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Characterisation and Quantification of User Privacy:
Key Challenges, Regulations, and Future Directions

Razi Arshad and Muhammad Rizwan Asghar

Abstract—The protection of user privacy in the digital age has
become an important concern with the increase in data-driven
technologies. These technologies generate large amounts of user
data that provide opportunities for organisations to improve the
quality of their user services. The publication of user-generated
data creates risks for exposing an individual’s privacy. In the
literature, identity theft and attribute disclosure are the two
most common attacks on user-generated data. These privacy
issues require data publishing organisations to protect user
privacy. International regulatory standards provide consistent
frameworks and guidelines that data publishing organisations
can use to secure user-sensitive data. This survey discusses the
characterisation and quantification of user privacy in compliance
with international regulatory standards. We provide an overview
of existing regulations and frameworks related to user privacy,
highlighting their strengths, limitations, and implications for
individuals and businesses. We discuss the steps involved in char-
acterising and quantifying user privacy within the framework
of international regulatory standards, privacy tools, and real-
world case studies. Furthermore, we share promising directions
for future research and development, including advancements
in privacy techniques, interdisciplinary collaborations, and the
role of emerging technologies. By addressing these challenges
and creating a way forward, this work aims to contribute to the
ongoing research on user privacy and promote the development
of effective strategies for safeguarding user personal data in an
increasingly interconnected world.

Index Terms—Privacy-Preserving Techniques, Privacy-
Enhancing Techniques, Trust Models, Privacy Measures,
Privacy Quantification, Privacy Loss.

I. INTRODUCTION

In 1890, Warren and Brandeis [1] introduced the notation
of modern privacy while in computing, the right to privacy
became a matter of debate since the 1960s [2]. In 1995,
the European Council passed legislation for data protection
that allows for the processing of user personal data among
member states [3]. Over time, the volume of user data gathered
and exchanged reached incredible levels, making information
easier to access and utilise [4]. By 2025, the United States
(US) International Data Corporation (IDC) predicts that the
total amount of user data generated globally will reach as high
as 163 zettabytes, (ZB) [5]. The user data contains records
of information about users or entities that are necessary for
tasks requiring analysis and mining in data-driven projects [6].
In addition, user data is essential for research and strategy
development as it allows the extraction of deep and insightful
knowledge from various sources. However, despite the enor-
mous benefits of user data sharing, the confidentiality of user
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data has been under persistent threat due to the unprecedented
amount of user data reuse and analysis [7]–[9].

User privacy raised several legal issues both regional and
global level, highlighting the individuals’ concerns about how
organisations manage and use their sensitive data and private
information. In 2014, the White House discussed the chal-
lenges faced by businesses in protecting user privacy in its
study on big data and its impact on privacy. To standardise
data privacy regulations throughout Europe, the General Data
Protection Regulation (GDPR) was proposed in 2017 [10].
Following GDPR, several privacy legislation [11]–[13] have
been proposed to protect the user privacy; for instance, the
California Consumer Privacy Act of 2018 (CCPA) [12] and
the General Personal Data Protection Law (GPDPL) [13] are
used to protect the privacy of California and Brazilian citizens
respectively. These laws generally require that organisations
set up the proper organisational and technical protections
to ensure that user data is handled under these rules and
regulations.

A person to whom data relates is known as a data subject.
The bodies that decide when and how user data is processed
are known as data controllers. Some entities that manage user
data on behalf of data controllers are called data processors. To
illustrate the difference between data subject, data controller,
and data processor in GDPR, let us assume that Alice is a
European Union (EU) resident who uses an online shopping
website to purchase clothes. In this scenario, Alice is a data
subject because her data, such as name, address, and payment
information, is being collected by the online shopping website
“FashionStore”. Here, “FashionStore” is the data controller
because it determines the purposes and means of processing
Alice’s data. More specifically, FashionStore decides why and
how her data is collected, stored, and used, say to process
her orders, manage her account, and send promotional offers.
FashionStore decided to use a third-party payment processing
service called “SecurePayment Ltd.” to handle the financial
transactions. In this case, SecurePayment Ltd. becomes the
data processor. They process Alice’s payment information on
behalf of FashionStore, following Fashionstore’s instructions
and ensuring compliance with GDPR. SecurePayment Ltd.
does not independently determine how Alice’s data will be
used; they act on behalf of and under the authority of Fash-
ionstore.

Developing a comprehensive system model for user pri-
vacy that considers the responsibilities of data subjects, data
processors, and data controllers is necessary for managing
data flows, assigning responsibilities, and identifying potential
privacy threats. Fig. 1 illustrates the comprehensive model for
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Fig. 1. The system model for user privacy in terms of data subjects, data controllers, and data processors along with potential privacy issues and threats.
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Fig. 2. Trade-off between privacy level and data utility.

user privacy in terms of data subjects, data controllers, and
data processors. To ensure privacy throughout data storage,
sharing, and disposal, this model provides a flow in which the
data controller obtains data from the data subjects, processes
it through the data processor, and may share it with third
parties. Several privacy issues arise when data owners lack
control, transparency, and effective consent mechanisms, while
data controllers face challenges in maintaining regulatory
compliance, minimising data collection, and managing third
party risks. Data processors, limited by their role, may suffer
from limited autonomy, weak security practices, and risks
associated with sub-processing. Certain threats are associated
with data subjects, data controllers, and data processors. The
most common threats include: identity theft, phishing, and
breach impacts for data owners; regulatory fines, reputation

damage, insider threats, and data leakage for data controllers;
and security breaches, data misuse, and vulnerabilities in sub-
processors for data processors. Addressing these issues within
the user privacy model is important for protecting user privacy
across all stages of data handling.

The data controller and data processor must preserve con-
fidentiality, notify individuals in the case of a data breach,
and carry out risk assessments. Data subjects have rights to
their data, such as viewing and erasing it. Preventing any
unauthorised disclosure of user data is the main goal of data
confidentiality. This can be achieved by restricting authorised
entities’ access or user data de-identification. It means a
particular person’s information in a record or dataset is altered
or deleted. The de-identification process reduces the amount of
information and data detail, which usually results in losses in
data interpretation and/or predictive performance [14], [15].
A trade-off between privacy and predictive accuracy can be
observed in Machine Learning (ML) tasks (i.e., knowledge
extraction by pattern-finding algorithms) [16].

It is important to design privacy techniques which can max-
imise user privacy protection without minimising predictive
performance but it is still a challenging issue as illustrated in
Fig. 2. We observe that low-quality data with a high level of
privacy level limits the effectiveness of knowledge extraction
and result interpretation [14]. On the other hand, an inadequate
level of privacy could lead to inverse data transformation that
results in user information leakage. Privacy techniques play
an important role in maintaining user privacy during commu-
nication of user-sensitive information. There are two types of
privacy techniques: privacy-preserving techniques and privacy-
enhancing techniques as discussed in Section VII. Despite the
importance of privacy techniques, their effectiveness in terms
of implementation by international standards has not recently
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been reviewed or discussed.
In this survey, we characterise and quantify user privacy

using privacy techniques in compliance with international
security standards including ISO/IEC (International Organi-
sation for Standardisation/International Electrotechnical Com-
mission) [17], IEEE (Institute of Electrical and Electronics
Engineers) [18], and NIST (National Institute of Standards and
Technology) [19]. We have noticed that the most recent sur-
veys cover only well-known privacy techniques, and measure
privacy risk for specific types of disclosure, such as identity
disclosure [20]–[23], but they did not discuss the compliance
of privacy techniques by international security standards. Our
survey uses previous works [24]–[26] by discussing privacy
techniques in compliance with international security standards.
Then, we thoroughly discuss the characterisation and quantifi-
cation of user privacy. Finally, we provide a comprehensive
analysis of privacy techniques in providing privacy protection
along with the main conclusions of existing privacy studies.
The significant contributions of this work can be summarised
as follows.

• We present a general privacy taxonomy, models, and
frameworks.

• We provide the characterisation and quantification of user
privacy risks.

• We propose a mapping of privacy techniques to interna-

tional security standards.
• We discuss the well-known use cases for privacy tech-

niques in real-world scenarios.
• We share challenges, current solutions, and future direc-

tions.

A list of acronyms that are used throughout our survey paper
is presented in Table X.

The rest of the article is organised as follows. Section II
gives some background and context about user privacy. Section
III reviews related survey articles. Section IV identifies privacy
issues, requirements and defines three main trust models.
Section V gives a characterisation of user privacy risks and
discusses the concept of data sensitivity and its implication
for privacy. The quantitative methods for measuring and as-
sessing user privacy that include different privacy metrics and
tools are covered in Section VI. Section VII introduces and
reviews privacy techniques. Section VIII provides a detailed
comparison of privacy challenges in various domains such as
healthcare, finance, social media, and the Internet of Things
(IoT). Section IX explains well-known privacy tools. Open
research challenges and future directions are given in Section
X. Section XI concludes this work. The layout of this survey
is presented in Fig. 3.
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TABLE I
DETAILED COMPARISON OF PREVIOUS SURVEYS ON PRIVACY, (✔) DENOTES THAT THE TOPIC IS COVERED, (✱) SUGGESTS THAT THE TOPIC IS

PARTIALLY COVERED, AND (✘) REPRESENTS THAT THE TOPIC IS NOT COVERED.

Surveys Year Application Key Contribution Privacy Related Factors International
Standards
Mapping

Toch et al. [27] 2018 Cybersecurity systems A comprehensive survey on
the cybersecurity technologies
with privacy invasion analysis

Data Exposure, User identifi-
cation, Data sensitivity, User
control

✘

Zhang, Xue and Li
[28]

2019 Blockchain A detailed survey on security
and privacy on blockchain

Online Transaction, Consensus
Algorithms, Hash Chained
Storage, Anonymous
Signatures, Noninteractive
Zero Knowledge Proof

✘

Humbert, Trubert,
and Huguenin [29]

2019 Interdependent Privacy A comprehensive survey on in-
terdependent privacy risks and
interconnected solutions

Cooperative Solution, Non-
cooperative solution, Demo-
graphics, Genomics, Location,
Aggregate Data

✘

Royal Society [26] 2019 Protecting privacy in
practice

A high-level overview of five
current and promising Privacy
Enhancing Technologies

Privacy Enhancing Technolo-
gies ✱

Hassan, Rehmani,
and Chen [30]

2020 Cyber-Physical Systems An in-depth survey on DP
techniques for cyber-physical
systems

Privacy preservation, Privacy
attacks, Design Mechanism,
Technical Challenges

✘

Beigi and Liu [31] 2020 Social Media A review of key achievements
in protecting user privacy on
social media

Identity Attack, Attribute Dis-
closure Attacks, Vulnerabili-
ties and Mitigation Strategies

✘

Liu et al. [32] 2020 Online Social Networks A thorough analysis of image
privacy in online social net-
works

User-centric Framework,
Intelligent Privacy Protection
Mechanism

✘

Due, Such, and
Suarez-Tangil [33]

2020 Smart home personal as-
sistants

A comprehensive review of
smart home personal assis-
tant’s security issues, attack
vectors and countermeasures

Identity Theft, Cyberstalking,
Information Leakage ✘

Pattnaik, Li, and
Nurse [34]

2023 home networking envi-
ronment

A user perspectives survey on
security and privacy in a home
networking environment

Multiple Home Users, Compli-
cated Data Flow, Security and
Privacy

✘

Royal Society [26] 2023 From privacy to partner-
ship

A detailed report on the role of
Privacy Enhancing Technolo-
gies in data governance and
collaborative analysis

Privacy Enhancing Technolo-
gies ✱

Rigaki, and Garcia
[35]

2023 Machine Learning A survey of privacy attacks in
machine learning

Attack Taxonomy, Threat
Model, User Privacy Leakage ✘

Rodrigues, Villela,
and Feitosa [36]

2024 Social Networks Privacy A systematic mapping of so-
cial network privacy Threats
and their solutions

Identity Theft, Cyberstalking,
Information Leakage ✘

Zhang et al. [37] 2024 Privacy assistance Tool A first privacy-preserving
framework for LLM

Homomorphic Encryption,
Computational Security,
Shuffling-based Solution

✘

This Work 2024 User Privacy A detailed survey on char-
acterisation and quantification
of user privacy in compliance
with international regulatory
standards

Privacy Risk, Privacy Threats,
Privacy Metric, Privacy At-
tacks, International Regulatory
Standards

✔

II. PRELIMINARIES AND PROBLEM FORMULATION

Inference control is a set of principles that aim to provide
statistically transformed data to the public while preserving
the privacy of user data. In the data de-identification process,
the user’s unique identifiers are removed from the data by
applying privacy techniques such that it is a very challenging
task for an attacker to obtain the user-sensitive information
and still have valuable data for future analysis [38]–[41].

To decide which privacy technique is useful for data pro-
tection and prevention of potential attacks, it is necessary
to differentiate among different formats in which one can
store user data. Each data storage format presents a different
challenge. The most popular data formats are tabular data,
microdata, and query-based databases [42]. Tabular data is an
aggregated set of information, which can contain numbers or

values about particular user groups. Microdata is a collection
of records that are unique to a particular user or thing. Finally,
iterative databases, also known as query-based databases,
allow users to run statistical queries including sums, averages,
max, and min. It is noted that the building blocks for query-
based databases and tabular data are microdata sets. Moreover,
microdata disclosure risk is typically thought to be higher than
tabular data risk.

We consider an example of an electronic voting system [43]
to explain the concept of these data formats in more detail.
In electronic voting systems, tabular data, microdata, and
query-based databases are used to manage voter information
and ensure election security. Tabular data organises voter
details and election results in tables that make it easier to
access and update. Microdata includes detailed individual voter
information, such as voting history and demographics. This
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information requires strong privacy protections to keep voter
identities safe. Query-based databases allow authorised users
to retrieve specific information through complex queries with-
out exposing the entire dataset. A technique like Differential
Privacy (DP) is used to prevent revealing individual voter
details. These data types help to maintain the integrity and
privacy in the voting process.

Several researchers [23], [44], [45] have investigated the
basics of tabular data security. Willenborg et al. [23] provided
a wide range of tabular data types and included several
disclosure-prevention techniques in addition to privacy and in-
formation loss protections. Duncan et al. [45] focused only on
tabular data and discussed different techniques for limiting the
disclosure from a broad viewpoint. Several other researchers
[46], [47] have presented comparative studies on the protection
of query-based databases. In this survey, we classify the user
data based on the following attributes:

• Identifiers (IDs): IDs are the attributes that directly
identify an individual, such as name and social security
number.

• Quasi-Identifiers (QIDs): QIDs are individual attributes,
such as date of birth, gender, place of residence, oc-
cupation, and ethnic group that when combined to a
certain extent generate unique IDs that could result in
re-identification.

• Sensitive: This attribute is usually protected by laws and
regulations that uniquely identify individual important
characteristics, such as political stance, religion, and
illness.

• Non-sensitive: All other individual attributes are ex-
pected to carry no personal information at all.

Nowadays, identity theft is one of the major privacy problems
with user data [7], [48]. An attacker or adversary may guess
data subject information from the de-identified datasets. For
instance, assume that a hospital releases a de-identified dataset
containing information about patients’ medical conditions,
treatments, and demographics. Even though the dataset does
not contain explicit identifiers such as names and social secu-
rity numbers, an attacker with access to external datasets or
additional knowledge could potentially infer new information
about individual patients. Assuming the attacker knows that a
particular individual was hospitalised for a rare condition in a
specific period and then accesses the de-identified dataset, she
might be able to correlate certain patterns or combinations
of medical procedures, medications, and demographics to
identify that individual within the dataset. This could lead to
privacy breaches and expose sensitive information about the
patient’s health without their consent.

Several studies show the possibility of linking personal
data to a person [7], [48]–[50]. It was discovered in a study
by Sweeney [51] that 87% of Americans can probably be
identified by using just the set of QIDs (5-digit ZIP, gender,
and date of birth). This study inspired researchers to investigate
re-identification attacks [52] and develop new data protection
methods to reduce disclosure risk [53]. The implementation
of robust privacy techniques in compliance with international
security standards requires an impact assessment of these tech-

niques on user data privacy and utility. The implementation of
privacy techniques must guarantee user data protection level
without its usefulness.

Summary. Recent advancements in modern technology
have completely changed how user data is gathered, processed,
and utilised. The goal of privacy techniques is to process and
transform user data. It might not be sufficient to prevent at-
tackers from linking personal information to a specific person
or from singling out particular individuals who have similar
data if privacy techniques are not implemented following
international security standards. This happens due to the gap
between academic research, which is focused on theoretical
advancements in the privacy-related domain and industry that
is looking at the practical implementation of privacy measures.

In this survey, we bridge the gap between academics and
industry by performing characterisation and quantification of
user privacy risks. This survey provides the industry with
actionable insights to effectively comply with international
standards while enhancing user privacy in real-world appli-
cations. The implementation of international standards for
privacy techniques creates a balance between technological
adoption and the safeguarding of individual privacy [54].

International 
Standards

Technical 
Specification

Risk 
Assessment

Certification

Inter-
operability

Consistency

Resource 
Allocation

Fig. 4. Structural components of international standards.

III. REVIEW OF RELATED SURVEY ARTICLES

Our survey article on the characterisation and quantification
of user privacy differs from all previous studies, as we widely
cover the area of user privacy in the context of international
security standards. There is a comprehensive literature of
survey articles focusing on user privacy in different domains
such as cyber security systems and blockchain. However, to the
best of our knowledge, no survey article thoroughly addresses
the characterisation and quantification of user privacy in the
context of international security standards. We categorise the
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previous survey work on user privacy into several categories
such as cyber security systems and blockchain. The timeline,
applications, key contributions, privacy-related factors, and
mapping to international security standards of these survey
articles are presented in Table I.

Cyber security systems are used to protect networks and
computers against cyber attacks. Toch et al. [27] discussed
both common and novel cyber security technologies with
privacy analysis. They proposed a taxonomy for privacy risk
assessment based on data exposure, user identification, data
sensitivity, and user control. To process user financial informa-
tion in an open environment, blockchain offers an innovative
approach to storing user-sensitive information, executing trans-
actions, performing functions, and establishing trust among
users. Zhang et al. [28] analysed the blockchain security
and user privacy that is crucial for its deployment in vari-
ous applications including cryptocurrency systems and smart
contracts. In energy systems, transportation, and healthcare
applications, DP techniques for cyber-physical systems have
been considered by Muneeb et al. [30]. They provided research
directions for enhancing user data privacy in cyber-physical
systems to guide the development of modern DP solutions.
The individuals’ privacy not only depends on their actions and
data but may also be affected by the privacy decisions and data
sharing by other individuals. The interdependent privacy risks
and associated solutions are discussed in [29].

The widespread use of social media has attracted several
people to participate in numerous activities daily. Beigi and
Liu [31] review key achievements in protecting user privacy
on social media with a main focus on vulnerabilities and
mitigation strategies against identity and attribute disclosure
attacks. The sharing of images on online social networks has
become an important part of our everyday social interactions
leading to the possibility of privacy breaches. Online images
can disclose sensitive information, which makes people recon-
sider their priorities for personal privacy while posting images
on social media. The privacy risks of sharing images on online
social networks by highlighting the inadequacy of current
privacy management solutions were discussed by Liu et al.
[32]. They proposed a user-centric framework for intelligent
privacy protection throughout the image-sharing process. The
privacy threats in online social networks, such as identity theft
and cyberstalking, are examined by Rodrigues, Villela, and
Feitosa [36]. They provide insights into specific privacy threats
and existing prevention methods that serve as a guide for future
research and solutions in online social networks.

