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Abstract
Computer-assisted sperm analysis is an open research problem, and a main challenge is how to test its performance. Deep
learning techniques have boosted computer vision tasks to human-level accuracy, when sufficiently large labeled datasets were
provided. However, when it comes to sperm (either human or not) there is lack of sufficient large datasets for training and
testing deep learning systems. In this paper we propose a solution that provides access to countless fully annotated and realistic
synthetic video sequences of sperm. Specifically, we introduce a parametric model of a spermatozoon, which is animated
along a video sequence using a denoising diffusion probabilistic model. The resulting videos are then rendered with a photo-
realistic appearance via a style transfer procedure using a CycleGAN. We validate our synthetic dataset by training a deep
object detection model on it, achieving state-of-the-art performance once validated on real data. Additionally, an evaluation
of the generated sequences revealed that the behavior of the synthetically generated spermatozoa closely resembles that of
real ones.
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1 Introduction

Semen evaluation is a fundamental diagnostic tool for assess-
ingmale fertility. In humans, it is utilized in a range of clinical
contexts, including assisted reproduction, post-vasectomy
monitoring, and the detection of sexually transmitted infec-
tions (STIs) [1–3]. In the livestock industry, it is widely used
as tool for selection and breeding purposes [4–6].

Semen evaluation involves the assessment of various
parameters by macroscopic and microscopic analysis of the
samples.Macroscopic analysismeasures characteristics such
as semen composition, volume, liquefaction, viscosity, and
pH. Microscopic evaluation involves the study of sperm
clumping, motility, vitality, and cell count [7].
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Automated systems to perform such microscopic tests
have been developed and commercialized due to their high
demand for three reasons. Firstly, qualified experts are
needed, but they are scarce. Secondly, there are several
dozens of spermatozoa moving in the semen sample, mak-
ing it a difficult and time-consuming task. This entails a low
upper limit to the expert’s bandwidth.And thirdly, the subjec-
tivity and lack of a traceable standard have been identified
as causes of the high level of uncertainty associated with
manual sperm motility and morphology assessments [3, 8].
However, laboratories are reluctant to accept the results until
they have been validated against a reliable standard. In other
words, the automated report must be compared to the human
report, which is prone to a high level of uncertainty unless a
great deal of expert effort and time is invested [9].

The arrival of deep learning has enabled computer vision
systems to match or surpass human performance in multi-
ple object detection and tracking, classification, recognition,
segmentation and image generation in many fields [10–
16]. Computer vision techniques have been applied in the
specific context of microscopic semen analysis to mor-
phological classification of sperm heads [17, 18], and to
motility analysis. This process entails the detection and
tracking of spermatozoa heads within highly concentrated
samples [12, 19, 20]. Recent studies indicate that additional
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parameters, such as acrosome morphology (a cap-like struc-
ture on the sperm head) [21, 22] and beating patterns, may
be important indicators of sperm health [23–28]. However,
the aforementioned analyses necessitate images with a low
concentration of spermatozoa. Furthermore, in the case of
flagellum analysis, current state-of-the-art techniques also
require the selection of the spermatozoon from the seminal
fluid or its isolation in a video [23, 24, 29].

This paper presents amethodology that employs computer
vision and deep learning techniques to provide unlimited,
synthetic, video-realistic, fully labeled and on-demand video
datasets that can be used for training, improving, and bench-
marking computer-assisted sperm analysis (CASA) systems.

We propose a spline-based parametric model of a sperma-
tozoon and use a Denoising Diffusion Probabilistic Model
(DDPM) to animate it. To achieve this, we extract clean video
sequences of isolated spermatozoa and model them accord-
ing to the spline-based model. We then use the DDPM to
learn the behavior of various classes of spermatozoa, which
subsequently serves to generate new synthetic trajectories.
Finally, we apply a Cyclic Generative Adversarial Network
(GAN) to perform domain transfer on the animated trajec-
tories, thereby obtaining realistic synthetic video sequences.
In addition to this method, we provide a new fully annotated
synthetic dataset formotility analysis. This dataset comprises
tracking and detection labels, spline parametersmodeling the
flagellum shape, and motility category of each sperm cell.

2 Related works

In this section, we provide an overview of relevant topics to
our case study, including recent proposals forCASAsystems,
available sperm datasets, techniques for generating synthetic
sperm datasets, and applications of diffusion models in tra-
jectory generation.

2.1 Computer-assisted sperm analysis

The computer-assisted sperm analysis (CASA) has been a
research topic for a long time. According to [11], sperm anal-
ysis tools up to 2017 still delivered poor quality trajectories
for high sperm concentration samples. Thus, during the last
decade, new CASA proposals leveraged the emergence of
deep learning for classification, detection and segmentation.
Here, we mention some of the most recent.

A CNNwas used for morphology classification of sperms
in [30]. Similarly, a healthy sperm classification given only
sperm head images was presented in [18]. In the same line,
[17] carried out morphology classification by training a
CNN in three openly available sperm morphology datasets.
Segmentation of the sperm heads on the SCIAN-SpermGS
dataset [31] was addressed in [15]. A sperm tracking method

suitable for samples recorded by a smartphone as a portable
and low-cost platform was proposed in [32]. MotilitiAI con-
sisted of a sperm analysis pipeline, including a tracker aimed
at obtaining statistics of sperm movements, and a classi-
fication model to predict the fertility of the sample [33].
DeepSpermwas a real time bull sperm detection trained with
a dataset manually annotated by two experts [19]. Finally, in
[12] YOLO was utilized to detect spermatozoa.

