariance, then the varia-
tional approximate posterior is a multivariate Gaussian with a
diagonal covariance structure:

log go (z1x)) log N(z, ', 0'1) (12)
where gy (z|x’) is based on an alternative technique for sam-
pling z such as Monte Carlo and (u’,0") are the mean and

1 The grid to estimate ¢ ranges from 0.05 to 1 with size steps of 0.05.
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Table 1. List of the assets composing the dataset.

Name Ticker code Description

S&P 500 ES

The equity index composed of the largest ~ 500 US stocks by market capitalization
The yield of a US treasury bond with 2 years maturity
The yield of a US treasury bond with 10 years maturity

US treasury rate 2y TU

US treasury rate 10y TY

Gold GC The future contract on gold

EUR / USD EURUSD The Euro/US Dollar exchange rate
WTI CL

West Texas Intermediate, a future contract on oil produced in the USA

standard deviation of the approximate posterior which are out-
putted by the neural network as nonlinear functions of x' and
the variational parameters ¢.

Afterwards, one simply needs to sample from the pos-
terior 7 ~ gg(z|x’) with 7/ = go(x',€') = ' + o'’ where
€l ~ N(,I). It can be proven that the Kullback-Leibler diver-
gence can be computed without estimation and the resulting
estimator for the datapoint x' is given by:

- ‘ ‘ ‘
£0.6.9) 23 Y00 +log(0") — )~ 0"))
j=1

L
1 o
+7 ;108179 (2" (13)

where logpy (') is a Gaussian fully connected neural network
decoding term, j runs over the J dimension of the latent vari-
able z, and [/ refers to the individual samples drawn from the
posterior gg(z|x’), where L represents the number of samples
in the Monte Carlo approximation.

The robustness of the VAE used in our study is coherent
with other studies (Camuto et al. 2021). With this VAE appli-
cation, new data can be used to validate an out-of-sample
testable hypothesis which resembles the real-life character-
istics of the original data distributions. Further, research has
shown how VAE outperforms traditional synthetic sampling
methods under various evaluation metrics (Wan et al. 2017).

The VAE model specification is fine-tuned via grid search
on the whole continuous dataset. We use two hidden layers
with five hidden units activated by means of the leaky Recti-
fied Linear Unit (RELU) function, initialized with the Glorot
kernel initializer, with a Ridge regularizer of 0.02 and a Lasso
regularizer of 0.01. The training is done via Stochastic Gra-
dient Descent with a Nesterov momentum of 0.6. The loss
function targets the representation error via the consistency of
the mean squared error.

4. Data collection

We used a time-series dataset of hourly prices of different
asset classes assets sourced from Bloomberg for the period
of January 2008 to November 2023. The final dataset consists
of 4009 daily observations (40 010 hourly observations). This
period is selected to isolate the low interest rate environment
characterizing financial markets since the 2008 Global Finan-
cial Crisis. The time series refers to open prices of futures
contracts on the selected assets, due to the higher liquidity

of future contracts. Table 1 lists the assets used in this study
and the respective Ticker codes. The assets selected are gen-
erally monitored by investors to gauge the current sentiment
of financial markets. In fact, while the S&P 500 is regarded
as the most important equity index in the world, the US trea-
sury rates are a gauge of economic risk as investors trade-off
equity positions for bonds during periods of financial uncer-
tainty (Smales 2014). Moreover, the difference between the
2 years rate and the 10 years rate is closely monitored by
investors, as periods of inverted yield curve (i.e. when this
difference becomes positive) are empirically associated with
higher volatility markets (Ang et al. 2006). In addition, gold
is generally regarded as a safe asset due to its store of value
property (Baur and McDermott 2010) and the West Texas
Intermediate (WTI) is a gauge of political uncertainty (Bit-
tlingmayer 1998). Finally, the US dollar historically exhibits
positive returns in highly volatile periods (Wen et al. 2018).

5. Results

This section reports the in-sample and out-of-sample valida-
tion results.

5.1. Clustering results

As the clustering validation is aimed at assessing whether the
four metrics can be used as an early-warning risk signal for
periods of high systematic risk, in this section we only use
a sub-sample of the entire dataset centered around 2008 and
2020, the years where the two most recent financial crisis
(2008 Global Financial Crisis and 2020 COVID-19 financial
setback) were recorded. For both periods, the start date is set
at eight weeks before the day that the S&P 500 recorded the
minimum value during the downturn period, while the end
date is 52 weeks after the start date. As a result, the two
datasets span the 52 consecutive weeks from the first week of
August 2008 to July 2009 and the third week of January 2020
to January 2021, respectively. The choice of the week num-
bers to define a week as highly volatile comes from direct
observation of the Volatility Index (VIX), a tradable index
whose value is proportional to the overall implied volatility
in the market. Appendix B reports a plot of the VIX.