A new technology called smart home personal assistants
is transforming the way home users interact with technology
but there are certain security and privacy risks due to the
voice channel, architecture complexity, AI features, and di-
verse underlying technologies. Edu, Such, and Suarez-Tangil
[33] provide a comprehensive review of smart home per-
sonal assistant’s security issues, categorise attack vectors and
countermeasures, and highlight the need for broader research
beyond user-device interaction. Later, Pattnaik, Li, and Nurse
[34] identify key areas for further research that include holistic
methods for diverse devices, multi-user interactions, complex
data flows, demographic factors, and advanced conceptual

frameworks. Although location-based services make ubiqui-
tous computing such as smart home personal assistants more
convenient and useful, they also create new security gaps
that could be used to violate user privacy. Jiang et al. [55]
categorised and reviewed existing privacy-preserving tech-
niques in location-based services and discussed new research
opportunities to address emerging challenges in the field.

The Royal Society [26] has published a report on privacy-
enhancing technologies that can help to maximise data usage
by reducing its inherent risks. It provides a high-level summary
of five promising and active privacy-enhancing technologies
from various industries along with information on each one’s
readiness level and relevant case studies. Later, the Royal
Society published another report [26] that examines how
privacy-enhancing technologies might transform the secure
and efficient use of sensitive data for wider public benefit.
It takes into account how these technologies could be used to
address data governance problems other than privacy. Large
data sets and technological advancements have contributed
to the rapid development of ML in both academic research
and practical applications. At the same time, there is an
increasing emphasis on how ML impacts user security, privacy,
and fairness. Typically, online services collect our personal
information, which is then used to train ML models that are
later used by ML applications. It is unclear how these models
disclose details about the training data. Rigaki and Garcia [35]
analysed privacy attacks against ML and proposed an attack
taxonomy and threat model that causes user privacy leakage.

The rapid development in Large Language Model (LLM)
technology that is built on ML models has prompted a lot of
study and practical applications, especially when it comes to
the integration of LLMs with auxiliary tools, or tools using
LLM agents. However, there are major privacy risks in the
communication of sensitive information among LLMs and
tools. Zhang et al. [37] have introduced PrivacyAsst, which
is the first privacy-preserving framework for such agents.
It utilises Homomorphic Encryption (HE) for computational
security and a shuffling-based solution to handle unrestricted
tasks that ensure compliance with privacy requirements and
demonstrate effectiveness through several case studies. The
Royal Society reports partially covered the topic of user
privacy in compliance with international security standards but
the focus of their reports is privacy enhancing technologies.
However, privacy topics of existing user privacy surveys do not
address the characterisation and quantification of user privacy
in compliance with international security standards.

IV. PRIVACY MODELS AND FRAMEWORKS

Three major organisations develop and publish security
standards that include ISO/IEC [17], IEEE [18], and NIST
[19]. In this section, first we discuss privacy risks, privacy
requirements, privacy models and privacy attacks. Then, we
describe the ISO/IEC, NIST, and IEEE privacy frameworks
and explain their principles for privacy protection.

A. Components of International Standards
International standards play an important role in the estab-

lishment of security and privacy best practices by providing
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common security guidelines. It includes technical specifica-
tion, risk assessment, certification, interoperability, consis-
tency, and resource allocation as listed in Fig. 4.

• Technical Specification: It includes technical require-
ments and guidelines for the implementation of pri-
vacy controls in a common language. It facilitates the
consistent and efficient implementation of privacy con-
trols in an organisation. The ISO/IEC 27001 standard
[56], which we discuss in Section V, provides detailed
technical specifications for establishing an Information
Security Management System (ISMS). For instance, a
multinational company follows ISO/IEC 27001 to ensure
its data security measures are robust and consistently
applied across all its global operations. This includes
specific controls for the encryption process, access control
management, and incident response process, which help
protect sensitive data from unauthorised access.

• Risk Assessment: It is a method for identifying and
controlling user privacy risks. It includes identifying
possible privacy risks, assessing their significance, and
choosing suitable privacy protections. For example, a
hospital using electronic health records might conduct a
risk assessment to identify potential privacy risks, such as
an unauthorised access to patient data and data breaches.
Using standards like ISO/IEC 27701 [57] for privacy
management, which we discuss later in this section, the
hospital can assess the risks and implement controls, such
as multi-factor authentication and regular audit logs to
mitigate these risks.

• Certification: International standards certify organisa-
tions that demonstrate their dedication to privacy and
ensure compliance with legal and regulatory require-
ments. For instance, a cloud service provider has obtained
multiple certifications, including ISO/IEC 27001 [56] and
ISO/IEC 27701 [57], which demonstrate its commitment
to data security and privacy. These certifications reassure
customers that cloud services meet high standards for
protecting personal and sensitive user information making
it a trusted platform for businesses worldwide.

• Interoperability: In complex technological systems, in-
teroperability between technology and privacy controls
is the main challenge. International standards are revised
often to take into account new privacy risks, advance-
ments in technology, and recommended practices to make
complex technological systems work with the best privacy
practices. This motivates businesses to keep improving
their privacy policies. The GDPR, which we discuss in
Section V, has influenced the development of interoper-
able privacy frameworks in Europe. For example, an EU
company implemented GDPR compliance measures, it
ensured that its platform could integrate seamlessly with
other GDPR-compliant systems, facilitating smooth data
exchanges while maintaining privacy standards.

• Consistency: International recognition of the standards
provides consistency in privacy best practices among
different countries. This is particularly important for
organisations that operate across numerous jurisdictions.

A web search engine company operating globally re-
lies on international standards like ISO/IEC 27018 [58],
which focuses on protecting personal data in the cloud.
By adhering to these standards, the company ensures
consistent privacy practices across its various data centres
worldwide that help it comply with different regulatory
requirements in various countries.

• Resource Allocation: International standards provide
recommendations on how to prioritise privacy efforts
based on risk assessments and compliance requirements,
thus helping organisations deploy resources more effec-
tively. A financial institution uses ISO/IEC 27001 [56],
which we discuss in Section V, to conduct risk assess-
ments and allocate resources efficiently. By identifying
high-risk areas, financial institutes can prioritise invest-
ments in security measures such as advanced encryption
technologies and staff training programs, ensuring that
resources are used effectively to protect customer data.

ISO/IEC, IEEE, and NIST standards play an important role
in shaping privacy best practices by providing a structured and
internationally recognised framework for addressing privacy
concerns. Now, we discuss the privacy risks in detail.

B. Privacy Risk

The term “privacy risk” describes the possibility of harm
or adverse effects resulting from improper or unauthorised
handling of user-sensitive data. Privacy risks can take many
different forms and impact both people and businesses. The
most common privacy threats are identity theft, data loss,
unauthorised access, and data disclosure. For instance, a
healthcare provider experiencing a data breach that exposes
patient records can lead to identity theft and unauthorised
access to user-sensitive health information. This breach can
harm patients by compromising their privacy and potentially
leading to financial or medical identity theft. There are com-
prehensive privacy taxonomies that an organisation can adopt
to minimise the privacy risk and reduce privacy-related harm
to their employees, customers, and partners. The first privacy
taxonomy named “Solove privacy taxonomy” [59] is focused
on the enhancement of end-user privacy. The second privacy
taxonomy named “Pfitzmann and Hansen privacy taxonomy”
[60] is aimed at preserving end-user privacy. We elaborate on
the Solove privacy taxonomy with the help of an electronic
voting system [43] as an example to show how each taxonomy
addresses different aspects of end-user privacy.

1) Solove Privacy Taxonomy: The Solove privacy taxon-
omy is divided into four groups based on privacy risk con-
tributing factors including information collection, information
processing, information dissemination, and privacy invasion
discussed as follows:

• Information Collection: The information collection pro-
cesses pose a risk of privacy violations, as end-users may
not be fully aware of the privacy risks involved in data
collection. Management of concerns related to privacy vi-
olations during information collection is discussed in this
phase. In the voter registration process of the electronic
voting system, voters provide their details such as name,
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address, and national identification number. This phase
addresses voter concerns about data collection, storage,
and usage.

• Information Processing: Information processing is the
use, preserving, and manipulation of collected user data.
Privacy concerns arising from information processing are
managed in this phase. For example, in the electronic
voting system, this may involve ensuring that voter data
is securely processed, safely stored, and protected from
unauthorised access during voting and tallying.

• Information Dissemination: The privacy concern re-
lated to information dissemination is the personal data
revelation or the spreading of information threat. Pri-
vacy concerns related to information dissemination are
addressed during this phase. In the electronic voting
system context, this might involve concerns about how
voter data could be shared or disclosed, intentionally
or unintentionally. Addressing these concerns involves
implementing measures to prevent unauthorised sharing
of personal information and ensuring that any data is
disseminated in a controlled and secure manner.

• Privacy Invasion: Privacy invasion is related to the
disclosure of personal data or information. Decisional
interference and intrusion are two common types of
privacy invasion. Privacy concerns stemming from pri-
vacy invasion are addressed during this phase. In the
electronic voting system, this could involve issues such
as unauthorised access to voting records or attempts to
influence voters’ decisions.

2) Pfitzmann and Hansen Privacy Taxonomy: The privacy
taxonomy by Pfitzmann and Hansen [60] defines five pri-
vacy properties that include anonymity, undetectability, un-
linkability, unobservability, and pseudonymity. These privacy
properties are used to meet the end-user privacy preservation
requirements. We illustrate Pfitzmann and Hansen privacy
taxonomy with the help of an IDentity Management System
(IDMS) [61] and show how the privacy properties defined by
Pfitzmann and Hansen – anonymity, undetectability, unlinka-
bility, unobservability, and pseudonymity – can be applied in
the context of an IDMS using tokens. The details of these
privacy properties are as follows.

• Anonymity: Anonymity is the first privacy property in
which a user can utilise an asset or consume a service
without disclosing his identity to third parties. That is, a
user is considered anonymous if she is not recognisable
within a group of users called the anonymity set. Tokens
in an IDMS can be designed so that users can access
services without disclosing who they are. For example, a
user may submit a token that authenticates their rights
without disclosing personal information when gaining
access to a secure website or service. This ensures that
the user remains anonymous within the system and that
other users are unable to identify them.

• Undetectability: Undetectability is the second privacy
property in which an attacker cannot sufficiently distin-
guish whether an item such as a user exits or not. For
instance, in a system where user data is anonymised,

undetectability ensures that an attacker cannot easily de-
termine whether a specific user’s information is included
in the dataset or not, thus preserving the user’s privacy.
In IDMs, tokens can be set up such that an attacker
cannot find out if the token of a certain user is in the
system. For example, undetectability guarantees that an
attacker cannot determine if a specific user’s information
is included in the user records in an information system
where tokens represent voter IDs. Due to this, the attacker
is unable to recognise or follow specific individuals based
on their tokens.

• Unlinkability: The third privacy property is unlinkability,
which is closely related to the anonymity property. It
is necessary property to support user privacy. From an
attacker’s point of view, the unlinkability of two or more
items such as users or messages means that the attacker is
unable to properly determine if these items are related to
one another within the system. The unlinkability ensures
that user actions performed with tokens are not connected.
Tokens used for accessing pharmacy services and medical
records in a healthcare IDMS, for instance, should not
be linked together. This makes it harder for an attacker
to identify the same user as the one performing these
operations. The privacy and isolation of users’ activities
are guaranteed by this separation of actions.

• Unobservability: Unobservability is the fourth privacy
property that refers to a user’s undetectability against
all users who are not engaged in an operation. More
specifically, a user can use a resource or a service, without
being noticed by others. This feature ensures that token
usage is hidden from the adversary. Unobservability in an
IDMS implies that other users or possible eavesdroppers
cannot tell that a user is interacting with the service when
they use their token to access it.

• Pseudonymity: The fifth privacy property is
pseudonymity, which ensures that a user may use
a resource or service without disclosing its true identity
but can still be accountable for that use. A pseudonym
is an identifier of a user other than one of the user’s
real names. IDM tokens allow users to perform actions
while maintaining accountability without disclosing their
true identities. Employees may utilise pseudonymous
tokens in an enterprise IDMS to gain access to different
resources within the organisation. Although these tokens
conceal their true identities, system administrators can
link them to the employee if needed. This guarantees
that users can still be held accountable for their acts
even while their true identities are protected.

We have discussed the privacy taxonomies with examples
that are either used to preserve or enhance user privacy.

In the next subsections, we discuss privacy models and
privacy attacks that focus on users’ privacy in connection
to their relationships and interactions with other users. An
organisation can use these models to establish a mutual
trust relationship among different entities that are involved in
various communication protocols.
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C. Privacy Models

There are three privacy models: trusted, semi-trusted, and
untrusted [62]. The details of these models are as follows:

• Trusted model: In the trusted model, users need to pro-
tect their sensitive data through an external organisation,
commonly referred to as a Trusted Third Party (TTP).
TTP is the most reliable central entity that enables the
exchange of all communications among the communicat-
ing entities.

• Semi-trusted Model: In the semi-trusted model, users
are divided into different groups. Trust is divided among
the group of users engaged in the execution of the
communication protocol. The data owner in this model
does not fully trust peers, such as other users, and service
providers.

• Untrusted Model: In an untrusted model, there is no
trust among users who are involved in a communication
protocol. It means safeguarding their communication pri-
vacy is their responsibility.

The privacy models are used to develop trust with other
users in their relationships and interactions while the privacy
framework is to help organisations to manage their privacy
risks. In the literature, several authors have discussed pri-
vacy frameworks [63]–[66]. Bangerter et al. [67] described
a cryptographic framework that enables data minimisation
techniques. It means that for each transaction, there is a
precise specification of what pieces of data get revealed to
each participant. This is called “controlled release of data”.
The salient feature of this framework is that the data in
question is certified. So, its validity can be verified by the
recipient. Later, Franz et al. [68] introduced a new metric
that enables one to quantify the (un)linkability of the data
items. They have considered the setting of a system that
protects the unlinkability of certain elements of interest, and an
adversary with the goal of nevertheless linking these elements.
They also found that an adversary, who breaches privacy by
linking and/or by unlinking pairs of elements, can identify
the target partition (i.e., uniquely link all elements) after a
certain number of breaches have occurred. Now, we discuss
the privacy attack methodologies that an organisation can use
to identify its attack surface.

D. Privacy Attacks

An identity linked to a record or sensitive value poses
a threat to user privacy. The threats can be categorised as
record linkage, attribute linkage, table linkage, and prob-
abilistic linkage. Let us assume that we have a table of
the form “T(Unique ID, QID, Sensitive Attributes, Non-
Sensitive Attributes)”. The table values Unique ID, QID, Sen-
sitive Attributes, and Non-Sensitive Attributes are defined in
Section II. In these attacks, we assume that an attacker knows
the victim’s QID. In record and attribute linkage, we further
assume that an attacker knows that the victim’s sensitive value
is in the published table and seeks to identify the victim-
sensitive information from the table. In a table linkage attack,
an attacker wants to determine the presence or absence of the
victim’s sensitive information from the published table.

• Record Linkage: In a record linkage attacker, a small
number of records in the table T called a group, are
identified by some value qid on QID. If the victim’s QID
matches some value qid then the victim is linked to the
few records in the group. If an attacker can find more
information, she can uniquely identify the victim [69].

• Attribute Linkage: In attribute linkage [69], [70], the
attacker may not be able to find the targeted victim’s
record exactly, but they may be able to determine the
victim’s sensitive values from the published table T by
looking at the set of values that are sensitive to the
victim’s group. There are two types of attribute linkage
attacks: homogeneity and background knowledge attacks.

– Homogeneity Attack: In this attack, the lack of vari-
ation in the sensitive attribute of the privacy pro-
tection model may reveal sensitive information. For
example, consider a dataset containing demographic
information (such as age, gender, and ZIP code)
and medical records. While each attribute alone may
not directly identify individuals, an attacker could
launch a homogeneity attack by correlating similar
demographic profiles with specific medical condi-
tions. If the dataset shows a disproportionate number
of individuals with a certain medical condition within
a particular demographic group (elderly females in
a certain ZIP code area), the attacker could infer
sensitive information about individuals within that
group.

– Background Knowledge Attack: In this attack, an
attacker may be able to guess sensitive data with
high confidence if she has some prior knowledge.
The effectiveness of these attacks depends on the
attacker’s access to additional information.

In general, background knowledge attacks are difficult to
prevent as compared to homogeneity attacks.

• Table Linkage: Record linkage and attribute linkage
attacks assume a prior knowledge of the victim’s record
in the published table T . In the table linkage attack, an
attacker can confidently infer whether the victim’s record
is present in the published table or not [69].

• Probabilistic Linkage: In this attack, an attacker could
change their probabilistic belief about victim-sensitive
information after gaining access to publicly available
data, rather than the exact records, attributes, and tables
they can associate with particular victims [53], [69]. In
a simplified scenario, imagine a dataset with anonymised
health records and another dataset containing anonymised
fitness tracker data. By matching individuals based on
shared characteristics, such as age, gender, and activity
levels, an attacker could probabilistically link records
to re-identify specific individuals and potentially infer
sensitive health information.

The privacy attacks and threats deal with the protection of
user Personally Identifiable Information (PII), but they are
different processes. Privacy attacks are actual actions that are
used to exploit or steal user personal data, such as hacking
into a database or phishing scams. Privacy attacks aim to
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TABLE II
A DETAILED COMPARATIVE ANALYSIS OF INTERNATIONAL STANDARDS RELATED TO DATA PRIVACY, PRIVACY FRAMEWORKS, AND MODELS WITH

COMPARISON PARAMETERS OF ORGANISATION, STANDARD NAME, IDENTIFICATION NUMBER, PUBLICATION YEAR, REVISION YEAR, CERTIFICATION,
POTENTIAL INDUSTRY, COMPUTATIONAL COST, CONTINUOUS UPDATION, LIMITED SCOPE, AND THE MAIN FOCUS OF STANDARD.

Organisation Standard Name Identification
Number

Publication
Year

Revision
Year

Certification Industry Cost Continuous
Updation

Limited
Scope

Main Focus

ISO/IEC ITST-Privacy
Framework

29100 2011 2017 Yes PII Pro-
cessor

High Yes Yes Privacy framework
for PII protection.

ISO/IEC ITST-Privacy
Architecture

29101 2018 – No ICT
System

High No Yes ICT systems designed
to interact with PII.

ISO/IEC ITST-Privacy
Capability
Assessment
Model

29190 2015 2021 No Any High Yes No Privacy-related
processes capacity
management

ISO/IEC ITST-Code of
Practice for PII
Protection

29151 2017 2023 No PII Con-
troller

High Yes Yes PII processing in
an organisation’s
information security
risk environment

ISO/IEC ITST-
Requirements
and guidelines

27701 2019 – No PII Con-
troller

&/ Pro-
cessor

High No Yes Improvement of
information security
management system

ISO/IEC Privacy
Enhancing Data
De-identification
Techniques–
terminology and
Classifications

20889 2018 – No PII Pro-
cessor/
Con-
troller

High No Yes Data de-identification
techniques

ISO/IEC Privacy
Enhancing Data
De-identification
Framework

DIS 27559 2022 – No PII Pro-
cessor/
Con-
troller

High Yes Yes Identification and
mitigation re-
identification risks

BSI Data Protection-
Specification for
personal infor-
mation manage-
ment system

10012 2017 2018 No Any Low Yes No Compliance of
personal information
management system
with data protection
requirements and
good practice

NIST Privacy Frame-
work

NIST 2021 - No Any Low No No Enterprise risk man-
agement privacy tool

NIST De-identification
of Personal
Information

NISTIR
8053

2015 - No Any Low No No De-identification
research direction

IEEE Personal Data
AI Agent

P7006 2018 - No Any Low No No Ethics based AI
guidelines

IEEE Data Privacy
Processs

P7002 2022 - No Any Low Yes No System/software
engineering privacy
guidelines

compromise user privacy. On the other hand, privacy threats
are potential dangers that could lead to privacy attacks, such
as vulnerabilities in a system and weak user passwords. They
represent the possibility that privacy might be compromised.
In simple terms, privacy attacks are the harmful actions that
occur, while privacy threats are the potential risks that could
lead to those attacks.