2.2 Sperm datasets

Although there are many open datasets of sperm video
sequences, there is no homogeneity in terms of dataset size,
capture conditions, microscope magnifications, colors and
tones, annotations, and even classes in the ground truth. For
example, the HuSHeM dataset [34] consists of 216 sperm
images with sperm heads labeled as normal, tapered, pyri-
form and amorphous; whereas SMIDS dataset [30] collects
up to 3000 images; however, these are only labeled as normal
and abnormal. Below, we cite recent datasets to expose the
diversity and lack of standardization.

• VISEM dataset [35] contains videos from 85 human
patients of around 2 minutes, each recorded with a 400×
magnification. These videos are annotated with sperm
motility, sperm concentration, total sperm count, ejac-
ulated volume, sperm morphology and sperm vitality
among data related to fatty acids, fatty serum, sex hor-
mones and anonymous participant related info as age.
Thus, they aremeant for classificationor regression rather
than object detection or tracking. To overcome this issue,
VISEM-Tracking was released [36] with 20 videos of 30
seconds each.

• SVIA sperm detection and tracking dataset [37] has 101
human sperm video sequences obtained with WLJY-
9000 CASA with ×20 magnification and ×20 electronic
glasses. It was released split in three subsets: 1) for object
detection tasks, with 3590 images and 125K annotated
objects in three classes (sperm, debris or leukocyte), 2) for
sperm head segmentation and tracking, with 451 frames
and 26K annotations, and 3) head morphology classifi-
cation with 125K images

• SeSVID dataset [38] contains 12 videos of human semen
recorded under 100× magnification lens. The purpose
of this dataset is solving object detection tasks provid-
ing 92,329 labeled objects (68,244 are sperm) in 1175
images. Unlike other datasets in which the ground truth
bounding boxes frame only the sperm’s heads, here they
cover the entire head and tail.

• SCIAN-SpermSegGS dataset [15] is specifically meant
for segmenting the different parts inside the head (head,
acrosome, cell nuclei and midpiece).
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Recent works highlights the importance of the movement
of the flagellum and suggests that it should be taken into
account in fertility and motility assessments [23–28].

2.3 Synthetic datasets

Two different approaches to synthetic data generation in the
domain of sperm analysis have been proposed in the litera-
ture. The first one involves modeling the sperm using expert
knowledge in the field while the second is based on the use
of generative AI techniques.

Modeling the sperm morphology and motility aims to
overcome such a heterogeneity and obtain fully annotated
datasets at the same time.

In the context of motility analysis, two approaches [39,
40] have been applied to generating video sequences of
schematic spermatozoa, modeling the spatial movement of
the head and flagellum. These approaches analyzed differ-
ent kinds of spermatozoon movements [7] , and developed
a mathematical model of those. However, these models only
partially capture the nonlinear complexity of sperm move-
ment,which can be influenced by variousmovement regimes,
flagellum elasticity, and medium viscosity [27]. Regarding
the realism of the generated videos, in the best cases, prede-
fined hand-made rules over schematic frames are employed,
such as adding Gaussian blur and salt-and-pepper noise
[39]. Additionally, other authors incorporated a background
extracted from real videos and included floating particles,
such as white circles and shadows, to enhance realism [41].

The second line of research focuses on data driven tech-
niques for generating synthetic images. Specifically, these
works rely in Generative Adversarial Networks (GAN) [42]
to augment a given dataset. In this context, GANs have been
trained in [43–45] to augment the number of images from
SMIDS, HuSHeM, SCIAN-MorphoSpermGS, MHSMA as
well as one private dataset [44]. In [13] a GAN with capsule
network architecture was used to augment and balance the
HuSheM dataset. However, all these GAN-based approaches
are focused on morphological analysis of the head only , but
none of them provide segmentation of the whole sperm (head
+ flagellum).

2.4 Denoising diffusion probabilistic models

Denoising Diffusion Probabilistic Models [46], Diffusion
Models for short, have shown to be more robust than earlier
generative architectures, includingVariational Autoencoders
(VAE) [47], GAN [42] and Deep Autoregressive Models
[48].

Their applications span a diverse range of tasks, such as
conditional image generation [49], image to image trans-
lation [50], text to image generation [16], point clouds

completion [51], natural language processing [52], and time
series forecasting [53] among others [54].

The use of diffusion models for trajectory generation
(related to the scope of this paper) was proposed in [55].
In this approach, trajectory generation is formulated as an
inpainting process where the diffusion model transforms a
random trajectory into a feasible and consistent one between
twoknown locations. Similar approaches have been later suc-
cessfully applied to modeling vehicle trajectories [56] and
animating humanoid avatars [57–59] but none of them have
been use on spermatozoa data.

3 Sperm video generation

Sperm video generation refers to the process of delivering
a fully annotated sequence of frames that mimics both the
dynamics of the sperm flagellum over time and the look and
feel of the original video in terms of lighting, noise, artifacts,
etc.

