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Abstract—Measuring accurately image and video quality is a
critical step in any image and video processing and compression
method and streaming / broadcasting system. In particular,
simple and tractable objective metrics are required for quality-
driven system optimization. The aim of this paper is to show
how the structural similarity metric (SSIM) for image quality
assessment can be seen in many cases, such as Discrete Cosine
Transform (DCT)-based compressed images and video, as a
content-aware version of the peak signal-to-noise ratio (PSNR)
and it can be accurately estimated based on it. In fact, under
some assumptions described in the paper, the first can be
derived directly from the latter based on a single content-
dependent parameter, i.e. the variance of the image / video frame.
Tests on example images compressed via JPEG at different
quality levels further validate the assumptions and show how
the proposed derivation can be utilized in replacement of the
original expression of SSIM for compressed images/video frames
at quality levels of interests in real applications (e.g., video
streaming). Finally, as an example application of the derivation,
we derive an expression for measuring the image/video quality
following image/video transcoding quality based on SSIM.

Index Terms—Quality assessment, objective quality metrics,
PSNR, SSIM, JPEG, image and video compression

I. INTRODUCTION

Image/video compression is a key step in any video stream-
ing system, enabling the reduction of the required transmission
data rate. Lossy image/video compression results, however, in
a reduction of image/video quality. The quality of impaired
images can be assessed via subjective tests, with a pool of
subjects visualising them and providing a score in a specific
scale (e.g., 5-point Likert scale); the mean of the scores from
the pool of subjects (mean opinion score, MOS) is typically
considered as the quality value associated to a specific visual
stimulus. This procedure, however, is expensive in terms of
time of subject viewers, logistic resources (use of specialised
labs) and time to collect and analyse the scores. An alternative
method is to use objective quality metrics, calculated via math-
ematical expressions or algorithms or learning-based models.
Such metrics can be calculated comparing the impaired and
original image/video (full reference), or based only on the
impaired image/video (no-reference) or based on the impaired
image/video and using only limited information from the
original image/video (reduced-reference).

Figure 1 depicts via a block diagram the process of lossy
compression and the relevant objective, full reference qual-
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ity assessment (bottom) based on original and reconstructed
image or video.
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Fig. 1: Quality assessment as comparison between original
and compressed video.

Focusing on a single image or video frame, the Mean
Square Error (MSE) between the original (X) and the com-
pressed version (Y) is calculated as follows:

MSE =
1

MN

M×N∑
j=1

(xj − yj)
2
= E(e2) (1)

where M and N are the number of pixels in horizontal and
vertical direction, e represents the error and E is used to
identify the mean.

The Peak Signal to Noise Ratio (PSNR) is derived from
MSE as follows:

PSNR = 10 log10
(2b − 1)2

MSE
(2)

where b is the bit depth (number of bits per pixel).
While MSE and PSNR are easy to calculate, they are not

always good indicators of the actual quality as perceived by
the users. For this reason, other quality metrics have been
developed. In particular, Structural Similarity Index (SSIM)
[1] has become very popular, since it has been shown to
correlate well with the quality as perceived by humans for
different types of distortions.

The SSIM metric is defined as below:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3)

where µx and µy are the mean of the original and the
impaired grayscale image, respectively, while σ2

x and σ2
y
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are the variance of the original and the impaired grayscale
image, respectively; σxy represents the covariance between
original and impaired images (grayscale) and C1 and C2 are
constant values to make sure the metric is a real number.
A similar index can be calculated on the color components
of an image. SSIM is a full reference metric and it can
be decomposed in terms addressing structure, contrast, and
luminance comparison.

PSNR and SSIM are still the most widely used metrics for
image and video quality assessment [2] [3] [4] [5] [6] [7]
[8] [9] [10] [11] [12] [13] [14] [15], being also used for rate
control [16] [17] and rate-distortion optimisation [18] [19]
[20] [21] [22], as well as super-resolution strategies [23] [24]
describing quality levels of content in image/video datasets
[25] [26] [27] [28] [28] [29] [30].