Organisations may use these privacy models, frameworks
and attack methodologies to identify and prioritise privacy
risks associated with their day-to-day operations. By assessing
privacy risks, organisations can take appropriate measures to
mitigate them and prevent data breaches or privacy violations.
NIST has proposed a privacy framework that is widely used
by organisations of all sizes and agnostic to any particular
technology, sector, law, or jurisdiction. The NIST privacy
framework [71] is as follows.

E. NIST Privacy Framework

The NIST privacy framework is a method for enhancing
privacy through enterprise risk management [71]. It is divided
into three main sections: Core, Profiles, and Implementation.
Through the relationship between organisational roles and re-
sponsibilities, each component of the NIST privacy framework
strengthens organisations’ management of their privacy risk.
The sections of the NIST privacy framework are as follows:

• Core: It is a collection of privacy-protection goals and
actions that enables communicative parties within an
organisation to prioritise their goals and actions in order
of importance.

• Profile: It shows the privacy-related actions or goals that
an organisation is currently performing. An organisation
can create a profile by looking at all of the results and
actions in the Core section and deciding which are most
crucial to concentrate on based on the organisation’s goals
or business needs, the role(s) that the data processing
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Fig. 5. The complete architecture of privacy risk with a focus on privacy models, privacy threats, and privacy taxonomy in compliance with international
regulatory standards.

ecosystem plays, the kinds of data processing that are
processed, and the privacy demands of individuals.

• Implementation: It serves as a benchmark for how an
organisation perceives privacy risk and assesses whether
it has the necessary procedures and assets in place to
control it.

To explain the NIST privacy framework in detail, we
consider an example of a healthcare provider that implements
the NIST privacy framework to provide better protection for
patient data. The healthcare provider starts with the core
functions in which they prioritise identifying and categorising
patient health data. Then, robust data handling policies and
regulatory compliance are established that implement technical
measures to restrict access control. In the end, clear communi-
cation channels for patients are established that ensure strong
security measures to prevent breaches. In the Profile phase,
they evaluate their current practices that identify the need for
stronger data encryption and improved patient communication.
They prioritise these areas based on international regulatory
requirements and patient feedback. During the Implementation
phase, they conduct a risk assessment that upgrades encryption
technologies and develop a new patient communication plan
including updated privacy notices and better access to data
usage information. By continuously monitoring and updating
its practices, the organisation systematically improves its pri-
vacy management, aligning with its international regulatory
demands and patient expectations.

F. International Standards for Privacy

International standards for privacy provide guidelines and
regulations to ensure the protection of individuals’ personal
information across borders which promotes transparency, se-
curity, and accountability. Following are the international
standards that are relevant to user privacy.

• ISO 29100 (Privacy Framework): The ISO/IEC pro-
posed a privacy framework named ISO/IEC 29100 [72]
that protects users’ PII. When privacy controls are nec-
essary for the processing of PII then this international
standard applies to natural persons and organisations that
specify, procure, architect, design, develop, test, maintain,
administer, and operate Information and Communication
Technology (ICT) systems and services. This standard
describes privacy safeguarding issues, defines actors and
their roles in processing PII, specifies a common vocab-
ulary for privacy, and offers links to established privacy
principles for information technology.

• ISO 27701 (Privacy Information Management Sys-
tem): The ISO/IEC proposed another privacy framework
named ISO 27701 (Privacy Information Management
System) [57] that is relevant to all shapes and sizes of
organisations that are PII controllers and/or PII processors
processing PII within ISMS. It includes all public and
private businesses, governmental organisations, and not-
for-profit organisations. This standard is an extension to
ISO/IEC 27001 [73] and ISO/IEC 27002 [74] that are dis-
cussed in Section VI. This standard offers guidelines for
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creating, implementing, maintaining, and continuously
improving a Privacy Information Management System
(PIMS). The requirements for PIMS that are outlined in
this standard offer guidance to PII controllers and proces-
sors that are responsible and accountable for processing
personal information.

• ISO/IEC 29151 Privacy Risk: The ISO/IEC standard
named ISO/IEC 29151 [75] deals with the processing of
PII in an organisation. This standard provides guidelines
for establishing controls about the security of PII. This
international standard provides recommendations based
on ISO/IEC 27002, taking into account the conditions
that may apply for processing PII in the context of an
organisation’s information security risk environment (s).

• IEEE P7002 (Standard for Data Privacy Process):
IEEE has proposed a privacy framework named IEEE
P7002 (Standard for Data Privacy Process) [76]. This
standard provides specifications for a systems/software
engineering process that takes privacy-related factors into
account when developing products, services, and systems.
This system uses the personal information of workers,
clients, and other external users. This standard [76]
encompasses all stages of the product life cycle, including
development, quality control, and value realisation. It
applies to projects and organisations working on the
creation and implementation of systems, applications,
processes, and products involving personal data. Users
of this standard will be able to assess the conformance
of their particular privacy practices by using the specific
methods, checklists, and diagrams provided.

• IEEE P7006 (Standard for Personal Data AI Agent):
IEEE standard named IEEE P7006 (Standard for Personal
Data Artificial Intelligence (AI) Agent) [77] defines as-
sessments made with black-box inputs and decisions that
can be made without input transparency to humans. This
standard provides principles, guidelines, and inputs that
direct the creation of AI and personalised algorithms to
enable ethics-based AI. A major objective of this standard
is to train Personal AI Agents to move beyond asymmetry
and harmonise future personal data usage.

In Table II, we present a comparative analysis of international
standards concerning data privacy, privacy frameworks, and
models, highlighting various aspects such as publication year,
revision year, certification, industry applicability, cost, con-
tinuous updation, limited scope, and main focus. Among the
listed standards, ISO/IEC 29100, known as the Information
Technology-Security Techniques-Privacy Framework, stands
out as a comprehensive framework for protecting PII. It offers
high privacy standards and continuous updation, making it
suitable for PII processors across various industries. It is the
only standard that offers certification training. Additionally,
ISO/IEC 29190, focusing on privacy capability assessment
models, provides a structured approach for managing privacy-
related processes’ capacity effectively. However, the choice
of the most appropriate standard depends on specific organi-
sational requirements, industry regulations, and the scope of
privacy protection needed.

Summary. Three major organisations – ISO/IEC, IEEE, and
NIST – developed and published several important security
standards that provide guidelines on privacy risks, their re-
quirement and supported privacy trust models. This section
discussed the significance of international standards in estab-
lishing security and privacy best practices mainly focusing on
their components such as technical specification, risk assess-
ment, certification, interoperability, consistency, and resource
allocation. The ISO/IEC 27001 for ISMS and ISO/IEC 27701
for privacy management standards show their role in ensuring
user data security and privacy. We discuss security vs privacy
in Section VII-D. Privacy risks such as identity theft and
data breaches are discussed through privacy taxonomies like
Solove’s and Pfitzmann and Hansen’s that categorise privacy
concerns into different phases including information collec-
tion, processing, dissemination, and invasion. Additionally,
privacy models – trusted, semi-trusted, and untrusted – are dis-
cussed alongside privacy attacks that include record, attribute,
table, and probabilistic linkage. These privacy frameworks and
models help organisations manage their privacy risks with
adherence to international standards and continuously updating
their security practices to safeguard user-sensitive data.

V. CHARACTERISATION OF USER PRIVACY

To understand and mitigate potential threats to user privacy,
it is necessary to characterise the risks associated with user
privacy [78]. The characterisation of user privacy risk prevents
an organisation from the inappropriate use of user personal
information and ensures that their businesses are held account-
able for their data protection practices. To characterise user
privacy risks, we need to discuss the sensitivity of user data
and its privacy implications.

A. Data Sensitivity

The first step in protecting user data is to conceptualise and
categorise it. A study that focuses on the sensitivity of user
data [79] lists the categories of information that have been
legally designated as sensitive. Information being considered
sensitive is based on four factors: the likelihood of harm
occurring, the chance of harm occurring, the existence of a
confidential relationship, and whether the risk represents the
majority of concerns. A schema for evaluating data categories
to determine the corresponding sensitivity of user data has
been presented in [80]. This study examines several variables
that affect the public’s view of user data as sensitive, such as
the data’s accessibility, the context in which it is used, and
its ability to identify specific individuals. Another component
contributing to the impact of sensitivity is the possibility that
certain information could be combined with other information
to infer new information. Finally, decisions for data storage
and sensitivity assessments are influenced by the nature of the
technology. One could claim that the sensitivity assessments of
user data are influenced by concerns about how the data will be
used. It is critical to identify privacy attacks and vulnerabilities
to explain the risks to user privacy.

We have discussed data sensitivity that an organisation can
use to characterise user privacy risks. An organisation can
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characterise user privacy risks by first performing a threat
modelling procedure. Threat modelling is used to identify
potential threats and vulnerabilities such as record linkage,
attribute linkage, table linkage, and probabilistic linkage. After
performing threat modelling, the organisation can perform a
Privacy Impact Assessment (PIA) to evaluate the impact on
individual privacy rights within a specific project. The PIA is
followed by the privacy risk assessment, which encompasses a
broader evaluation of privacy and security risks related to data
processing activities. However, organisations may change this
sequence based on their specific needs and the nature of the
project or system being assessed. The key is to integrate these
processes coherently to ensure a comprehensive approach to
characterising user privacy.

B. Threat Modelling

Threat modelling is a systematic approach for identifying
and assessing possible security flaws and privacy threats in an
application or a system. It involves creating a threat model that
describes potential hazards, how they affect privacy, and how
to counter them. Threats can be seen and analysed with the
help of tools, such as attack trees [81] and data flow diagrams
[82]. Procedures for threat modelling are not covered by one
international standard [83], [84].

Several organisations provide specific recommendations and
effective approaches [19], [85]. The threat modelling process
can be performed by an organisation by using the following
known threat modelling standards.

• OWASP Application Threat Modelling: Open Web Ap-
plication Security Project (OWASP) provides resources
and guidelines on threat modelling of online applications
[83]. OWASP’s application threat modelling document
provides several useful insights and techniques.

• NIST Special Publication 800-154: NIST’s publication
[86] guides integrating data-centric threat modelling into
the software development lifecycle. It is not a formal
standard but it is widely accepted in several organisations.

• Microsoft Threat Modelling Tool: Microsoft has re-
leased a threat modelling tool to assist companies in
finding and solving possible vulnerabilities in their spe-
cific products [84]. It offers an organised method for
threat modelling and is frequently utilised in software
development processes.

• ISO/IEC 27001: ISO/IEC 27001 is an internationally
recognised standard for Information Security Manage-
ment Systems ISMS [56]. It will be discussed in detail
in Section VI.

• FAIR (Factor Analysis of Information Risk): FAIR is
not a threat modelling paradigm but it offers an organised
approach for understanding, evaluating, and translating
information risk into financial terms [87]. It is essential
for threat modelling and is frequently used in risk analysis
methods.

C. Privacy Impact Assessment (PIA)

To further characterise user privacy, a PIA, which is a
methodical procedure, must be carried out to determine and

evaluate any potential privacy issues related to a project,
system, or operation that handles user data processing. It
involves carrying out a thorough examination of data flows,
processing operations, and privacy concerns. To get user data
and evaluate privacy risks, PIAs frequently employ question-
naires, interviews, and checklists. An organisation can perform
PIA using the following international standards.

1) ISO 29134–PIA: The ISO/IEC 29134 standard [88]
offers recommendations for performing PIA procedures. It
provides the complete format and content of a PIA report.
An organisation operating user data processing systems and
services that handle PII as well as those participating in project
design or implementation should use this standard [88].

D. Privacy Risk Assessments

Assessing the privacy risk is the final stage in character-
ising user privacy. Similar to PIAs, privacy risk assessments
concentrate on assessing the degree of risk associated with
identified privacy risks. It involves evaluating potential threats
and vulnerabilities according to factors like impact and likeli-
hood. It is possible to use both quantitative and qualitative risk
assessment techniques. An organisation can use the following
international standards to conduct privacy risk assessments.

1) General Data Protection Regulation (GDPR): The EU’s
GDPR [10] is a comprehensive privacy law that specifies
the criteria for Data Protection Impact Assessments (DPIAs).
DPIAs are employed to evaluate privacy risks related to data
processing operations. GDPR gives persons whose personal
data is being processed important rights and requires that those
who process personal data comply with its regulations. Any
natural or legal entity participating in the processing, including
businesses and governments, must operate in compliance with
the regulation. Non-compliance can result in expensive legal
fees, reputational harm, and other consequences.

2) ISO/IEC 27001: The most well-known worldwide stan-
dard for ISMS is ISO/IEC 27001 [73]. It outlines the re-
quirements that an ISMS needs to fulfil. When a business
or organisation complies with ISO/IEC 27001, it indicates
that it has implemented a risk management system for the
protection of its data. and that The system adheres to all of
the best practices and guidelines outlined in this international
standard. This standard covers more than just privacy. It offers
a methodical way to handle confidential business data and
incorporates risk assessment and management procedures that
can be used for assessing risks related to privacy.

3) NIST Privacy Framework: We have discussed the details
of the NIST privacy framework [71] in Section IV. This
framework includes risk models, risk assessment techniques,
and privacy risk element identification methods. One can use
this framework to conduct user privacy risk assessments.

4) California Consumer Privacy Act (CCPA): The CCPA
of 2018 [89] offers customers greater control over the personal
data that companies may gather about them. According to
US regulations, the companies that operate their businesses
in California must evaluate the privacy risks associated with
data processing activities.
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Fig. 6. The detailed process for characterisation of user privacy starts with data sensitivity measurement then thread modelling process, PIA, and privacy risk
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5) Personal Information Protection and Electronic Docu-
ments Act (PIPEDA): The PIPEDA [90] is a Canadian law
relating to data privacy that regulates the gathering, use, and
disclosure of personal data by businesses operating in the
private sector. This law provides guidelines for PIAs, which
are equivalent to DPIAs that are performed in compliance with
GDPR.

The PIA and risk assessment are important in evaluating
potential privacy issues, but they focus on different aspects of
user privacy. PIA looks at the consequences or effects of a
particular event or action by asking questions like, “What will
happen if this event occurs?” It aims to understand the extent
and severity of the outcomes. On the other hand, privacy risk
assessment identifies and evaluates potential threats or hazards
by asking questions like, “What could go wrong, and how
likely is it to happen?” It focuses on the probability of events
and the magnitude of their possible impact. It means PIA deals
with the effects, while privacy risk assessment deals with the
likelihood and potential of harmful events.

In Table III, we present a comprehensive overview of
various international standards and privacy laws related to the
characterisation of user privacy. It includes information such
as the organisation responsible for each standard, the name and
ID of the standard, publication, and revision years, certification
status, applicable industry, cost, continuous updation, scope
limitations, and standard main focus. We have observed that
the organisation investment for obtaining certification varies on
standard complexity and organisation size. In general, ISO/IEC
standards have high certification costs as compared with NIST,
OWASP, and Microsoft. ISO/IEC 27001 is the only standard
that is offering training for certification. We have observed
that ISO/IEC standards and Microsoft threat modelling tools

are continuously updated every five years, which ensures they
remain relevant to technological advancements and evolving
regulatory landscapes. The international standards also have
some limitations such as the resource-intensive nature of
compliance.

Summary. This section outlines the process of character-
ising user privacy risks with a focus on understanding and
mitigating privacy risks to prevent the misuse of personal data.
Characterising user privacy involves analysing data sensitivity
issues and identifying privacy attacks. Data sensitivity is de-
termined by factors such as the likelihood and potential harm
of data breaches, the existence of confidential relationships,
and how easily data can identify individuals. Privacy attacks
exploit vulnerabilities in data protection systems to access
sensitive information. To address these risks, organisations
should perform threat modelling, PIAs, and privacy risk as-
sessments. Threat modelling identifies potential security flaws
using frameworks including OWASP, NIST, and Microsoft’s
Threat Modelling Tool. PIAs evaluate potential privacy issues
in data processing, using standards such as ISO 29134, GDPR,
and PIPEDA. Privacy risk assessments measure the likelihood
and impact of privacy threats with the help of standards such as
GDPR and ISO/IEC 27001. This section also compares various
international standards and privacy laws, highlighting their
certification costs, continuous updates, and scope limitations,
with a focus on maintaining relevance with technological
advancements.

Now, we discuss the quantification of user privacy in the
subsequent sections.
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TABLE III
THE CHARACTERISATION OF USER PRIVACY IN COMPLIANCE WITH INTERNATIONAL REGULATORY STANDARDS WITH COMPARISON PARAMETERS OF
ORGANISATION NAME, STANDARDS NAME, IDENTIFICATION NUMBER, PUBLICATION YEAR, REVISION YEAR, CERTIFICATION, POTENTIAL INDUSTRY,

COMPUTATIONAL COST, CONTINUOUS UPDATION, LIMITED SCOPE, AND MAIN FOCUS AREAS.

Organisation Standard Name ID Publication
Year

Revision
Year

Certification Industry Cost Continuous
Updation

Limited
Scope

Main Focus

ISO/IEC ITST-
Information
Security
Management
Systems-
Requirements

27001 2013 2023 Yes Any High Yes No Information security
management systems

ISO/IEC ITST-
Information
Security
Management
Systems-
Controls

27002 2013 2022 No Any High Yes No Cyber security best
practices and controls

ISO/IEC ITST-Guidelines
for PIA

29134 2017 2023 No PII
Processor

High Yes Yes PIA

NIST Data-Centric
System Threat
Modelling

SP 800-54 2016 – No Any Low No No Data-centric system
threat modelling
procedure

OWASP Application
Threat
Modelling

OWASP 2020 – No Website
Business

Low No Yes Web application threat
modelling

Microsoft Threat
Modelling

Microsoft
Threat
Modelling
Tool

2018 2023 No Any Low Yes No Potential security is-
sues identification and
fixation

Privacy Act California
Consumer
Privacy Act

CCPA 2018 – No California
Business

Low No Yes Privacy rights and con-
sumer protection for
California state resi-
dents in the US

Canadian
Law

Personal
Information
Protection
and Electronic
Documents Act

PIPEDA 2000 – No Commercial Low No Yes User personal informa-
tion management.

VI. QUANTIFICATION OF USER PRIVACY

The quantity used to measure how closely the privacy of a
user can be estimated in digital contexts is known as “quan-
tification of user privacy” [91]. Quantification of user privacy
is essential for an organisation because it gives them a clear
understanding of their data privacy policies, allowing them
to recognise potential privacy hazards, guarantee regulatory
compliance, and build user confidence. In general, organisa-
tions allow third parties with expertise in data analytics to
access their data to extract more valuable insights from it.
Additionally, these organisations are becoming more aware
of the privacy of individual data. Thus, privacy controls that
keep an eye on how data is used securely are highly desired
for contemporary businesses, but systematically analysing and
quantifying privacy risk is a challenging task [92], [93]. The
quantification of user privacy is enabled by privacy metrics,
which offer a systematic way of measuring, evaluating, and
examining various aspects of data privacy within an organisa-
tion. These metrics work as numerical indicators that support
an understanding of the degree of user data protection provided
and the effectiveness of privacy measures.

