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Abstract: Our research focused on analyzing and advancing information technologies to
identify ecological parameters in production. The primary goals were to enhance efficiency,
reduce waste, and minimize the environmental impact of manufacturing processes. By
incorporating the results of the study, we observed and systematized changes occurring in
the transition from Industry 4.0 to Industry 5.0. Special attention was given to studying
processes and technologies related to the generation of synthetic data and analyzing the
implementation of cutting-edge technologies. The research object includes new parameters
introduced within the framework of Industry 5.0, encompassing automation and cognitive
technologies. Our scientific interests also extended to synthetic data used in modeling
various production processes, including optimizing device performance in manufacturing
and forecasting abnormal situations in industrial equipment operations. The subject of
the research involves algorithms for generating synthetic data and methods for validating
them to ensure their statistical similarity to real-world data. During the study, we also
analyzed the impact of artificial intelligence implementation on improving the efficiency
and adaptability of manufacturing systems.

Keywords: manufacturing processes; synthetic data; artificial intelligence; Industry 5.0;
parameters; cognitive technologies

1. Introduction
Modern industry is undergoing significant and forward-looking technological trans-

formations. The transition from Industry 4.0 to Industry 5.0 is gaining increasing relevance
and is impacting production automation [1]. A defining feature of these transformations is
the active use of artificial intelligence and cognitive technologies. This evolution affects
not only the technical characteristics of production but also introduces new challenges,
particularly in the areas of social responsibility and environmental safety [2]. The relevance
of this scientific research lies in the need to understand and evaluate the impact of the rapid
technological changes occurring during the transition from Industry 4.0 to Industry 5.0 [3].
This transition involves the adoption of new technologies such as Artificial Intelligence
(AI), cognitive systems, and automation. In our view, these advancements have the poten-
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tial to significantly improve production processes, enhance manufacturing efficiency, and
optimize costs.

The authors of article [2] describe the development of a tool for assessing the life
cycle of production, which analyzes the environmental impact of food supply chains.
The tool covers all stages, from raw material extraction to waste management, including
production, distribution, and retail. The article also explores the use of Internet of Things
(IoT) technologies to optimize these chains and reduce environmental impact, with a focus
on the potential to minimize food waste [4].

The changes during the transition from Industry 4.0 to Industry 5.0 are minor but
aim to enhance readability and precision [5]. It is important to emphasize that, on the one
hand, these changes promise improvements and advancements in production capacities,
reductions in energy and material costs, and higher product quality. On the other hand,
they pose new challenges to society, such as the need to increase workplace safety, adapt the
workforce to new working conditions, and find ways to reduce environmental impacts [6].

The relevance of our study is determined by the need to develop strategies for effec-
tively implementing technological innovations.

The research described in reference [7] examines the evolution of manufacturing from
traditional 3D technologies to innovative 4D printing, which incorporates the ability of
materials to adapt or change properties in response to external influences. This devel-
opment opens new possibilities for production in complex industries such as aerospace,
biomedical engineering, and electronics. The article concludes that 4D printing could
radically transform design and manufacturing approaches, offering significant advantages
in product flexibility and adaptability, which are crucial for the transition to Industry 5.0.

These strategies must consider not only economic but also social and environmental
aspects to ensure sustainable development and improved quality of life [6].

Article [8] explores the Critical Success Factors (CSFs) for implementing the concept
of the circular economy (CE) in small and medium-sized enterprises (SMEs). The study
employs the Fuzzy Decision-Making Trial and Evaluation Laboratory (DEMATEL) method-
ology to analyze and determine the structural interactions between CSFs and conducts a
case study to validate the results. The authors identify that new government policies and
CE regulations, consumer awareness, demand for CE products, and economic incentives
for CE products are the leading causal groups of CSFs.

