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Abstract: Given the significant impact of air pollution on global health, the continuous and
precise monitoring of air quality in all populated environments is crucial. Unfortunately,
even in the most developed economies, current air quality monitoring networks are largely
inadequate. The high cost of monitoring stations has been identified as a key barrier to
widespread coverage, making cost-effective air quality monitoring devices a potential game
changer. However, the accuracy of the measurements obtained from low-cost sensors is
affected by many factors, including gas cross-sensitivity, environmental conditions, and
production inconsistencies. Fortunately, machine learning models can capture complex
interdependent relationships in sensor responses and thus can enhance their readings and
sensor accuracy. After gathering measurements from cost-effective air pollution monitoring
devices placed alongside a reference station, the data were used to train such models.
Assessments of their performance showed that models tailored to individual sensor units
greatly improved measurement accuracy, boosting their correlation with reference-grade
instruments by up to 10%. Nonetheless, this research also revealed that inconsistencies
in the performance of similar sensor units can prevent the creation of a unified correction
model for a given sensor type.

Keywords: air pollution monitoring; low-cost sensors; electrochemical sensors; non-dispersive
infrared sensors; sensor performance variability; measurement correction; sensor calibration;
data-driven correction; machine learning; multiple linear regression models

1. Introduction
Air pollution has significant implications for public health, climate change, and urban

planning [1–4]. According to the World Health Organization, air pollution is responsible
for nearly 7 million premature deaths yearly and is the second highest risk factor for
noncommunicable diseases [5–11]. To tackle this critical global issue, it is essential to
implement effective monitoring strategies and eventually take action to mitigate pollu-
tion [2,5,12–16]. Although the first air quality monitoring stations were established in the
1950s [17], and nowadays most major cities have such systems, the financial burden and
limited accessibility of suitable instrumentation have posed significant barriers to these
efforts [4,18]. The high cost of monitoring systems is attributed to the need to invest in
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expensive reference-grade instruments to ensure accurate measurements [19,20]. In addi-
tion, these instruments have suffered from limited spatial coverage due to their lack of
portability, in addition to placement and availability issues [21].

In response to these challenges, cost-effective air quality monitoring devices have
been developed using low-cost sensors [22]. The low-cost sensors are not only significantly
cheaper than traditional stations but also typically occupy less space and can be mobile [23].
In recent years, affordable devices have emerged as viable alternatives, facilitating wider de-
ployment and frequently enabling near-real-time data collection. Nonetheless, these sensors
still face challenges related to calibration, accuracy, reliability, and standardisation [21,24].

Although improving the hardware of affordable sensors is challenging without sig-
nificantly increasing costs or compromising practicality, leveraging software to enhance
their performance is a highly promising approach [25]. For instance, by comprehending
how external factors affect sensor measurements, it becomes feasible to apply corrections
that yield more reliable values [26,27]. Ultimately, the goal is to improve the observation
quality of these devices to a level where they can perform tasks that are currently exclusive
to traditional monitoring stations [28].

The objective of this study is to assess whether machine learning algorithms imple-
mented on a microcontroller can improve readings from a set of low-cost sensors designed
to measure CO, O3, and CO2 concentrations. The key research contributions are as follows:

• Quantitative data on gas cross-sensitivities and the influence of environmental fac-
tors on readings from low-cost sensors, i.e., electrochemical and non-dispersive
infrared sensors.

• Quantitative evidence of significant inter-unit inconsistency among low-cost gas
sensors, especially among electrochemical sensors.

• Demonstration of significant performance improvement achieved by low complex-
ity machine learning models, i.e., Multiple Linear Regression models, that offer
some explainability.

This manuscript begins by reviewing the benefits of cost-effective air pollution monitor-
ing devices, their current technical limitations, and methods to improve their measurement
accuracy. It then details the sensors under investigation and the data collection process.
Following this, a comprehensive description of the selected methodology to enhance mea-
surement accuracy is given. Subsequently, experimental results are presented. Finally,
the manuscript concludes with discussions and a summary of key conclusions.

2. Related Work
The development and availability of cost-effective air pollution monitoring devices

have instigated a significant body of research dedicated to assessing their suitability for
the intended applications. While the literature underscores their remarkable potential, it
also highlights their inherent technical limitations. Fortunately, advancements in machine
learning have enabled the development of more intelligent sensors, capable of accounting
for factors such as sensor drift and cross-sensitivity, thereby delivering more accurate
corrected readings.

2.1. Advantages of Cost-Effective Air Pollution Monitoring Devices

In large population centres, such as Shanghai, Hong Kong, Delhi, Dhaka, Dallas,
and London, that suffer from severe air pollution challenges [29,30] often exacerbated by
rapid urbanisation, industrial activities, and vehicular emissions [31], the usage of tradi-
tional air quality monitoring stations is indispensable yet insufficient on their own [32,33].
As of today, London has only 83 air quality monitoring stations, fewer than one station per
100,000 inhabitants, which is clearly insufficient given that air quality can vary significantly
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between neighbouring streets [34]. Coverage is even lower in countries that are the most
affected by air pollution, e.g., there are only 11 stations in Bangladesh. Indeed, a main
obstacle to station deployment is their cost, which is typically over USD 10,000 per unit
without considering installation and maintenance charges. As low-cost sensors have shown
promise in addressing the increasingly pressing challenge of urban air pollution [35], their
deployment, either in tandem with or independently from existing networks [36], can
achieve better spatial coverage, improved data granularity, and eventually deliver more
timely interventions [4,30].

The primary appeal of these cost-effective devices lies in their scalability and the
flexibility of their deployment. Indeed, their competitive cost allows for far more exten-
sive deployment than would be feasible with expensive reference-grade monitors [25].
In sprawling metropolises, the availability of only a limited number of official monitoring
stations cannot adequately capture localised pollution hotspots or micro-environments [32],
resulting in data blind spots. Low-cost sensors, on the other hand, can be deployed in
more significant numbers within residential districts, near industrial zones, and along
congested traffic corridors [37]. This expanded network translates into a more precise
understanding of how pollution varies across neighbourhoods, enabling policymakers to
tailor interventions to the most affected areas [30].

Second, the portability and relatively small form factor of these devices make them far
easier to install and maintain. While larger, reference-grade stations may require substantial
ground space, stable power sources [4], and climate control units, the sensors can be placed
on rooftops, street lights, or moving vehicles [25]. This ease of placement is especially
valuable in densely packed cities such as Hong Kong and London, where real estate is
at a premium and infrastructural constraints are significant. Moreover, while traditional
stations often require regular visits from specialised personnel, these sensors can often be
serviced, calibrated, and updated remotely, reducing operational costs and minimising
downtime [38].

Third, as cost-effective air pollution monitoring devices are usually integrated with an
Internet of Things (IoT) platform, real-time or near-real-time data streams from a dense
network can be invaluable for immediate decision making. In cities prone to episodic
pollution events, such as the winter smog in Delhi or the dust storms that occasionally
affect Dallas, these data allow local authorities to promptly issue health advisories [31],
divert traffic flows, or temporarily restrict polluting activities [28]. The ability to respond
proactively can mitigate the severity of pollution events and reduce residents’ exposure to
harmful particulate matter and gases [30,39].

Fourth, the affordability and user-friendliness of these devices may encourage citizen
engagement [4] and foster collaborative monitoring, particularly in regions where public
awareness is crucial for policy support. Initiatives such as Breathe London [40] and a
community-led effort in Hong Kong [41] demonstrate how crowd-sourced air quality data
can help individuals manage air pollution exposure and related health risk at an urban
scale. The large-scale deployment of low-cost sensors also allows for the tracking of local
pollution patterns in real time [25] and holding industries or municipal bodies accountable
when levels exceed safe thresholds [42]. This democratisation of data creates a virtuous
cycle of engagement [43], awareness, and policy responsiveness, thereby accelerating
improvements in air quality management [30].

Finally, cost-effective air pollution monitoring aligns with several United Nations
Sustainable Development Goals [31]. As large population centres face increasing pressure
from rapid urbanisation, climate change, and public health crises, these sensors support
cities in meeting international guidelines, reducing environmental inequalities, and safe-
guarding public health. Their ability to integrate seamlessly with digital platforms means



Sensors 2025, 25, 1423 4 of 23

local authorities, researchers, and citizens alike could access actionable insights, plan more
sustainable infrastructure, and take steps to reduce pollution at its source.

2.2. Current Technical Limitations

Even if they have numerous advantages, cost-effective air pollution monitoring devices
have limitations when compared against their reference-grade counterparts. Specifically,
they depend on the technology of their individual sensors that can vary dramatically
according to their target pollutants.

Whereas particulate matter is usually quantified by optical particle counters (OPCs)
that focus a beam of light within the sensor and record its scattering using a photodetector,
low-cost gas-sensing technologies can be classified into four main types [44]:

• Electrochemical (EC) sensors measure the current produced by electrochemical reac-
tions with the target gas [45].

• Non-dispersive infrared (NDIR) sensors track reductions in infrared radiation when
the gas passes through an active filter [46].

• Metal oxide semiconductor (MOS) sensors rely on gas–solid interactions that induce
an electronic charge on the metal oxide surface.

• Photo-ionisation detection (PID) sensors employ ultraviolet (UV) light to ionise target
molecules, convert the resulting ions into digital readings, and thus quantify the
chemical content [47].