The validation results from the clustering are graphically
presented by the dendrograms in figures 3 and 4. In both
cases, the weeks around the market plunge—weeks 7-11
by construction of both samples—are grouped together in a
neatly separated cluster. In January 2020, weeks of elevated
volatility are recorded even before COVID-19 was declared
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Figure 4. The dendrogram in the 2020 COVID-19-related dataset.

a pandemic, amid concerns over the overvaluation of the
equity markets, the China-USA trade war, and the first news
of the health emergency spreading outside of China. The
high volatility in November is not separately classified by the
clustering algorithm as the transition to high systematic risk
already occurred in the previous month.

Moreover, as a statistical measure to validate the clusters,
we use the Dunn index (Dunn 1973, 1974) calculated as the
ratio between the minimum between-clusters distance and the
maximal within-cluster distance. A higher value implies better
clustering. We normalize the Dunn Index between 0 and 1
for better interpretation. Our procedures obtain an in-sample
Dunn index of 0.93 and 0.85 for the Global Financial Crisis
and the COVID-19 sub-samples, respectively. For the out-of-
sample setup, the average out-of-sample Dunn index across
the one thousand samples is 0.89. This allows us to conclude
that the metrics can capture a different hierarchy in response
to structural changes in the covariance matrices.

Finally, figure 5 illustrates the in-sample behavior of the
four metrics during periods of high systematic risk against
calmer periods in the two subsets. The red shaded area in the
densities marks the difference in distribution between calm

weeks and weeks of high systematic risk, where we defined
the high systematic risk weeks as the four weeks before and
after the S&P 500 recording its lowest value in both sub-
samples. We conduct both a t-test for mean comparison and
a Kolmogorov-Smirnov test, both of which reject the null
hypothesis of identical distributions between the two periods
at a 95% confidence level.

Starting from the variance explained by the largest eigen-
value and the difference of variance explained by the largest
five eigenvalues in excess of the first, the density functions
exhibit a jump in mean during the volatile weeks, allowing
us to conclude that systematic risk becomes more predom-
inant during highly volatile weeks. In terms of eigenvector
centrality mean and standard deviation, their distributions also
jump higher in mean and kurtosis during volatile weeks. Once
again, this is due to the systematic source of risk explaining
a larger portion of asset movements. In fact, we show how
the eigenvector centrality is the eigenvector of the adjacency
matrix, which, in turn, is built out of covariance matrices. Fig-
ures Al in Appendix A reports a direct comparison of the
minimum spanning tree generated by the companies included
in the S&P 500 in August 2008 with the one in March 2020
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Figure 5. The distributions of the four early-warning metrics in the two datasets.

and the one in a calm trading week (first week of August
2021). The size of the vertices represents each stock’s eigen-
vector centrality, wherein each node represents a single stock.
As is visible, the MSTs at the onset of the two volatile peri-
ods present a similar denser structure where the connections

between the assets are stronger. The interconnectivity among
securities, together with the eigenvalues of the covariance
matrix on which the adjacency matrix is built, bounced higher
because of increased market risk. During the calm period,
instead, the structure of the tree appears stretched on four
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Table 2. The average Sharpe ratios of the mean-reversion strategies across the one thousand synthetic datasets on the different

assets.
Eigenvalue-
Baseline mean Eigenvector based

Buy & hold reversion Sample volatility eGARCH signals
SPY 0.199 0.151 0.283 0.105 1.067
Nasdaq 0.154 0.174 0.149 0.219 1.138
Apple 0.291 0.430 0.351 0.215 0.884
Google 0.225 0.239 0.237 0.307 0.921
JP Morgan 0.309 0.205 0.253 0.307 0.852
Eurostoxx 50 0.212 0.212 0.360 0.284 1.141
EUR/GBP 0.716 0.109 0.517 0.541 0.982
German 10y 0.111 0.704 0.269 0.671 0.863
Italy 10y 0.190 0.135 0.215 0.259 1.173

Table 3. The average Sortino ratio of the mean-reversion strategies across the one thousand synthetic datasets on the different

assets.
Eigenvalue-
Baseline mean Eigenvector based
Buy & hold reversion Sample volatility eGARCH signals
SPY 0.920 0.790 0.840 0.940 2.520
Nasdaq 1.300 0.720 0.600 1.270 2.340
Apple 0.790 0.900 0.980 0.620 2.330
Google 0.700 0.640 0.840 0.550 2.080
JP Morgan 1.690 1.320 0.730 1.090 2.330
Eurostoxx 50 0.780 0.700 0.770 0.600 2.900
EUR/GBP 0.800 0.620 0.550 0.840 2.530
German 10y 1.370 1.620 1.280 1.070 2.680
Italy 10y 0.510 1.110 1.280 0.900 1.490

major sections, with the core of the tree placed at the top.
As such, we conclude that financial markets exhibit higher
concentration during markets’ crises as fewer concentrated
assets in the center of the graph are capable to explain a larger
portion of the co-movements, resulting in higher eigenvector
centralities.