The authors of article [9] describe the Optimized Multi-Level Multi-Type Ensemble
(OMME) forecasting model for one-dimensional time series, specifically for predicting
energy consumption. The authors presented a novel approach combining various ma-
chine learning algorithms and statistical methods to create an ensemble model aimed at
reducing forecasting errors. The study demonstrated that hybrid ensemble methods, such
as bagging and hybrid approaches using algorithms such as Long Short-Term Memory
(LSTM), Gated Recurrent Unit (GRU), and Multilayer Perceptron (MLP) achieve superior
prediction accuracy. The authors presented a novel approach that combines various ma-
chine learning algorithms and statistical methods to create an ensemble model. This model
is designed to reduce forecasting errors. The research demonstrated that using hybrid
ensemble methods (such as bagging and hybrid techniques) with algorithms like LSTM,
GRU, and MLP achieves better prediction accuracy. The application of optimization algo-
rithms, such as Bayesian optimization and Tabu search (TS) is an iterative neighborhood
search algorithm, where the neighborhood changes dynamically, and helps in selecting the
optimal hyperparameters for the models.

The findings of the study suggest that employing ensemble methods in machine
learning can significantly enhance the efficiency of time series forecasting, making it
an essential tool for managing energy consumption in a more stable and cost-effective
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manner. Additionally, the authors showed that GRU played a key role in forecasting energy
consumption, while Autoregressive integrated moving average (ARIMA) models were less
effective due to the high noise levels in the data.

The use of optimization algorithms [10], including Bayesian Optimization and Tabu
Search, enables the selection of optimal model hyperparameters. The study concludes that
employing ensemble methods in machine learning significantly enhances the efficiency of
time series forecasting and serves as an essential tool for managing energy consumption in
a more stable and cost-effective manner [11].

The transition from Industry 4.0 to Industry 5.0 [3] signifies an important shift in
the integration of advanced technologies into manufacturing processes [12]. Industry 4.0
primarily focuses on the digitalization of production [13] and leveraging big data [14], IoT,
and artificial intelligence to achieve higher levels of operational efficiency and automation.
One of the challenges in the development and analysis of modern technological systems
is the lack of sufficiently high-quality data on equipment operation and failures. In real-
world conditions, the number of equipment failure cases may be limited, complicating the
training process for machine learning models. This is where synthetic data come into play.
The generation of synthetic data [15] allows for the creation of artificial datasets that can
replicate real scenarios and equipment behavior. This provides the opportunity to expand
existing datasets, balance them, and improve failure prediction accuracy, thereby ensuring
more effective and reliable operation of monitoring systems.

Synthetic data are artificially created data that mimic real data. They are generated
using statistical models and machine learning algorithms and do not contain identifying
information about individuals or objects. Synthetic data can serve as an alternative to
real data when access to the latter is limited or when the use of real data raises concerns
about privacy or legal issues. One of the advantages of synthetic data is that they allow
researchers and developers to create and test algorithms and models without the risk of
exposing sensitive or private information. Synthetic data can also be used to create diverse
and representative datasets and to fill existing data gaps.

The generation of synthetic data involves creating a model based on existing data and
then using this model to produce new data with similar statistical properties. The model
can be adjusted to generate data with varying levels of complexity, variation, and noise.
However, it is important to ensure that synthetic data accurately reflect real data and do
not introduce any biases or inaccuracies [16].

In contrast, Industry 5.0 builds on these technological foundations to introduce more
complex interactions between humans and machines, such as the use of collaborative
robots (cobots) and advanced interfaces that enable more intuitive communication with
machines [17].

The contributions of this work can be summarized as follows:

• Providing a systematic analysis and determination of production parameters with a
focus on their synthetic generation to optimize production processes such as ambient
air temperature, operating temperature of the equipment, continuous usage time of
the device, total usage time of the device, load on the device, and the level of the
device network voltage.