Despite the variety of these technologies, these sensors experience inaccuracies caused
by the following factors: sensor drift and ageing, cross-sensitivity and interferences, man-
ufacturing inconsistencies and a lack of standards, environmental factors, and limited
dynamic range and saturation effects.

Due to the low-cost nature of these sensors, they are all subject to batch-to-batch
variations in component quality, such as slight chemical deviations in sensor electrodes,
which can shift baselines, introduce offset misalignments, and cause inconsistencies in
sensitivity from unit to unit [19,38]. Furthermore, many sensors are shipped with minimal
or no factory calibration, leaving users to rely on in-field calibration that may be inconsistent
or inadequate. Even when calibration is provided, manufacturers may use unspecified
and/or proprietary algorithms [4]. Moreover, when they provide correction equations,
they are based on tests conducted in laboratories, where conditions are controlled and
simplified, which often does not reflect real-world conditions and fails to account for
complex interactions between different pollutants. Compounding this problem is the
absence of unified testing guidelines or standardised protocols. Thus, one manufacturer’s
’validated’ data might not be comparable to another’s [21,48].

Another general characteristic of low-cost sensors is that their enclosure may lack
adequate ingress protection, making them susceptible to water damage from rain or
dew [49,50]. Furthermore, these enclosures often cannot endure prolonged exposure to
UV light. In urban settings, high levels of electromagnetic interference can cause noise
in the sensor’s electronics, especially if sufficient shielding is not provided. Furthermore,
corrosion and oxidation can damage the metal components, negatively impacting the
sensor’s electrical performance. Finally, low-cost sensors often produce raw signals rife
with high-frequency variability, outliers, and artefacts brought on by electrical spikes or
mechanical vibrations.

In addition to these general technical limitations, cost-effective air pollution monitoring
devices suffer from a range of factors that are specific to their working mechanisms.
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Optical particle counters
The main issue with optical particle counters is lens obstruction from dust or soot,

skewing scattering intensity [51], and particulate accumulation in the sampling path com-
promising airflow, reducing the consistency of particle detection [52]. Consequently, regular
calibration is needed, sometimes monthly or quarterly, which increases operational costs
and complexity [53]. Additionally, condensation within the sampling chamber can distort
scattering profiles and a sudden surge of particulates can clog the measurement chamber,
leading to transient errors. Another issue is that particles of diverse sizes and compositions
may scatter light differently, making it difficult to classify them accurately by size. More-
over, as aerosols can absorb moisture, artificially inflating particle diameter and varying
refractive indices, high relative humidity can lead to overestimated concentrations [24].

Electrochemical sensors
Over time, electrochemical sensors experience degradation as their reactive electrolyte

or electrode materials are consumed, altering their output. Whereas some sensors degrade
within months, others maintain partial functionality for two or three years while accumulat-
ing biases [54]. Moreover, prolonged exposure to high or low temperatures and impurities
can amplify drift by accelerating chemical reactions, depleting internal reagents or causing
them to form condensation [55–58]. Finally, it has also been reported that ageing influences
bias in voltage recordings at certain environmental ozone concentrations [59].

In addition to ageing, EC sensors often register cross-reactants, such as NO2 sensors
also responding to O3, Cl2, and H2S, which inflates or distorts measurements [25,60,61].
High pollutant concentrations can also saturate electrochemical sensors, leaving the elec-
trode’s reaction rate plateaued. Moreover, shifts in humidity and temperature can trigger
spurious voltage changes or accelerate side reactions in the sensing chamber [62]. In partic-
ular, they are vulnerable to interference from water vapour, which, by occupying reactive
sites on the metal oxide surface, leads to underestimations of pollutant levels [59,63–65].

Non-dispersive infrared sensors
Despite their growing popularity, non-dispersive infrared sensors face several inherent

limitations that influence data fidelity, sensor lifespan, and overall utility in real-world
deployments [66]. Depending on the quality of their filter design, they may be particularly
vulnerable to interference from other infrared-absorbing gases. Such cross-sensitivity
can inflate or depress readings based on the overlap in absorption spectra. Furthermore,
condensation or particulate deposits on the detector degrade performance, diminishing the
sensor’s responsiveness and reliable range [67,68]. Moreover, these sensors are prone to
calibration drift, which is exacerbated by environmental factors such as temperature and
humidity fluctuations [69,70].

While high-end NDIR systems employ sophisticated temperature-compensation cir-
cuits and superior optical filters, low-cost NDIR sensors lack such refinements, resulting
in lower measurement accuracy [70]. Due to their limited temperature compensation ca-
pability, even minimal temperature changes can introduce sizeable measurement errors
over time. Therefore, if recalibration is not performed regularly, readings can drift far from
reality. Eventually, in the absence of a robust enclosure and/or advanced compensation
algorithms, their data quality may be questionable in real-world deployments, i.e., where
environmental conditions can vary widely [63,64].

Photo-ionisation detection sensor
Due to their fast response times and broad-spectrum sensitivity, photo-ionisation

detection sensors are widely used, especially for detecting volatile organic compounds.
However, selectivity is a major concern as they ionise all compounds with an ionisation
potential below the lamp’s energy (typically 10.6 eV) [71]. This leads to interference from
multiple volatile organic compounds, such as benzene, toluene, and xylene, which cannot



Sensors 2025, 25, 1423 6 of 23

be distinguished without additional separation techniques [47,72]. Additionally, sensor
drift and stability degradation are key operational limitations, with reported drift values
ranging between 2% and 15% per year [72]. Humidity and temperature variations also
significantly affect PID performance, necessitating frequent recalibration [73]. Moreover,
studies have shown that sensor accuracy degrades beyond acceptable error margins when
exposed to relative humidity variations above 50% [57,71]. Furthermore, their limit of
detection varies significantly from sub-ppb levels to above 2.5 ppm depending on the model
and manufacturer [72]. Eventually, real-world performance validation has highlighted
discrepancies between laboratory-calibrated PIDs and field-deployed versions, with studies
indicating deviations of up to ±25% when compared with reference monitoring stations [57].

From an economic perspective, maintenance costs and power consumption present
additional barriers to large-scale deployment. Indeed, they require periodic UV lamp
replacement, increasing long-term operational costs beyond those of other LCS technologies
such as MOS or EC sensors [72]. Additionally, power requirements are significantly higher
due to the UV excitation mechanism, making them less suitable for battery-powered
applications in mobile or remote monitoring systems.

Metal oxide semiconductor sensors
MOS sensors are known to deliver very high sensitivity but usually lack selectivity.

Thus, they tend to group chemically similar volatile organic compounds into a single
reading [74]. These sensors can also experience overload under heavy pollutant exposure,
leading to ’burn-in’ that demands a lengthy recovery. Furthermore, MOS sensors may
suffer from surface poisoning when contaminants are adsorbed onto the metal oxide,
irreversibly changing its conductivity. In addition, both extreme temperatures and high
humidity impact their performance [75,76]. Also, when the surfaces of these sensors become
saturated, their ability to absorb pollutants is hindered [77,78]. Finally, hysteresis effects can
arise as these sensors transition between high and low pollutant concentrations, impairing
consistency in the readings [79].

2.3. Measurement Corrections

It is essential to address the aforementioned limitations to ensure that cost-effective
devices can fulfil their intended functions in real-world usage conditions and achieve
the desired impact on air pollution monitoring. Among different approaches compared,
advanced machine learning techniques like support vector regression and deep-learning-
based methods were found to deliver better results [48,80–86]. Recent advances in software
calibration, sensor miniaturisation, and machine learning have significantly narrowed the
performance gap between low-cost sensors and their high-end counterparts [25]. Using
sophisticated algorithms [87], particularly those powered by artificial intelligence, their
readings can be adjusted for temperature, humidity, and cross-sensitivity to other pollu-
tants [27]. Moreover, the integration of additional data sources, such as meteorological
variables, has been shown to enhance further sensor correction [25,26,28,88,89]. The con-
tinuous advancement in data analytics ensures that sensors become increasingly ’smarter’
over time, adapting to new conditions and providing reliable trend insights.

Although initial models explored for correcting low-cost sensor measurements relied
on the simple, but interpretable, linear regression, more advanced models have generally
been more reliable [85]. Among the many non-linear machine learning approaches, en-
semble learning methods that use decision trees have proved particularly popular due
to their ability to capture complex non-linear relationships in sensor responses, allowing
them to deliver a strong performance in addressing cross-sensitivity and environmental
interference. Among them, gradient boosting regression trees (GBRT) have been widely
used to model non-linear relationships between sensor readings and meteorological factors.
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Compared to linear regression, GBRT was shown to improve the coefficient of determi-
nation (R2) from 0.36–0.51 to 0.68–0.76 for aerosol monitoring [88]. Another tree-based
method, Random Forest (RF), has achieved significant popularity. Indeed, a recent study
reported that RF-based corrections improved R2 values for both particulate matter with
a diameter smaller than 10 µm (PM10) and 2.5 µm (PM2.5) and gaseous pollutants (SO2,
NO2, CO, and O3) to a range of 0.70–0.99, with root mean squared error values between
4.05 and 17.79 µg/m3 for the gases [25]. Similarly, the usage of a multi-stage approach that
incorporates RF, baseline drift correction, and empirical filters improved sensor accuracy to
±2.6 ppb for NO2, ±4.4 µg/m3 for PM10, and ±2.7 µg/m3 for PM2.5 [26]. Additionally, RF
models have been found to perform well over extended time periods, showing stability for
up to 16 weeks, whereas more traditional models deteriorate more rapidly [89].