To this end, we firstly identify those usable spermato-
zoa from a video sequence and then carry out preprocessing
on each one independently that results in a vectorized rep-
resentation. The information extracted is then used to fit a
parametric representation for each spermatozoon in each
frame. Next, a model to generate new representations is
learned from those collected from the real videos with a
Denoising-Diffusion Probabilistic model. Finally, the repre-
sentations generated are embedded into video frames and a
style transfer neural network renders the resulting schematic
sperm in pitch black background into a realistic video
sequence. The details of each step are given in the following
sections.

3.1 Spermatozoon windowing

Bywindowing,we refer to the process of extracting every sin-
gle spermatozoon from a video sequence that complies with
certain requirements, and processing it to deliver a cropped,
segmented and rotated version of it and its neighborhood in
a sequence of windows.

To begin with, a YOLO v5 [10] detection network is
trained on a previously hand-annotated dataset to locate the
head of each sperm cell in every frame. Besides, in order
to preserve the identities of the detections, all of them are
tracked throughout the video sequence using Kalman filter-
ing. Thus, the result is a collection of N detections that we
denote as {δ(i)}, for i = 1 . . . N ; and such that

δ(i) =
[
(x (i)

1 , y(i)
1 ), (x (i)

2 , y(i)
2 ), . . . , (x (i)

T , y(i)
T ),remove(i)

]
,
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where (x (i)
t , y(i)

t ), with t = 1, . . . , T , is the center of the
bounding box with respect to the t-th frame and remove(i)

is a boolean flag for the i-th detection initialized to False. In
other words, we use the term “i-th spermatozoon” to refer to
the collection δ(i) that univocally represents the position of
the spermatozoon with identity i along the video sequence
of T frames, along with the boolean flag.

In video of sperm, scenes are cluttered with frequent
crossovers, clustering and splitting. For the method proposed
in this paper, we need spermatozoa that do not encounter
others during the whole sequence in its neighborhood. Let
Bt

(
(x (i)

t , y(i)
t ); r), a ball of radius r centered in (x (i)

t , y(i)
t ), be

the neighborhood of the i-th spermatozoon in the t-th frame
of the video. If there exists a j-th spermatozoon at the same
frame t such that (x ( j)

t , y( j)
t ) ∈ Bt , then remove(i) = True.

Hence, after checking all the possible crossings (δ(i), δ( j)),
we filter out those with the flag remove = True. Hence, the
remaining are usable, as referred to above.

Let {ζ (i)} =
[
(x (i)

1 , y(i)
1 ), (x (i)

2 , y(i)
2 ), . . . , (x (i)

T , y(i)
T )

]
,

for i = 1, . . . , n, be the usable spermatozoa detections rein-
dexed from 1 up to n ≤ N and without the flag remove
because it is no longer needed. Such a reindexing does not
affect to the terminology introduced, so in the following “i-th
spermatozoon” is ζ (i).

Thus, for each {ζ (i)} and each t , the following steps are
performed:

1. Crop a squared window centered at (x (i)
t , y(i)

t ) of size
S × S.

Hence, the center of the window is locally (i.e. within the
window) referenced as (0, 0) but globally (i.e. within the
video frame) as (x (i)

t , y(i)
t ).

2. Segment the spermatozoon in the window.
To this end, adaptive threshold, dilate and erode opera-
tions are used.

3. Fit an ellipse to the full spermatozoa using the Fitzgibbon
algorithm [60].

4. Rotate the window so that the major axis of the ellipse
becomes horizontal and the spermatozoon is heading to
the right. Let α be the angle of that rotation, then we
define a unit vector �α = (αx , αy) such that

αx = 1/
√
1 + tan2 α and αy = tan α/

√
1 + tan2 α.

(1)

We adopt this vector to facilitate further learning and
inference processes.

These steps are depicted in Fig. 1(a)-(c), together with other
information described in the next subsection. Notice that the
center of the window is the center of the detection, but not
necessarily the center of the head.

3.2 Spermatozoon parametric representation

We propose a parametric representation of the i-th sperma-
tozoon in frame t in terms of its head, flagellum, full body

Fig. 1 Top row: Process to obtain the parametric representation of a
spermatozoon; (a) NeighborhoodB of a spermatozoon, (b) Rotation, (c)
Spline fitting, (d) velocity vector. Bottom row: Trajectory generation

of a schematic spermatozoon; (e) insert the window into the frame and
rotate it back, (f) add the velocity vector to the position, (g) position
and rotation in the next frame
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and velocity. For the sake of clarity, we omit superscript (i)
and subscript t in all the parameters, unless it is needed.

• Head: For the sake of simplicity, the head is just a circle
of the same size in all the windows, locally centered in
(0, 0) and globally in (x, y).

• Flagellum: We propose to model the flagellum as a 4-
order Bezier Spline, given by:

B(λ;P(4)) =
4∑

k=0

(
4

k

)
(1 − λ)4−kλkPk, (2)

where P(N ) = {Pk}, for k = 1, . . . , N and Pk ∈ R
2, are

the control points; and λ generates the curve as it goes
from 0 to 1. P0 and P4 are set to the head and end of
the tail respectively, while P1,P2 and P3 are fitted by
means of the Nelder-Mead algorithm. Control points are
depicted in Fig. 1(c).

• Body: We use the unit vector �α = [αx , αy] as obtained
in (1).

• Velocity: We use a velocity vector �v = [vx , vy], where
vx = (xt+1 − xt ) and vy = (yt+1 − yt ) to indicate the
direction and magnitude of the i-th spermatozoon global
translation in two successive frames. Vector �v is shown
in Fig. 1(d).