A. Privacy Metrics

The primary objective of privacy metrics is to determine
how much privacy users have within a system and how much
protection is provided by privacy techniques. Privacy metrics

work as a quantification tool, while user privacy can be
enhanced using privacy techniques. The characteristics of a
system, such as how much private data is exposed or the
number of users who are identical in one way or another,
are input into privacy metrics. The privacy metric outputs a
number that can quantify the degree of privacy in a system
that is subsequently used in the comparison of different privacy
techniques. The system characteristics can be used as a starting
point for the selection of privacy metrics. The privacy metric
output determines the suitability of privacy techniques. An
ineffective selection of privacy techniques violates the privacy
of the system.

1) Conditions for Privacy Metrics: There is not a single
consensus on the requirements that privacy metrics have to
fulfil. Several authors have examined privacy metrics con-
ditions that contribute to characterising the privacy degree
used in the quantification of user privacy [94]–[100]. For
instance, Alexander et al. [101] suggested that privacy metrics
may give a bound, which is an extent to which an adversary
can successfully identify people. Later, Andersson et al. [94]
argued that privacy metrics must be based on the likelihood
of an adversary identifying an individual. On the other hand,
Syverson [102] explained that privacy metrics must indicate
the difficulty of an adversary to succeed. Bertino et al. [95]
proposed that privacy metrics specify privacy level, data qual-
ity, and the amount of sensitive data that is not concealed after
applying the privacy techniques. A consideration of adversary
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success in terms of accuracy, uncertainty, and correctness is
discussed by Shokri et al. in [103]. The condition for privacy
metrics should be proportional to the increasing strength of
the adversary. Now, we discuss the characteristics of privacy
metrics.

2) Characteristic of Privacy Metrics: It can be a chal-
lenging task to choose privacy metrics for a situation due to
because of the large number and variety of available privacy
measures. The choice of privacy metrics is determined by the
types of adversaries we need to defend against and which
features of privacy should be measured. Next, we determine
the input data that is available to compute the metrics and
which data sources require protection. Additionally, we discuss
whether any of the chosen metrics have issues and if there are
any validated implementations available. Lastly, we consider
methods for determining parameter values for the chosen
metrics. The main characteristics that can be used to categorise
privacy metrics include adversary goals, adversary capabilities,
data sources, input for privacy metrics, and output of privacy
metrics. They act as a first set of guidelines that can be used
to select privacy metrics for a given scenario.

• Adversary Goals: The purpose of privacy metrics is to
measure the degree of privacy in a system provided by
privacy techniques that a particular adversary frequently
targets. The adversary’s goal is to obtain sensitive infor-
mation and threaten user privacy for fun, profit, social,
political, and other reasons.

• Adversary Capabilities: Privacy may be more suc-
cessfully attacked by a stronger adversary possessing
sufficient resources or prior knowledge. For instance, an
individual adversary with limited capability might exploit
weak security measures to access personal email accounts
that contain sensitive information, such as financial trans-
actions. A group of hackers might collaborate to breach
a large corporation’s database, gaining access to millions
of customer records. They could then sell or exploit this
data for financial gain or other malicious purposes that
compromise the privacy of countless individuals. On a
larger scale, a state-sponsored adversary might conduct
surveillance on its citizens through the monitoring of
telecommunications or internet activity. By using so-
phisticated surveillance technologies and legal authority,
they could systematically collect and analyse large vast
amounts of personal data, violating individuals’ privacy
rights.

• Data Sources: Data is the main source of information
that can be in the form of published data or observable
data. Privacy techniques aim to protect the data but
an adversary tries to gain sensitive information. In the
case of published data, an adversary attempts to identify
individuals or try to reveal the individual’s sensitive
information.

• Privacy Metric Inputs: Privacy metrics use various
types of input for determining privacy values. The input
includes, but is not limited to the estimate, resources,
and prior knowledge of the adversary. In the case of
an adversary’s resources, it can cover several aspects,
such as computational power, time, and bandwidth. The

applicability of a measure in a given situation depends
on input data availability.

• Privacy Metric Output: The privacy metric output is a
property type that a privacy metric measures. Different
types of output properties measure different aspects of
privacy including uncertainty, information gain or loss,
error, time, and accuracy. In the case of information
gain or loss, the privacy metric measures how much
information an opponent gains or how much information
a user loses as a result of information disclosure.

B. Privacy Notions

Several privacy notations are available in the literature [53],
[104], [105]. In this section, we discuss the most general
privacy notions that can be used for the quantification of user
privacy.

• Anonymity Set Size: The anonymity set for an individ-
ual u is the set of users in which the attacker cannot
distinguish u from the set of users [106]–[110]. The size
of the anonymity set is mainly problematic because it
only depends on the total number of users in the system
[111]. It does not take into account the likelihood that
any individual in the anonymity set will be attacked.

• k-anonymity: Conceptually, k-anonymity relates to the
size of the anonymity set. The main idea behind k-
anonymity is to publish statistical databases. For example,
an electronic voting database EvDb contains a user-
unique identifier (such as name) and sensitive information
(such as voting candidate name). k-anonymity assumes
that any uniquely identifying columns will be removed
before the publication of the database and then divide
the EvDb into equivalency classes containing at least k
rows that have the same QIDs [104], [112]. QIDs cannot
directly identify users but help them identify the users
when paired with other published data [104].
Several algorithms transform EvDb to make it k anony-
mous by utilising suppression or generalisation tech-
niques [113] or random sampling techniques [114] that
will be discussed in Section VII. Many studies have
demonstrated that k-anonymity is insufficient against cor-
relation with other datasets [53] and for high-dimensional
data [52]. k-anonymity does not provide attribute hiding,
nor does it provide security against attribute disclosure
[115]. Furthermore, k-anonymous data releases do not
protect against multiple releases of the same dataset
[116], [117]. k-anonymity is commonly used today and
applied to new privacy domains despite these shortcom-
ings.

• (α,k)-anonymity: (α,k)-anonymity is the extension of k-
anonymity with addition of attribute disclosure prevention
property. The frequency of a sensitive value in any
equivalence class (rows with the same QID values) must
be smaller than α [105], [118]. The research has shown
that attribute linkage can happen even in cases where the
sensitive value’s frequency is smaller than α [119].

• l-diversity: The k-anonymity principle is modified by the
l-diversity to restrict the diversity of publicly available
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data. It specifies that there must be at least l well-
represented sensitive values in each equivalency class.
There are various ways to formulate this general prin-
ciple. The l-diversity principle requires l different values
in each class. Nevertheless, probabilistic inference attacks
are not prevented by this straightforward formulation
[120]. More robust formulations depend on the idea
that the l most commonly used values of the sensitive
property should have approximately equal frequencies
in each equivalent class [53]. While l-diversity is an
enhancement of k-anonymity property, it is not always
enough to prevent certain types of attacks. It does not,
in particular, protect privacy in the following situations:
multiple statistical data releases are available [116]; sensi-
tive values have a bias distribution; or sensitive attributes
are semantically equivalent [120], such as numerical
values that are close to one another [121]. Furthermore,
if the adversary knows the data sanitisation process, they
could be able to regenerate sensitive attributes [122].

• m-invariance: The k-anonymity principle is modified by
m-invariance [116] to allow several releases of the same
dataset, each of which may contain rows that have been
added, changed, or removed. An attacker can determine
the sensitive values by correlating the insertions and
deletions between two releases of k-anonymous data. By
m-invariance, this attack can only be prevented if each
equivalency class has at least m rows and different values
for all sensitive attributes. Furthermore, every release
must have the same set of unique sensitive values in each
equivalency class.

• t-closeness: Let us assume that an adversary knows the
global distribution of sensitive values to disclose the
attribute of the user, t-closeness modifies the k-anonymity
by bounding the distribution of sensitive values. It states
that, in an equivalency class, sensitive values must have a
distribution that is similar to the distribution of the entire
table [120].

• Stochastic t-closeness: In the data distribution table,
t-closeness leaves the sensitive value in its original
form. Stochastic t-closeness extends the definition of t-
closeness [123]. It allows stochastic modification of data
table-sensitive values.

• (c, t)-isolation: The purpose of K-anonymity is to pre-
pare and publish statistical databases without considering
the presence of an adversary. (c, t)-isolation extends k-
anonymity notion to take into consideration for an adver-
sary. The effectiveness of an adversary’s point isolation
in a database is measured by (c, t)-isolation [124]. Here,
c is an isolation parameter and t is the privacy threshold.

• (k, e)-anonymity: The k-anonymity prepares and pub-
lishes a statistical database with categorical attributes.
(k, e)-anonymity extends the notion of k-anonymity by
taking into account numerical attributes [121]. The sen-
sitive attributes range in any equivalency class in (k, e)-
anonymity must be larger than e. The absence of uniform
distribution of values inside the range of e in (k, e)-
anonymity can result in attribute disclosure through prox-
imity attacks. Let us assume that we have the distribution

of sensitive values in the range e. On one end, 85% of
sensitive values are distributed in short intervals while
on the other end, 15% of sensitive values are distributed.
The adversary can guess with a confidence level of 85%
that sensitive values lie in short intervals [119], [125].

• (ϵ,m)-anonymity: (ϵ,m)-anonymity extends the notion of
k-anonymity by adding the numerical attributes in the
published statistical databases. It prevents the proximity
attack by limiting the guessing probability of sensitive
attributes to at most 1/m against (k, e)-anonymity [125].

These are the few privacy notions that will be used in
privacy metrics for the quantification of user privacy. Now,
we discuss user privacy quantification in terms of entropy,
which is used to measure how closely the original value
of an attribute can be estimated. That is, how much user
private information is leaked after applying privacy techniques.
Following are the user privacy quantification measures in terms
of entropy:

• Entropy: The foundation for modern information se-
curity principles is based on the concept of entropy
proposed in [126]. Entropy, in general, quantifies the
degree of uncertainty in estimating a random variable’s
value. It can be understood as the anonymity set size
or extra information required by the adversary for user
identification in terms of privacy [127]. Let us consider
that an adversary wants to identify the member of the
anonymity set that performs a specific action such as
posting a special message on social media. The adversary
guesses probability p(x) for the anonymity set members
x. It that shows the possibility that x is the suspected
user such that the sum of probabilities p(x) is equal to
1. The adversary can use prior knowledge and random
guessing to estimate the probability. Formally, members
of the anonymity set are represented by {x1, . . . , xn}
of the discrete random variable X , and the (estimated)
probability that a given member would be the target is
denoted by p(xi). Then, entropy H of X’s can be written
in Equation 1 as:

H(x) = −
∑
x∈X

p(x)log2p(x) (1)

Entropy is greatly influenced by outlier values, which
means the likelihood of anonymity set users being the
target is quite low [128], [129]. Entropy does not reveal
the accuracy or precision of the adversary’s estimates;
rather, it only indicates their level of uncertainty [130].
Furthermore, entropy does not reveal how much band-
width or computing power the opponent needs to succeed
[102], [131].

• Rényi Entropy: Rényi entropy is the generalisation of
Shannon entropy [98] that measures uncertainty in a
random variable. It uses an extra parameter α and if the
value of α → 1 then it becomes a particular case of
Shannon entropy. The Rényi entropy can be calculated in
Equation 2 as:

Hα(X) =
1

1− α
log2

∑
x∈X

p(x)α (2)
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Max-entropy or Hartley entropy H0 is the special case of
Rényi entropy with α = 0 that represents the best case
scenario where the ideal privacy of a user is achieved
[98].

• Normalised Entropy: The range of entropy depends on
the anonymity set number which means entropy values
cannot be compared using absolute value. Hartley entropy
is used to normalise entropy. and The normalised entropy
can be used to represent the amount of information
leakage in the system [132].

• Conditional Entropy: The amount of information re-
quired to describe a random variable X for a given
random variable Y with the assumption that Y has a
known value is measured by conditional entropy. The true
distribution of the attribute in the databases is represented
by the random variable X . The adversary’s observations,
such as probabilistic data release [52], can then be in-
terpreted as Y . The conditional entropy can be computed
from Equation 3. The entropy of a conditional probability
distribution should not be confused with conditional
entropy [111]:

H(x|Y ) =
∑
y∈Y

∑
x∈X

p(x, y)log2p(x|y) (3)

• Asymmetric Entropy: Asymmetric entropy differs from
conditional entropy in the sense that the opponent has
prior information about random variable X distribution,
and the point α, with the maximum value of uncertainty
[133]. The adversary’s chance of successfully determin-
ing the target is represented by p(x) in asymmetric
entropy, which ignores the anonymity set members prob-
abilities [134] as computed in the following Equation 4.

HAS =
p(x)(1− p(x))

(−2α+ 1)p(x) + α2
(4)

• Relative Entropy: The variation between two probability
distributions is measured by relative entropy. The absolute
continuity criterion for the two probability distributions
must be met, meaning that if q(x) = 0 then p(x∗) = 0.
The amount of probabilistic information revealed to the
adversary is represented by relative entropy, the distri-
butions X∗ represent the true distribution and X is the
adversary estimate [135]. The estimate of the adversary’s
deviation from reality is then indicated by relative entropy
as in Equation 5:

DRE(X
∗||X) =

∑
x,x∗

p(x∗)log2
P (x∗)

q(x)
(5)

Moreover, some relative entropy implementations replace
the adversary’s observations Y for the adversary’s esti-
mate X .

• Mutual Information: The amount of information com-
municated between two random variables is measured
by mutual information. Mutual information estimates the
amount of information leaked from a privacy mechanism
and is computed among data true distribution X∗ and the

adversary’s observations Y as in Equation 6, which has
foundations in [136].

I(X∗;Y ) = H(X∗)−H(X∗|Y ) =∑
x∗∈X∗

∑
y∈Y

p(x∗, y)log2
p(x∗, y)

p(x∗)p(y)
(6)

The entropy of X∗ can be used to normalise the mutual
information between X∗ and Y such that comparisons
between scenarios are possible. In this instance, the aver-
age number of bits leaked from each entry is measured by
normalised mutual information [137]. The entropy of X∗

can be used to normalise the mutual information between
X∗ and Y such that comparisons between scenarios
are possible. In this case, the average number of bits
leaked from each entry is measured by normalised mutual
information as in Equation 7, and is based on [137].

I(X∗;Y |Z) = H(X∗|Z)−H(X∗|Y, Z) (7)

Privacy metrics serve as quantifiable measures to assess
the level of privacy and utility inherent in data processing
activities. In Table IV, we have discussed the measurement
of privacy and utility level using privacy metrics in terms of
privacy notions, data source, context dependency, and scope.
Context dependency acknowledges that privacy concerns and
utility expectations may vary across different domains. Table
IV presents various privacy notions and their associated met-
rics across different domains, such as databases, communica-
tion, and genome privacy. Notions like k−anonymity, (α, k)-
anonymity, and l-diversity are commonly applied in databases,
offering high privacy levels but low utility. These metrics
generally rely on published data, exhibit context dependency,
and have a limited scope. Certain metrics, such as Renyi
Entropy and Normalised Entropy, applied in communication,
offer high utility levels but may provide lower privacy levels.
They deal with observable data and are less context-dependent.
Genome privacy metrics, such as Asymmetric Entropy and
Mutual Information, offer high utility but lower privacy levels,
often dealing with observable data. Table IV also lists the
trade-offs between privacy and utility and emphasises the need
for careful consideration of these factors when selecting and
implementing privacy metrics in various domains. We have
also observed that maintaining a balance between privacy
and utility levels is essential for developing trust, enhancing
user satisfaction, and ensuring ethical data practices in diverse
socio-technical environments.

Summary. Quantification of user privacy in digital contexts
is important for organisations to understand and enforce their
data privacy policies, and identify potential privacy risks that
ensure regulatory compliance, which increases user trust level.
The privacy metrics enable the quantification of the user
privacy process by systematically measuring and evaluating
various aspects of user data privacy. It gave several numerical
indicators that are used to quantify the degree of user data
protection and the effectiveness of user privacy measures.
Privacy metrics also consider system characteristics such as
data exposure and user similarity that help organisations
select suitable privacy techniques. These metrics must fulfil
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TABLE IV
THE MEASUREMENT OF PRIVACY AND UTILITY LEVELS USING PRIVACY METRICS WITH PARAMETERS OF PRIVACY NOTIONS, INDENTED DOMAIN,

PUBLISHED DATA, OBSERVABLE DATA, CONTEXT DEPENDENCY, LIMITED SCOPE, PRIVACY AND UTILITY LEVEL.

Privacy
Notions

Domain Published
Data

Observable
Data

Context
Depen-
dency

Limited
Scope

Privacy
Level

Utility Level Scalability Complexity Ref. No

k− anonymity Databases Yes No Yes Yes High Low High Low [113]
(α, k)
anonymity

Databases Yes No Yes Yes High Low High Low [105]

l-diversity Databases Yes No Yes Yes High Low High Low [53]
m−invariace Databases Yes No Yes Yes High Low High Low [116]
t−closeness Databases Yes No Yes Yes High Low High Low [120]
Stochastic
t−closeness

Databases Yes No Yes Yes High Low High Medium [123]

(c, t)−
isolation

Databases Yes No Yes Yes High Specific data
and parame-
ter choices

High Medium [124]

(k, e)−
anonymity

Databases Yes No Yes Yes High Specific data
and parame-
ter choices

High Medium [121]

(ϵ,m)−
anonymity

Databases Yes No Yes Yes High Parameter
selection
and Imple-
mentation
strategies

High Medium [125]

Renyi Entropy Communication Yes Yes No No High Specific ap-
plication and
analysis

Medium High [98]

Normalised En-
tropy

Communication Yes Yes No No High Dataset for
analysis

Medium High [132]

Conditional En-
tropy

Communication Yes Yes No No High Specific Ap-
plication and
requirements

Medium High [138]

Asymmetric
Entropy

Genome
Privacy

Yes Yes No No Low High Medium High [133]

Relative
Entropy

Communication Yes Yes No No Low High Medium High [135]

Mutual
Information

Genome
Privacy

Yes Yes No No Low High Medium High [136]

Conditional
Mutual
Information

Communication Yes Yes No No Low High Medium High [137]

certain conditions that include bounds on adversary success,
the likelihood of identification, and difficulty for adversaries.
Characteristics of privacy metrics include adversary goals,
capabilities, data sources, inputs, and outputs, guiding the
selection of metrics for specific scenarios. Various privacy no-
tions like k-anonymity, l-diversity, and t-closeness, along with
entropy measures such as Shannon entropy, Renyi entropy, and
mutual information, are used to quantify user privacy. These
notions and measures highlight the trade-offs between privacy
and utility. It that emphasises the need for a balanced approach
to ensure trust, user satisfaction, and ethical data practices
across different domains like databases, communication, and
genome privacy.

VII. PRIVACY TECHNIQUES

Privacy techniques are methods and strategies used to pro-
tect individuals’ sensitive information and data from unau-
thorised access, use, or disclosure while still allowing the
collection and analysis of valuable information. Privacy tech-
niques can be classified into Privacy-Preserving Techniques

(PPTs) and Privacy-Enhancing Techniques (PETs), which are
discussed in Sections VII-A and VII-B, respectively. Fig. 7
illustrates the complete classification among PPTs and PETs.
Pinkas [139] has defined PPTs used to preserve privacy in
the presence of adversarial participants who attempt to gather
valuable information about their peers. In [140], Heurix et al.
defined PETs as a subset of technological solutions that aim to
protect an individual’s or a group’s privacy. PPTs are mainly
concerned with safeguarding data from unauthorised access
and ensuring confidentiality, while PETs focus on empowering
individuals with control and transparency over their personal
information.