Another category of machine learning models, i.e., artificial neural networks (ANNs),
including deep learning models, has been extensively studied to enhance measurements
due to their effectiveness in handling non-linearities in sensor data [62,89–91]. Whereas
dynamic neural network models were shown to achieve significant error reductions (the
mean absolute error) to less than 2 ppb for NO2, performance for O3 proved disappoint-
ing [89]. Similarly, ANN-based models proved efficient for certain gases, i.e., O3 and CO2,
but not for others, i.e., NO2 [25]. More complex deep learning models, including hybrid
ones, have also been designed to improve the precision of pollutant prediction. For exam-
ple, a combination of convolutional neural networks with long- and short-term memory
networks led the O3 accuracy to increase to 3.58% [25,86]. Despite the performance of these
models, they are often much less interpretable than others, making them less desirable for
regulatory applications in particular [50].

The absence of standard datasets, the diversity of sensor technologies and models,
the regular introduction of new devices, the significant variability in real-life conditions,
and the lack of standardised evaluation protocols and metrics render comparisons between
machine learning approaches impractical. Moreover, the evaluation of a large range of
models on the same dataset has revealed that the optimal method depends on the type of
sensor and pollutant of interest. Indeed, besides RF and artificial neural networks, other
models, such as generalised additive models and support vector regression, were also
found to be optimal under certain conditions [88].

In conclusion, selecting an appropriate methodology must be tailored to the specific
sensor, intended usage, potential needs for real-time and on-device processing, and ex-
plainability requirements.

3. Dataset: Co-Located Cost-Effective Device and Reference
Station Measurements
3.1. Data Collection

This study evaluates the performance of cost-effective gas sensors and their enhance-
ment using machine learning. Its focus is on measurements of carbon monoxide (CO),
ozone (O3), and carbon dioxide (CO2), which are captured by two electrochemical sensors
and one non-dispersive infrared sensor, respectively. EC sensors were selected as they
proved to be the only small-size low-cost sensors available to measure O3 and CO. Indeed,
alternative measurement techniques would have necessitated significantly more expen-
sive equipment, which must be maintained at a constant temperature. Regarding CO2,
although a variety of cost-effective sensor technologies were evaluated, including thin film
and MOS, NDIR not only proved to be the most effective but also produced sensors with
digital outputs, which can be easily integrated into software. Whereas the NDIR sensors
return CO2 concentration in Parts Per Million (PPM), the electrochemical sensors respond
to the gas being measured by either oxidising or reducing it, generating a very small
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positive or negative current, i.e., tens of nanoamperes, proportional to the presence of the
gas. To accurately measure these reactions, as recommended by the sensor manufacturers,
these currents are first converted into voltages using a transimpedance amplifier, and then
these voltages are amplified within a range of 0 to 5 V, and finally they are digitised with a
16-bit resolution analogue-to-digital converter. The CO, O3, and CO2 sensors, along with
temperature, humidity, and atmospheric pressure sensors, were mounted on a printed
circuit board, designed by Technocomm Consulting Limited. This setup was housed in a
plastic box (20 × 9 × 6 cm), creating a compact and cost-effective air pollution monitoring
device, EnviroSense™.

To compare their measurements with some ’ground-truth’, these sensors are co-located
with those of a reference air quality laboratory, i.e., the Weybourne Atmospheric Observa-
tory (WAO). Established in 1992 and operated by the University of East Anglia, the WAO
is a regional station of the Global Atmospheric Watch programme of the World Meteoro-
logical Organization. Located on the North Norfolk Coast, UK (52º57′02′′ N, 1º07′19′′ E,
15 m above sea level), it encounters a broad spectrum of pollution levels, primarily due to
southwesterly winds that carry polluted air from various parts of the UK, including Lon-
don and the Midlands [92]. In particular, since 2008, it has been collecting high-precision
long-term in situ measurements of atmospheric carbon dioxide, oxygen, carbon monoxide
and molecular hydrogen every minute.

In order to be able to study sensor consistency, two sets of the cost-effective devices
are co-located with this high-precision equipment, see Figure 1. The characteristics of all
the gas sensors used in this study are summarised in Table 1.

Figure 1. View of the co-located equipment at WAO: cost-effective devices 5158 and 5178 are the
two blue and grey boxes.

These three sets of data measurements are referred to in this manuscript as from ‘WAO’,
‘5158’, and ‘5178’ (as they are the series numbers of the two cost-effective devices) data.
Such data were retrieved continuously for 12 weeks from 20 May 2024 to 11 August 2024.
Values were averaged over 30 min for every variable in order to have one observation every
30 min as a compromise between time resolution and measurement noise, leading to up to
4032 observations per individual sensor. Although the data from devices 5158 and 5178 are
complete, the gas concentrations measured by the WAO sensors have up to 10% missing
values, which was due to various sensor calibration processes having taken place during
the period of data collection. Table 2 shows a brief description of the collected dataset,
where the minimum, maximum, mean, standard deviation, and number of missing values
are provided for each individual sensor. It is important to highlight significant differences
in terms of temperature, relative humidity, and pressure measurements between those
reported by the WAO and the cost-effective devices (i.e., 5158 and 5178). They arise because
the cost-effective sensors collected data within the boxes that house them, while the WAO
sensor recorded outdoor measurements. For example, temperature is affected by both
the small amount of internal heat produced by the operating electronic components in
the box and its direct sunlight exposure. However, the device’s temperature, humidity,
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and pressure sensors do not aim to measure external conditions; it is by design that they are
located inside the box close to the gas sensors to allow for the most effective compensation
of their readings. Finally, Figure 2 shows CO, O3, and CO2 concentrations measured by the
reference sensors from the Weybourne Atmospheric Observatory for the 12-week duration
of this study.

Table 1. Specifications of the sensors used in this study. Note that PPB and PPM are Parts Per Billion
and Million, respectively.

Sensor Type Weybourne Atmospheric Lab Cost-Effective Solution

CO

Model Ecotech Spectronus Honeywell AQ7CO

Technology Fourier Transform Infrared Spectrometer Electrochemistry

Precision 1 PPB Unknown

Unit cost >USD 100,000 (it measures both CO
and CO2) <USD 150

O3

Model Thermo 49i Ozone Analyser Honeywell AQ7OZ

Technology UV Absorption Electrochemistry

Precision 1 PPB Unknown

Unit cost >USD 3000 <USD 150

CO2

Model Ecotech Spectronus Sensirion SCD30

Technology Fourier Transform Infrared Spectrometer Non-dispersive infrared

Precision 100 PPB (0.1 PPM) 30,000 PPB (30 PPM)

Unit cost >USD 100,000 (it measures both CO
and CO2) <USD 50

Others Temperature (°C), relative humidity (%), and pressure (hPa)

Table 2. Description of the data collected by each sensor.

Sensor Unit Min Max Mean Std. Dev. Missing Values

Temperature WAO °C 7.56 28.07 14.93 3.20 2
Temperature 5158 °C 13.85 37.74 22.26 3.97 0
Temperature 5178 °C 12.99 38.07 21.69 4.08 0

Relative humidity WAO % 32.31 100.00 77.29 13.47 2
Relative humidity 5158 % 27.22 68.41 52.03 9.04 0
Relative humidity 5178 % 26.21 70.21 54.03 9.77 0

Pressure WAO hPa 990.52 1023.53 1008.82 5.99 2
Pressure 5158 kPa 99.22 102.53 101.06 0.60 0
Pressure 5178 kPa 99.23 102.54 101.07 0.60 0

CO WAO ppb 84.25 294.13 110.80 15.76 318
CO 5158 µV 1,380,450 2,382,109 2,232,868 66,708.54 0
CO 5178 µV 1,177,112 2,280,425 2,129,110 85,833.71 0

O3 WAO ppb 7.72 65.69 28.83 8.34 395
O3 5158 µV 2,197,081 2,552,181 2,343,918 49,237.40 0
O3 5178 µV 2,164,612 2,589,412 2,341,934 52,920.40 0

CO2 WAO ppm 406.88 468.03 423.47 9.22 330
CO2 5158 ppm 94.58 180.73 121.17 11.52 0
CO2 5178 ppm 217.99 329.56 256.31 15.89 0
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Figure 2. CO, O3, and CO2 measurements by WAO for the whole period (20 May 2024 to 11 August 2024).

3.2. Sensor Calibration

Calibrating low-cost sensors, especially electrochemical ones, is crucial to ensure
accurate measurements. Typically, two-point calibration is used for each sensor: this
involves calibrating the sensor at two known concentrations of the target gas, i.e., a zero
point using pure air and a span point using a known concentration of the target gas.
This process may be repeated a number of times to increase accuracy. As the way this
process is performed and the quality of the reference gases affect calibration, in this study,
an alternative optimised process is employed: linear regression is used to find the best fit
between 11 weeks of data collected by a cost-effective gas sensor and its corresponding
WAO sensor. Note that the same 11 weeks are used to train machine-learning-based
correcting models, while the remaining week is exploited to assess their performances. As
Table 5 shows, correlations between the WAO and calibrated cost-effective sensor readings
vary between 72% and 84%, highlighting some limitations of the cost-effective solutions.

The outcome of the calibration process for the CO sensors is illustrated in Figure 3. It
reveals that the measurements of the cost-effective CO sensors, shown in red and green,
generally behave similarly to those of the reference WAO CO sensor. Still, it can be noticed
that the readings of the cost-effective sensors are noisier and often do not agree with
each other.