• The primary objective was to create synthetic datasets that replicate the structure and
statistical relationships of real data, while also evaluating their performance in classifi-
cation tasks. Various generation methods, such as Gaussian Copula and Generative
Adversarial Networks (GANs), were employed to produce synthetic samples for each
target variable category. The quality of the generated data was assessed using metrics
like statistical similarity and distribution of variables, and it was determined that the
TVAE method produced the most satisfactory results [18].
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• This study presents a comprehensive methodology for identifying critical production
parameters, selecting appropriate models for generating synthetic data [19], and
developing reliable methods for evaluating the quality and validity of the generated
data. These contributions address key challenges in the shift from Industry 4.0 to
Industry 5.0, with a focus on sustainable and adaptive manufacturing practices.

2. Materials and Methods
One of the critical aspects of improving production efficiency is the timely prediction

and identification of potential equipment failures. Breakdowns in manufacturing can lead
to significant downtime, negatively affecting productivity, and increasing costs. Therefore,
the implementation of monitoring and predictive maintenance systems is a key task for
many enterprises.

Modern technologies enable not only the timely detection of issues but also the
prediction of potential failures based on the analysis of equipment performance data. This
process leverages various machine learning methods, such as classification and regression,
to analyze large datasets and accurately identify potential failures at early stages [20].

However, one challenge in developing such systems is the availability of sufficient
high-quality data on equipment operation and failures. In real-world conditions, the
number of equipment failure cases may be limited, complicating the training process
for machine learning models. This is where synthetic data come into play. Generating
synthetic data allows the creation of artificial datasets that can replicate real scenarios
and equipment behavior. This enables the expansion and balancing of existing datasets,
enhancing the accuracy of failure prediction and ensuring more efficient and reliable
operation of monitoring systems. For the research, we used a dataset with real data [21]
that include the following metrics taken from a milling machine and consists of 10,000 data
points. The metrics used include the following variables: Air Temperature, Rotational
Speed, Torque, and Tool Wear [22].

2.1. The Methods of Synthetic Data Generation
2.1.1. Gaussian Mixture Model (GMM)

The Gaussian Mixture Model (GMM) [13] is a probabilistic model used to represent
data as a mixture of several normal (Gaussian) distributions. It is commonly used in
clustering tasks, especially when the data consist of several subgroups, each of which
follows its own normal distribution with unknown parameters.

The GMM assumes that the data are generated as a mixture of several Gaussian
distributions, which are called components. Each component has its own parameters:

• The mean (µ), which defines the center of the distribution;
• The variance (σ) for single-variable cases;
• The covariance matrix (Σ), which characterizes the shape and distribution of data

around the mean for multivariate cases;
• The weight coefficient (ϕ), defines the probability that a random sample belongs to a

particular component.

The GMM represents the overall probability density of the data as a weighted sum of
several Gaussian distributions. The formula for the probability that a given data point x
belongs to the model in the univariate case is as follows (1):

p(x) =
K

∑
k=1

ϕi N(x|µiσi) (1)
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where
K is the number of components (Gaussian distributions) in the model.

N(x|µiσi) =
1

σi
√

2π
e
(− (x−µi)

2

2σ2
i

)
—the probability density of a normal distribution.

∑K
k=1 ϕi = 1

For the multivariate case (2):

p
(→

x
)
= ∑K

k=1 ϕi N(
→
x |→µ iΣi) (2)

GMMs are trained using the Expectation–Maximization (EM) algorithm.
Maximization (M-step): Update the parameters (means, covariance matrices, and

weights) of each component to maximize the likelihood of the data, based on the calculated
probabilities. This process is repeated until the parameter changes become negligible or a
predefined number of iterations is reached.