All the representation parameters are summarized in Table 1,
indicating whether they are obtained locally (with respect to
the window) or globally (with respect to the frame).

Finally, we introduce the representation vector at frame t
of the i-th spermatozoon

ρt = [
P0,P1,P2,P3,P4, vx , vy, αx , αy

]
,

so the ordered array of ρt from t = 1 to t = T is the fully
parametric representation of the trajectory followed by i-th
spermatozoon along a video sequence of T frames

τ = [ρ1, ρ2, . . . , ρT ] .

Table 1 Summary of parameters of the spermatozoon representation

i-th spermatozoon at
frame t-th

Parameter Meaning (from global
frame or local window)

Head x, y Detection centre (global)

Flagellum P0 . . .P4 Control points of a 4-order
Bezier spline (local)

Full body αx , αy Orientation of the sperma-
tozoon (global)

Velocity vx , vy translation of the head
from frame t to t + 1
(global)

Notice that trajectory vector τ renders both the movement
and the travel of a schematic spermatozoon within the frame.

3.3 Sperm trajectory synthesis with diffusion
models

Denoising-Diffusion Probabilistic Models (DDPM) [46, 55]
have gained popularity due to the excellent performance in
text-to-image generation. In a nutshell, given a sample (not
necessarily an image) s0, it is successively corrupted by
adding a small amount of Gaussian noise during H steps.
In any two consecutive samples sk and sk+1, it is possible
to train a neural network for denoising sk+1 in a supervised
way, using sk as ground truth. During the training process the
indices of the samples are also input. In inference, after all
the denoising steps, a clean sample is obtained from a fully
noisy one. Additionally, in text-to-image tasks, the resulting
image is conditioned by the caption.

In the context of this paper, the sample is the trajectory
vector τ of the i-th spermatozoon along a video sequence of T
frames. The goal is to produce a new trajectory τ̂ conditioned
on the representation vector at the first frame of the sequence
ρ1 from a fully noisy vector of the same size and after H
denoising steps by the neural network learned.

The process is depicted in Fig. 2; in which τ̂H consists
of the true ρ1 followed by a random array that completes
the trajectory vector. After one step h this array is modified
(denoised) towards more meaningful values. After H steps,
the array has been transformed into T − 1 meaningful rep-
resentation vectors, resulting into a generated trajectory τ̂ .
Then with τ̂ and an initial global position (x, y), a schematic
spermatozoon is inserted in each frameof the video sequence.
Finally, this process is repeated to produce N synthetic and
fully labeled but schematic spermatozoa moving around.

3.4 Synthesis of real-looking videos

The resulting video sequence lacks of background noise,
motionblur, lens and chromatic aberrations, artifacts, shadows,

Fig. 2 Diffusion denoising process to generate a trajectory vector τ̂

in H steps. The first representation vector (with background filled) is
always imposed to be the true ρ1
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and other particles. Besides, real spermatozoa do not have a
circular head and the mid-piece is missing in the synthetic
one.

To deliver a realistic video it is necessary to incorporate
all these features. To this end, we propose to do style transfer
with a CycleGAN [61]. The CycleGAN learns to transform
a schematic frame (domain A) to the style of a real frame
(domain B) and vice versa. Completing a cycle from domain
A to B and back ensures structural consistency between the
generated images.Besides, both domains are indeedunpaired
datasets, so the training process requires no human supervi-
sion at all.

4 Experimental results

In this section we conduct exhaustive experiments to assess
the morphology, motility and utility of the method proposed
in quantitative terms. In addition, we present a qualitative
analysis to validate the results from an expert perspective.

4.1 Dataset and experimental approach

We use a private porcine semen dataset provided by a com-
mercial company that consists of 28 one-second videos
recorded at 25 frames per second with resolution of 1280 ×
1024 pixels [62]. The videos were taken with a Motic Pan-
thera C2 microscope, with a magnification ratio of 10×, and
a Blackfly USB3 camera with a 12.3MP Sony CMOS sensor.

After filtering out of all the spermatozoa initially detected,
we end up with 72 usable sequences. Notice that the goal of
this paper is to create synthetic video sequences using a suit-
able for the problem data augmentation method, instead of
simplistic modifications such as sudden rotations or trans-
lations. We use a sliding interval of 16 frames, so a single
sequence of 25 frames is transformed into 9 sequences of 16
frames (from frame 1 to 16, from 2 to 17, and so until from
9 to 24). The choice of 16 is a trade-off between the remain-
ing sequence length and the number of times the dataset is
increased. Frame 25 is necessary to have the velocity vector
of the previous frame, but since there is not a following one,
there is no sequence from frame 10 to 25. Hence, we end up
with a total of 648 usable sequences with T = 16.

From each sequence we obtain its trajectory vector as
defined in the previous section. Since the porcine sperma-
tozoon are no longer than 70 pixels, the window size chosen
is S = 140.

We categorize each one according to their trajectory, fol-
lowing the World Health Organization specifications [7]
as “progressive” (46%) , “slowly progressive” (22%) and

“inmotile” (32%) sperm. We keep a stratified 10% of the
sequences for testing and use the rest for training.