3.3. Data Analysis

To visualise the relationship between the measurements of the cost-effective gas
sensors and those of the reference WAO CO sensor, a scatter plot is produced for each of
the gases of interest for both devices, i.e., 5158 and 5178, see Figure 4. For all three gases on
each device, a linear relationship is highlighted even if there is some scattering.

To investigate this scattering, correlations between gas measurements made by each
WAO sensor and all values returned by one of the cost-effective devices are calculated.
Figure 5 displays these correlation values for device 5158.
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Figure 3. CO measurements after calibration of electrochemical sensors using linear regression.

80 100 120 140 160 180 200
CO concentration (PPB)

1.8

2.0

2.1

2.3

2.4

CO
 se

ns
or

 re
ad

in
g 

(V
)

10 20 30 40 50 60
O3 concentration (PPB)

2.2

2.3

2.4

2.5

2.6

O3
 se

ns
or

 re
ad

in
g 

(V
)

410 420 430 440 450 460 470
CO2 concentration (PPB)

100

120

140

160

180

CO
2 

se
ns

or
 re

ad
in

g 
(P

PB
)

CO 5158 O3 5158 CO2 5158

80 100 120 140 160 180 200
CO concentration (PPB)

1.8

2.0

2.1

2.3

2.4

CO
 se

ns
or

 re
ad

in
g 

(V
)

10 20 30 40 50 60
O3 concentration (PPB)

2.2

2.3

2.4

2.5

2.6

O3
 se

ns
or

 re
ad

in
g 

(V
)

410 420 430 440 450 460 470
CO2 concentration (PPB)

220

240

260

280

300

320

CO
2 

se
ns

or
 re

ad
in

g 
(P

PB
)

CO 5178 O3 5178 CO2 5178

Figure 4. Scatter plots of gas measurements by devices 5158 and 5178 against those by the WAO
sensors. Correlations between measurements are illustrated by the red trend lines.

Figure 5a shows that the concentrations of CO measured by the cost-effective device
are, as expected, highly correlated to the measurements of CO by the reference sensor. How-
ever, there are also important correlations with O3 and temperature. This is consistent with
the fact that electrochemical sensors are known to display gas cross-sensitivities [25,60,61].
More evidence of gas measurements potentially affected by the presence of other gases and
meteorological conditions is provided in Figure 5b,c, where O3 seems to be influenced by
CO2 and CO, and CO2 readings are highly correlated to temperature, humidity, and O3.

Finally, Figure 6 highlights slightly different behaviours between sensor 5158 and
5178 towards meteorological variables in particular. Indeed, whereas CO shows a high
correlation with temperature for sensor 5178, it is more moderate for sensor 5158.
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Figure 5. Correlation plots of measurements made by device 5158 with respect to gas readings from
the WAO gas sensors.
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Figure 6. Correlation plots of measurements made by devices 5158 (a) and 5178 (b).

4. Methodology to Enhance Measurement Accuracy
Since the low-cost sensors show accuracy limitations and the previous section suggests

that they could be at least partially explained by cross-gas sensitivity and meteorological
conditions, it is proposed to design a methodology to learn the relationships between gas
and meteorological measurements to correct these sensor readings. As each of the two cost-
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effective devices host three gas sensors, i.e., CO, O3, and CO2, one can build a model for
either each individual sensor, i.e., 6 models, or each sensor type, i.e., 3 models. Herein, both
types of models are investigated following a similar methodology. After introducing the
model selected in this study to correct data generated by the low-cost sensors, the process
of variable selection is described.

4.1. Model Choice

First, as in most practical case studies, it is expected that two-point calibration will
be used to calibrate the low-cost sensors and no reference data will be available, meaning
that models designed to rely on time series will not be suitable as they increasingly diverge.
Second, as the processing power of cost-effective devices is likely to be provided by a
microcontroller, model complexity must be relatively low. Third, models that provide a
certain level of explainability, as opposed to the so-called ’black box’ models, enable more
informed decision making and may reduce scepticism among some audiences. Finally,
the linear relationships between measured and ground truth values revealed by Figure 4
suggest that the usage of some linear regression model may be sufficient to enhance
performance significantly. For these reasons, it is proposed to train a Multiple Linear
Regression model (MLR) to correct the measurements performed by the cost-effective
sensors. Moreover, to assess the trade-off made between the model’s complexity and its
performance, the results will be benchmarked using support vector regression (SVR). Note
that, although experiments were also conducted using Random Forest and long short-
term memory models, their performances failed to match those of SVR. Thus, only results
obtained using MLR and SVR are reported in this manuscript.

The MLR model for a given gas is defined as the following if one assumes p features:

Y = β0 + β1x1 + · · ·+ βpxp + ϵ

With the following:

• Y: the reference observation;
• β0: the intercept;
• (β1, . . . , βp): the coefficients of the model for each feature;
• xk: the observation for the feature k, k = 1, . . . , p;
• ϵ: the residual term.

Whereas, for the sensor-specific models, training and testing only involve data col-
lected by the individual sensor of interest, and for the models designed for a type of sensor,
training and testing data combine the calibrated measurements from the two corresponding
low-cost sensors from devices 5158 and 5178.

4.2. Feature Selection

As each low-cost device retrieves readings from temperature, humidity, pressure,
CO, O3, and CO2 sensors, 6 features are available for each model aiming to enhance gas
measurements. As both the number of features and model complexity are quite low, a brute
force approach was selected to determine the most suitable feature combination (among
26 − 1, i.e., 63) for each model.

The root mean squared error (RMSE) was chosen as the metric to assess the perfor-
mance of each generated model:

RMSE =

√√√√√ n
∑

i=1
(Yi − Ŷi)2

n



Sensors 2025, 25, 1423 14 of 23

where n is the number of observations, Yi is the reference measurement, and Ŷi is the
enhanced measurement, i.e., Ŷi = Yi − ϵi.

The RMSE was computed using cross-validation (11 weeks for training and 1 week for
testing), and the best combination was defined as the one that minimised the RMSE across
all folds.

The outcome of this process is shown in Table 3, where selected features are highlighted
for the three gas models of device 5158 and 5178 and the three combined gas models.
For example, the best feature combination to correct the CO measurements by device 5158
is CO and humidity. One can highlight that apart from the CO2 sensors, the two devices
need different features for the best models to be delivered. In addition, humidity is a
unique feature that enhances the performance of all models. Regarding the three combined
models, experiments concluded in the three cases that the best feature combination was the
usage of all the features. Note that a similar process was followed to determine the best
feature combination for the SVR models.

Table 3. Features selected for each model by minimising the RMSE.

5158 5178 Combo (5158 + 5178)
CO O3 CO2 CO O3 CO2 CO O3 CO2

CO ✓ ✓ ✓ ✓ . ✓ ✓ ✓ ✓
O3 . ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CO2 . ✓ ✓ . ✓ ✓ ✓ ✓ ✓
Temperature . ✓ . ✓ . . ✓ ✓ ✓
Humidity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Pressure . ✓ ✓ . . ✓ ✓ ✓ ✓

To identify how important the individual features are to the measurement correc-
tion models, each feature was standardised before computing the MLR coefficients of
each model:

Z =
X − X
σ(X)

where

• Z: the standardised value of the feature;
• X: the initial value of the feature;
• X: the mean value of the feature;
• σ(X): the standard deviation of the feature.

Figures 7–9 display, for the gas model of each individual sensor, the percentage of
the absolute value of the MLR coefficient for each of the 6 features. Overall, as expected,
the most important feature for each model is the gas measurement associated with the
model with values varying between 42% and 76%. Then, humidity and/or temperature
are critical to the CO and O3 models, whereas CO and either O3 or humidity contribute to
more than 13% of the corrections of the CO2 models. As already suggested by the different
feature correlations displayed in Figure 6, the corresponding gas sensors of the two devices
can show significantly different feature contributions.

Figure 10 shows similar information for the three combined gas models, where the
importance of each feature is consistent with those displayed for the individual models.
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Figure 10. Coefficients for the combined models.

5. Results
All experiments were conducted using cross-validation with an 11 weeks of training

and 1 week of testing dataset. The reported results comprise measurement calibration
and enhancement using MLR with both all features and best features (where available)
and using SVR with the best features. Note that for each SVR model, the choice of the



Sensors 2025, 25, 1423 16 of 23

regularisation parameter (or cost), margin, and kernel (and their associated parameters)
was optimised. Using WAO measurements as the ground truth, the performance was
evaluated using three main metrics, i.e., Pearson’s correlation coefficient (correlation), the
Mean Percentage Error (MPE), and the Mean Average Error (MAE), including the associated
standard deviation (STD) and min and max errors.

Two sets of experiments were conducted to evaluate the generated models: first,
with models designed for each individual sensor, and second, with combined models
associated with individual gases. Note that the corrections delivered by the various MLR
models have proved statistically significant as evidenced by the p-values obtained from
paired t-tests, see Table 4.

Table 4. p-values from the paired t-tests used to assess the statistical significance of the corrected
measurements obtained through various MLR models.