The number of Gaussian components (K) is usually set before training the model.
Methods like the Akaike Information Criterion (AIC) or the Bayesian Information Criterion
(BIC) can be used to determine the optimal number of components by balancing likelihood
and model complexity. The main advantages are the ability to model clusters of different
shapes, sizes, and densities. The disadvantages include sensitivity to the choice of initial
parameters [23], possibility of becoming stuck in local optimum during training, and being
computationally demanding, especially for large datasets. The Gaussian Mixture Model
(GMM) is applied to clustering tasks with a small number of components and well-defined
groups, data with simple dependencies between variables, and where soft classification is
required. However, the GMM is less effective for large multidimensional data or nonlinear
dependencies between variables.

2.1.2. Gaussian Copula Model

The Gaussian Copula Model is one of the most popular methods for modeling de-
pendencies between random variables, especially when each variable has its own unique
distribution. Copulas are used to split complex multivariate distributions into two parts:
the univariate marginal distributions of each variable and the dependency structure be-
tween them. This method is effective for simulating correlations and relationships between
variables in a dataset.

The copula is a mathematical tool that describes the dependence between random
variables independently of their marginal distributions. The use of copulas allows for the
modeling of complex correlations and dependencies between variables, even when their
distributions are not normal.

The Gaussian copula is a specific type of copula that operates based on normal distri-
butions. The concept of the Gaussian copula involves transforming any random variables
into a space of standard normal distributions (i.e., distributions with a mean of 0 and a
variance of 1), which allows for easy modeling of dependencies between them using a
correlation matrix. Since the copula operates in a normalized space, this space can be used
to establish any complex relationships between variables.

Let there be a dataset of n random variables. X1, X2, . . . , Xn, each of which has its
own unique distribution. Initially, to transform the original values into a uniform space, for
each variable. Xi, the empirical distribution function is used Fi (3),

Ui → Fi(Xi) (3)
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where Ui—a uniformly distributed variable on the interval [0, 1]. This step allows the
distribution of each variable to be “fitted” across a uniform interval.

After obtaining the uniform variables Ui, they are transformed into the standard
normal space using the inverse quintile function of the standard normalized distribution [
]. In this normalized space, the correlation between variables is established by constructing
a correlation matrix Σ. This matrix defines how the variables interact with each other. The
correlation matrix can be estimated based on empirical data. Using the obtained correlation
matrix, new synthetic datasets can be generated in the normal space. The generation process
includes generating a vector Z = (Z1, Z2, . . . , Zn) from a multivariate normal distribution
with the correlation matrix. Σ, transformation Zi into a uniform space by using the quantile
function of the standard normal distribution. (4):

Ui → Φ(Zi) (4)

The use of the inverse empirical distribution function to obtain synthetic values in the
original space (5):

Xsynthetic
i = F−1

i (Ui) (5)

The generated synthetic data Xsynthetic
i preserve the dependency structure and the

marginal distributions of the original variables, allowing them to be used for further
analysis and modeling.

For our forecasting task, where it is important to maintain the correlation between
variables. For the datasets we use, which have clearly defined dependencies and a small
number of variables. It should be noted that the method is less effective for complex
nonlinear dependencies or large dimensions.

2.1.3. Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) consist of two neural networks: the gen-
erator and the discriminator (Figure 1). The generator creates synthetic data that mimic
real data, while the discriminator evaluates whether the data are real or generated. This
process is akin to a competition between a counterfeiter and a fraud detector.
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Figure 1. Models for Generating Synthetic Data: GAN Architecture.

As the generator improves its ability to produce realistic data, the discriminator
enhances its skills in identifying fakes. Over time, this adversarial training leads to the
generation of highly realistic synthetic data. The dynamic between these two networks
is essential for advancing applications in various fields, including image synthesis and
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data augmentation. GANs are used for the generation of images, text, or other data with
complex structures and the creation of data with a high level of variability, for example, in
biomedical or financial research.

The research consists of two parts, each covering different aspects of working with
synthetic data and their impact on the quality of classification models.