For some of these purposes (e.g., in-loop rate-distortion op-
timisation) a mathematically tractable metric is required, since
subjective quality metrics cannot be used directly and the same
applies to objective quality metrics based on machine learning
(e.g., Video Multimethod Assessment Fusion (VMAF) [31],
Learned Perceptual Image Patch Similarity (LPIPS) [32]).
While SSIM better reflects human perception and may appear
mathematically tractable, it is more complex than MSE and
PSNR and requires the calculation of the covariance of orig-
inal and impaired image, i.e., joint knowledge and use of all
the pixel values of original and impaired image/video, besides
mean and variance of both original and impaired image/video.

In order to simplify its calculation, this paper discusses
the derivation of SSIM directly from PSNR or MSE in
the case of Discrete Cosine Transform (DCT)-based image
and video compression. The latter case allows simplifications
since it makes possible the assumption that the mean of
the luminance/chrominance values does not vary with the
compression ratio and the same assumption can be made -
to some extent - for the variance.

The contributions of this paper include:

• A detailed analytical derivation and discussion of the
relationship between SSIM and MSE/PSNR for DCT-
based compressed images and video.

• Following the observation that mean and variance of
an image or video frame are not evidently affected by
compression (at the bitrates of interest), two accurate and
mathematically tractable approximations are presented
for the calculation of SSIM as a function of MSE/PSNR,
for different use cases. Under the considered assump-
tions, the two quality metrics are related via a simple
content dependent parameter (the variance of either of the
compressed or original image), hence SSIM can be seen
as a content-aware PSNR, not needing the calculation of
the covariance between the two images as in the original
expression.

• In particular, in the case the variance of the original
image is not available (e.g., image/video delivered over a
network), the paper presents an accurate way to calculate
SSIM based on only MSE or PSNR and the variance of
the compressed image as only content-dependent factor.
An advantage of this method is that, assuming PSNR

information but not SSIM is provided, for instance as
metadata in a received bitstream, SSIM can be calculated
easily with no need for other reference to the original
video, with a mathematically tractable model that can be
used in the formulation of system optimization.

• In the case of (block-based) rate-distortion optimization
for image and video compression, the paper suggests the
use of the SSIM approximation with the variance of the
original image, available in this case. With the presented
accurate SSIM approximation, only the source variance
has to be computed once per block, while the co-variance
would require computation for the reconstruction of a
block for each possible mode decision.

• The comparison with another approach in the literature is
also presented. The approach, considered as benchmark,
aimed to derive a more realistic MSE-based metric for
compressed images, also in link with SSIM, with differ-
ent assumptions. It is shown that the model presented
here is more accurate to estimate SSIM in the case of
DCT compressed images/video frames, as detailed in the
results section.

• Assumptions done in previous SSIM-based rate-
distortion optimisation strategies are discussed in light
of the observations provided in this paper.

• Finally, as an example application of the derivation,
a new simple expression for image/video transcoding
quality based on SSIM is provided.

This paper is a major extension of [33].
The remainder of this paper is organized as follows. After

a summary of related work in Section II, an analysis of
the relationship between SSIM and PSNR is presented in
Section III, while Section IV provides comparative results
for example compressed images. As an example application
of the derivation, Section V proposes a method to assess
the perceptual quality of transcoded video based on MSE.
Section VI presents concluding remarks along with a brief
discussion of further potential applications.

II. RELATED WORK

A review of the state of the art in the field including the
main statistical performance evaluation methods is provided
in [34].

There have been a number of attempts to compare PSNR
and SSIM and both metrics with the results of subjective
tests summarised via the Mean Opinion Score (MOS). Raw
approximations, not taking image / video content into account,
resulted in tables (see e.g. [35]), used for the design and
optimization of multimedia systems. Focusing on quality re-
duction caused by packet losses, in [36] the authors mentioned
and used a quite simple relationship for block-based SSIM
as a function of MSE, information on original and impaired
image, and constant terms. The relationship between SSIM
and PSNR has been further analysed in [37] [38] where
analytical expressions and approximations are provided for
different use cases. According to the approximations consid-
ered, the calculation of SSIM from PSNR still requires some
joint processing of original and compressed image, beyond
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what required for PSNR. In particular, in [37] the proposed
relationship involves the evaluation of the covariance between
original and impaired image and a linear approximation is
proposed for SSIM values between 0.2 and 0.8 (too low for
use cases of practical interest). Such relationship is explored
with examples in [38]. This work also highlights how the
luminance comparison component in SSIM has a marginal
impact on the final value for the examples considered, while
the structure comparison term has a higher impact than the
contrast comparison one. In [39] the authors, while discussing
the validity of SSIM as quality metric, also showed that the
index is directly related to the mean squared error, compared
the two metrics statistically and derived a pair of functions
that algebraically connect the two via means and mean square
values of original and impaired images. Information on both
original and impaired image is requested by their formulation
in addition to MSE.