5.2. Investment strategy results

In this section, we compare the performance of the baseline
mean-reversion investment strategy with the filtered versions,
namely, the one filtered with sample volatility, the one filtered
with the eGARCH volatility forecast, and the one where the
four risk-signal metrics are employed. Moreover, we add to
the comparison a buy and hold strategy on each asset as a
benchmark.

For the parameters in equation (8), we use the sample stan-
dard deviation of the returns on a rolling window of the last
20 weeks as o, estimate, while 9, is estimated via the moving
average of the last 50 returns. Optimal ¢ is estimated at 1.2,
1.15, and 1.2, respectively, for the three above-mentioned fil-
tered strategies, while optimal k is estimated at 0.9, 0.75, and
0.8, respectively.

Tables 2—4 report the average Sharpe ratio, Sortino ratio
and VaR at 95% confidence level for all strategies on all the
assets in the out-of-sample setting of the one thousand syn-
thetic datasets generated by the VAE model. The evaluation
metrics show that superior performance and lower down-
side risk is linked to the usage of the eigenvalue-eigenvector
based metrics for filtering the momentum investment strategy.

The other two competing filtered strategies, instead, do not
manage to consistently outperform the baseline model across
the out-of-sample datasets. A key aspect of this success
lies in the strategy’s reduced volatility, contributing signifi-
cantly to an improved Sharpe ratio. By adapting to structural
shifts in covariance matrices and minimum spanning trees,
the eigenvalue-eigenvector approach demonstrates agility in
responding to market changes. As ¢ > 1, this filtered strategy
can increase the speed of reversion to the conditional meant
when a transition to a high systematic risk is detected. This
is consistent with financial markets as prices are empirically
observed to revert in periods of high volatility.

6. Discussion

In this section, we summarize the main findings of the study
and discuss the implications of our studies for research and
practice. Firstly, we find the set of eigenvalues and eigenvec-
tors of the covariance matrix of asset returns can be used to
measure expected changes in systematic risks with higher pre-
cision, especially during financial setbacks. We prove that the
expectation of investors about change in systematic risk and
their appetite for risky assets are embedded into the covari-
ance matrix of asset returns. Thus, the first two matrices we

TIn fact, according to equation (11), when ¢ > 1 and w; > 0.5,
then «; > ko, resulting in a higher speed of reversion towards the
conditional mean.
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Table 4. The average Value at Risk at 95% confidence level of the mean-reversion strategies across the one thousand
synthetic datasets on the different assets.

Eigenvalue-
Baseline mean Eigenvector based
Buy & hold reversion Sample volatility eGARCH signals
SPY —10.669 —12.106 — 13.705 —12.886 —8.576
Nasdaq —14.948 —14.641 —14.563 —13.183 —8.771
Apple —5.327 —6.002 —8.969 —14.576 —8.240
Google —12.427 —13.428 —14.926 —10.419 —9.085
JP Morgan —10.475 —9.722 —14.357 —6.575 —8.432
Eurostoxx 50 —6.459 —11.230 —7.124 —12.793 —17.220
EUR/GBP —12.999 —6.396 —11.602 —10.711 —5.242
German 10y —14.944 —7.465 —9.467 —9.372 —4.440
Italy 10y —9.802 — 12518 —10.970 —8.594 —5.617

built and validated in this paper can be used to construct early-
warning risk signals and can be applied to an efficient risk
management tool to develop successful investment strategies
during financial setbacks.

Secondly, so far, prior research shows that the covari-
ances of asset returns jump higher during periods of transition
towards high systematic risk (Haugen et al. 1991, Bollerslev
et al. 2018). However, these studies are unable to capture rel-
evant systematic risk information when the financial market
is highly volatile during the financial crisis. We demonstrate
that, in volatile situations in financial markets, graph the-
ory can be highly efficient in explaining the theoretical basis
for the empirical analysis of the hierarchical structure of
financial markets. Based on the graph theory, the risk sig-
nals developed in this paper can capture relevant information
required to develop an early-risk signals framework. Graph
theory—through its minimum spanning tree tool—offers use-
ful representations of financial markets. Centrality measures,
such as the eigenvector centrality, can be used to summarize
the degree of cross-connectivity across securities in a financial
market and hence could produce early-risk warning signals.
Moreover, hierarchical representation of financial markets—
obtained by application of graph theory—can exemplify the
propagation of systematic risk in financial markets, which can
serve to set up risk management strategies by practitioners.
In practical terms, for a portfolio manager, an early portfo-
lio rebalancing against changes in systematic risk is likely to
shield the portfolio from market downturns. From a risk man-
agement perspective, instead, risk measures, such as value at
risk, can discount a higher probability of tail-risk events when
structural changes in covariance matrices are detected. Thus,
based on graph theory and covariance matrices, we explain
the theoretical implication of our early-warning risk signals
framework.