The first part is dedicated to the generation of synthetic data and their evaluation
using commonly accepted metrics. The main goal of this phase of the study is to create
artificial data that closely resemble real data in terms of statistical properties and structure.
Various models for generating synthetic data are used, such as Gaussian copula models
and Generative Adversarial Networks (GANs). The generation process involves not only
creating the data but also assessing their quality by comparing them with the original data
using metrics such as statistical similarity, the Kolmogorov–Smirnov test, total variation
distance, and others. These metrics help verify how well the synthetic data reflect the
distributions and relationships between variables, which is important for their further use
in real-world analytical and modeling tasks.

The second part of our research focuses on evaluating the quality of synthetic data
in the context of a specific task—classification. At this stage, the primary emphasis is on
how synthetic data can improve or worsen the performance of machine learning models.
A comparison is made between the results of classification models trained only on real
data and those augmented with synthetic data. A key point is analyzing the impact of
synthetic data on various classification metrics, such as accuracy, recall, F-measure, and
others. It is important to understand whether the use of synthetic data helps improve
classification results, especially in cases where real data are limited or classes are imbal-
anced. The approach we have formulated allows for a comprehensive evaluation of both
synthetic data generation and its practical usefulness in real tasks, such as classification.
Comparing modeling results with and without synthetic data makes it possible to draw
conclusions about their effectiveness and the justification of their use to improve machine
learning models.

3. Results
This Section is dedicated to the generation of synthetic data and their evaluation using

widely accepted metrics. The primary goal of this stage is to create artificial data that closely
resemble real data in terms of statistical properties and structure. To achieve this, various
models for generating synthetic data are employed, such as Gaussian copula models
and Generative Adversarial Networks (GANs). The second part of the study focuses on
assessing the quality of synthetic data in the context of a specific task—classification. At
this stage, the emphasis is on how synthetic data can improve or hinder the performance
of machine learning models. A comparison is made between the results of classification
models trained solely on real data and those supplemented with synthetic data. A key
aspect is analyzing the impact of synthetic data on various classification metrics such as
accuracy, recall, F-measure, and others. It is important to determine whether the use of
synthetic data enhances classification results, particularly in cases where real data are
limited or class distributions are imbalanced. This approach allows for a comprehensive
evaluation of both synthetic data generation and their practical utility in real-world tasks
like classification. Comparing the modeling results with and without synthetic data enables
conclusions about their effectiveness and justification for their application to improve
machine learning models.
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3.1. Generation of Synthetic Data

The objective of this stage is to generate 10,000 new data rows, with 1000 entries for
each target category, and 7000 entries where the target column equals 0.

The first step involved data cleaning. Incorrect or unnecessary rows with categories
“RNF” and “TWF” were removed. Columns that were not needed for generating synthetic
data were also eliminated from the dataset.

Subsequently, synthetic data were generated using the Gaussian Mixture Model
(GMM). For each category, such as “Machine failure”, “HDF”, “PWF”, and “OSF”, synthetic
samples were generated based on the data distribution in real examples. This process was
carried out separately for each category to ensure that synthetic data matched real distri-
butions in each category. The optimal number of components for each class was selected
using information criteria such as AIC and BIC.

Several different methods for data generation were utilized, including GANs, TVAE,
and Copula; however, the results were less satisfactory compared to GMM. These models
demonstrated lower-quality synthetic data, which were evaluated using various metrics,
including statistical similarity and distribution coverage metrics.

For each of these methods, generation models were built and assessed using standard
quality metrics for synthetic data. The generation of synthetic samples for each category
was conducted using parametric and non-parametric distributions, such as Gaussian KDE,
beta distribution, and normal distribution for various variables.

Figure 2 demonstrates a comparison of the ratio between the columns Torque [Nm]
and Rotational speed [rpm] for both real and synthetic data.
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synthetic data.

For each of these methods, generation models were built, and their performance
was assessed using standard synthetic data quality metrics. The generation of synthetic
samples for each category was carried out using parametric and non-parametric distri-
butions, such as Gaussian KDE, beta distribution, and normal distribution for different
variables. The results were collected in Tables 1 and 2. Table 1 demonstrates data generation
quality metrics.