We have discussed characterisation and quantification of
user privacy in Section V and Section VI, respectively. PPTs
and PETs are used in the characterisation and quantification
of user privacy. These techniques are used as a foundation
for threat modelling, PIA, and privacy risk assessment. In
threat modelling, they help to identify and mitigate potential
vulnerabilities and attack vectors. In PIAs, they provide the
mechanisms to evaluate and minimise the risks associated with
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Privacy Techniques

Privacy-Preserving Techniques Privacy Enhancing Techniques

Perturbative

Non-Perturbative

De-Associative

Synthetic Data

Trusted Execution Environment

Homomorphic Encryption

Federated Learning

Differential Privacy

Secure Multiparty Computation

• ISO 11889
• IEEE P2952
• IEEE 2830
• GDP-SPE-055
• OMTP TR1

IEEE IC 21-013-01

ISO 20889

ISO 18033

• ISO 19592
• ISO 4922
• IEEE 2842

ISO 20889

Fig. 7. The complete classification of privacy techniques that include privacy-preserving techniques and privacy-enhancing techniques in compliance with
international regulatory standards.

data processing and storage. In PIAs, PETs help to determine
the potential consequences of data handling practices on
individual privacy. Privacy metrics are used to quantify the
effectiveness of these techniques in protecting user-sensitive
data by providing measurable benchmarks for privacy protec-
tion. Lastly, privacy notions such as anonymity, confidentiality,
and data minimisation are used by these techniques to ensure
that these notions are practically achievable and enforceable
within a given system.

A. Privacy-Preserving Techniques (PPTs)

To preserve data confidentiality, user-sensitive information
must either be de-identified, i.e., PII about an individual in
a record, or the dataset is transformed or removed and data
access must be restricted to approved organisations. Fig. 8
illustrates the complete process of data de-identification.

PPTs generate de-identified data in such a way that makes
it difficult, if not impossible, for an adversary to learn user-
sensitive information while maintaining useful data for further
investigation [39]. De-identification process results in a re-
duced set of information bits and more data granularity, which
generally leads to losses in data interpretability or predictive
performance [7], [14]–[16]. It is inevitable to develop PPTs
that minimise data compromise and provide a higher level
of privacy protection. A major challenge associated with de-
identification is figuring out how to distribute data that helps

Remove Identifier

Working Data

User Data

Measure Data 
Utility

Measure Privacy 
Risk

Apply Privacy Techniques Privacy vs Utility 
Threshold Publish Data

YES

NO

Fig. 8. The complete process of data de-identification.

businesses, governments, and organisations to make decisions
without revealing private information about particular data
subjects. The balance between utility and data privacy has
driven research toward creating new PPTs or reusing tradi-
tional privacy techniques.

The concepts of protecting sensitive user data were first
introduced by [141] and later investigated, e.g., by [23].
They proposed the classification of PPTs based on the char-
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acteristics of the user data based on perturbative and non-
perturbative approaches. The perturbative approach relates
to the deletion of information or the reduction of detail;
whereas, the non-perturbative approach deals with information
distortion. De-associative techniques are another category of
PPTs that removes the connection between QID and sensitive
attributes. Synthetic data is a de-identification technique whose
objective is to publish artificial data using original data by
maintaining the characteristics and features of the original
data. The transformation from original data to artificial data is
achieved through privacy techniques [46], [142], [143]. PPTs
are classified into four major categories: Non-perturbative
technique, Perturbative technique, De-associative technique,
and Synthetic data. The non-perturbative technique is divided
into five main categories which are Global Recoding, Local
Recoding, Top-Bottom Coding, Sampling and Suppression.
The perturbative technique is classified into seven types which
are Rounding, Noise, Shuffling, Re-sampling, PRAM and Mi-
croaggregation. Recoding, Local Recoding, Top-Bottom Cod-
ing, Sampling and Suppression. The de-associate technique
has four types which are Slicing, Bucketisation, Angelisation
and Anatomisation. The synthetic data has three main cate-
gories that include partially synthetic, hybrid synthetic and
fully synthetic data. Now, we discuss the categories of PPTs
in detail in the subsequent sections along with international
standards.

1) Non-Perturbative: The non-perturbative techniques aim
at minimising the quantity of information in the data by
either lowering the level of information or partially hiding
information while maintaining the accuracy of the original
data. Non-perturbative techniques do not completely change
the original data. They can be divided into five categories
including global and local recoding, top-and-bottom coding,
suppression, and sampling.

• Global Recoding: This method is referred to as a full-
domain generalisation. Global recoding involves merging
many categories to form new, more inclusive categories
[23], [141], [144].

• Local Recoding: The user data is recoded locally into
broader intervals or categories when required [145]. Gen-
erally, global recoding differs from local recoding in that
all attribute values belong to equal domain levels while
local recoding; on the other hand, it generalises the values
to other domain levels [146].

• Top-and-Bottom Coding: One particular instance of
recoding is top-and-bottom coding. This method is used
for numerical qualities that are continuous or discrete.
The top recoding covers values above a specific thresh-
old level where the attribute frequencies range tends to
become smaller while the bottom recoding covers values
under another threshold level. The determination of the
appropriate threshold level is not an easy task [23].

• Suppression: In suppression, data can be suppressed
from the original data so that they are not released or
replaced with a special character or a missing value. Cell,
tuple, and attribute suppression are the three common
suppression levels [23], [147], [148].

• Sampling: Sampling is a technique for protecting user

data. When the original set of census data represents the
complete population then rather than being made public,
a sample S set is released [149].

2) Perturbative: The perturbative technique is used to mod-
ify the user data before its release. These must be applied
to ensure that perturbed user data sets and original dataset
statistics do not differ significantly. DP, which we discuss
in Section VII-B5, is also the subtype of the perturbative
techniques. The perturbative techniques include swapping,
re-sampling, noise, micro aggregation, rounding, the Post-
RAndomisation Method (PRAM), and shuffling.

• Swapping: The basic idea of the data swapping technique
[150] is to swap the values of specific attributes between
records. This approach involves swapping entries that
belong to different sub-domains but are similar on a
set of attributes. The swapping can be divided into two
subdomains: data swapping and rank swapping.

• Re-sampling: Re-sampling is a technique that uses the
replacement bootstrap method. The re-sampling method
consists of taking multiple small samples and averaging
them together. Re-sampling was initially used for tabular
protection [151], but user data sets may additionally
benefit from this technique [144].

• Noise: Noise is known as randomisation and is used to
protect user data. Noise can be added or multiplied with
the user’s data to enhance the randomness in it. Additive
noise has been studied extensively since 1980 [152]–
[156]. Additive noise can be categorised into four types
that include uncorrelated noise addition, correlated noise
addition, noise addition with linear transformation, and
noise addition with non-linear transformation. In some
cases, constant variance is a part of additive noise so it
is better to use multiplicative noise [157].

• Microaggregation: Microaggregation is a technique that
is used to partition a dataset into groups using the max-
imal similarity criterion. Microaggregation was initially
proposed for continuous variables [158], [159], but later
it has been expanded to include categorical data [160].
Three criteria are used in microaggregation, including
the definition of group homogeneity, the clustering tech-
niques employed to identify homogeneous groups, and
the calculation of the aggregated function. It is typically
performs better in situations where the groupings’ at-
tribute values are more homogeneous [158]–[165].

• Rounding: Rounding is a technique that has been used
for a very long time [166]. Its goal is to substitute
rounded values for the original values of the attributes.
In multi-valued attribute data, rounding is performed on
one attribute, but multivariate rounding is possible [23].
This technique is suitable for data that has continuous
attributes.

• Post RAndomisation Method (PRAM): This method
uses a probability mechanism in such a way that an in-
truder cannot be confident that a given match corresponds
to the right person or not. It is proposed by [167] and
is used for categorical data (unique attribute data). In
PRAM, a specific probability is applied to the recoding of
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one or more category attribute values, and this recoding
is carried out independently for every record. PRAM
is particularly useful in those cases where a user data
collection has multiple characteristics and using other de-
identification techniques, such as global recoding, top-
and-bottom coding, and local suppression that would
result in an excessive amount of information loss [144].

• Shuffling: Shuffling is a technique that is used to replace
data-sensitive attributes with new data that has similar
distributional attributes. Shuffling is a variant of swap-
ping that was proposed by [168]–[170]. Data shuffling
provides a lower level of disclosure risk with a higher
level of utility as compared with swapping techniques but
shuffled data carries a similar risk of attribute exposure
as data swapping and rank switching [144].

3) De-associative: The main purpose of this technique
is to create buckets that separate the relationship between
sensitive properties and QID. Techniques like bucketisation,
atomisation, angelisation, and slicing are part of de-associative
techniques.

• Bucketisation: Partitions are the foundation of bucketi-
sation. In a bucket, several values are sensitive for every
record. These records are permuted to protect sensitive
values. As a result, the bucketised data is made up of
a collection of buckets with sensitive values permutation
that make it difficult for an adversary to identify which
tuples are in which bucket. A permutation-based approach
was proposed by [171] to reduce the correlation between
QID and sensitive characteristics that are appropriate for
user data and query-based databases.

• Anatomisation: Anatomisation is a technique proposed
by [172] that is based on the bucketisation principle. In
this technique, it publishes two distinct tables: a QID
and a Sensitive table instead of publishing permuting
sensitive values. Anatomisation has gained popularity in
the field of data privacy, but its use is limited and it is
susceptible to background knowledge attacks [173]. It is
recommended to use other privacy techniques.

• Angelisation: Angelisation is a method similar to
anatomisation and is proposed by [174]. The user data
is separated into buckets and batches in this method and
any pair of buckets and batch publication corresponds to
the angelisation.

• Slicing: The slicing approach is proposed by [175] that
preserves attribute correlations by grouping many QIDs
with the sensitive values. The division of a user data set
into vertical and horizontal portions is the idea of slicing.

4) Synthetic Data: Synthetic data is the artificial data that
is obtained from original data through some transformation
that maintains the characteristics and features of the original
data. Rather than publishing original data, [143] proposed
generating synthetic user data. Synthetic data is becoming
more and more popular [176] due to its lack of privacy
concerns that are present in other privacy techniques. In
general, deep learning models or data mining techniques are
used to create synthetic data whose statistical characteristics
are comparable to those of the original data. As a result, after

analysing a particular set of synthetic data, data analysts would
be able to derive the same statistical findings as they would
find from the original user data. There are types of synthetic
data that have been identified by [142]: fully, partially, and
hybrid synthetic data.

• Fully Synthetic: In fully synthetic data, there is no
release of the actual data since all values on the user
data are replaced with the simulated values [143]. As
a result, the disclosure risk is typically very low [142].
Synthetic data provides only the information combined
with the statistical model about the original data, which is
typically limited to certain statistical features and requires
less time and energy [177].

• Partially Synthetic: The basic idea of partially synthetic
data is to select a subset of rows and columns of user
data for synthesis [178], [179]. It is also named selective
synthesis. Partially synthetic data is typically helpful
when applied to attribute values that carry a high risk
of disclosure. As a result, when unreal values are used in
place of real data values at a higher disclosure risk, the
disclosure risk is reduced. Partial synthetic data often has
the same amount of records as real data.

• Hybrid: The process of combining synthetic and original
data generates hybrid data. Integration of synthetic data
with the most effective attributes of other privacy tech-
niques is the fundamental idea [180]. The combination of
microaggregation and synthetic data is demonstrated by
[181]. In comparison to other synthetic data techniques,
the security level in hybrid datasets is the lowest, and
record numbers do not need to match the original data
record numbers.

• IEEE IC-21-013-01: IEEE IC-21-013-01 [182] is the
only standard available for the PPTs. It is a partnership
between academia and industry focused on accuracy and
privacy in synthetic data. In addition to enabling privacy-
preserving data utilisation, synthetic data may improve
algorithmic fairness. The objective of this standard is to
provide terminology guidelines and best practices for the
privacy and accuracy of synthetic data.

Summary. In this section, we have explained the PPTs
that any organisation may use to preserve user privacy. We
have compared various PPTs in compliance with international
regulatory standards, providing insights into their descriptions,
types, associated privacy risks, advantages, limitations, and ad-
herence to standards as illustrated in Table V. Non-perturbative
techniques, such as global recoding and sampling, maintain
the data structure but reduce information details, resulting in
a high level of generalisation and low data utility. Perturbative
techniques, including rounding and noise, distort data before
release, offering uncertain values and potentially introducing
new combinations but requiring a significant amount of dis-
tortion, particularly for extreme values. De-associative tech-
niques, such as slicing and bucketisation, aim to break correla-
tions between quasi and sensitive attributes but may pose high
disclosure risks due to original quasi-identifiers. Synthetic data
techniques, such as partially synthetic and fully synthetic, offer
quantifiable privacy protection and low disclosure risk but
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TABLE V
COMPARISON OF PPTS IN COMPLIANCE WITH INTERNATIONAL REGULATORY STANDARDS WITH PARAMETERS OF PPTS, BRIEF DESCRIPTION, TYPES,

PRIVACY RISKS RELATED TO PPTS, ADVANTAGES, LIMITATIONS, AND STANDARDS.

Techniques Description Types Privacy Risk Advantages Limitations Standards
Non-
Perturbative

Reduces
information before
data release

- Global Recoding
- Local Recoding
- Top-Bottom Coding
- Sampling
- Suppression

Reveal the
presence of
dataset sensitive
attributes

- Data structure un-
changed
- No unique combina-
tions

- Reduce information
details
- High generalisation
level
- Low data utility

No Standard

Perturbative Distort the data be-
fore its release

- Rounding
- Noise
- Shuffling
- Re-sampling
- Swapping
- PRAM
- Microaggregation

Reveal the
presence of
dataset-sensitive
attributes

- Uncertain values
- New combinations
may appear

- Inconsistent values
- Great quantity of
distortion required in
extreme values

ISO/IEC 20889

De-
Associative

Break the
correlation between
quasi and sensitive
attribute before data
release

- Slicing
- Bucketisation
- Angelisation
- Anatomisation

Expose
correlation
between Quasi
and sensitive
attributes

- Publishes original
quasi identifier
- No relationship be-
tween QID and sensi-
tive attributes

- High disclosure risk
because of original
QID
- Sensitive values
swapping leads to
inaccurate results

No Standard

Synthetic
Data

Prevents
individual’s
disclosure when
releasing statistics
or derived
information

- Partially Synthetic
- Hybrid Synthetic
- Fully Synthetic

Reveal the pres-
ence of sensitive
attributes in syn-
thetic dataset

- Quantifiable privacy
protection
- Low disclosure risk

- Attribute relation-
ship analysis requires
large datasets
- Costly in Computa-
tion

IEEE IC-21-
013-01

require large datasets for attribute relationship analysis and are
computationally costly. Notably, only synthetic data techniques
adhere to the IEEE IC-21-013-01 standard, underlining the
importance of standardised approaches in privacy-preserving
practices.

B. Privacy Enhancing Techniques (PETs)

The PETs are categorised into five main categories that
include Trusted Execution Environment (TEE), HE, Secure
Multiparty Computation (SMPC), Federated Learning (FL),
and DP. The details about each category of PETs are discussed
in subsequent sections. An organisation can use PETS to
enhance user privacy.

1) Homomorphic Encryption (HE): Using HE, one can
perform operations on encrypted data. Upon decryption, the
operations performed on the encrypted data match the result of
operations performed on plain data. There are different types
of HE schemes including Partially Homomorphic Encryption
(PHE), Somewhat Homomorphic Encryption (SWHE), and
Fully Homomorphic Encryption (FHE). PHE [183] supports
an unlimited number of one type of operations (i.e., addition
or multiplication) on the encrypted data. PHE can be further
divided into two types: multiplicative and additive PHE. RSA
(Rivest, Shamir, and Adleman) is an example of multiplicative
PHE [184] while Paillier cryptosystem [185] is an example of
additive PHE. PHE schemes have relatively low computation
and storage overheads. They are used in many practical
applications, although they support only one type of operation.
The Polly Cracker scheme [186] and Boneh-Goh-Nissim
(BGN) [187] are SWHE schemes. They support an arbitrary

number of additions and one multiplication operation or vice
versa.

A Fully Homomorphic Encryption (FHE) scheme allows an
unlimited number of operations on the encrypted data and the
resulting output lies within the encrypted data limit. In 2009,
Gentry [188] presented the first feasible lattice-based FHE
scheme in his seminal PhD thesis. Gentry’s proposed scheme
gives not only an FHE scheme but also a general framework to
obtain an FHE scheme. HE is particularly useful in situations
when the user data is outsourced to third-party storage for
computation and privacy is a major concern. HE can be used
to enable novel solutions in highly controlled areas, such
as healthcare, where data challenges can be eliminated by
preventing data sharing. The following are the international
standards that an organisation can use for the implementation
of HE.

• ISO/IEC 18033-6:2019: It is an IT security standard that
describes the generation of suitable security parameters
of two partially homomorphic algorithms called Paillier
and Exponential ElGamal encryption, and the method of
homomorphically processing the encrypted data [189].

• ISO/IEC AWI 18033-8: The continuation of ISO/IEC
18033-6:2019 for FHE is ISO/IEC AWI 18033-8 [190].
The proposed international standard outlines crypto-
graphic techniques that use FHE to compute a function
on encrypted data while maintaining the confidentiality
of the computation’s input, intermediate, and output data.
This standard has been deleted by ISO/IEC.

• Open Homomorphic Encryption Standard: In 2018,
the Homomorphic Encryption.org community accepted
the first Homomorphic Encryption Standard (HES) cre-
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ated by an open consortium of government, academics,
and industry. It outlines the schemes, explains the collec-
tion of information regarding their security, and suggests
a broad range of parameters to be used for HE at differ-
ent security levels. It provides these security parameter
recommendations by outlining known attacks and their
approximate execution times.

2) Secure Multi-Party Computation (SMPC): In addition
to HE techniques, another method for doing computations
on encrypted data is SMPC. By using the SMPC technique,
parties with sensitive inputs wishing to compute a joint func-
tion together without disclosing their inputs to one another
can perform computation on it. At the end of the protocol’s
execution, the parties have learned nothing more than what the
output itself has disclosed. The SMPC approach eliminates the
requirement for a reliable third party. There are two general
protocols for SMPC. Yao’s garbled circuits were invented by
Andrew C. Yao in 1986 [191] and Wigderson, Micali, and
Goldreich (GMW) protocol [192]. Yao’s garbled circuit is
a secure two-party computation protocol. In this protocol,
the sender builds a circuit for the function that has to be
calculated, then chooses two symmetric keys at random for
each wire in the circuit, giving rise to two possible values:
’0’ and ’1’. The truth table for each gate in the circuit is then
sent, in a random order, along with the keys that correspond to
each gate’s inputs. By executing an Oblivious Transfer (OT)
protocol [193] with the sender party, the receiver obtains the
matching keys for its input bits obliviously. Subsequently, the
circuit is evaluated by deciphering the garbled truth table for
each gate.

Another SMPC protocol is GMW protocol. In this protocol,
the function that needs to be calculated is represented as
a circuit of XOR and AND gates, similar to Yao’s circuit.
Parties send their shares to each other after dividing their
inputs into shares. As the XOR operation is linear, each party
can compute the XOR of the shares they hold without any
communication. The result of an XOR gate is simply the XOR
of the corresponding shares from each party. This step does
not require communication because no further interaction is
required.

The OT protocol must be executed by the parties to calculate
the AND gate output. The computation cost of secure two-
party and multi-party computation protocols is significantly
decreased by the OT extension algorithm [194]. It is prefer-
able to build function-specific SMPC protocols by taking
into account the computation and communication costs of
the generic protocols, even though the GMW protocol and
Yao’s garbled circuit protocol can compute any function. These
particular functions include secure logical operations, such as
private set intersection protocols , and equality and comparison
functions. The following are the international standards that
an organisation can use for the implementation of SMPC
protocols.