The most appropriate values for the different constants
used in the SSIM equations are analysed empirically in [40],
together with the window size in the calculation of MSSIM,
in order to increase the correlation with MOS.

In [41] the associations between MSE and SSIM as cost
functions in linear decomposition are investigated. It is ob-
served that in this case the selected bases from a basis set for a
target vector are the same in the linear decomposition schemes
with different cost functions MSE and SSIM. In addition, for a
target vector, the ratio of the corresponding linear coefficients
of the selected bases in the MSE-based linear decomposition
scheme and the SSIM-based scheme is a constant and cor-
responds to the value of the Pearson’s correlation coefficient
between the target vector and its estimated vector.

The authors of the work in [42], after recognising that the
SSIM expression can be simplified to a correlation coefficient
in the case µx = µy , propose an alternative quality metric
based on similar statistics. Other works (such as [43]) aim
at estimating the SSIM metric in absence of a reference
from bitstream and/or reconstructed video and compare the
estimation with PSNR estimation, but not establishing a
relationship between the two. Two of the authors of the SSIM
metric discuss in [44] the properties of MSE and SSIM, but
they do not focus explicitly on their relationship. Bounds on
the SSIM index are provided for compressed images in an
interesting work [45] as a function of quantization rate for
uniform, Gaussian, and Laplacian sources. The work proposes
to use the bounds for rate allocation problems in practical
image and video coding applications. No relationship with
PSNR or MSE is established. In [46] the authors proposed a
reduced-reference (RR) metric based on SSIM, highlighting
an interesting linear relationship between the full reference
SSIM measure and their RR estimate when the image dis-
tortion type is fixed. The work does not focus however on
the relationship with PSNR or MSE. In [47] the authors
developed a perceptually relevant MSE-based image quality
metric. In doing so, they assume an additive error model and
independence between signal and error. This metric is also
adopted in [18] and used as a benchmark in the results section
of this paper. It is shown below that the estimation provided is

not as accurate as those proposed and discussed here for DCT
compressed images. The lack of accuracy of the estimation
was also reported in [22]. The mathematical properties of
the structural similarity index have been studied in [48] and
finally a very recent work [49] provides an alternative model
of SSIM computation (utilizing subband decomposition and
identical distance measures in each subband) and discusses
relationship with PSNR, highlighting that the two are linked
via a joint statistic of both signals (covariance).

In this paper this term is simplified, in the scenario and
under the assumptions considered. The assumptions also allow
an accurate estimation of SSIM based on information on a
single version of the image (either original or compressed)
besides MSE. This is useful, e.g., for real time rate-distortion
optimisation for image/video compression or reduced refer-
ence image quality assessment when metadata on MSE or
PSNR is provided.

III. ANALYSIS OF THE RELATIONSHIP BETWEEN SSIM
AND PSNR

In order to identify a simple relationship between SSIM and
PSNR, it is assumed that for distortion due to DCT-based
compression µe = 0, µx = µy (equivalent) and σ2

x = σ2
y .

Similar assumptions were considered in other works for other
purposes [50] [51].

To show the validity of this assumption with an example,
Figures 2a and 3a report mean and variance for the Baboon
sample image compressed according to the Joint Photographic
Experts Group (JPEG) standard [52] (still the most popular
image compression standard) at different compression ratios
(associated to the quality factors reported in the horizontal
axis). Figures 2b and 3b report mean and variance for the
Peppers sample image.

We can observe that indeed the mean of the luminance
is approximately constant when the image is compressed at
widely different compression ratios / quality factors (the mean
- of the possible luminance values between 0 and 255 - ranges
from 145.83 to 145.94 with an extremely limited variation,
within 0.075%). According to Figure 3a the variation of the
global variance with the quality factor is limited between 2200
and 2400 (variation within 9%). A similar behavior can be
observed for the Pepper sample image (Figures 2b and 3b).