Table 2 demonstrates aggregated metrics for data generation quality.
The presented results show that the quality metrics for generating synthetic data sig-

nificantly differ depending on the method used. In particular, for the models, GausMixture,
GaussianCopulaSynthesizer, TVAESynthesizer, CTGANSynthesizer, and CopulaGANSyn-
thesizer, the values of the Column Pair Trends and Column Shapes metrics indicate some
shortcomings in preserving dependencies between columns and their initial distributions.
This happens because the target functions were generated separately, and the contingency
with the target column was not preserved. However, all other metrics are within normal
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limits, so it was decided to retain all generated datasets for testing their suitability for
classification [23].

Table 1. Data generation quality metrics.

Column
Pair Trends

Column
Shapes

Data
Structure

Data
Validity

GausMixture 0.26 0.87 1 0.99
GaussianCopula Synthesizer 0.26 0.86 1 1

TVAESynthesizer 0.26 0.84 1 1
CTGANSynthesizer 0.24 0.86 1 1

CopulaGANSynthesizer 0.24 0.85 1 1
GaussianCopulaSynthesizer-Categorical 0.86 0.91 1 1

CopulaGANSynthesizerCategorical 0.82 0.86 1 1
TVAESynthesizerCategorical 0.81 0.87 1 1

CTGANSynthesizerCategorical 0.83 0.88 1 1

Table 2. Aggregated metrics for data generation quality.

Data Quality Score Diagnostic Score

GausMixture 0.57 0.99
GaussianCopulaSynthesizer 0.56 1

TVAESynthesizer 0.55 1
CTGANSynthesizer 0.55 1

CopulaGANSynthesizer 0.55 1
GaussianCopulaSynthesizerCategorical 0.88 1
CopulaGANSynthesizeCategorical 0.84 1

TVAESynthesizerCategorical 0.84 1
CTGANSynthesizerCategorical 0.86 1

3.2. Data Quality Control in Practice (the Quality of the Generated Synthetic Data, for Which We
Conducted a Series of Experiments)

In order to check the quality of the generated synthetic data, we conducted a series
of experiments using different classification models. In particular, the models used were
KNeighborsClassifier, for which the number of neighbors was selected using the “elbow
method”, DecisionTreeClassifier, RandomForestClassifier, GradientBoostingClassifier, and
MLPClassifier with a neural network architecture including hidden layers (25, 50, 25),
activation of ’relu’ and optimization algorithm ’adam’. The purpose of the experiment was
to evaluate how well synthetic data reproduce real statistical dependencies and whether
they can be used to improve classification in real problems [24].

The experimental process was divided into several stages. First, a test dataset was
created from the original dataset, which was used as a basis for comparison. The first step
was to train the models only on real data to obtain basic performance metrics. This made
it possible to assess how well the models classify real data without the intervention of
synthetic ones.

In the second step, the models were trained exclusively on synthetic data to check
whether these data contained significant statistical dependencies. This was an important
step for assessing the quality of synthetic data: if models can be successfully trained on
synthetic data, this indicates that they reproduce the structures and dependencies present
in real data.

The last step consisted of combining real and synthetic data to train the models. This
allowed us to assess whether synthetic data could help improve the overall performance of
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the models. The models were then tested on a test set of real data, and performance metrics
were collected for each model.

Standard metrics, such as accuracy, precision, recall, F1-measure, and MCC score, as
well as specialized metrics for our task, such as “Broken accuracy”, “Broken precision”,
and “Broken recall” were used to assess the quality of the classification. The last metrics
evaluated the performance of the model in the classification of (broken) objects. The
“Broken accuracy” metric was defined as the ratio of the number of correctly classified
broken objects to all objects that were classified as broken. “Broken precision” and “Broken
recall” were also adapted to evaluate the performance of the model in detecting and
correctly classifying broken objects. In addition to these metrics, training and prediction
time information was collected for each model, allowing us to assess the overall efficiency
and performance of the models in different scenarios.