• ISO/IEC 19592-1-2:2016-2017: This standard describes
cryptographic secret-sharing methods and their charac-
teristics. The update to ISO/IEC 19592-1:2016 [195] is
ISO/IEC 19592-2:2017 [196], which discusses five secret

sharing algorithms that fulfil recoverability and message
confidentiality requirements.

• ISO/IEC 4922-1:2013: This standard [197] describes
SMPC techniques based on the secret sharing methods
outlined in ISO/IEC 19592-2. This standard describes the
addition, subtraction, shared random number generation,
and multiplication methods.

• IEEE 2842-2021: The recommended IEEE practice for
SMPC is IEEE 2842-2021 [18]. This standard gives an
overview, technical specification, and security levels of
SMPC.

3) Trusted Execution Environment (TEE): A secure portion
of a computer device’s Central Processing Unit (CPU) is called
a TEE. TEE makes it possible to access and run code that is
separate from the rest of the system. TEEs consist of both
hardware and software components. As TEEs are segregated
from the remaining system, the code within TEEs cannot
be read by the Operating System (OS) or hypervisor – a
procedure that divides an OS and its applications from the
physical hardware of a computer. Using memory encryption
enclave technology, TEE offers hardware-enforced isolation.
This technology is available by several names and is mostly
supplied by hardware manufacturers, such as AMD, ARM,
and Intel.

In virtualised cloud environments, protection against mali-
cious insider actors, such as malicious hypervisors, is guaran-
teed by the trust model for secure enclave solutions. However,
side-channel attacks on the processors that provide security
functionalities are still feasible [198]. Some producers provide
patches or solutions to TEEs but they cannot guarantee that
CPUs are immune to side-channel attacks. It is up to the
solution provider to mitigate the security risk.

There are many applications for TEEs [199]–[201]. It is
used with biometric authentication techniques (i.e., voice au-
thentication, fingerprint sensors, and facial recognition). TEE
runs the matching engine and related processing needed for
user authentication. TEE also guarantees that the computing
is “securely” outsourced in the context of a cloud. This implies
that the provider is unable to obtain any knowledge about the
relevant data. Furthermore, it makes multi-party computation
on untrusted platforms secure. It offers privacy for IoT devices,
large-scale data analytics, and more privacy-conscious ML
“as a service”. Due to memory constraints, scalability can be
problematic for large-scale processing because only a certain
amount of data may be processed simultaneously. Following
are the international standards that an organisation can use to
employ TEE in their operations.

• ISO/IEC 11889-1:2015: It is a four-part standard on
Trusted Platform Module (TPM) that was developed
through industrial partnership and later adopted by
ISO/IEC [202]. It outlines the TPM’s architectural com-
ponents, a tool that promotes trust across computing
systems as a whole. In the context of how a TPM
contributes to building trust in a computing platform,
several TPM ideas were explained. Platform requirements
are guided by ISO/IEC 11889-1:2015, which describes
how a TPM contributes to building trust in a computer
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platform. ISO/IEC 11889’s scope is restricted to TPM
standards alone.

• IEEE 2830-2021: It is a standard for the requirements
and technological foundation of shared ML based on
TEE [203]. This standard specifies the architecture for
ML, wherein a TTP processes encrypted data that has
been gathered from several sources to build a model.
The functional components, workflows, security speci-
fications, technological specifications, and protocols are
also specified in this standard.

• OMTP TR1 Standard: The Trusted Environment of
Open Mobile Terminal Platform (OMTP TR0) has been
replaced by the Advanced Trusted Environment (OMTP
TR1) [204]. OMTP presents several practical recommen-
dations, which can be implemented in silicon platforms
that are currently in use. The same practical methodology
was used during TR1’s development to produce a more
thorough security road map. Such a strategy is in line with
the industry’s overarching goals of establishing hardware-
backed security, as well as existing threats and potential
profits.

• GlobalPlatform GPD SPE 055 Standard: The global
platform [205] provides an organisation with technical
standards that manage cutting-edge digital services and
products that are secure by design. It offers consumers
end-to-end protection, privacy, ease of use, and simplicity.

• Platform Security Architecture (PSA) Standard: A
solution for connecting device security is provided by
the PSA Certified IoT platform [206], which covers
everything from analysis to certification and security
evaluation. To ensure that security is no longer a barrier
to product development, this framework offers standard-
ised tools to help address the increasingly heterogeneous
requirements for IoT [207].

• IEEE P2952: It is a standard for secure computing
based on TEE [208]. It offers a foundation for a secure
computing system based on TEE and provides technical
specifications for isolation, secrecy, compatibility, perfor-
mance, usability, and security that are necessary for an
extensive secure computing platform.

4) Federated Learning (FL): FL is an ML method that
enables data owners to collaborate on training ML models
[209]. It keeps the data hidden from the server and other
data owners. FL can be implemented using a decentralised
and a centralised approach. In a centralised FL approach,
data owners receive the first training model from the trusted
server, which also starts the training process. Using their
locally stored sensitive data, the data owners locally trained
the model. The server receives the updated parameters to
perform global model aggregation. Only the global model
aggregation parameters may be updated by the server. These
procedures are repeated until the model is completely trained.
In a decentralised FL approach, there is no centralised trusted
server. Every data owner can directly edit the global model
and communicate with each other. The decentralised design
has certain advantages as there is no single point of failure but
processing on a single server may cause security problems or

unfairness.
The data distribution across a sample is used to divide FL

into three types including Federated Transfer Learning (FTL),
Vertical FL (VFL), and Horizontal FL (HFL) [210]. In HFL,
every data owner with a different sample shares the same
feature sample. In this scenario, data can be gathered by a
server from various data owners. In VFL, the feature spaces
may vary, but the sample space is primarily shared by several
customers. Several secure VFL models, such as decision
trees, association rule mining, and Naive Bayes classifiers, are
proposed in the literature [211]. FTL is a recently developed
framework that allows for some data overlapping in both the
sample and feature spaces. Complementary knowledge can be
moved between domains in a federation using FTL and by
combining data from many sources, an adaptable and powerful
model may be created for the target area. In summary, FL
reduces the chance of data breaches because no data is stored
in one place that could be more valuable to an attacker.

5) Differential Privacy (DP): DP [212] is a method of
data anonymisation that measures privacy using mathematical
definitions. It measures how much personal information, a
computation’s output reveals about an individual. It is fre-
quently used to protect an individual’s privacy whose data is
included in a dataset for statistical analysis [213]–[215]. DP
is a novel method of protecting privacy that can be measured
more precisely than the methods found in many privacy laws
and policies.

Formally, two datasets, D1 and D2, which differ by no more
than one record each, are used to define DP [212]. For each
subset of the output S within the range of M , and for all
datasets D1 and D2 differing by no more than one record, a
randomised algorithm M is ϵ differentially private that defines

Prob[M(D1) ∈ S] ≤ exp(ϵ)prob[M(D2) ∈ S] + δ (8)

(ϵ,δ)-DP is the name assigned to this formulation as listed
in Equation 8, in which δ is the relaxation parameter. ϵ-DP
offers higher privacy guarantees if δ is ignored. The privacy
level control parameter is ϵ. It establishes the amount of
additional noise added to the dataset, changing its properties
and making values more difficult to reveal, such as direct or
indirect identities of certain individuals.

Another method is Rènyi DP (RDP) [216]. An algorithm is
(α, ϵ)-RDP if there is a Rènyi divergence of order α between
any two neighbouring databases, and this divergence is less
than or equal to ϵ. RDP’s straightforward privacy budget
accounting makes it a practical choice as explained in [216].
In a scenario, where entities are distributed to provide data
to a central point for data aggregator [217], distributed DP
extends the definition of (ϵ,δ)-DP. It is possible that the data
aggregator is dishonest and engages in collusion with some
of the participants. With computational DP, an opponent that
is computationally bounded takes the place of the unrestricted
adversary that is employed in DP. Computationally DP tech-
niques can provide more accurate query results by utilising a
weaker adversary model [218]. Central (Global) DP (CDP)
and Local DP (LDP) are the two different forms of DP.
In the CDP, user data is accessible to the aggregator. The
user data is first processed through noise by the aggregator
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before being shared with a third party for processing. The
primary disadvantage of this approach is that user-sensitive
data is accessible to the central aggregator. Users must all
have trust in the aggregator to protect individuals’ privacy
and act honestly. In the CDP, noise addition proceeds through
three different mechanisms: Gaussian [219], Laplace [220],
and exponential [212]. The most popular mechanism in CDP
is Gaussian, which is described in Equation 9. For a query
function f : D −→ R a randomised algorithm M satisfies
(ϵ, δ)-DP if

M(D) = f(D) +N(0, σ2) (9)

In the CDP, there is a special case in which noise can be added
to the client side to ensure that clients do not depend on the
server. This paradigm is referred to as the “LDP model” and
was initially formalised by [221] and [222] first presented the
LDP to the database community and it gained popularity with
the work of [223]. Due to its successful implementation in end-
user device apps, LDP has become increasingly popular. LDP
is used by Google’s Rappor [224] framework to protect users’
browsing patterns by identifying frequently visited locations
and configurations. To enhance user experience, Microsoft
[225] further uses LDP to gather telemetry data. The deploy-
ments’ trust model determines whether to use CDP or LDP.

A malicious server model prevents CDP from offering
privacy protection. LDP lowers the accuracy of the model even
while it shields the clients from rogue servers. Furthermore,
the DP itself does not account for the malicious colliding client
model. An approach would be to combine a hybrid solution
with additional privacy-enhancing measures. Using SMPC and
HE, it is still possible to protect against malicious server
models in the solution without sacrificing accuracy. However,
there is a cost associated with these methods, which involves
extra computation and communication costs.

DP enables organisations to adjust their privacy level so
that attackers are unable to access the correct user data. It
prevents attackers from accessing perfect user data by applying
differentially private computation for each query separately
which leads to different answers for the same query by
other researchers. These different approximate answers are
still meaningful for performing statistical aggregations. DP
aims to guarantee that a querier cannot reveal information
specific to individual participants. Additionally, random noise
addition ensures that any individual in the dataset can deny
their specific information or even participation in the dataset.
This deniability aspect of DP is important in the case of
linkage attacks where attackers combine multiple sources to
identify the personal information of a target individual. DP
provides a quantifiable measure of privacy guarantees through
the parameter ϵ. By adjusting the value of ϵ, data aggregators
can control the level of privacy according to the sensitivity of
the dataset.

There are several challenges and limitations of DP. The
first challenge is that DP does not apply to individual-level
analysis. Such analysis is not possible with DP-applied data.
It prevents an analyst from learning information particular to
specific individuals. For example, DP is not suitable for a
bank that wants to determine instances of fraudulent activity.

The second challenge is that DP does not support small data.
Similar to sampling errors, the inaccuracy introduced by DP
can be ignored for large datasets but it is not the case for
small ones. For a small dataset, the noise added by DP can
seriously impact any analysis based on it. The third challenge
is that there is no consensus over the optimal value of ϵ, i.e.,
the level of distortion for the data to be both private and useful.
ϵ = 0 is the perfect privacy case but it completely changes the
original data and makes it useless. However, if the applications
of DP become prevalent, guidelines to reach this optimality
for various cases may be established in the future. The
fourth challenge is that there is no simple answer for sharing
personal data with DP without the consent of GDPR or CCPA
compliance. It depends on the dataset, applied DP algorithm,
and the parameter ϵ. To be on the safe side, companies can
list all processors of DP-applied data as data processors if data
processing involves personal data usage. DP provides a way
to manage the level of privacy vs utility. However, as already
discussed, there is no agreement on the optimal level for this
tradeoff yet. A white paper by Vitaly et al. [226] states that
DP offers a powerful alternative to overcome the limitations of
traditional anonymisation approaches and policymakers should
work closely with researchers to formulate recommendations
for it.

In summary, DP is more helpful when used for statistical
analysis and general trends rather than identifying specific
patterns or abnormalities in data. The following are the
international standards that an organisation can use for the
implementation of PETs.

• ISO/IEC 20889:2018: In compliance with the privacy
principles outlined in ISO/IEC 29100, de-identification
procedures are described and designed using the privacy-
enhancing data de-identification approaches [227]. This
standard outlines vocabulary, classifies de-identification
techniques based on their attributes, and explains how
to apply every approach to lower the likelihood of re-
identification.

• ϵ-KTELO: It is a framework for defining differentially-
private computations [228]. It is a system and pro-
gramming framework for implementing new and ex-
isting privacy algorithms into practice. New methods
were implemented by ϵ-KTELO to support the scalability
and generality of ϵ-KTELO operators. These are the
techniques for computing lossless reductions of the data
representation.

The following are the related projects and guidance that
an organisation can incorporate to perform privacy-enhancing
computations on user data.

• ISO/IEC 29100:2011: ISO/IEC 29100:2011 [72] is an
international standard that provides a high-level frame-
work for the protection of PII within ICT systems.
It is general and places organisational, technical, and
procedural aspects in an overall privacy framework.

C. Privacy vs Utility

In the data de-identification process, it is possible that a
significant amount of valuable information may be lost and
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TABLE VI
DETAILED COMPARISON OF PETS IN COMPLIANCE WITH INTERNATIONAL REGULATORY STANDARDS WITH COMPARISON PARAMETERS OF

ORGANISATION, STANDARD NAME, IDENTIFICATION NUMBER, PUBLICATION YEAR, REVISION YEAR, CONTINUOUS UPDATION, PRIVACY TECHNIQUES,
ADVANTAGES, LIMITATIONS, AND THE MAIN FOCUS OF STANDARDS.

Organisation Standard Name Identification
Number

Publication
Year

Revision
Year

Continuous
Updation

Privacy
Techniques

Technique
Advantages

Technique
Limitations

Main Focus

ISO/IEC ITST-Encryption
Algorithms

18033 2015 2021 Yes HE Encrypted
computation

Computational
overhead

Homomorphic encryption
algorithms, parameters
and operations.

ISO/IEC Information Technology-
Trusted platform mod-
ule library

11889 2009 2015 No TEE High
security

Limited sup-
port

Trusted platform module
architectural.

ISO/IEC Privacy Enhancing
Data De-identification
Techniques–Terminology
and Classifications

20889 2018 – No DP High privacy Low utility Data de-identification
techniques

ISO/IEC ITST-Secret Sharing 19592 2017 – No SMPC – – Cryptographic secret shar-
ing scheme specifications

ISO/IEC Information Security
Secure Multiparty
Computation-Part 1

4922-1 2023 – Yes SMPC – – SMPC terminology and
specification

ISO/IEC Information Security
Secure Multiparty
Computation- Part 2

4922-2 – – No SMPC Privacy
preservation

Computational
complexity

Secure multiparty compu-
tation and secret sharing

IEEE Framework for Trusted
Execution Environment

2830 2021 – Yes TEE High
security

Limited sup-
port

Trusted execution
environment in privacy-
preserving ML

IEEE Secure Computing based
on TEE

P2952 2022 - Yes TEE High
security

Limited sup-
port

Cyber security applica-
tions of TEE applications

IEEE Recomended practices
for SMPC

2842 2021 - Yes SMPC – – SMPC framework with
security levels and use
cases.

OMTP TR1 Advanced Trusted Envi-
ronment

OMTP 2009 - No TEE – – Mobile phone TEEs re-
quirments and examples.

GlobalPlatform TEE Low-level API GPD-SPE-
55

2018 - No TEE – – Highly technical details
for TEEs industrial prod-
ucts.

the de-identified data thereafter have no use. The de-identified
data is released to the public for usage in diverse applications.
We need to consider the interpretation of data in terms of
information loss when it is released for general purposes and
the predictive performance of data in terms of data mining/ML
tasks. The multiple privacy techniques enhance the privacy of
user data; on the other hand, they could increase information
loss. The information loss is measured by comparing the
statistics between the original and de-identified datasets [229],
[230]. The information loss measures the usefulness of the
dataset after applying the particular privacy technique. The loss
in information can be measured through the statistics changes
that include means, variances, and correlations computation in
the datasets.

Several researchers [14], [231], [232] have suggested assess-
ing the de-identified data usefulness concerning data mining
tasks. Predictive models are constructed using de-identified
datasets and the usefulness of the de-identified dataset is
determined by the models’ prediction accuracy. The goal of de-
identified data should be to be comparable to the original data
as closely as possible to maximise data utility. The maximal
utility may lead to a lower level of data protection, which
may have an impact on businesses as well as data subjects.
The trade-off between these measures is an interesting topic
of research and achieving the balance between data privacy
and utility usually requires substantial effort in applications of
privacy techniques [14], [233], [234].

D. Privacy vs Security

In the digital world, user privacy and security are interre-
lated terms but they are two different concepts. User privacy
deals with user personal information and how it can be viewed
and accessed. Security, on the other hand, is the protection of
user personal data and information. For instance, when a user
downloads an application on a smartphone, it asks the user to
accept a privacy policy. This policy will specify the user data
that the application will collect and how it will be utilised.
Security aims to protect user personal information and data
using cyber security tools and techniques.

Implementing strong security requirements might require a
large amount of user data collection and monitoring, which
could compromise user privacy. For instance, Khan, Ghanem,
and Coffele [235] have discussed several methods with com-
partmentalisation techniques to improve user data protection
through integrated and multi-layered techniques. Askin, Kutta,
and Dette [236] examine statistical techniques for ensuring
DP protects individual data within large data sets. These
techniques are important in the healthcare domain, where the
discrete measurement of user medical conditions in terms of
mm-wave sensing [237] is required. With the increased use of
user surveillance and large data analytics, Prince et al. [238]
discussed the importance of user privacy awareness and how
users are becoming more concerned about privacy.

Emerging technologies, say AI and Mobile Edge Computing
(MEC), present new security and privacy challenges. Wang et
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al. [239] use the AI perspective on the security and privacy of
MEC that uses advanced algorithms and protocols to protect
data processing at the edge of networks. Similarly, Iwaya,
Ahmad, and Babar [240] conducted a systematic mapping
study on the security and privacy of mobile and ubiquitous
health systems by defining the need for comprehensive security
measures that do not compromise patient privacy. Furthermore,
Yang, Tjuawinata, and Lam [241] showed that privacy can
be maintained without sacrificing the utility of data analytics
by using privacy-preserving data analysis methods, such as
K-Means clustering with local DP. In domains such as IoT
and smart cities, these techniques are important for providing
secure, privacy-preserving insights from large datasets.

In communication networks, Qin et al. [242] discussed
enhancing primary user security in cognitive radio networks
through secondary user selection, which defines the complex
combination between user privacy and network security that
ensures the security and privacy of user data transmission.
Similarly, Khan and Asif [243] examine secure 5G network
communications using reflective in-band full duplex Non-
Orthogonal Multiple Access (NOMA), which uses advanced
techniques to provide secure, high-efficiency data transmis-
sion. As new technologies and threats arise, the complex
relationship between security and privacy requires constant
monitoring. For example, ML and AI improve security and
privacy but also create issues with bias and data privacy.
Organisations may develop systems that are secure and sup-
portive of user privacy by using a comprehensive strategy that
takes into account user demands and rights. This will promote
confidence and trust in the digital ecosystem.