Finally, as systematic risk explains a larger portion of
asset movements during periods of enhanced volatility, empir-
ical correlations between assets tend to jump higher. The
covariances jump higher, together with their eigenvalues and
eigenvectors. From a graph theory standpoint, instead, dur-
ing periods of high systematic risks, the securities concentrate
in the core of the tree. Hence, the graph becomes denser as
the securities turn out to be more interconnected with each
other (Ciciretti and Bucci 2023). This structural change of the
tree is captured by the eigenvector of the adjacency matrix.

For this reason, the mean and standard deviation change
with the expectations of systematic risk and can be used as
early-warning risk signals.

The early-warning risk signals framework has broad prac-
tical implications. The above findings are novel as the
framework establishes a link between investors’ expectations,
expected changes in systematic risk, and changes in eigen-
vectors and eigenvalues. Such a model can lead to a better
understanding of the systematic risk during financial setbacks
among practitioners as well as can provide new evidence for
academic scholars about which factors to consider in system-
atic risk determination. From a practical standpoint, investors
and risk managers can benefit by re-balancing their portfo-
lios in a timely manner and accurately measuring market risk.
Moreover, regulators may benefit by taking timely decisions
about how much liquidity to inject into the market during the
uncertain period to stabilize the economy as well as to set up
fiscal recovery plans.

The reason why investment banks, traders, hedge funds,
and others care about systematic risk is simply explained by
the Capital Asset Pricing Model (CAPM). CAPM shows how
returns can be linearly decomposed into two components:
one dependent on systematic risk and one on idiosyncratic
risk. Moreover, while the latter can be diversified away, the
former exposure cannot be curtailed even with an asymptot-
ically large number of securities in the portfolio. As such,
the systematic risk component affects the return genera-
tion process for such practitioners and cannot be diversified
away.

7. Conclusion

The overarching aim of this paper is to develop an early-
warning risk signals framework to explain the investors’
expectations about changes in systematic risk in the financial
markets. To address this aim, we draw on graph theory and
covariance matrices. Our framework, which is based on four
eigenvalues and eigenvector metrics, shows how the intercon-
nection between securities in financial markets can serve as
proxies for evaluating systematic risk. In addition, our frame-
work allows the embedding of investors’ market sentiment
with a probability of transitioning towards a high systematic
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risk period. Thus, investors and risk managers could incorpo-
rate such metrics to build resilient, regime-switching portfo-
lios, which enables a more precise evaluation of risk. From
practitioners’ standpoint, during financial setbacks, portfolio
managers are concerned with moves in systematic risk as
the returns of the risky assets in the portfolios are affected
by the market systematic component. Investment portfolios
often lack swift reactiveness to protect against periods of
high systematic risk and have the potential of benefiting from
early-warning risk signals to reposition the portfolio in a
timely manner. In a similar way, risk managers are generally
concerned with tail-risk events, which may generate system-
atic or idiosyncratic risks as explained in the CAPM theory.
Based on our findings, risk managers may greatly modify risk
measures by including early-warning risk signals based on
eigenvalue-eigenvector matrices. The study is not free from
limitations. First, we focused on the global financial crisis
and the crisis generated by COVID-19. It is worth investi-
gating whether our framework will be applicable in times
of other types of crises, e.g. geopolitical crises. Second, our
study mainly focuses on systematic risk. Thus, it might be
interesting for future studies to validate our framework to
detect shifts to systematic risk. Moreover, future studies can
focus on multivariate investment applications—such as port-
folio construction—employing our early-warning systematic
risk framework.
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Figure A1. Minimum Spanning Trees representation of S&P500 in three periods: the first two are in a high volatility environment, i.e. during
October 2008 (left) and during March 2020 (center). The one on the right is the MST during a calm period.
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Appendix B. Plot of the VIX during 2008 and its 10 days moving average

VIX Adjusted Closing Price 2008-01-02 / 2008-12-30

Figure B1. The time-series plot of the VIX index together with its 10 days moving average.
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