The results of all experiments were recorded in Table 3, highlighting the top 5 options.

Table 3. Metrics for evaluating the quality of the most effective models.

Dataset Broken
Accuracy

Broken
Precision

Broken
Recall Precision 1-Score MCC Score

TVAESynthesizer 48.27 81.90 54.03 98.15 7.70 65.18
real 47.69 54.39 79.49 98.18 8.11 65.04

TVAESynthesizer 46.92 82.43 52.14 98.10 7.59 64.27
real 46.18 57.47 70.17 97.91 7.95 62.25

TVAESynthesizer 44.89 90.18 47.20 98.20 7.31 64.03

By evaluating the results using metrics important for this case, such as MCC, Broken
accuracy, Broken precision, and Broken recall, we can see that synthetic data indeed helped
the models better distinguish failures, specifically heat dissipation violations (ΠBT), power
failures (3Ж), and overvoltage (ΠHΠ). The MCC metric indicates that the models predict
membership in a specific class better and are not biased toward any one particular class.

Additionally, to explore avenues for further optimization, the metrics for methods that
showed poorer results were analyzed and recorded in Table 4.

Table 4. Metrics for evaluating model quality.

Dataset Broken
Accuracy

Broken
Precision

Broken
Recall Precision F1-Score MCC

Score

GaussianCopulaSynthesizer 42.09 60.18 58.33 97.88 97.52 58.13
TVAESynthesizer_Manual 41.65 78.54 46.99 46.99 97.22 59.35

TVAESynthesizer 41.31 75.58 47.67 97.79 97.27 58.55

Models such as Gaussian Copula, TVAE with a manual approach to calculating the
target column, and GAN also showed decent results; however, due to the specificity of the
data, they were deemed less effective compared to TVAE with an automatic approach to
calculating the target column according to the metrics.

The evaluation was also conducted using the confusion matrix. A comparison of the
results of models trained using synthetic data (Figure 3a) and models that used only the
original dataset (Figure 3b) shows that synthetic data increased the ability of the model to
more accurately and frequently predict device failures in cases of their actual occurrence
(True Positive). At the same time, the number of false predictions of failure in cases of
its absence (False Positive) has increased. However, for this particular task, these results
are satisfactory.
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Figure 3a shows the prediction of failures using synthetic data, while Figure 3b shows
the prediction of failures using original data. The parameters are as follows: BΠ—No error,
ΠBT—Heat dissipation failure, 3Ж—Power failure, and ΠHΠ—Overvoltage.

To assess the quality of the generation of synthetic data, we used data visualiza-
tion, which compares the distributions of real and synthetic data according to various
characteristics. Figure 4 shows a comparison of synthetic data distributions.
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In Figure 4 we can see the original data. The different categories of the “Machine
failure” target function are color-coded:

• Blue color (0) corresponds to the absence of breakdowns,
• Gray (1), brown (2), and yellow (3) are different types of breakdowns.

In Figure 4, it can be observed that the distributions of the synthetic data generally
preserve similar relationships between variables, as seen in the original data presented in
Figure 5. However, certain areas in the synthetic data appear more ’dense’ or ’uniformly
filled’. This suggests that the generation model may have attempted to reproduce the
full range of values for each feature. For example, the relationship between “Process
temperature [K]” and “Air temperature [K]” in both images has a similar linear nature,
indicating the successful reproduction of this correlation by the synthetic data. However,
the synthetic data demonstrate greater variability in some areas, which may explain the
better results in predicting failures (True Positives), but also the increased number of false
alarms (False Positives), as mentioned earlier. Overall, the synthetic data in Figure 4
effectively reproduce the general trends and correlations, but some details, such as natural
variations in distributions or the presence of clusters, may differ from the original data in
Figure 5.
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4. Discussion
Using various generation methods, such as Gaussian Copula and Generative Adver-