To show the validity of the assumptions also at local value,
block-based variance for the Baboon image is reported in
Fig. 4. Each curve in the figure represents the variance of a
different block (the first five blocks are considered to make the
figure readable) and shows its variation with the compression
level. We can see how variation is very limited also at local
level.

Using only the first assumption on the mean we have from
(3):

SSIM(x, y) =
(2µ2

y + C1)(2σxy + C2)

(2µ2
y + C1)(σ2

x + σ2
y + C2)

(4)

hence:

SSIM(x, y) =
(2σxy + C2)

(σ2
x + σ2

y + C2)
. (5)
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Fig. 2: Mean for two example images at different JPEG compression quality factors
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(b) Peppers image

Fig. 3: Variance for two example images at different JPEG compression quality factors.

We also have:

e = x− y (6)

σ2
e = σ2

x + σ2
y − 2σxy (7)

hence:

2σxy = σ2
x + σ2

y − σ2
e . (8)

Using (8) in (4)

SSIM(x, y) =
(σ2

x + σ2
y − σ2

e + C2)

(σ2
x + σ2

y + C2)
= 1− σ2

e

(σ2
x + σ2

y + C2)
.

(9)
With the previous assumption µe = 0 we have

σ2
e = E(e2) = MSE (10)

hence:

SSIM(x, y) = 1− MSE

(σ2
x + σ2

y + C2)
. (11)

Using also the assumption

σ2
x = σ2

y : (12)

SSIM(x, y) = 1− MSE

(2σ2
y + C2)

. (13)

The reader can note that in (11) and (13) there is no
dependency on the covariance, that requires full information
on original and compressed image for evaluation. Also, C2

is a constant (the same one as in the SSIM formulation).
The result is consistent with previous observations [19] [53]
of linear relationship between coding rate R and MSE and
coding rate R with 1 − SSIM . Some authors intuitively
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Fig. 4: Block-based variance for the example Baboon image at
different JPEG compression quality factors (first five blocks).
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Fig. 5: PSNR vs. SSIM for the first block of the Baboon
example image at different JPEG compression levels (Quality
Factor from 10 to 100).

used 1−SSIM(x, y) as distortion measure in rate-distortion
optimization, since 1 − SSIM(x, y) represents a distortion
value while SSIM represents a quality value [54] [53] [55]. In
particular, the authors of [53] considered a hybrid optimization
method aiming at jointly minimising MSE and 1-SSIM. The
two are however tightly related and the relationship between
the two is clear from equation (13) that can be written as:

1− SSIM(x, y) =
MSE

(2σ2
y + C2)

(14)

or, using equation (12),

1− SSIM(x, y) =
MSE

(2σ2
x + C2)

. (15)

Considering PSNR:

PSNR = 10log10
(2b − 1)2

MSE
(16)

we can write:

MSE =
(2b − 1)2

10PSNR/10
(17)

and using (17) in (13) we have:

SSIM(x, y) = 1−
(2b−1)2

10PSNR/10

(2σ2
y + C2)

. (18)

It can be noted that this is also a way to calculate SSIM
with reduced computational complexity: rather than needing to
calculate the mean and variance of both original and impaired
image, as well as the covariance, only the variance of the
impaired image needs to be calculated, in addition to PSNR
(18) or MSE (13). Since PSNR is content-independent, the
variance of the impaired image is the only element taking
into account the content of the image under assessment.

The global structural similarity index is typically calculated
as the mean of the SSIM of sub-windows composing the
image:

MSSIM(X,Y ) =
1

M

∑
j

SSIM(xj , yj) (19)

where X and Y are the reference and the distorted images,
respectively, xj and yj are the image contents at the j-th local
window, and M is the number of samples in the quality map
[1].

Hence,

MSSIM(X, Y ) =
1

M

∑
j

[1−
(2b−1)2

10PSNRj/10

(2σ2
yj + C2)

]. (20)

IV. NUMERICAL RESULTS

This section reports example results with images frequently
used in the image processing community, to highlight the
validity of the approximations considered while enabling
reproduction of the results. The six images considered are
grayscale images widely used in the research community, with
resolution 512 × 512, covering different types of contents
and complexities (Baboon, Lena, Barbara, Peppers, Goldhill,
Boat).