5158 5178 Combo (5158 + 5178)

CO 3.18 × e−11 4.34 × e−221 1.09 × e−117

O3 8.12 × e−120 9.70 × e−47 5.96 × e−290

CO2 1.93 × e−65 1.76 × e−79 4.34 × e−268

5.1. Models for Individual Sensors

Table 5 reports the results obtained from models tailored to each individual sensor.
Correlations between the WAO and calibrated cost-effective sensor readings vary between
72% and 84%, which is usually considered as strong correlations. In addition, there are
important correlation differences both between types of gas sensor, with CO sensors
performing best, and within a type of gas sensor, especially O3.

In terms of enhanced measurements, all models using ’Best features’ outperformed the
calibration alone. For example, correlations increased to the range 81% and 91%, and the
MAE decreased by up to 46%. This confirms the added value of using additional features
to that of the gas of interest. Although feature selection improves results overall, gains
are generally quite limited. In addition, SVR models outperformed MLR models offering
systematically the best MAE and reduced both the standard deviation and max error.

5.2. Models for Combined Sensors

The results obtained by the combined models are displayed in Table 6. In terms of
the calibration performance, correlations are around the mean of the values obtained by
the two corresponding sensors. As previously, both MLR and SVR enhance measurement
quality for O3 and CO2, with SVR doing better than MLR. However, the CO results are
not improved as the various metrics show. This may be explained by the discrepancies
between CO sensors 5158 and 5178 as shown in Figure 7. Indeed, it suggests very different
behaviours especially towards temperature.

Comparison with the performance reported in Table 5 clearly shows that models
targeting single sensors better enhance measurements than the more general ones designed
for a sensor type. Still, one can observe that for O3 and CO2 sensors, the combined models
provide some added value when compared to the performance delivered by individual
sensor calibration.
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Table 5. Evaluation of calibrated and enhanced measurements for individual sensors against
ground truth. Best performance is highlighted in bold for each metric in each experiment.

Correlation MPE MAE STD Min Max

CO 5158 (ppb)

MLR (all features) 0.84 4.91% 7.03 4.83 0.03 29.44
MLR (best features) 0.84 4.66% 6.86 4.76 0.05 30.10
SVR (best features) 0.83 4.70% 6.13 4.02 0.06 24.65
Calibration 0.82 4.51% 6.93 4.96 0.04 29.90

CO 5178 (ppb)

MLR (all features) 0.90 2.95% 4.80 3.76 0.02 29.76
MLR (best features) 0.90 2.97% 4.78 3.68 0.03 28.84
SVR (best features) 0.91 3.07% 4.17 2.89 0.04 20.43
Calibration 0.84 5.71% 7.66 4.80 0.06 26.87

O3 5158 (ppb)

MLR (all features) 0.89 8.14% 3.24 2.40 0.02 12.81
MLR (best features) 0.89 8.14% 3.24 2.40 0.02 12.81
SVR (best features) 0.91 4.45% 2.51 1.86 0.01 9.79
Calibration 0.80 11.81% 4.18 3.05 0.01 14.56

O3 5178 (ppb)

MLR (all features) 0.82 13.44% 4.93 3.15 0.09 18.83
MLR (best features) 0.82 13.02% 4.75 3.07 0.06 18.40
SVR (best features) 0.85 8.40% 3.54 2.48 0.03 14.14
Calibration 0.72 15.10% 5.19 3.70 0.03 18.57

CO2 5158 (ppm)

MLR (all features) 0.80 0.33% 4.18 3.57 0.02 18.85
MLR (best features) 0.81 0.32% 4.14 3.56 0.02 18.88
SVR (best features) 0.82 0.38% 3.93 3.24 0.02 16.50
Calibration 0.74 0.33% 4.70 3.78 0.01 20.35

CO2 5178 (ppm)

MLR (all features) 0.85 0.42% 3.84 3.39 0.03 19.35
MLR (best features) 0.86 0.42% 3.82 3.40 0.02 19.11
SVR (best features) 0.87 0.41% 3.56 3.13 0.03 16.05
Calibration 0.79 0.51% 4.60 3.72 0.02 19.38

Table 6. Evaluation of calibrated and enhanced measurements for combined sensors against
ground truth. Best performance is highlighted in bold for each metric in each experiment.

Correlation MPE MAE STD Min Max

CO (ppb)
MLR (all features) 0.81 4.27% 6.83 4.99 0.03 35.85
SVR (all features) 0.81 4.48% 7.07 5.34 0.03 43.21
Calibration 0.82 4.57% 6.85 4.88 0.02 31.43

O3 (ppb)
MLR (all features) 0.85 10.79% 4.05 2.89 0.01 18.74
SVR (all features) 0.85 9.67% 3.89 2.85 0.01 18.01
Calibration 0.76 12.33% 4.51 3.35 0.01 18.39

CO2 (ppm)
MLR (all features) 0.79 0.29 % 4.19 3.62 0.01 20.38
SVR (all features) 0.80 0.32% 4.01 3.60 0.01 20.52
Calibration 0.75 0.32% 4.56 3.73 0.01 20.85

6. Discussion
This study provided valuable insights into the limitations of three types of low-cost

sensors: two electrochemical sensors for CO and O3 and a non-dispersive infrared sensor
for CO2. In addition, it evaluated how the usage of Multiple Linear Regression models can
be exploited to correct sensor readings.

Given the 12-week duration of data collection, this work was unable to assess the
impact of sensor ageing. However, it provides evidence supporting several other causes of
measurement inaccuracies described in Section 2.3. Although sensor manufacturers only
provide correction curves for temperature, Figures 5 and 6 reveal significant correlations
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between individual gas measurements and not only temperature but also humidity and
other gases. This is particularly evident for the non-dispersive infrared sensors measuring
CO2 and the electrochemical sensors reporting CO concentration. Inconsistent behaviour
between two units of the same sensor is also noticeable, especially between the two CO
sensors, which were affected very differently by temperature and humidity. This is clearly
highlighted by the very different coefficient values of their individual models designed to
correct their readings, see Figure 7.

For models trained on each individual sensor, the use of MLR models often signifi-
cantly enhances performance. One should note that feature optimisation has shown very
limited impact. Conversely, results using SVR suggest that employing more sophisticated
models could further improve measurements if the constraint of processing data on the
device was removed. Nonetheless, additional gains might be limited, as previous stud-
ies highlight cross-sensitivity with other gases, including Cl2, NO2, and H2S [25,60,61],
and the value of integrating meteorological data [25,26,28,88,89]. Thus, a promising strat-
egy to enhance gas readings could involve feeding the models with more relevant fea-
tures that they could exploit: air pollution monitoring devices could be equipped with
additional sensors to detect other types of gases, and/or they could retrieve external
meteorological information.

While ideally, a single correction model for each type of gas sensor would be pre-
ferred, the performance reported in Table 6 and the cross-sensitivity of individual units
highlighted in Figures 7–9 indicate that similarity between units’ behaviour is crucial for
the success of such models. In this study, the combined model proved very successful for
the two O3 sensors, which share very similar sensitivity profiles, see Figure 8. However,
the model failed to deliver enhanced measurements for the two CO sensors, which exhibit
very different sensitivity to other parameters, see Figure 7. Indeed, significant inter-unit
inconsistency is frequently observed in electrochemical sensor systems [93]. Given that it
may be unrealistic to expect significant improvements in the manufacturing consistency of
low-cost sensors in the short term, a practical approach could be to design a small range of
models for each sensor type and use factory calibration to associate each unit with one of
these models.

7. Conclusions
The primary objective of this study was to assess how machine learning algorithms could

improve readings from low-cost sensors, ensuring that these corrections could be performed
on the monitoring device, i.e., on a simple microcontroller. To meet these requirements,
Multiple Linear Regression models were trained and tested using data collected from two
electrochemical sensors measuring CO and O3 concentrations, as well as a non-dispersive
infrared sensor estimating CO2 levels. These sensors were co-located with an air quality
monitoring reference station to ensure validation against high-precision measurements.

Models designed for a specific sensor unit significantly enhanced measurements,
increasing their correlations with those from reference-grade instruments by up to 10%.
Further improvements in accuracy are anticipated by incorporating additional features into
the models, such as meteorological data and extra gas readings. Naturally, if the correction
process could be performed online, more sophisticated machine learning models could be
considered. However, this study also revealed that variations in the behaviour of different
sensor units can hinder the development of a single correction model for each sensor type.
To address production inconsistencies, if a factory-based calibration process was able to
classify units according to sub-types, specific correction models could be developed for
each of them.
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While challenges persist, there is confidence that they will soon be overcome, enabling
cost-effective devices to provide dense air quality monitoring networks. Such advance-
ments would contribute significantly to several United Nations Sustainable Development
Goals, promoting broader access to reliable environmental monitoring.

Author Contributions: Conceptualisation, B.M., J.-C.N. and F.R.; methodology, Y.C., C.W., J.-C.N.
and F.R.; software, Y.C. and C.W.; validation, Y.C. and C.W.; resources, B.M.; writing—original
draft preparation, Y.C. and C.W.; writing—review and editing, Y.C., C.W., B.M., J.-C.N. and F.R.;
visualisation, Y.C.; supervision, J.-C.N. and F.R.; funding acquisition, B.M., J.-C.N. and F.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Innovate UK—Accelerated Knowledge Transfer—grant
number 1726-AKT (2024) and the UK government—UKSPF BIG Growth Programme—grant number
P2687-100 (2024).

Data Availability Statement: The dataset is available upon request from the authors.

Acknowledgments: The authors would like to thank Grant Forster, Senior Research Fellow in the
School of Environmental Sciences at the University of East Anglia, UK, and coordinator of the
Weybourne Atmospheric Observatory, for accepting to host the cost-effective sensors and giving
access to the data collected by the laboratory.