Our DDPM utilizes a U-Net [14] architecture with 3.96M
of parameters. It incorporates a sinusoidal positional encoder
[63] to determine the current step in the denoising process.
The DDPM is applied to an input noisy trajectory of length
16, and uses 20 denoising steps. To further enhance training
stability, we employ a model with an Exponential Moving
Average [64]. The CycleGAN used for style transfer utilizes
two U-Net generators, each comprising 11.4M parameters.
The two discriminators models consist of convolutional net-
works, each with 2.8M parameters. Note that, once trained,
only one U-Net generator is required for inference.

4.2 Baselinemodels

The following experiments consider three sets of synthetic
sperm. A set derived from our method, and two sets derived
from baseline models described below. We then compare
their metrics with the real sperm set.

Gaussianmodel Asafirst baseline,we assume that the trajec-
tory vectors are normally distributed; that is τ ∼ N (μ,�) ,

where N stands for multivariate normal with mean μ and
covariancematrix� computed on the training set. Thus, once
theN is fitted, new trajectory vectors τ̂ are just sampled from
it.

LSTM model As a second baseline, we consider an LSTM
model [65] in order to capture the time dependence within
the sequence of frames. Specifically, a trajectory gener-
ated with this model would be τ̂ = [ρ̂1 = ρ1, ρ̂2 =
ρ2, ρ̂3 = ρ3, ρ̂4 = ρ4, ρ̂5, . . . , ρ̂T ], such that we com-
pute ρ̂t = LSTM(ρ̂t−1, ρ̂t−2, ρ̂t−3, ρ̂t−4), for t = 5, . . . , T .
In other words, to generate a trajectory requires a tuple of its
first four true representation vectors.

4.3 Evaluation of synthetic spermmorphology

To assess the synthetic sperm morphology, we measure the
similarity of the flagellum to real spermatozoa. To this end,
we compare the respective distributions for each generated
spline control point, Pr(P̂0) to Pr(P̂4), using the Kullback-
Leibler (KL) divergence and the Earth mover’s distance
(EMD). To compute the KL divergence we assume that all
the distributions are univariate Gaussians. This is a strong
assumption so we also compute the EMD approximating the
continuous underlying distributions, Pr(P̂j) and Pr(Pj), by
discrete PMFs. Since the shape of the flagellum is related to
its motility, we consider the three categories namely progres-
sive, slowly progressive and inmotile sperm. Additionally, to
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estimate the distributions Pr(P̂0) to Pr(P̂4) for each type of
sperm, we generate 1000 full trajectoriesper type.

The quantitative results are shown in Fig. 3, in which
our method is always depicted as the dotted blue line with
circle marks. In both top and bottom rows the lower, the
better. Hence, any mark above the dotted line is worst than
the method proposed here. Specifically, the top row shows
that our method attains a KL divergence similar to the one
between test and train set distributions (green diamonds).
These results are confirmed in the bottom row, although the
LSTM model fits better for slow sperm. However, LSTM
requires four representation vectors in a row to generate the
video sequence of slow spermatozoa while our method only
requires one.

4.4 Evaluation of synthetic spermmotility

The evaluation of the sperm morphology takes into account
the distribution of control points without considering the
translation along the sequence. To assess the motility is
equivalent to measuring the similarity of the trajectories gen-
erated with respect to those in the sequences of the test
set. However, a generated sequence and a real sequence of
progressive spermatozoa may be significantly different with
respect to the path followed and still be similar in terms of
in terms of distance traveled. In order to compare them, we
generate 10 trajectories for each real trajectory of each type
and use the Average Displacement Error (ADE) and theMin-

imum Average Displacement Error (MADE), which are two
popular motion prediction metrics. Given that the generated
trajectories are conditioned by the first frame, both generated
and real trajectories begin at the same coordinates. There-
fore, on average, the generated trajectories are not expected
to diverge significantly from the real ones. However, ADE
approaching zero is a warning of overfitting, since there is no
generation but copycat of the true trajectory. Consequently,
the only information needed is the coordinates (x (i)

t , y(i)
t ) for

every detected real spermatozoon ζ (i) in every frame t , along
with the generated ones (x̂ (i)

t , ŷ(i)
t ).

The results are depicted in Fig. 4, which follows the same
legend as Fig. 3; and again the lower, the better too. Thus,
our proposed method (dotted blue line) performs better or
equally well as the real video sequences and the baseline
models on average considering ADE or MADE. The only
exception is the evaluation of the slowly progressive sperm
based on MADE. However, we stress that MADE takes into
account only a single trajectory (the one with the minimum
displacement error) per method, while the average across all
trajectories (ADE) is similar for all methods for this sperm
type. In addition, our method outperforms the baselines by
much larger margin for the other two sperm types.

4.5 Qualitative evaluation

We present some qualitative results to assess the realism of
the generated data in terms of morphology, motility and final
rendering.

Fig. 3 Comparison of the distribution spline control points based on the KL divergence (Top) and the Earth Mover’s Distance (Bottom). The lower,
the better for both. The dotted line is the set derived from method proposed; + , 	 and � represent LSTM, Gaussian and Train sets respectively
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Fig. 4 (Left) Average Displacement Error, and (Right) Minimun Average Displacement Error; both with respect to the head of the spermatozoon.
The lower, the better in both plots. The dotted line is the method proposed; + , 	 and � represent LSTM, Gaussian and Train sets respectively

4.5.1 Morphology

With respect to the morphology, we show how the spline
control points are distributed within the window in the upper
row of Fig. 5, as well as the rendered spline in the lower row.
For the sake of clarity and compactness, we only depict the
progressive sperm generated by ourmethod together with the
training and test sets. Five clusters with a similar distribution
are clearly visible in the three upper subplots, the only dif-
ference being the number of samples. Likewise, in the lower
row, the distribution of rendered splines looks the same and
it is consistent with the compared of progressive sperm.