An example of local (block-based) results are provided in
Figure 5, showing the scatter plot for local PSNR value vs.
SSIM value for the same (first) block of the Baboon image.
A square block of 8× 8 pixels is considered for these results.

In the following, results are provided as the mean of block-
based results across the image (MSSIM) as in eq. (20). For the
comparison below, the Matlab ssim index implementation has
been considered, with 16× 16 window. MSE is calculated on
the same size window, according to eq. (18), and the results
are then averaged according to (19). Figures 6, 7, 8, 9, 10, 11
report in the top row the comparison of the MSSIM value
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(blue curve), calculated with the original expression (ssim
index code associated with [56]), with:

• MSSIMMSE - MSSIM calculated based on mean local
MSE as in eq. (11) and eq. (19) considering only the
assumption µx = µy (magenta curve);

• MSSIMMSE,C - MSSIM calculated based on mean
local MSE as in eq. (13) and eq. (19) considering both
assumptions µx = µy and σ2

x = σ2
y and considering σ2

y

(variance of the compressed image) for the calculation
(red curve).

• MSSIMMSE,O - MSSIM calculated based on mean
local MSE as in eq. (13) and eq. (19) considering both
assumptions µx = µy and σ2

x = σ2
y but considering σ2

x

(original image) for the calculation (green curve).

To facilitate understanding, the subscripts O for original and
C for compressed are used in the names above and in the
figures legend, to denote that the variance of the original
image or the variance of the compressed image were used in
the computation, respectively. It can be observed that, for the
typical quality range of interest, the proposed function of MSE
approximates the MSSIM score with high accuracy. In particu-
lar MSSIMMSE (magenta curve) is almost indistinguishable
from the MSSIM calculated with the original expression (blue
curve) in all cases considered (in some cases the blue and
magenta curves are completely overlapped and only one is
visible). In this case, the only assumption made is that the
means of the original and compressed images are equivalent
(µx = µy) while no assumption is made on the variance.
MSSIMMSE,C (red curve), obtained with the variance of
the compressed image, provides an excellent approximation of
MSSIM calculated with the original expression (blue curve)
in all cases and tends to slightly underestimate it, as expected
(the variance in general is lower for compressed images and
gets lower as the quality factor / bitrate decreases, as can
be observed in the bottom part of Figures 6, 7, 8, 9, 10,
11 Interestingly, this happens at PSNR values (25-28) below
the PSNR values of typical interest, where the approximation
holds tightly. MSSIMMSE,O (green curve) also provides
an excellent approximation of MSSIM calculated with the
original expression (blue curve) in all cases and tends to
slightly overestimate it, as expected. In fact, the actual SSIM
expression uses both σ2

x and σ2
y while here both are replaced

with σ2
x, in general higher than σ2

y . Also in this case, for more
complex contents (e.g., Baboon), it can be observed that for
low JPEG quality factor values (and low PSNR - see second
row of the figures) the difference becomes more evident. The
bottom row of Figures 6, 7, 8, 9, 10, 11 reports the mean
local variance of the compressed image as a function of the
JPEG quality factor, showing the validity of the assumption
for most contents and also how the mean local variance is
related to the complexity of the content. This observation is
used in [57] to estimate image and video content complexity.

Figures 12 and 13 report the comparison in the case of
JPEG compression with the MSE-based metric proposed in
[47], that assumes an additive distortion model, where the
error is assumed uncorrelated with the signal:

1

SSIMfromMSE
= 1 +

MSE

2σ2
x + C2

. (21)

The reader can note that this expression uses the vari-
ance of the original image, hence can be applied at the
coding/transmission side, but not as reduced-reference metric.
Since this model relies on the variance of the original image,
it can be directly compared with (15). Note that the error due
to compression is content-related, hence the assumption con-
sidered in [47] is hardly valid in our case of DCT compressed
images. Indeed, the metric proposed in [47] (blue curve with
+) is a worse approximation of the actual MSSIM values (blue
curve with o) with respect to those proposed here in the case
of availability of the variance of the original image (green and
magenta curves). Referring to the model in [47][18], also [22]
reports that its modeling accuracy for High Efficiency Video
Coding (HEVC) is less than satisfactory.