sarial Networks (GANs), synthetic samples were generated for each category of the target
variable. The quality of the generated data was assessed using metrics such as statistical
similarity and variable distributions, and it was found that the most satisfactory results
were achieved using the TVAE method. We conducted experiments on the generation
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of synthetic data and investigated their impact on the quality of classification models.
Synthetic datasets were created to replicate the structure and statistical dependencies of
real data, as well as to evaluate their effectiveness in classification tasks. Using various
generation methods, such as Gaussian Copula and Generative Adversarial Networks
(GANs), synthetic samples were generated for each category of the target variable. The
quality of the generated data was assessed using metrics such as statistical similarity and
variable distributions, revealing that the most satisfactory results were achieved using
the Gaussian Mixture method. The original data exhibit natural heterogeneity and some
gaps in the distributions. For instance, the relationship between ’Process temperature [K]’
and ’Air temperature [K]’ shows a similar linear pattern in both figures. This indicates a
successful reproduction of this correlation by the synthetic data. However, the synthetic
data sometimes demonstrate greater variability, which may account for better results in
predicting failures (True Positives) but also a higher number of false alarms (False Positives),
as noted earlier.

Overall, the synthetic data in Figure 4 effectively replicate general trends and correla-
tions. However, certain details, such as natural variations in distributions or the presence
of clusters, may differ from the original data in Figure 5.

5. Conclusions
This study carried out a sequential process, starting from the analysis of scientific

sources to practical experiments, to achieve the primary objective: investigating environ-
mental parameters in production. After systematizing and selecting the materials, it was
established that emerging trends, particularly in Industry 5.0, focus on sustainable devel-
opment, reducing the environmental impact of production, automation, and improving
human–machine interaction. Key technologies that enhance the efficiency of production
processes and minimize waste were also identified.

This phase focused on creating a synthetic dataset of 10,000 records, ensuring balance
across the target variable categories with 1000 records for each of the three categories
and 7000 records for the “normal state”. The dataset structure aimed to balance rare
categories and the dominant class, maintaining a realistic distribution and enhancing
modeling effectiveness. Data cleaning was performed to remove irrelevant or incorrect
entries, including categories “RNF” and “TWF”, reducing noise and optimizing the dataset
for further analysis. Various data generation methods were tested, with GANs, TVAN, and
Copula models yielding less satisfactory results compared to Gaussian Mixture Models
(GMMs), which provided better synthetic data quality, assessed through standard metrics.
Synthetic samples were generated using parametric and non-parametric distributions such
as Gaussian KDE, beta, and normal distributions.

A detailed implementation of experiments on synthetic data generation and their
impact on the quality of classification models was carried out. The main goal was to
create synthetic datasets that would replicate the structure and statistical dependencies
of real data, as well as evaluate their effectiveness in classification tasks. Using various
generation methods, such as Gaussian Copula and Generative Adversarial Networks
(GANs), synthetic samples were generated for each target variable category. The quality
of the generated data was assessed using metrics like statistical similarity and variable
distributions, and it was found that the most satisfactory results were achieved using the
TVAE method. A series of experiments were conducted to train classification models on
real, synthetic, and combined datasets. The results showed that synthetic data can improve
model performance, especially in cases of insufficient real data or class imbalance. Model
performance was evaluated using metrics such as accuracy, F1-score, and MCC, as well
as specialized metrics for faulty objects (“Broken accuracy”, “Broken precision”, “Broken
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recall”). The best results were shown by models trained on combined datasets, confirming
the feasibility of using synthetic data to improve classification quality. Thus, the conducted
research demonstrates that synthetic data, generated using the correct methods, can be
effectively used to enhance the accuracy of machine learning models, especially in cases
where real data are limited or imbalanced.
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