Next, we show the morphology as the sperm travels
through the frame in Fig. 6, in which two synthetic 8-frame
sequences (middle and bottom rows) are confronted with a
real sequence.

4.5.2 Motility

To illustrate themotility, we present 10 generated trajectories
(solid blue) vs. 1 real trajectory (dotted red) for each type
of sperm in Fig. 7. The upper row is the method proposed
and the lower row is generated with the LSTM. According
to the quantitative results in Fig. 4, both models perform

quite similar in terms of ADE. However, in Fig. 7, it can be
appreciated that the proposed method produces longer and
much more diverse paths than the LSTM.

4.5.3 Frames rendering

We compare the final rendering of the method with real
frames in Fig. 8(a), in which the left plots are two samples of
how a generated frame looks like before being transformed
with the Cycle GAN, and the right plots are the outcomes of
the Cycle GAN, hence synthetic frames. On the other hand,
Fig. 8(b) shows how the cycle GAN transforms real frames
(left) into schematic frames that seem to be extracted from
the domain of the generated frames (right). Further qualita-
tive comparisons of the other types of sperm are given in the
Appendix.

4.5.4 Expert evaluation

A survey was conducted to assess the ability of experts to
distinguish between real and synthetic images and videos.
We recruited 19 participants: 3 from medicine and biology,
7 from the computer vision community, 7 with an inter-
disciplinary profile including both areas, and 2 from other

Fig. 5 Distributions of spline control points and respective flagellum for progressive spermatozoa in the generated synthetic set, test set and train
set
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Fig. 6 A sample of single spermatozoon generation in the spline model domain. The upper row shows a 8-frame sequence extracted from the real
video, the bottom two rows show two different generated sequences

Progressive Spermatozoa Slow Progressive Spermatozoa Inmotile Sperm

Synthetic trajectories Real test trajectories

D
D

PM
LS

TM

Fig. 7 Ten generated trajectories (solid blue) vs. one real trajectory (dotted red) for each type of sperm

Fig. 8 Cycle-consistency
between schematic domain and
true domain. (a) From the
generated schematic to the
generated real-looking frame.
(b) From the true frame to its
version in the schematic domain
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fields. 16 out of 19 reported experience working with micro-
scopic images, and 7 out of 19with sperm images. Therefore,
we categorized participants into two groups: sperm imaging
specialists, referred to as Qualified Experts, and Other
Experts. Each respondentwas presentedwith 6 images, 3 real
and 3 synthetic, one after the other and randomly ordered;
and was asked to indicate to what extent they considered
each image to be real or synthetic according to the following
excluding options: synthetic, likely synthetic, unsure, likely
real, or real.

To analyse the survey, we use the response to each image
as a proxy of the likelihood that the image viewed belongs
to a real video and assign the following values:

Answer : synthetic likely synthetic unsure likely real real
p(y = ‘Real’|x) = 0.01 0.25 0.5 0.75 0.99

Thus, each expert is treated as a classifier returning p(y =
‘Real’|x) and a confusion matrix and ROC curve is obtained.
The averaged results are shown in Fig. 9. The first remark is
that both qualified experts and the rest of participants attain
similar scores. The ROC curve, shown in Fig. 9(a) is close
to the diagonal (dotted line), indicating that both groups per-
form similar to a random guess. The Precision, Recall and
F1-Score metrics are shown in Fig. 9(b). With a confidence
threshold of ≥ 0.75, a precision value of 0.5 evidences that
the half of the images classified as real and likely real by
qualified experts were actually synthetic. As the threshold is
raised to ≥ 0.99 (absolute certainty), qualified experts clas-
sified only 19% of real images correctly, while, the other
experts identified just 6% of real images correctly. These
results support the claim that synthetic images cannot be dis-
tinguished from real.

4.6 Application-related validation

Meaningful validation of the generated videos is challeng-
ing, as it requires assessing them within the context of the
commercial CASA for which it is intended for. To overcome
such a challenge, we propose training and using an object
detector such as the YOLO v5 network to detect sperm on
the two datasets:

1. a human-labeled dataset consisting of 42 frames that
accounts for a total of 6938 spermatozoa.

2. a synthetic dataset consisting of 672 frames from 28
real-looking videos generated with the method proposed,
which makes a total 117,331 spermatozoa.

We train three YOLO v5 models: 1) with 80% of the
human-labeled dataset, 2) with 80% of the synthetic dataset,
and 3) with the union of the two previous ones. Similarly, we
test the above models with the remaining 20% of the human-
labeled, synthetic and union of both datasets. The results are
shown in Table 2.

4.6.1 Training YOLO-based sperm detection

Assuming that there is a scarce ‘human-labeled’ dataset and
it is held for testing, can we use the synthetic dataset for
training? The answer is obtained from the ‘Human-labeled’
column of Table 2. Training with synthetic data attains
slightly higher F1-score than training with a human-labeled
data (that we had kept for the sake of this comparison).
The union of both training sets achieves a similar F1-score
with the human-labeled test set. In other words, the synthetic

Fig. 9 Results of the classification of images as real by qualified and other experts: (a) ROC curve; (b) precision, recall and F1-score
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Table 2 F1-score of three YOLO v5 models trained with human-
labeled, fully annotated synthetic video (ours) and both

↓Train set \ Test set→ Human-labeled Synthetic Human + Synth.