Conflicts of Interest: Author Bijan Mohandes is employed by the company Technocomm Consulting
Ltd., which provided the cost-effective devices used in this study. The remaining authors declare no
conflicts of interest.

References
1. Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A., III; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal,

S.; et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci.
USA 2018, 115, 9592–9597. [CrossRef] [PubMed]

2. World Health Organization. Ambient (Outdoor) Air Pollution. 2022. Available online: https://www.who.int/news-room/fact-
sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 31 January 2025).

3. Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.;
Charlson, F.J.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational,
and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the global burden of disease study 2015. Lancet 2016,
388, 1659–1724. [CrossRef]

4. Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin,
M.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they
gone? Environ. Int. 2018, 116, 286–299. [CrossRef] [PubMed]

5. Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra,
L.; et al. Pollution and health: A progress update. Lancet Planet. Health 2022, 6, e535–e547. [CrossRef] [PubMed]

6. Zhang, X.; Chen, X.; Zhang, X. The impact of exposure to air pollution on cognitive performance. Proc. Natl. Acad. Sci. USA 2018,
115, 9193–9197. [CrossRef] [PubMed]

7. Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of Air Pollution: A Review.
Front. Public Health 2020, 8, 14. [CrossRef] [PubMed]

8. Martenies, S.E.; Wilkins, D.; Batterman, S.A. Health impact metrics for Air Pollution Management Strategies. Environ. Int. 2015,
85, 84–95. [CrossRef] [PubMed]

9. Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor
platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [CrossRef] [PubMed]

10. Hegde, M.; Nebel, J.-C.; Rahman, F. Cleaning up the Big Smoke: Forecasting London’s Air Pollution Levels Using Energy-Efficient
AI. Int. J. Environ. Pollut. Remediat. 2024, 12, 23–28. [CrossRef]

11. Yang, B.Y.; Fan, S.; Thiering, E.; Seissler, J.; Nowak, D.; Dong, G.H.; Heinrich, J. Ambient air pollution and diabetes: A systematic
review and meta-analysis. Environ. Res. 2020, 180, 108817. [CrossRef] [PubMed]

12. Noble, C.A.; Vanderpool, R.W.; Peters, T.M.; McElroy, F.F.; Gemmill, D.B.; Wiener, R.W. Federal reference and equivalent methods
for measuring fine particulate matter. Aerosol Sci. Technol. 2001, 34, 457–464. [CrossRef]

http://doi.org/10.1073/pnas.1803222115
http://www.ncbi.nlm.nih.gov/pubmed/30181279
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
http://dx.doi.org/10.1016/S0140-6736(16)31679-8
http://dx.doi.org/10.1016/j.envint.2018.04.018
http://www.ncbi.nlm.nih.gov/pubmed/29704807
http://dx.doi.org/10.1016/S2542-5196(22)00090-0
http://www.ncbi.nlm.nih.gov/pubmed/35594895
http://dx.doi.org/10.1073/pnas.1809474115
http://www.ncbi.nlm.nih.gov/pubmed/30150383
http://dx.doi.org/10.3389/fpubh.2020.00014
http://www.ncbi.nlm.nih.gov/pubmed/32154200
http://dx.doi.org/10.1016/j.envint.2015.08.013
http://www.ncbi.nlm.nih.gov/pubmed/26372694
http://dx.doi.org/10.1016/j.envint.2016.12.007
http://www.ncbi.nlm.nih.gov/pubmed/28038970
http://dx.doi.org/10.11159/ijepr.2024.003
http://dx.doi.org/10.1016/j.envres.2019.108817
http://www.ncbi.nlm.nih.gov/pubmed/31627156
http://dx.doi.org/10.1080/02786820121582


Sensors 2025, 25, 1423 20 of 23

13. U.S. Environmental Protection Agency. 2024. Available online: https://www.epa.gov/indoor-air-quality-iaq/low-cost-air-
pollution-monitors-and-indoor-air-quality (accessed on 26 January 2025).

14. Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.;
Preuss, P.W. The changing paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [CrossRef]
[PubMed]

15. Shahraiyni, H.T.; Sodoudi, S.; Kerschbaumer, A.; Cubasch, U. The development of a dense urban air pollution monitoring
network. Atmos. Pollut. Res. 2015, 6, 904–915. [CrossRef]

16. US EPA. EPA Scientists Develop and Evaluate Federal Reference & Equivalent Methods for Measuring Key Air Pollutants.
2016. Available online: https://www.epa.gov/air-research/epa-scientists-develop-and-evaluate-federal-reference-equivalent-
methods-measuring-key (accessed on 26 January 2025).

17. Hoekman, S.K.; Welstand, J.S. Vehicle emissions and air quality: The early years (1940s–1950s). Atmosphere 2021, 12, 1354.
[CrossRef]

18. Apte, J.S.; Manchanda, C. High-resolution urban air pollution mapping. Science 2024, 385, 380–385. [CrossRef]
19. Ródenas García, M.; Spinazzé, A.; Branco, P.T.; Borghi, F.; Villena, G.; Cattaneo, A.; Di Gilio, A.; Mihucz, V.G.; Gómez Álvarez,

E.; Lopes, S.I.; et al. Review of low-cost sensors for indoor air quality: Features and applications. Appl. Spectrosc. Rev. 2022, 57,
747–779. [CrossRef]

20. Shairsingh, K.; Ruggeri, G.; Krzyzanowski, M.; Mudu, P.; Malkawi, M.; Castillo, J.; da Silva, A.S.; Saluja, M.; Martínez, K.C.;
Mothe, J.; et al. Who air quality database: Relevance, history and future developments. Bull. World Health Organ. 2023, 101,
800–807. [CrossRef]

21. Carotenuto, F.; Bisignano, A.; Brilli, L.; Gualtieri, G.; Giovannini, L. Low-Cost Air Quality Monitoring Networks for long-term
field campaigns: A Review. Meteorol. Appl. 2023, 30, e2161. [CrossRef]

22. Bittner, A.S.; Cross, E.S.; Hagan, D.H.; Malings, C.; Lipsky, E.; Grieshop, A. Performance characterization of low-cost air quality
sensors for off-grid deployment in rural Malawi. Atmos. Meas. Tech. 2022, 15, 3353–3376. [CrossRef]

23. Fowler, D.; Brimblecombe, P.; Burrows, J.; Heal, M.R.; Grennfelt, P.; Stevenson, D.S.; Jowett, A.; Nemitz, E.; Coyle, M.; Liu, X.; et al.
A chronology of Global Air Quality. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2020, 378, 20190314. [CrossRef]

24. Giordano, M.R.; Malings, C.; Pandis, S.N.; Presto, A.A.; McNeill, V.F.; Westervelt, D.M.; Beekmann, M.; Subramanian, R. From
low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost Particulate
Matter Mass Sensors. J. Aerosol Sci. 2021, 158, 105833. [CrossRef]

25. Wang, G.; Yu, C.; Guo, K.; Guo, H.; Wang, Y. Research of low-cost air quality monitoring models with different machine learning
algorithms. Atmos. Meas. Tech. 2024, 17, 181–196. [CrossRef]

26. Bush, T.; Papaioannou, N.; Leach, F.; Pope, F.D.; Singh, A.; Thomas, G.N.; Stacey, B.; Bartington, S. Machine learning techniques to
improve the field performance of low-cost air quality sensors. Atmos. Meas. Tech. 2022, 15, 3261–3278. [CrossRef]

27. Nalakurthi, N.V.S.R.; Abimbola, I.; Ahmed, T.; Anton, I.; Riaz, K.; Ibrahim, Q.; Banerjee, A.; Tiwari, A.; Gharbia, S. Challenges and
opportunities in calibrating low-cost environmental sensors. Sensors 2024, 24, 3650. [CrossRef] [PubMed]

28. Ravindra, K.; Kumar, S.; Kumar, A.; Mor, S. Enhancing Accuracy of Air Quality Sensors with Machine Learning to Augment
Large-Scale Monitoring Networks, Nature News. 2024. Available online: https://www.nature.com/articles/s41612-024-00833-9
(accessed on 26 January 2025).

29. Popoola, O.A.; Carruthers, D.; Lad, C.; Bright, V.B.; Mead, M.I.; Stettler, M.E.; Saffell, J.R.; Jones, R.L. Use of networks of low cost
air quality sensors to quantify air quality in urban settings. Atmos. Environ. 2018, 194, 58–70. [CrossRef]

30. World Meteorological Organization. Low-Cost Sensors Can Improve Air Quality Monitoring and People’s Health. 2024.
Available online: https://wmo.int/news/media-centre/low-cost-sensors-can-improve-air-quality-monitoring-and-peoples-
health (accessed on 26 January 2025).