Summary. In this section, we present a comprehensive
overview of international standards for PETs, highlighting key
insights into their standardisation, techniques, advantages, lim-
itations, and main focuses as illustrated in Table VI. ISO/IEC
standards cover various aspects such as encryption algorithms
for encrypted computation with homomorphic encryption,
trusted platform module library for high-security architec-
tural support, and privacy-enhancing data de-identification
techniques focusing on high privacy but low utility in data
de-identification. The main disadvantage of HE and SMPC
is high computational complexity while a TEE has limited
operational support. Additionally, IEEE standards contribute to
the field with frameworks and recommended practices for TEE
ensuring high security. Furthermore, standards from OMTP
TR1 and GlobalPlatform use specifics of TEEs, detailing
requirements, and low-level APIs for mobile phone TEEs,
showcasing a specialised focus on industrial products and
technical implementations. Similarly, Table VII highlights the
importance of standardisation efforts across different PETs to
ensure interoperability, security, and effectiveness in PETs. It
summarises international standards for PETs that an organisa-
tion can use to enhance user privacy. In this table, we present a
comparative analysis of various PETs with their descriptions,
privacy risks, protection mechanisms, advantages, limitations,
and associated standards. The TEE standards, such as those
from OMTP TR1, IEEE, and ISO/IEC, emphasise the secure
outsourcing of sensitive data for computations that ensure
efficient computation without information loss. TEEs face

challenges such as side-channel attacks and computational
complexities. The HE standards focus on secure operations on
sensitive data in compliance with ISO/IEC standards that have
benefits including information loss prevention but need to ad-
dress issues involving high bandwidth and latency. The SMPC
standards, including ISO/IEC and IEEE, enable joint analysis
of sensitive data without a TTP, yet face high computational
complexity. Additionally, DP standards from ISO/IEC and
NIST, prevent individual disclosure during information release
through formal mathematical proofs. It provides quantifiable
privacy protection levels but needs to address challenges
like random noise and information loss. Notably, FL lacks
a standardised approach that presents a challenge regarding
individual privacy and susceptibility to attacks including model
inversion and membership inference. This detailed comparison
explains the diverse strategies and considerations in privacy
protection and the ongoing efforts to standardise and mitigate
associated risks.

VIII. REAL WORLD CASE STUDIES

In this section, we discuss several use cases that illustrate
the many roles that privacy plays in real-world scenarios.
These scenarios aim to demonstrate situations in which privacy
techniques may help to achieve a more comprehensive data
goal. We choose these use cases based on their applicability
to important data-driven real-world problems.

A. Health Care Research

Recent developments in Artificial Intelligence (AI) provide
unprecedented opportunities in healthcare research that in-
volves audio, and medical imaging. An estimated 50 petabytes
of data are produced by hospitals worldwide each year [244].
Patient health data is essentially private, and if it is exploited
or privacy is violated, there may be consequences for public
mistrust.

1) Privacy in Medical Imaging: In healthcare research,
medical imaging is a vital tool that provides researchers and
doctors with precise pictures of the inside of the human body.
These pictures help in disease diagnosis, tracking the progress
of the disease, and assessing the effectiveness of treatment.
Medical imaging methods include Magnetic Resonance Imag-
ing (MRI), Computed Tomography (CT) scans, ultrasounds,
and X-rays. Each type of imaging technology offers a unique
set of data about the organs and tissues of the body. One of the
most traditional and widely used types of medical imaging is
X-rays. They are especially helpful for examining bones and
identifying breaks or fractures. CT scans often combine with
X-ray images taken from various perspectives to produce a
more in-depth image of the body. tumours, internal bleeding,
and other diseases that might not be evident on regular X-
rays are often identified with this technique. Ultrasound is a
common diagnostic tool for diseases of the liver, kidneys, and
heart. It creates images of soft tissues by using sound waves.

Magnetic fields and radio waves are used in MRI, a form
of scan that creates detailed images of the interior organs and
tissues of the body. The pictures generated by MRI provide
important information regarding the diagnosis and staging of
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TABLE VII
COMPARISON OF VARIOUS ASPECTS OF PETS IN COMPLIANCE WITH INTERNATIONAL REGULATORY STANDARDS WITH PARAMETERS OF TECHNIQUE,

THEIR DESCRIPTION, PRIVACY RISK, PROTECTION AREA, ADVANTAGES, LIMITATIONS, AND CORRESPONDING STANDARDS.

Techniques Description Privacy Risk Protection Advantages Limitations Standards

Trusted Execution
Environment

Securely
outsource
sensitive data
for computations

Reveals Sensitive
Attributes

Computation and
storage

Efficient computation
and zero loss of infor-
mation

Side-channel attacks
and distributed
big datasets’
computational
complexity

- OMTP TR1
- GPD-SPE-055
- IEEE 2830-2021
- IEEE P2952
- ISO/IEC 11889

Homomorphic En-
cryption

Secure
operations on
sensitive data

Reveals Sensitive
Attributes

Computation and
storage

Information loss
and operation
computation

High bandwidth and
Latency Issues

- ISO/IEC 18033

Secure Multi-party
Computation

Provides joint
analysis of
sensitive data

Reveals Sensitive
Attributes

Computation No TTP High computational
complexity

- ISO/IEC 19592-1
- ISO/IEC 19592-2
- ISO/IEC 4922
- IEEE 2842

Federated Learning Provides remote
decentralised
data for training
algorithms

Reveals sensitive
individual’s
information and
presence

Computation Very little loss of in-
formation

Model inversion
and Membership
inference attacks

No Standard

Differential Privacy Prevent
individuals
disclosure during
information
release

Reveals individ-
ual’s sensitive in-
formation

Computation and
storage

Formal Mathematical
Proof and Quantifi-
able Privacy Protec-
tion Levels

Random Noise and
Information Loss

- ISO/IEC 20889
- NIST

disease growth. ML algorithms can be trained on sets of MRI
data to identify certain features or anomalies in pictures. With
this technology, researchers may analyse a vast number of
images to find patterns that connect elements such as genetics,
patient behaviour, and environmental factors to brain function.

• Privacy Challenge: Sensitive health information about
patients may be revealed by big data analytics and MRI
imaging. A person’s presence in a dataset may contain
sensitive information. Neuroimages can occasionally be
re-identified, even though names, addresses, and scan
dates can be removed from the images to de-identify
them.

• FL based Solution: In FL, training models are “sent”
to remote data-holding devices (say servers) for local
training. It is a sort of remote execution that makes
it possible for researchers to train models using data
from other sites without having to access those data sets.
For instance, a FL approach would enable researchers at
several universities with access to neuroimaging data to
train their models on imaging data from all participant
data that would otherwise be “invisible” to analysts.

• DP based Solution: Neuroimage re-identification can
also be avoided by using the DP technique. To achieve
DP, a random noise must be added to the outputs. As a
result, cross-referencing with publicly available data be-
comes more challenging. By referring to a predetermined
privacy budget or the amount of data that is considered
acceptable to be leaked from the site, the controller can
adjust performance-privacy trade-offs. DP also makes it
possible to quantify privacy risk as the probability of re-
identification.

2) Privacy in Audio Data: Audio data is an important tool
in healthcare research because it can provide valuable insights

into various health conditions that help improve patient care.
Researchers and healthcare providers can diagnose diseases,
monitor patient progress, and enhance treatment plans by
analysing the patterns and characteristics of speech and other
sounds. Diagnosing diseases is one of the most significant
parts of audio data in healthcare research. For instance, a per-
son’s voice alterations can provide important indications about
their health. Speech abnormalities, such as a weaker voice, a
slower speech tempo, or vocal tremors, are common in people
with Parkinson’s disease. Through the process of capturing
and analysing these speech patterns, doctors can accurately
diagnose and monitor the advancement of Parkinson’s disease.
Similarly, mental health issues can be determined from audio
data. Anxiety or sadness can cause audible vocal changes in
people, such as a flat tone, slurred speech, or extended pauses.
Healthcare professionals can determine warning indications of
mental health problems and track patients’ treatment responses
over time by analysing these voice traits.

One kind of dementia that impairs a person’s memory, motor
abilities, and cognition is Alzheimer’s disease. Researchers
studying Alzheimer’s disease look for non-invasive methods to
identify and screen Alzheimer’s disease that are increasingly
turning to speech and audio data [245]. Speech content, such
as vocabulary range, and speech rhythm, such as hesitation
owing to word-finding difficulties, can both be impacted by
Alzheimer’s disease. ML models can be trained with audio
data that includes both verbal and nonverbal vocalisations,
such as breathing, coughing, and speech pauses to forecast
illness. Therefore, vocal biomarkers offer a promising direc-
tion for diagnosing Alzheimer’s disease and related studies
when combined with AI.

• Privacy Challenge: Vocal data is susceptible to re-
identification due to the large number of publicly accessi-
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ble, recognisable audio files (such as those on YouTube),
which facilitate easy re-identification. Sensitive informa-
tion is revealed by an individual’s presence in a dataset,
in addition to the content of the data.

• Anonymisation based Solution: One solution is to
combine privacy techniques with audio-specific anonymi-
sation techniques for securing audio biometric data. To
change a patient’s vocal quality, for instance, voice trans-
formation procedures can be applied that include AI-
based tools, such as Google Cloud’s Speech API, that
may automate the transcription of audio data. After that,
an ML algorithm can scan the audio data and identify
key elements, such as names, dates, ages, and locations.
The identifiers can be quickly modified by emphasising
distinguishable elements.

B. IoT

The net zero carbon emissions are part of a collective
effort to mitigate climate change. In climate technologies,
digital twins are an emerging area of research that is a virtual
counterpart of a physical object such as a wind turbine or
process such as economic transaction patterns. It works as
a decision-support tool after integrating sensors with other
models and physical-virtual systems. The establishment of
best practices and privacy solutions is the key to digital twins
adoption.

The development and evaluation of digital twins have sev-
eral important phases. First, it needs to build a virtual model
that precisely copies the real-world object or process that it
simulates such as a product production line or a wind turbine.
It involves integrating historical data, real-time sensor data,
and other appropriate data that ensure the twin’s precision and
reliability during the simulation of real-world conditions. To
guarantee accuracy and efficacy, the digital twin must then be
verified and calibrated against its physical counterpart. The
performance and behaviour of the digital twin are compared
to actual data obtained from the physical asset as part of this
validation procedure. It assists in discovering any variations or
potential areas for improvement in the twin. After validation,
the digital twin provides insights into operational efficiencies,
predictive maintenance, and performance optimisation that
make it a useful tool in the decision-making process. It gathers
and processes data from sensors and other sources continually
to refine its predictions and recommendations over time. Other
aspects of assessing digital twin’s evaluation are to test its
scalability, compatibility with other systems, and resistance
to different operating scenarios and conditions. Security and
privacy considerations of digital twins are critical throughout
the development and deployment process to protect sensitive
data and ensure compliance with regulations.

• Privacy Challenge: Digital twin development and eval-
uation require energy data for potential research and
innovation. The energy data is communicated between
digital twins and physical assets. Data sharing in this case
raises privacy concerns among many stakeholders includ-
ing people, businesses, the government, and regulators.

• Privacy Solution: Privacy solutions should be imple-
mented in the coupled digital twin-asset ecosystem at
several key points.

– Individual Privacy Solutions: The smart meters
are used to measure the end-user’s real-time energy
consumption. The roll-out of smart meters in Eu-
rope and the United Kingdom (UK) raises privacy
concerns for the collection of energy consumption
data [246]. Despite this privacy concern, smart me-
ter data offers tremendous potential for renewable
energy integration. The most efficient way to address
the privacy limitations of smart meters is to use
non-cryptographic techniques such as adding ran-
dom “noise” to the smart meter energy consumption
dataset using DP. The other approach is to include
spatial aggregation, which enables load balancing
without gathering data at the home level by arranging
smart meters in a geographical cluster.

– Government Privacy Solutions: Optimising the
advantages of an energy digital twin will require
combining summary statistics from several energy
consumption data sets. Relevant aspects of user data
could be shared via synthetic data that allow gov-
ernment and regulatory authorities to decide with-
out accessing entire datasets. The data comes from
physical assets used to monitor and control the grid
and national power distribution system. The TEE
combined with HE provides security to collaborative
cloud computing from attacks.

C. Social Media Data

Social media, including gaming platforms, budgeting tools,
wellness apps, and networking sites, is used by more than 4
billion people worldwide to create and share content, track
their actions, and get satisfaction [247]. The degree to which
users engage and produce material on these platforms has
increased the value of social media services as a source
of research data. Users frequently offer their personal in-
formation, such as a self-described location or an uploaded
profile photo. The majority of metadata, such as the timestamp
on a message or the geotag on an image, is automatically
recorded. Social media data usage can be resource-intensive
and invasive, despite its beneficial value. Public mistrust and
technological limitations make it difficult to access and use
social media data.

The social media data is diverse and broad, which can offer
researchers several possibilities by providing them insights
into communication patterns, societal trends, and human be-
haviour. To ensure user privacy and trust, the collection and
usage of social media data for research purposes must follow
ethical considerations and transparency guidelines. Social me-
dia platforms such as Facebook, Twitter, and Instagram offer
Application Programming Interfaces (APIs) through which
researchers can routinely access social media data. These APIs
enable regulated access to data such as posts, comments,
likes, and user profiles based on platform restrictions and
user permissions. Transparency requires clear communication
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about the data sources, data collection techniques, and study
goals. Researchers need to be transparent about how they
manage and examine data, including any processing methods
or algorithms used to extract insights. This transparency brings
credibility and makes it possible for more researchers to
verify or reproduce findings. When using data from social
media, ethical considerations are also very important. For
sensitive or identifiable data, researchers must obtain informed
consent and, whenever feasible, anonymise data to protect user
privacy and anonymity. Compliance with legal requirements
and platform terms of service is necessary for data usage and
protection.

• Privacy Challenge: Social media data include personal
information such as an individual’s age, gender, political
preference, and photos that can reveal a location, place of
residence, and romantic status. Technical difficulties arise
when it comes to gathering and utilising social media data
in a way that protects privacy. Cross-platform studies at
the user level may be difficult or nearly impossible if so-
cial media users post anonymously or under pseudonyms
that do not match across platforms.

• DP based Solution: DP is used to hide information about
individual users within a dataset before it is released
for research purposes but there are restrictions on the
inclusion of noise and the integration of data from various
sources. Researchers can use FHE or other cryptographic
techniques to query data holders without actually asking
for data on social media networks.
Summary: We have discussed real-world privacy chal-
lenges and their corresponding solutions across differ-
ent domains as listed in Table VIII. In the healthcare
sector, challenges including the revelation of patient-
sensitive health information in medical imaging and
the re-identification of audio data in medical audio
data are addressed through techniques such as FL or
DP, and audio-specific anonymisation techniques, re-
spectively. These techniques focus on data minimisation
and privacy-preserving measures. In the IoT domain,
where few privacy solutions and best practices exist,
challenges related to data sharing among stakeholders can
be mitigated using synthetic data or DP techniques that
offer robust privacy protection. Furthermore, in the social
media domain, challenges arise from public mistrust
and technological limitations leading to the revelation of
sensitive information. These challenges are handled with
FHE techniques that emphasise enhanced privacy mea-
sures to regain public trust and safeguard personal data.
This comparative analysis highlights the domain-specific
nature of privacy challenges and defines the importance
of privacy solutions to address them effectively in diverse
contexts.

IX. PRIVACY TOOLS

In this section, we discuss several privacy tools, their
purposes, and implementation details that help in the character-
isation and quantification of user privacy. Certain tools make it
possible to evaluate various privacy mechanism configurations,

which in turn makes it possible to evaluate the degree of
privacy that has been achieved.

A. µ-ARGUS

µ-ARGUS [248] is the first tool that provides privacy in
published data. This tool uses several privacy techniques,
such as noise addition, k-Anonymity, and microaggregation, to
create de-identified data that will be used in scientific research.

B. ARX Data Anonymisation Tool

Sensitive personal data can be anonymised with this open-
source tool [249]. Users can import, configure, examine, anal-
yse, and export data with this tool. The user can also specify
a privacy model at each stage. Several privacy methods,
including k-anonymity, l-diversity, t-closeness, and DP, have
already been implemented using this tool. This tool does not
use any attack or adversary models.

C. Amnesia

This tool’s primary goal is to use generalisation and suppres-
sion procedures to turn relational and transactional databases
into anonymised data [250]. This tool supports k-anonymity
mechanisms. Amnesia aims to exclude from public data any
sensitive information that could be used as identifying infor-
mation. Furthermore, this tool enables the removal of QIDs in
addition to direct identifiers.

D. SdcTools

SdcTool provides free statistical disclosure control capa-
bility in the form of open-source software [251]. Sdcmicro
is a tool that is created to anonymise user data. It uses
anonymisation techniques such as suppression, k-anonymity,
microaggregation, and several other techniques. In terms of
implementation, sdcMicro comes in the form of an R-package
and is freely available for research purposes.

E. Anonimatron

This is an open-source data anonymisation for structured
databases and files [252]. Its primary objective is to de-identify
or anonymise user-specific data. This tool saves that relation
in a synonym and changes an attribute’s value in the database
to achieve it. All of the database’s tables use these synonyms,
keeping the database similar while remaining anonymous. The
synonyms are kept in a file that can be downloaded and used
at a later time.

F. Aircloak

This tool protects privacy and makes use of a patented tech-
nique for data anonymisation [253]. Aircloak supports all types
of data that include unstructured text. Several techniques such
as k-anonymity, and DP noise served as the foundation for
Aircloak’s anonymisation process. Aircloak offers a dynamic
addition of noise in the anonymisation process based on these
principles.
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TABLE VIII
THE PRIVACY CHALLENGES AND THEIR SOLUTIONS IN REAL-WORLD CASES.

Domain Sub Domain Limitations Privacy Challenge Privacy Solution

Health care
Medical Imaging

Data minimisation and
Revelation of patient-sensitive
health information

Use FL Technique or DP

Medical Audio
Data

Re-identification Re-identification of audio data Use audio-specific anonymisa-
tion techniques

IoT – Few privacy solutions and best
practices

Data sharing among stakehold-
ers

Use Synthetic Data or DP
techniques

Social Media Data – Public mistrust and lack of
technology

Revelation of personal sensi-
tive information

Use FHE technique

G. UTD Anonymisation ToolBox

UTD anonymisation toolbox [254] implements Datafly
[255], k-Anonymity, incognito, l-diversity, t-closeness, and
Anatomy [172]. UTD toolbox is available for free download
and public use by researchers. This toolbox has scalability
issues when handling larger datasets.

H. Cornell Anonymisation Toolkit

This toolkit [256] uses a generalisation technique for data
transformation. In addition, this tool is a research prototype
and has problems with scalability when dealing with big data
sets.

I. OpenAnonymiser

This tool was developed by computer science researchers
from the University of Vienna, Austria in 2008 [257]. It
can automatically anonymise data according to user-selected
privacy models and risk thresholds, which can be controlled
through a web-based graphical user interface. The anonymi-
sation algorithm implemented by OpenAnonymiser is quite
simple with limited scalability and flexibility. Data and config-
uration settings need to be provided in an application-specific
XML format. The tool is published as open-source software
running on all major operating systems (Windows, Linux, and
MacOS).

J. TIAMAT

It stands for ‘Tool for Interactive Analysis of Micro-data
Anonymisation Techniques’ and was developed by Dai et al.
[258]. This tool supports different anonymisation algorithms,
such as Mondrian [259] and k-Member [260]. It also supports
three different privacy and risk models for analysing and
optimising the utility of output data. The processes supported
by TIAMAT are made available through a cross-platform
graphical user interface that runs on all major operating
systems, with a focus on comparing the properties of different
anonymisation techniques. However, this tool is not available
for download and its source is not open.

K. SECRETA

This tool is developed by Poulis et al. [261]. The main focus
of this tool is on analysing the effectiveness and efficiency

of anonymisation algorithms for tabular as well as set-valued
data. It features a cross-platform graphical user interface that
operates in two modes: evaluation and comparison. Input data
have to be provided as CSV files. However, analogously to
TIAMAT, this tool and its source code are unfortunately not
available to the community [262].