Human-labeled 0.834 0.846 0.845

Synthetic 0.851 0.974 0.961

Human + Synth. 0.858 0.975 0.910

dataset by its own is capable of training aYOLO-based sperm
detector at least as good as a human-labeled dataset, if the
latter is not available.

4.6.2 Testing YOLO-based sperm detection

Assuming that YOLO-based sperm detector is a CASA
whose performance we aim to evaluate, can we use the syn-
thetic dataset for testing? We utilize synthetically generated
videos, which constitute a fully annotated dataset, for eval-
uation purposes. Hence, we focus on the ‘Synthetic’ and
‘Human+Synth’ columns of Table 2. If the training set is
human-labeled, the F1-score attained across all the three test
sets is similar.However, the confidence in the results is signif-
icantly higher for ‘Synthetic’ and ‘Human+Synth.’ test sets,
as both are 17 times larger than the ‘Human-labeled’ set.
Conversely, if we train with a large fully annotated dataset
(rows ‘Synthetic’ and ‘Human+Synth.’), the F1-score sur-
passes 90%.

5 Conclusions

We presented a novel framework for generating realistic
synthetic videos of sperm. This framework aims to address
limitations that currently hinder the integration of deep learn-
ing techniques into CASA systems. Our approach generates
labeled videos, including head and flagellum morphology
annotations, which can serve as a surrogate for human-
labeled data. These synthetic videos have been shown to be
useful for training and evaluating CASA systems relying on
deep learning detection networks.

A parametric spermatozoon model was proposed to cap-
ture the key morphological and motility features of sper-
matozoa to simulate their trajectories across video frames.
Subsequently, a Denoising Diffusion Probabilistic Model
was utilized to learn spermatozoa behavior. This enabled the
animation of the parametricmodel, thereby generating realis-
tic motion patterns. These patterns were then embedded into
frames to produce schematic video sequences. Finally, the
generated videos were rendered with a realistic appearance
using a CycleGAN for style transfer.

We conducted experiments to assess the goodness of the
morphology, motility, appearance, and utility of the gen-
erated videos. The experimental evaluation confirmed that
the proposed method generates spermatozoa trajectories that
align with real data distribution.

Despite the encouraging results, our focus has remained
on a private dataset utilized by a commercial CASA sys-
tem. Extending its applicability to other datasets may require
adaptations, such as a dataset-specific spermatozoon win-
dowingprocedure ormanual annotation.This necessity arises
due to the lack of openly available labeled datasets that meet
the requirements of our method. These requirements include
access to tracking labels for spermatozoon heads, and sperm
concentrations that allow for the extraction of trajectories
without intersections between spermatozoa.To thebest of our
knowledge, four currently available datasets provide sperm
head detections [19, 36–38]. However, some of these datasets
exhibit limitations, such as excessively high sperm cell con-
centrations [19, 37], low contrast, monochromatic images
[38], or noisy and artifact-prone images [37]. Notably, none
of the datasets provide annotations of the flagella. Despite
these limitations, the core components of themethod, namely
the parametric spermatozoon model, the DDPM, and the
CycleGAN, are not specifically related to a particular dataset
orCASA. In fact, different videos only require adjustments in
hyperparameters such as the window size, the neighborhood
radius, the number of control points, the number of frames, etc.

The findings of this work indicate that synthetic data
can serve as a valuable resource to support the evaluation
of CASA systems and the training of deep learning algo-
rithms for sperm analysis. Furthermore, these findings could
potentially enable additional research in this field, such as
conducting more detailed analyses of flagellar beating pat-
terns, encouraging the development of new deep learning
methodologies for sperm analysis, or serving as an educa-
tional resource for laboratory personnel.

Appendix A: Qualitative results

This section shows in Figs. 10 and 11 the distribution of the
parameters and flagellum of the synthetic data compared to
their respective training and test sets. The plots shows the
similarity among synthetic and real data.

This section includes more qualitative results regarding
individual sperm sequences in Figs. 12 and 13. These fig-
ures show a comparison between a real sequence and two
generated with a DDPM conditioned to an initial real state.

Finally, Fig. 14 shows the qualitative results of apply-
ing CycleGAN to perform a domain transfer from animated
video sequences to real looking videos.
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Fig. 10 Distributions of spline parameters and respective flagellum for slow progressive spermatozoa in the generated synthetic set, test set and
train set

Fig. 11 Distributions of spline parameters and respective flagellum for inmotile sperm in the generated synthetic set, test set and train set
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Fig. 12 Samples of single
spermatozoa generation within
the parametric model. The upper
row of each plot shows the
reference sequence extracted
from the real data, the bottom
two rows show the sequences
generated by the DDPM while it
is conditioned to an initial and
final state
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Fig. 13 A sample of single
spermatozoon generation within
the parametric model. Right
column from each plot shows
the reference sequence extracted
from the real data, other
columns show sequences
generated by the DDPM while it
is conditioned to an initial and
final state
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Fig. 14 Three synthetic video
sequences with a horizon
limited to 8 for visualization
purposes. The schematic frames
show animated spermatozoa.
CycleGAN output frames show
the respective frames after the
domain transfer operation

Appendix B: Experimental details

This section includes specificdetails of the hyperparametriza-
tion of the models and experimental settings. Additional
implementation details can be found in the associatedGitHub
repository: https://github.com/SergioHdezG/sperm-diffuser.