31. Bililign, S.; Brown, S.S.; Westervelt, D.M.; Kumar, R.; Tang, W.; Flocke, F.; Vizuete, W.; Ture, K.; Pope, F.D.; Demoz, B.; et al. East
African megacity air quality: Rationale and framework for a measurement and Modeling Program. Bull. Am. Meteorol. Soc. 2024,
105, E1584–E1602. [CrossRef]

32. Khreis, H.; Johnson, J.; Jack, K.; Dadashova, B.; Park, E.S. Evaluating the performance of low-cost air quality monitors in Dallas,
Texas. Int. J. Environ. Res. Public Health 2022, 19, 1647. [CrossRef]

33. Saeed, T.; Khaliq, M.M.; Bergin, M.H.; Bhave, P.V.; Khaleel, N.; Mool, E.; Senarathna, M.; Zaman, S.U.; Roy, S.; Salam, A.; et al.
Sustaining low-cost PM2.5 monitoring networks in South Asia: Technical challenges and solutions. EGUsphere 2024, 2024, 1–24.
[CrossRef]

34. Mead, M.I.; Popoola, O.A.M.; Stewart, G.B.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J.J.; McLeod, M.W.; Hodgson, T.F.;
Dicks, J.; et al. The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. Atmos.
Environ. 2013, 70, 186–203. [CrossRef]

35. Okorn, K.; Iraci, L.T. An overview of outdoor low-cost gas-phase air quality sensor deployments: Current efforts, trends, and
limitations. Atmos. Meas. Tech. 2024, 17, 6425–6457. [CrossRef]

https://www.epa.gov/indoor-air-quality-iaq/low-cost-air-pollution-monitors-and-indoor-air-quality
https://www.epa.gov/indoor-air-quality-iaq/low-cost-air-pollution-monitors-and-indoor-air-quality
http://dx.doi.org/10.1021/es4022602
http://www.ncbi.nlm.nih.gov/pubmed/23980922
http://dx.doi.org/10.5094/APR.2015.100
https://www.epa.gov/air-research/epa-scientists-develop-and-evaluate-federal-reference-equivalent-methods-measuring-key
https://www.epa.gov/air-research/epa-scientists-develop-and-evaluate-federal-reference-equivalent-methods-measuring-key
http://dx.doi.org/10.3390/atmos12101354
http://dx.doi.org/10.1126/science.adq3678
http://dx.doi.org/10.1080/05704928.2022.2085734
http://dx.doi.org/10.2471/BLT.23.290188
http://dx.doi.org/10.1002/met.2161
http://dx.doi.org/10.5194/amt-15-3353-2022
http://dx.doi.org/10.1098/rsta.2019.0314
http://dx.doi.org/10.1016/j.jaerosci.2021.105833
http://dx.doi.org/10.5194/amt-17-181-2024
http://dx.doi.org/10.5194/amt-15-3261-2022
http://dx.doi.org/10.3390/s24113650
http://www.ncbi.nlm.nih.gov/pubmed/38894441
https://www.nature.com/articles/s41612-024-00833-9
http://dx.doi.org/10.1016/j.atmosenv.2018.09.030
https://wmo.int/news/media-centre/low-cost-sensors-can-improve-air-quality-monitoring-and-peoples-health
https://wmo.int/news/media-centre/low-cost-sensors-can-improve-air-quality-monitoring-and-peoples-health
http://dx.doi.org/10.1175/BAMS-D-23-0098.1
http://dx.doi.org/10.3390/ijerph19031647
http://dx.doi.org/10.5194/egusphere-2024-1932
http://dx.doi.org/10.1016/j.atmosenv.2012.11.060
http://dx.doi.org/10.5194/amt-17-6425-2024


Sensors 2025, 25, 1423 21 of 23

36. Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of
low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [CrossRef] [PubMed]

37. Dharaiya, V.R.; Malyan, V.; Kumar, V.; Sahu, M.; Venkatraman, C.; Biswas, P.; Yadav, K.; Haswani, D.; Raman, R.S.; Bhat, R.; et al.
Evaluating the performance of low-cost PM sensors over multiple coalesce network sites. Aerosol Air Qual. Res. 2023, 23, 220390.
[CrossRef]

38. Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the
performance of low-cost sensors for air quality monitoring. Atmosphere 2019, 10, 506. [CrossRef]

39. Seesaard, T.; Kamjornkittikoon, K.; Wongchoosuk, C. A comprehensive review on advancements in sensors for air pollution
applications. Sci. Total Environ. 2024, 951, 175696. [CrossRef] [PubMed]

40. Varaden, D.; Leidland, E.; Barratt, B. The Breathe London Wearables Study Engaging Primary School Children to Monitor Air
Pollution in London. Greater London Authority. 2019. Available online: https://erg.ic.ac.uk/research/docs/Uploads_to_
exposure_science_website/Final%20BLW%20Report_211019%20.pdf (accessed on 26 January 2025).

41. Che, W.; Frey, H.C.; Fung, J.C.; Ning, Z.; Qu, H.; Lo, H.K.; Chen, L.; Wong, T.W.; Wong, M.K.; Lee, O.C.; et al. PRAISE-HK: A
personalized real-time air quality informatics system for citizen participation in exposure and health risk management. Sustain.
Cities Soc. 2020, 54, 101986. [CrossRef]

42. Mahajan, S.; Chung, M.K.; Martinez, J.; Olaya, Y.; Helbing, D.; Chen, L.J. Translating citizen-generated air quality data into
evidence for shaping policy. Humanit. Soc. Sci. Commun. 2022, 9, 122. [CrossRef]

43. Lung, S.C.C.; Thi Hien, T.; Cambaliza, M.O.L.; Hlaing, O.M.T.; Oanh, N.T.K.; Latif, M.T.; Lestari, P.; Salam, A.; Lee, S.Y.; Wang,
W.C.V.; et al. Research priorities of applying low-cost PM2.5 sensors in Southeast Asian countries. Int. J. Environ. Res. Public
Health 2022, 19, 1522. [CrossRef] [PubMed]

44. Higgins, C.; Kumar, P.; Morawska, L. Indoor air quality monitoring and source apportionment using low-cost sensors. Environ.
Res. Commun. 2024, 6, 012001. [CrossRef]

45. Liang, Y.; Wu, C.; Jiang, S.; Li, Y.J.; Wu, D.; Li, M.; Cheng, P.; Yang, W.; Cheng, C.; Li, L.; et al. Field comparison of electrochemical
gas sensor data correction algorithms for ambient air measurements. Sens. Actuators B 2021, 327, 128897. [CrossRef]

46. Air Quality Expert Group. HM Governmet Department for Environment, Food and Rural Affairs. 2023. Available online:
https://uk-air.defra.gov.uk/research/aqeg/ (accessed on 23 February 2025).

47. Coelho Rezende, G.; Le Calvé, S.; Brandner, J.J.; Newport, D. Micro photoionization detectors. Sens. Actuators B 2019, 287, 86–94.
[CrossRef]

48. Levy Zamora, M.; Buehler, C.; Lei, H.; Datta, A.; Xiong, F.; Gentner, D.R.; Koehler, K. Evaluating the performance of using
low-cost sensors to calibrate for cross-sensitivities in a multipollutant network. ACS ES&T Eng. 2022, 2, 780–793. [CrossRef]

49. Chai, H.; Zheng, Z.; Liu, K.; Xu, J.; Wu, K.; Luo, Y.; Liao, H.; Debliquy, M.; Zhang, C. Stability of Metal Oxide Semiconductor Gas
Sensors: A Review. IEEE Sens. J. 2022, 22, 5470–5481. [CrossRef]

50. Johnson, N.E.; Bonczak, B.; Kontokosta, C.E. Using a gradient boosting model to improve the performance of low-cost aerosol
monitors in a dense, heterogeneous urban environment. Atmos. Environ. 2018, 184, 9–16. [CrossRef]

51. Molaie, S.; Lino, P. Review of the newly developed, mobile optical sensors for real-time measurement of the Atmospheric
Particulate Matter Concentration. Micromachines 2021, 12, 416. [CrossRef] [PubMed]

52. Lu, L.; Wu, X.; Chen, L.; Liu, L.; Li, Y.; Wang, X. Optical measurement method of non-spherical particle size and concentration
based on high-temperature melting technique. Measurement 2022, 198, 111375. [CrossRef]

53. Hagan, D.H.; Kroll, J.H. Assessing the accuracy of low-cost optical particle sensors using a physics-based approach. Atmos. Meas.
Tech. 2020, 13, 6343–6355. [CrossRef]

54. Laref, R.; Losson, E.; Sava, A.; Siadat, M. Empiric unsupervised drifts correction method of electrochemical sensors for in field
nitrogen dioxide monitoring. Sensors 2021, 21, 3581. [CrossRef] [PubMed]

55. Hohenberger, T.L.; Che, W.; Sun, Y.; Fung, J.C.; Lau, A.K. Assessment of the impact of sensor error on the representativeness of
population exposure to urban air pollutants. Environ. Int. 2022, 165, 107329. [CrossRef] [PubMed]

56. Maag, B.; Zhou, Z.; Thiele, L. A survey on sensor calibration in Air Pollution Monitoring deployments. IEEE Internet Things J.
2018, 5, 4857–4870. [CrossRef]

57. Wei, P.; Ning, Z.; Ye, S.; Sun, L.; Yang, F.; Wong, K.; Westerdahl, D.; Louie, P. Impact Analysis of Temperature and Humidity
Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring. Sensors 2018, 18, 59. [CrossRef] [PubMed]

58. Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors
2010, 10, 5469–5502. [CrossRef] [PubMed]

59. Afshar-Mohajer, N.; Zuidema, C.; Sousan, S.; Hallett, L.; Tatum, M.; Rule, A.M.; Thomas, G.; Peters, T.M.; Koehler, K. Evaluation
of low-cost electro-chemical sensors for environmental monitoring of ozone, nitrogen dioxide, and carbon monoxide. J. Occup.
Environ. Hyg. 2017, 15, 87–98. [CrossRef] [PubMed]