L. PrioPrivacy

The Research Studio Data Science developed the PrioPri-
vacy tool that was first released in 2019 [263]. This tool
anonymises tabular data and provides a high degree of flexibil-
ity in the selection of the variables that must be kept private for
the use of anonymised data. It is an extension of the ARX Data
Anonymisation Tool with additional features. As PrioPrivacy
is built on ARX, it is also implemented in Java, which makes
it interoperable with all major platforms. It is under active
development.

M. Probabilistic Anonymisation

It was developed by Avraam et al. in 2018 [264]. This
tool adds random noise to data to perturbate it instead of
directly basing its approach on privacy and utility models. To
be more precise, to avoid correlation with other data, nor-
mally distributed random noise with user-specified variances
is added. Similar to sdcMicro, the tool can be used with data
that is provided in a variety of forms because it is offered as
a package for the R statistics programming environment.

Summary. We provide a comparative analysis of various
privacy tools based on several key aspects as illustrated in
Table IX. Each tool’s open-source availability, software-based
nature, and web-based accessibility are discussed, alongside
their release years. Privacy-preserving mechanisms employed
by these tools, including both non-perturbative and pertur-
bative techniques, are specified that offer insights into their
operational approaches. Additionally, the table highlights the
cost implications of these tools and their evaluations regarding
privacy and utility, which is crucial for assessing their effec-
tiveness and practicality in real-world applications. We have
observed that the ARX is an open-source and software-based
tool that offers both non-perturbative and perturbative privacy-
preserving mechanisms. It is particularly suitable for scenar-
ios where a balance between privacy protection and utility
preservation is essential. Its recent release indicates ongoing
development and potential adaptation to evolving privacy
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TABLE IX
COMPARISON OF VARIOUS ASPECTS OF PRIVACY TOOLS WITH COMPARISON PARAMETERS OF TOOL NAME, OPEN-SOURCE, SOFTWARE-BASED,

WEB-BASED, RELEASE YEAR, PRIVACY MECHANISM, COST, PRIVACY EVALUATION, AND UTILITY EVALUATION.

Tool Open-source Software-based Web-based Release
Year

Privacy Mecha-
nism

Cost Privacy
Evaluation

Utility
Evaluation

µ-ARGUS Yes Yes No 2014 Non-perturbative
& Perturbative

No Yes No

ARX Yes Yes No 2020 Non-perturbative
& Perturbative

No Yes Yes

Amnesia Yes Yes Yes 2019 Non-perturbative No Yes Yes

SdcMicro Yes Yes No 2017 Non-perturbative
& Perturbative

No Yes Yes

Anonimatron Yes Yes No 2020 Anonymisation No No No

Aircloak No Yes No 2014 Non-perturbative
& Perturbative

Yes Yes Yes

UTD Yes Yes No 2014 Non-perturbative
& Perturbative &
De-associative

No Yes Yes

Cornell Yes Yes No 2009 Non-perturbative No Yes Yes

Open
Anonymiser

Yes No Yes 2008 k-anonymity No Yes No

TIAMAT No Yes No 2009 k-anonymisation,
Mondrian, k-
member

- Yes Yes

SECRETA No Yes Yes 2014 Perturbative - Yes Yes

PrioPrivacy Yes Yes No 2019 Non-perturbative
& Perturbative

No Yes Yes

Probabilistic
anonymisa-
tion

Yes Yes No 2018 Non-perturbative
& Perturbative

No Yes Yes

challenges. However, the choice of the best tool ultimately
depends on specific use-case requirements and preferences
regarding factors such as cost, evaluation methodologies, and
the nature of the data being handled.

X. LESSON LEARNED AND FUTURE RESEARCH
DIRECTIONS

In this section, we discuss the lesson learned from existing
research on the characterisation and quantification of user
privacy and elaborate further on open problems present in the
adoption of international standards for the preservation of user
privacy which was discussed in Sections V,VI, and VII. The
following are the main challenges in the privacy domain:

• New International Standards: A new international stan-
dard for user privacy is important to establish unified
guidelines, ensuring consistent protection of personal data
across borders and enhancing trust in digital services
worldwide. For instance, in FL, as discussed in Section
VII, a new international standard for user privacy is
crucial to establish clear guidelines and protocols that
ensure robust protection of personal data while facilitating
collaborative ML across distributed networks.

• New Privacy Metric and Notions: The fundamen-
tal challenge for an organisation is to apply privacy
techniques having minimal information disclosure and
loss. Currently, there is no one-size-fits-all solution for

data privacy and the standard privacy techniques do not
provide a one-size-fits-all solution for data privacy in
the modern data-rich world. It means how data can be
gathered, exchanged, and analysed has become more
sophisticated with the advancement of technology de-
creasing the efficacy of existing privacy techniques. The
design of new privacy metrics and concepts helps in
addressing these issues.

• Efficient Privacy Techniques: These are used to provide
privacy solutions that can effectively produce optimal
privacy vs utility data for public health, finance, and
other sectors. It involves the implementation of several
key techniques into practice such as personal identifiers
can be removed from data by data anonymisation and de-
identification, which ensures that no one can be directly
linked to the data. DP hides specific entries in the data
while maintaining general trends for precise analysis
through the addition of noise. Strong access controls
and encryption protect data against unauthorised access
and security breaches. Data minimisation makes sure that
information is only used for the intended reasons and it
aims at minimising the amount of unnecessary informa-
tion that is collected. Regular PIAs ensure that privacy
security measures remain up to date with changing data
practices by supporting the identification and mitigation
of any potential risks. User data is further protected
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by multi-layered safety measures, which strengthen the
defence against possible threats.

A. Open Problems in International Standards

The preservation of user privacy is a complex issue, and im-
plementation of international standards to address user privacy
challenges is important for ensuring consistency, interoperabil-
ity, and protection of individuals’ rights across borders.

1) Jurisdictional Variability: Privacy laws and regulations
vary significantly between different countries, which creates
challenges for multinational organisations to comply with mul-
tiple sets of requirements. Harmonising these regulations while
respecting cultural differences and legal traditions poses a
significant challenge. One example of jurisdictional variability
in privacy challenges is the difference between the EU’s GDPR
and the privacy landscape in the US. The GDPR applies to
all organisations processing the personal data of individuals
in the EU, regardless of where the organisation is located. It
imposes strict requirements on data controllers and processors,
including obtaining explicit consent for data processing, im-
plementing data protection measures, and notifying authorities
of data breaches. In the US, privacy laws are fragmented, with
sector-specific regulations (e.g., HIPAA [265] for healthcare,
COPPA [266] for children’s data) and state-level laws (e.g.,
California Consumer Privacy Act, or CCPA [12]). There is
no comprehensive federal privacy law similar to the GDPR,
leading to a patchwork of regulations that vary across states
and industries.

Lesson Learned. Countries have very different privacy
laws, so it is very challenging for multinational corporations to
comply with them all. For instance, the US needs one federal
law similar to the GDPR and rather than has a collection of
rules governing various industries and states, which could be
It makes it difficult for multinational organisations to manage
and enforce these regulations worldwide.

Future Directions. There is a need for continuous efforts
to harmonise privacy regulations globally, such as the GDPR
in Europe and the APEC Privacy Framework [267] in the
Asia-Pacific region. Harmonisation aims to create consistent
standards for data protection across jurisdictions that increase
the cooperation between regulatory authorities.

2) Cross-Border Data Transfers: With the increase in the
globalisation of data flows, the privacy and security of personal
data transferred across borders pose a significant challenge.
Data localisation requirements and restrictions on international
data transfers can create problems for data-driven innovation
and economic growth. For example, in the case of Personal
Data transfer from the EU to the US, the GDPR imposes
strict requirements on the transfer of personal data outside
the European Economic Area (EEA). It prohibits transfers to
countries without an “adequate” level of data protection unless
specific safeguards are in place.

To facilitate data transfers between the EU and the US, the
Privacy Shield Framework [268] was established in 2016. It
allowed certified US companies to receive personal data from
the EU in compliance with GDPR requirements. However,
the Privacy Shield was invalidated by the European Court of

Justice in the “Schrems II” ruling [269] in July 2020. The
court cited concerns over US surveillance practices and the
lack of effective remedies for EU citizens. In the absence of
the Privacy Shield, organisations rely on Standard Contractual
Clauses (SCCs) [270], which are approved by the European
Commission, to legitimise data transfers to countries without
adequacy decisions. While SCCs remain a valid mechanism
for cross-border data transfers, the “Schrems II” ruling high-
lighted the need for organisations to conduct assessments of
the destination country’s legal regime and provide additional
safeguards if necessary.

Lesson Learned. The international exchange of personal
data increases threats to security and privacy. Restrictions
on international data transfers and domestic data retention
laws may discourage innovation and economic expansion. For
instance, there are strict rules for moving data outside of
the European Economic Area under the EU’s GDPR. The
Privacy Shield, which facilitated data movement from the EU
to the US, was declared invalid. Standard Contractual Clauses
(SCCs) are now used by organisations to organise lawful
data transfers; however, they still need to evaluate and protect
against legal risks in the country of destination.

Future Direction. Organisations need unified rules that
facilitate cross-border data transfers for performing innovation
in their products, which leads to economic growth. They are
exploring alternative mechanisms for cross-border data trans-
fers, such as Binding Corporate Rules (BCRs) [271], which are
internal data transfer policies approved by EU data protection
authorities. Some organisations are considering implementing
technical measures, such as encryption and pseudonymisation,
to enhance data protection during transfers and reduce the
risk of unauthorised access. The use of encryption technology
comes under the encryption export control laws that prevent
the unauthorised transfer of cryptographic technology to in-
dividuals, organisations, and countries deemed as adversaries.
The Wassenaar arrangement [272] harmonises encryption ex-
port control policies among participating countries. It promotes
consistent standards for regulating the export of encryption
technology while balancing the need for security, privacy, and
innovation.

3) Emerging Technologies: The rapid advancements in
technologies such as AI/ML, biometrics, and IoT bring new
privacy challenges. These technologies often involve the col-
lection and processing of large amounts of personal data,
raising concerns about surveillance, discrimination, and unau-
thorised access. For example, an IT company specialising in
healthcare devices released a new wearable fitness tracker
device. The wearable device collects sensitive health data,
including heart rate and sleep patterns, which can reveal
intimate details about users’ lifestyles and health conditions.
The storage of health data on wearable devices or associated
mobile apps poses security risks, such as data breaches or
unauthorised access by malicious actors. In addition, the long-
term retention of user data by wearable device manufacturers
may pose risks to privacy, as outdated or unnecessary data
could be exploited if accessed by unauthorised parties. To
mitigate these risks, wearable device manufacturers providing
users with options to delete or anonymise their data can
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mitigate these risks.
Lesson Learned. The rapid development of technologies

such as AI, biometrics, and IoT presents novel privacy chal-
lenges since they collect and manage massive amounts of
personal data. It raises concerns about monitoring, bias, and
unapproved data access. For instance, the fitness tracker of a
healthcare organisation collects sensitive health information
that raises concerns about data breaches and improper use
of out-of-date information. The manufacturers need to enable
users to remove or conceal their data in order to reduce these
risks.

Future Direction. The integration of privacy considerations
into the design and development of products and services
is known as privacy by design and default. It provides a
framework for integrating privacy protections into the design
and operation of systems, products, and services which en-
hance user privacy and ensure compliance with international
standards and regulations. As we discussed in Section VII,
international standards can promote the adoption of PETs and
practices across industries that promote a culture of privacy
protection and accountability, ultimately benefiting users and
organisations.

B. Open Problems in Privacy Metrics

A privacy metric is a quantification tool that is used to
measure how much privacy a user has in the system. We have
discussed privacy metrics in Section VI that still have some
open problems.

1) Privacy Linkage: Privacy linkage refers to the case when
one user’s actions affect multiple users’ privacy such as in
social networks [273] or location privacy [274]. The privacy
linkage measures how an existing privacy metrics value varies
with increasing dependency. It is computed using a difference
[275] or comparing absolute values [276]. The main problem
with privacy linkage is that it is difficult to quantify the impact
of an increase in user dependence on privacy. Achieving this
requires the use of time-consuming and complex methods.

Lesson Learned. In privacy linkage, measuring the extent
to which dependencies affect overall privacy is a difficult task
because the actions of one user can impact the privacy of
other users, e.g., in social networks or location services. This
measurement is quite challenging to quantify and requires
time-consuming, advanced techniques.

Future Direction. One possible future direction is to de-
velop new metrics that specifically take linkage into account.
In this situation, the metrics that quantify the effects that
one user’s actions on the privacy of other users may be
advantageous.

2) Aggregation of Privacy Metrics: It can be useful to ag-
gregate (or compose) metrics in scenarios that involve a large
number of users, such as in the case of the communication
system. Aggregating privacy metrics relies on the quality and
reliability of the underlying data sources. Inaccurate or incom-
plete data can lead to biased or misleading aggregated met-
rics, undermining their usefulness and trustworthiness. Privacy
metrics may need to be aggregated from diverse sources, such
as different organisations or systems, each with its own data

formats, standards, and quality. Integrating heterogeneous data
sources while maintaining privacy and consistency presents a
significant challenge.

Lesson Learned. In aggregating privacy metrics for several
users, it is mainly dependent on the accuracy and consistency
of the data like in communication systems. Metrics that are
biased or misleading might be produced from incomplete or
inaccurate data, which reduces their significance. It can be
difficult to aggregate data from several sources, each of which
has unique formats and standards. It is important to manage
data carefully to ensure consistency and user privacy.

Future Direction. One possible direction is to develop
context-aware aggregation approaches that consider the spe-
cific context in which data is aggregated and used. This
involves incorporating contextual factors, such as user profiles,
data sources, and application domains to tailor aggregation
methods and privacy protections accordingly. The other pos-
sible direction is to investigate multi-level aggregation tech-
niques that enable hierarchical aggregation of privacy metrics
at different levels of granularity. This allows for balancing
between preserving individual privacy and deriving useful
insights at various aggregation levels. Developing privacy met-
rics and aggregation methods tailored to emerging technolo-
gies, such as IoT, AI, and blockchain, poses unique privacy
challenges that require specialised approaches for aggregating
and analysing privacy metrics [277]. In blockchain, privacy
metrics evaluate how well the system protects user identities
and transaction information. Important metrics are secrecy
(the degree to which transaction data, such as amounts, are
kept private), anonymity (the degree to which transactions
are difficult to associate with an individual), and unlinkability
(the degree to which it is challenging to associate various
transactions with the same user). Even though blockchain data
are publicly accessible, these metrics help to maintain the
privacy and security of users’ activity.

3) Privacy metric Quality: There are few studies in the
literature [278], [279] that investigate the quality of the privacy
metric. It is recommended that high-quality metrics should be
used for the quantification of user privacy, but there is no
mutual consensus on what is high quality and how it should
be quantified.

Lesson Learned. It is important to use high-quality privacy
metrics to determine user privacy accurately but there is lim-
ited consensus on what makes a metric high-quality or how to
measure it. This lack of consensus makes it more challenging
to ensure reliable and effective privacy quantification.

Future Direction. It is widely believed that the privacy
metric value is greatly varied with consistency and unifor-
mity. The quantity of privacy metrics, quality indicators, and
relevant scenarios all affect the usefulness of privacy metrics.
Thus, more investigation is required to assess the value and
significance of privacy measurements.

C. Open Problems in Privacy Techniques

Privacy techniques encompass a broad array of issues span-
ning from technological advancements to legal and ethical
considerations.
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Fig. 9. Lesson learned and future research direction in characterisation and quantification of user privacy.

1) Management of Dynamic data: Dynamic data manage-
ment is one of the main challenges to the wider adoption of
preserving techniques. A set of privacy techniques applied to
dynamic data would not successfully solve the privacy preser-
vation problem because data is dynamically modified with
time. In particular, when certain records are added, removed,
or modified, sensitive data would not be properly secured. The
current solutions are based on the static publication of the user
data which supports one-time publication.

Lesson Learned. Management of dynamic data poses a
significant challenge to the adoption of effective privacy
techniques. Techniques designed for static data may not suffi-
ciently protect user privacy when data is constantly changing
over time, such as when records are added, removed, or
modified. Current solutions often rely on publishing data in
a static form, which limits their effectiveness in dynamically
changing environments.

Future Direction. To address the management of dynamic
data, we need to develop flexible, interactive, and adaptable
privacy techniques that publish continuous data with the
integration of outliers detection techniques.

2) Management of Big Data: Management of big data is
another challenge to the wider adoption of privacy techniques.
A growing number of attributes are caused by the enormous
increase in digital data that is currently being gathered and

shared. In some situations, the so-called “curse of dimension-
ality” may apply, potentially leading to information loss in
de-identified datasets.

In literature, some approaches [259], [280] are presented
that address the limitation of the dimensionality. Furthermore,
since global recoding and other approaches rely heavily on
data variances, big data variety may impose additional limita-
tions [281].

Lesson Learned. The major challenge in the implementa-
tion of efficient privacy measures is to manage large user data
sets. The quantity of digital data being gathered and exchanged
is huge, and there are more and more user attributes to manage.
Big data comes in a wide range of formats and sources, which
makes privacy initiatives much more difficult and presents new
issues that must be resolved for efficient data security.

Future Direction. One possible future direction is to con-
struct big data by combining datasets having overlapping
subjects. The second possible direction is to develop efficient
cryptographic methods that enhance data utility and reduce
computational overhead.

3) Management of Distributed Data: Management of dis-
tributed data is the third main challenge to the wider adoption
of privacy techniques. The requirement for the massive amount
of real-time data for different types of analysis allows organ-
isations to move from a centralised data storage solution to
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a decentralised one. When data is stored by different parties,
collaborative data publishing in which multiple data providers
release data for general use or data mining tasks is frequently
used as a solution to this problem but the rapidly growing
volume of data requires the exploration of new security
measures. Some solutions allow multiple collaborations of
different parties using secure cryptographic mechanisms [282].

Lesson Learned. The adoption of efficient privacy tech-
niques is affected by the management of distributed data.
Organisations are shifting from centralised to decentralised
data storage solutions as they depend more and more on real-
time data for a variety of analyses. This problem is usually
addressed with the help of collaborative data publishing, in
which several parties release data for public consumption or
mining activities. Secure cryptographic techniques are one
type of solution that allows collaboration among several parties
while maintaining data confidentiality and privacy. These
developments are important for preserving confidence and
protecting sensitive data in remote data environments.

Future Direction. The possible future work is to develop
a flexible and efficient distributed system for handling dis-
tributed data that balances computational and disclosure costs.
The lesson learned and future research directions are listed in
Fig. 9.

XI. CONCLUSION

The exponential growth of data-driven technologies has not
only drastically changed the way people conduct activities and
acquire information but also has raised security and privacy
issues for them. Users are increasingly sharing their personal
information on the online platforms of various organisations.
These organisations publish and share user-generated data
with third parties which risks exposing individuals’ privacy.
Detecting privacy issues and proposing techniques to protect
users’ privacy is a challenging issue. Most of the existing
works focus on introducing new attacks and thus the gap
between protection and detection becomes larger for an or-
ganisation. In this survey, we discuss the important issues
in the characterisation and quantification of user privacy in
compliance with international regulatory standards. Then, we
provide an overview of existing regulations and frameworks
related to user privacy, highlighting their strengths, limitations,
and implications for businesses and individuals. In the end, we
discuss promising directions for future research and develop-
ment, including advancements in privacy techniques, interdis-
ciplinary collaborations, and the role of emerging technologies.
This work aims to contribute to the ongoing research on user
privacy in compliance with international standards and pro-
mote the development of effective strategies for safeguarding
user personal data in an increasingly interconnected world.
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