Parametric model normalization All methods used to gen-
erate parametric spermatozoa are trained on normalized
trajectories. We separated global parameters from local
parameters and normalized them in different ways. First,
the global parameters refer to the spermatozoon’s movement

across a frame. These include body orientation (�α) and veloc-
ity (�v). We rotate these vectors for every frame in each
trajectory an angle given by

θt0,i = − arctan(
vx

vy
)t0,i ,

where i represent the trajectory index, t0 specifies that the
first frame from trajectory i is used to calculate θ , and (vx , vy)

are the components of �v. With this approach, all trajectories
start with �v = (0, 1).
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Next, we normalize the local parameters, which denote
the shape of the flagellum. We set P(0,i) as the origin of the
coordinate system. Then, we rotate the rest of the flagel-
lum parameters (P(1,i),P(2,i),P(3,i),P(4,i)) in each frame i
an angle given by the respective orientation vector

αi = − arctan(
αx

αy
)i ,

where i represent the trajectory index, and (αx , αy) are the
components of �α. This transformation is depicted in Fig. 1(a-
c).

Diffusionmodel The Denoising Diffusion Probabilistic Model
(DDPM) used in this study is implemented with a UNet [14]
architecture.Themodel processes input datawith dimensions
[B, T , dim(ρt )], where B represents the batch size, T is the
sequence length, and dim(ρt ) denotes the dimensionality of
the sperm model’s parameter vector. Specifically, as intro-
duced in Section 4.2 The architecture is composed of three
stages, startingwith a downsampling phase consisting of four
residual block [66] using 1D convolutions. Next, comes a
middle phase comprising four residual blocks. Finally, the
upsampling phase mirrors the downsampling, however, it
uses transposed 1D convolutions. To enable the model to
track the time step (H ) of the denoising process, a sinusoidal
positional encoding [63] followed by a few fully connected
layers were used. The output of the time encoding layers is
combined in each block of the UNet by addition. The model
has 3.96M parameters, requiring 15MB of freememory to be
allocated. In our experiments setup, the training procedure
consumed 1.1GB of memory from a GPU NVIDIA RTX
2070. The hyperparameters used for training the model are
detailed in Table 3.

CycleGAN In this work, a CycleGAN consisting of two
generators and two discriminators is used to facilitate image-
to-image translation without paired data. The generators are
based on U-Net [14] architecture and employ Least Squares

Table 3 Training hyperparameters for the DDPM model

Parameter Value/Details

Denoising steps (H ) 20

EMA decay 0.995

Input normalization xi−μi
σi

Batch size (B) 64

Learning rate 2 × 10−5

Sequence length (T ) 16

dim(ρt ) 14

GAN (LSGAN) [67] for loss function training. Each genera-
tor takes an input image of size (500×500×3) and consists of
three stages. The first stage is a convolutional downsampling
phase. Next, few residual blocks consisting of two convo-
lutional layers and skip connections are applied. Finally, the
upsampling stagemirrors the downsampling, however, it uses
transposed convolutions. This process generate an output of
shape (500 × 500 × 3).

The two discriminator models take input images of size
(500 × 500 × 3). Then convolutional layers are applied to
downsample the imageby a factor of 3. Thefinal layer outputs
a scalar value representing the likelihood that the input image
is real or fake. The LSGAN loss function is used to train the
discriminator.

Each generator has 11.4M parameters and requires 43MB
of memory. Each discriminator has 2.8M parameters and
requires 10MB of memory. In our experiments, the training
process consumed 6.25 GB of memory on a GPU NVIDIA
RTX 2070, with 8 GB of GDDR6 memory.

LSTM The Long Short-Term Memory (LSTM) model used
as baseline follows a common straightforward architecture
for processing temporal sequences. The input to the model
is a tensor with dimensions [B, ι, dim(ρt )], where B repre-
sents the batch size, ι is the length of the input sequence set
to ι = 4 in our experiments, and dim(ρt ) denotes the dimen-
sionality of the sperm model’s parameter vector. The core of
the model is a single LSTM layer, which captures temporal
dependencies within the data. Then, the model includes two
fully connected layers that process the output of the LSTM
and map it to the output space of shape [B, 1, dim(ρt )].
Section 4.2 provides further details on this model.

Gaussianmodel The Gaussian model is used as baseline and
is introduced in Section 4.2. Here we provide the μ and �

computed from the training sequences in Table 4. Note that
since � is a diagonal matrix, we just represent μ and σ for
each parameter of the spermatozoon model.

Table 4 Value ofMean (μ) and Standard Deviation (σ ) of spermmodel
parameters

Parameter Mean (μ) Standard Deviation (σ )

P0 (−0.710, 0.012) (0.186, 0.060)

P1 (−0.472,−0.011) (0.168, 0.147)

P2 (−0.302, 0.013) (0.130, 0.196)

P3 (−0.111, 0.036) (0.158, 0.101)

P4 ( 0.111,−0.012) (0.054, 0.036)

�v ( 3.637,−0.000) (1.313, 0.001)

�α ( 0.892,−0.045) (0.336, 0.299)
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