To further analyse the comparison between the two, it can
be observed that the term

MSE

2σ2
x + C2

(22)

is considered / approximated as equivalent in (21) to
(1/SSIM)− 1 and in (15) to 1− SSIM . Figure 15 shows
how these two relate, for the range of SSIM values of interest.

As briefly anticipated above, some works focusing on
SSIM-based rate-distortion optimization used either (1-SSIM)
[19] [16] or (1/SSIM) [18] as distortion metric. The discussion
presented above in this paper illustrates and clarifies how these
two are related between them and to MSE.

Figure 14 reports the results in case of video coding. H.264
coding (with ”slow” preset) was used, at different Constant
Rate Factor (CRF) values (this is reflecting current systems:
when CRF is selected the bitrate is adjusted based on the
complexity of the content and low CRF values result in higher
quality). The left panel shows the results for an Intra (I)
frame (the first one), while the right one shows the results
for a predicted frame (the second one). The Foreman video
sequence (in CIF format) was considered here to facilitate
comparisons. We can observe that the results in the case of
video show a globally similar behaviour to those obtained for
images, also for predicted frames, where encoding is based
on the calculation of motion vectors and motion compensated
differences. We remark that, when the variance of the original
image is available, the metric proposed here with σO definitely
outperforms the benchmark. When the variance of the original
image is not available, the benchmark cannot be used and
the proposed approximation with σC provides an accurate
approximation also in this case. We note that in this case,
although excellent, the approximation with no assumption on
the variance is not completely overlapped with the MSSIM
curve, which means that the assumption of equal mean - only
assumption done in this case - is not as precise as in the
previous case, although still accurate.

Future work will include methods for variance estimation
and fast evaluation, to further improve the approximation
accuracy and computational speed.
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Fig. 6: Mean Structural Similarity Index (MSSIM) (top row),
PSNR (mid-row), and mean local variance (bottom row) for
Baboon image compressed with JPEG at different quality
levels.
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Fig. 7: MSSIM (top row), PSNR (mid-row), and mean local
variance (bottom row) for Lena (b) image compressed with
JPEG at different quality levels.
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Fig. 8: MSSIM (top row), PSNR (mid-row), and mean local
variance (bottom row) for Barbara image compressed with
JPEG at different quality levels.
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Fig. 10: MSSIM (top row), PSNR (mid-row), and mean local
variance (bottom row) for Goldhill image compressed with
JPEG at different quality levels.
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variance (bottom row) for Boat image compressed with JPEG
at different quality levels.
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Fig. 12: Comparison with metric in [47].
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Fig. 14: Performance results for H.264 video compression at different CRF values, including comparison with the metric in
[47].
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V. EXAMPLE APPLICATION: IMAGE/VIDEO TRANSCODING
QUALITY

Video transcoding consists of converting an already com-
pressed video into a different format / using a different
encoder (see Figure 16). Video transcoding is necessary in
adaptive video streamingto create multiple representations of
a video for content adaptation.

Calculating transcoding quality via objective quality metrics
tends to be done with reference to the already encoded source
image/video, but this does not provide information on the
actual quality of the transcoded video with respect to the
original uncompressed reference video [58], [59], [60], [61],
[62], [63].

In the following, the assumptions and derivation above are
used to derive an SSIM-based transcoding quality metric.

The error introduced by encoder 1 is denoted in the fol-
lowing as e1, the error introduced by encoder 2 (transcoder)
as e2 and the total error as e. Focusing on the luminance
component, composed of N pixels:

E(e1) =
1

N

N∑
i=1

e1i (23)

E(e2) =
1

N

N∑
i=1

e2i (24)

E(e) = 1

N

N∑
i=1

ei. (25)

It has been shown that the coding error of a DCT-based
video codec has approximately zero mean (above and in [51]),
i.e.:

E(e1) = E(e2) = 0 (26)

E(e) = 0. (27)

For the variance:

σ2
e1 = E(e21)− E2(e1) = E(e21) = MSE1 (28)

σ2
e2 = E(e22)− E2(e2) = E(e22) = MSE2 (29)

σ2
e = E(e2)− E2(e) = E(e2) = MSEtot (30)