60. Pang, X.; Shaw, M.D.; Gillot, S.; Lewis, A.C. The impacts of water vapour and co-pollutants on the performance of electrochemical
gas sensors used for air quality monitoring. Sens. Actuators B Chem. 2018, 266, 674–684. [CrossRef]

http://dx.doi.org/10.1016/j.envint.2014.11.019
http://www.ncbi.nlm.nih.gov/pubmed/25483836
http://dx.doi.org/10.4209/aaqr.220390
http://dx.doi.org/10.3390/atmos10090506
http://dx.doi.org/10.1016/j.scitotenv.2024.175696
http://www.ncbi.nlm.nih.gov/pubmed/39197792
https://erg.ic.ac.uk/research/docs/Uploads_to_exposure_science_website/Final%20BLW%20Report_211019%20.pdf
https://erg.ic.ac.uk/research/docs/Uploads_to_exposure_science_website/Final%20BLW%20Report_211019%20.pdf
http://dx.doi.org/10.1016/j.scs.2019.101986
http://dx.doi.org/10.1057/s41599-022-01135-2
http://dx.doi.org/10.3390/ijerph19031522
http://www.ncbi.nlm.nih.gov/pubmed/35162543
http://dx.doi.org/10.1088/2515-7620/ad1cad
http://dx.doi.org/10.1016/j.snb.2020.128897
https://uk-air.defra.gov.uk/research/aqeg/
http://dx.doi.org/10.1016/j.snb.2019.01.072
http://dx.doi.org/10.1021/acsestengg.1c00367
http://dx.doi.org/10.1109/JSEN.2022.3148264
http://dx.doi.org/10.1016/j.atmosenv.2018.04.019
http://dx.doi.org/10.3390/mi12040416
http://www.ncbi.nlm.nih.gov/pubmed/33918877
http://dx.doi.org/10.1016/j.measurement.2022.111375
http://dx.doi.org/10.5194/amt-13-6343-2020
http://dx.doi.org/10.3390/s21113581
http://www.ncbi.nlm.nih.gov/pubmed/34064036
http://dx.doi.org/10.1016/j.envint.2022.107329
http://www.ncbi.nlm.nih.gov/pubmed/35660952
http://dx.doi.org/10.1109/JIOT.2018.2853660
http://dx.doi.org/10.3390/s18020059
http://www.ncbi.nlm.nih.gov/pubmed/29360749
http://dx.doi.org/10.3390/s100605469
http://www.ncbi.nlm.nih.gov/pubmed/22219672
http://dx.doi.org/10.1080/15459624.2017.1388918
http://www.ncbi.nlm.nih.gov/pubmed/29083958
http://dx.doi.org/10.1016/j.snb.2018.03.144


Sensors 2025, 25, 1423 22 of 23

61. Zuidema, C.; Afshar-Mohajer, N.; Tatum, M.; Thomas, G.; Peters, T.; Koehler, K. Efficacy of paired electrochemical sensors for
measuring ozone concentrations. J. Occup. Environ. Hyg. 2019, 16, 179–190. [CrossRef]

62. Cross, E.S.; Williams, L.R.; Lewis, D.K.; Magoon, G.R.; Onasch, T.B.; Kaminsky, M.L.; Worsnop, D.R.; Jayne, J.T. Use of
electrochemical sensors for measurement of air pollution: Correcting interference response and validating measurements. Atmos.
Meas. Tech. 2017, 10, 3575–3588. [CrossRef]

63. Gherardi, S.; Astolfi, M.; Gaiardo, A.; Malagù, C.; Rispoli, G.; Vincenzi, D.; Zonta, G. Investigating the Temperature-Dependent
Kinetics in Humidity-Resilient Tin–Titanium-Based Metal Oxide Gas Sensors. Chemosensors 2024, 12, 151. [CrossRef]

64. Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10,
2088–2106. [CrossRef]

65. Kim, K.; Park, J.K.; Lee, J.; Kwon, Y.J.; Choi, H.; Yang, S.; Lee, J.; Jeong, Y.K. Synergistic approach to simultaneously improve
response and humidity-independence of metal-oxide gas sensors. J. Hazard. Mater. 2022, 424, 127524. [CrossRef] [PubMed]

66. Hayward, I.; Martin, N.A.; Ferracci, V.; Kazemimanesh, M.; Kumar, P. Low-Cost Air Quality Sensors: Biases, Corrections and
Challenges in Their Comparability. Atmosphere 2024, 15, 1523. [CrossRef]

67. Wastine, B.; Hummelgård, C.; Bryzgalov, M.; Rödjegård, H.; Martin, H.; Schröder, S. Compact Non-Dispersive Infrared Multi-Gas
Sensing Platform for Large Scale Deployment with Sub-ppm Resolution. Atmosphere 2022, 13, 1789. [CrossRef]

68. Jha, R.K. Non-dispersive Infrared Gas Sensing Technology: A Review. IEEE Sens. J. 2022, 22, 6–15. [CrossRef]
69. Muller, M.; Graf, P.; Meyer, J.; Pentina, A.; Brunner, D.; Perez-Cruz, F.; Hüglin, C.; Emmenegger, L. Integration and calibration of

non-dispersive infrared (NDIR) CO2 low-cost sensors and their operation in a sensor network covering Switzerland. Atmos. Meas.
Tech. 2020, 13, 3815–3834. [CrossRef]

70. Martin, C.R.; Zeng, N.; Karion, A.; Dickerson, R.R.; Ren, X.; Turpie, B.N.; Weber, K.J. Evaluation and environmental correction of
ambient CO2 measurements from a low-cost Ndir Sensor. Atmos. Meas. Tech. 2017, 10, 2383–2395. [CrossRef]

71. Xu, W.; Cai, Y.; Gao, S.; Hou, S.; Yang, Y.; Duan, Y.; Fu, Q.; Chen, F.; Wu, J. New understanding of miniaturized VOCs monitoring
device: PID-type sensors performance evaluations in ambient air. Sens. Actuators B Chem. 2021, 330, 129285. [CrossRef]

72. Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of portable and low-cost sensors for the ambient air
monitoring of benzene and other volatile organic compounds. Sensors 2017, 17, 1520. [CrossRef]

73. Bilek, J.; Marsolek, P.; Bilek, O.; Bucek, P. Field Test of Mini Photoionization Detector-Based Sensors—Monitoring of Volatile
Organic Pollutants in Ambient Air. Environments 2022, 9, 49. [CrossRef]

74. Schütze, A.; Baur, T.; Leidinger, M.; Reimringer, W.; Jung, R.; Conrad, T.; Sauerwald, T. Highly sensitive and selective VOC sensor
systems based on semiconductor gas sensors: How to? Environments 2017, 4, 20. [CrossRef]

75. Abdullah, A.N.; Kamarudin, K.; Mamduh, S.M.; Adom, A.H.; Juffry, Z.H.M. Effect of environmental temperature and humidity
on different metal oxide gas sensors at various gas concentration levels. IOP Conf. Ser. Mater. Sci. Eng. 2020, 864, 012152.
[CrossRef]

76. Mahdavi, H.; Rahbarpour, S.; Hosseini-Golgoo, S.; Jamaati, H. Reducing the destructive effect of ambient humidity variations on
gas detection capability of a temperature modulated gas sensor by calcium chloride. Sens. Actuators B Chem. 2021, 331, 129091.
[CrossRef]

77. Jin, Z.; Zhao, J.; Liu, L.; Liu, F.; Wang, Z.; Wang, F.; Liu, J.; Mou, Y.; Wu, L.; Wu, X. Humidity-independent gas sensors in the
detection of hydrogen sulfide based on ND2O3-loaded in2o3 porous nanorods. Sens. Actuators B Chem. 2024, 403, 135237.
[CrossRef]

78. Isaac, N.A.; Pikaar, I.; Biskos, G. Metal oxide semiconducting nanomaterials for air quality gas sensors: Operating principles,
performance, and synthesis techniques. Microchim. Acta 2022, 189, 196. [CrossRef] [PubMed]

79. Peterson, P.J.; Aujla, A.; Grant, K.H.; Brundle, A.G.; Thompson, M.R.; Vande Hey, J.; Leigh, R.J. Practical use of metal oxide
semiconductor gas sensors for measuring nitrogen dioxide and ozone in urban environments. Sensors 2017, 17, 1653. [CrossRef]
[PubMed]

80. Nguyen, A.D.; Phung, T.H.; Nguyen, T.D.; Pham, H.H.; Nguyen, K.; Le Nguyen, P. Gamma: A universal model for calibrating
sensory data of multiple low-cost air monitoring devices. Eng. Appl. Artif. Intell. 2024, 128, 107591. [CrossRef]

81. Mahajan, S.; Kumar, P. Evaluation of low-cost sensors for quantitative personal exposure monitoring. Sustain. Cities Soc. 2020,
57, 102076. [CrossRef]

82. Rahi, P.; Sood, S.P.; Bajaj, R.; Kumar, Y. Air quality monitoring for Smart eHealth system using firefly optimization and support
vector machine. Int. J. Inf. Technol. 2021, 13, 1847–1859. [CrossRef]

83. Laref, R.; Losson, E.; Sava, A.; Siadat, M. Support vector machine regression for calibration transfer between electronic noses
dedicated to air pollution monitoring. Sensors 2018, 18, 3716. [CrossRef]
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