The variance of the total error can be written as:

σ2
e = σ2

e1+e2 = σ2
e1 + σ2

e2 − 2σe1e2 (31)

where the last term is the covariance.
With the assumption that e1 and e2 are independent:

σ2
e = σ2

e1 + σ2
e2 (32)

hence:
MSEtot = MSE1 +MSE2 (33)

SSIMtot =

1− MSEtot

(2σ2
y + C2)

=

1− MSE1 +MSE2

(2σ2
y + C2)

(34)

Considering that:

SSIM1 = 1− MSE1

(2σ2
y + C2)

(35)

SSIM2 = 1− MSE2

(2σ2
y + C2)

(36)

this can also be written as:

SSIMtot = 1− MSE1

(2σ2
y + C2)

− MSE2

(2σ2
y + C2)

=

SSIM1 + SSIM2 − 1.

(37)

We highlight that the quality of the transcoded video in
terms of SSIM is neither the sum of the SSIM values of
the two encoding steps, as considered by some authors,
nor the mean of the SSIM values in the different steps, as
considered by others. While it is quite obvious that either of
the assumptions above are not correct, a relationship between
the SSIM values before and after transcoding is not available
in the literature according to the author’s knowledge.

Similarly, in terms of PSNR:

SSIMtot = 1−
(2b−1)2

10PSNR1/10 + (2b−1)2

10PSNR2/10

2σ2
y + C2

(38)

SSIMtot =

1− (2b − 1)2

2σ2
y + C2

(
1

10PSNR1/10
+

1

10PSNR2/10
) =

1− (2b − 1)2

2σ2
y + C2

(10−PSNR1/10 + 10−PSNR2/10) =

SSIM1 + SSIM2 − 1.

(39)

SSIM1 is the quality of the compressed video at the input
of the transcoder. This value can be read from metadata when
available or estimated in no-reference or reduced-reference
modality based on bitrate and other information (in metadata
/ in the bitstream, such as motion vectors and QP values).
An example method to predict SSIM with no reference to
original video is provided in [43]. The method in [61] can
also be used to estimate the objective quality metrics of the
encoded mezzanine.

An example is reported in Figure 17. In this case the
Baboon image is first encoded with JPEG with Quality Factor
70, then transcoded at multiple qualities, from QF 50 to
QF 100. The global ”ground truth” SSIM value (obtained
comparing the transcoded version vs. original) is reported
in black (with *). The SSIM value estimated via eq. (37) is
reported in purple (dashed line). This is obtained calculating
SSIM1 comparing the original image vs. compressed at QF
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70 and SSIM2 comparing the transcoded image vs. the
input version compressed at QF 70. In the first subfigure, a
square window of size 16 has been considered for the SSIM
evaluation, while in the second case the default Gaussian
window has been used. The estimated global SSIM value
follows very tightly the actual SSIM value in both cases,
in particular in the second one. It was assumed here that
a) the mean of the coding error in the coding process and
the transcoder is zero and b) the coding errors produced
by the two encoders are independent. Prediction errors are
hence caused by possible inaccuracies in these assumption. In
particular, the two types of coding errors may not be always
independent. However, the proposed method provides a good
approximation for the quality of transcoded images and video.

VI. CONCLUSION

This paper highlights how the structural similarity metric
SSIM for image quality assessment can be seen in many
cases, such as DCT-based compressed images and video, as
a content-aware version of the PSNR/MSE and SSIM can be
obtained from PSNR/MSE via the variance of the impaired
image/video, hence with no further reference to the original
content. Different versions of simple and accurate SSIM esti-
mations are proposed, that can be used alternatively depending
on the context. This is expected to support the optimization of
image/video compression and transmission systems, enabling
mathematically tractable quality based optimization based on
just one parameter beyond MSE/PSNR. The derivation also
supports reduced-reference quality estimation based on SSIM
and an easy comparison of different compression methods
based on SSIM. In fact, BD-rate and BD-quality [64] were
defined based on PSNR and their translation to different
metrics such as SSIM is not obvious [65]. Finally, as an
example application the assumptions and derivations above
were used to show how the perceptual quality in terms of
SSIM of a transcoded video can be calculated based on the
SSIM values as a consequence of the first and second encoder,
respectively.
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