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Abstract—Retinal imaging offers a non-invasive means to 

assess the circulatory system, with morphological features of 

retinal vessels serving as biomarkers for systemic disease. 

QUARTZ (QUantitative Analysis of Retinal vessel Topology 

and siZe) is a fully automated artificial intelligence-enabled 

retinal vasculometry system designed to process large-scale 

retinal image datasets to obtain quantitative measures of vessel 

morphology for use in epidemiological studies. Previously 

reliant on traditional image processing and machine learning, 

QUARTZ has now transitioned to a deep learning pipeline. 

Currently individually trained versions are tailored to specific 

datasets. Evaluation using the UK Biobank retinal dataset shows 

improvements in performance metrics: the F1 score for vessel 

segmentation increased from 0.7753 to 0.8472, accuracy for the 

A/V segment-level decision increased from 0.8524 to 0.9022, the 

detection rate for optic disc localization increased from 0.9760 

to 0.9933, and the F1 score for image quality classification 

increased from 0.8872 to 0.9750. QUARTZ distinguishes itself 

from other deep learning based retinal vasculometry systems 

through its efficient use of data, extracting valuable information 

despite issues such as low levels of illumination. The high 

performance of QUARTZ is consistent across two other 

extensive retinal datasets, namely the Canadian Longitudinal 

Study on Aging (CLSA) and the North East London Diabetic 

Eye Screening Programme (NEL DESP). Evaluation on subsets 

was preceded by the automatic processing of entire retinal 

datasets by QUARTZ, processing over 1.4 million images. These 

retinal vasculometry outputs will serve as a valuable resource 

for epidemiological studies. 

Keywords—Retinal Vasculometry, Deep Learning, Artificial 

Intelligence, Epidemiological Studies, UK Biobank, CLSA, NEL 

DESP. 

I. INTRODUCTION 

Examination of retinal images offers a direct and non-
invasive view of the blood circulatory system. The 
morphological characteristics of retinal vessels, including 
width and tortuosity, have been prospectively associated with 
systemic disease [1], [2]. Therefore, the eye can be considered 
a window to the health of the body, providing biomarkers for 
risk prediction not only of ocular disease (e.g., glaucoma and 
diabetic retinopathy) but also systemic disease such as 
diabetes and cardiovascular disease, which includes heart 
attack and stroke [3]. 

QUARTZ (QUantitative Analysis of Retinal vessel 
Topology and siZe) is a fully automated artificial intelligence-
enabled retinal vasculometry system developed by our 
research group. QUARTZ has previously been used to process 
large retinal image datasets from the UK Biobank [4], [5], 
EPIC-Norfolk [6], [7], and FOREVER [8], [9] cohorts to 
obtain quantitative measures of vessel morphology. This has 
contributed to many epidemiological studies [3], [10], [11], 
[12], [13], [14] and recently demonstrated that risk scores to 
predict circulatory mortality, heart attack, and stroke derived 
using retinal vasculometry performed similarly to established 
risk scores [3]. Whilst end-to-end deep learning disease 
prediction models continue to gain prominence [15], [16], 
[17], [18], retinal vasculometry is still a very active 
methodology as it offers interpretable results, identifying 
specific vascular features and changes which predict disease 
status. 

Whilst artificial intelligence has already been integrated 
into QUARTZ via deep learning [5], [19], the system heavily 
relied on traditional image processing and machine learning. 
Deep learning has now been extended to all core modules of 
QUARTZ. Other comparable systems exist, which include 
VAMPIRE [20], AutoMorph [21], RMHAS [22], some 
already presenting full deep learning pipelines. However, 
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QUARTZ remains distinct as it is geared towards 
epidemiological studies, aiming to maximise useful data 
extracted from large cohort studies which can include larger 
amounts of poorer quality images. For instance, QUARTZ can 
effectively utilise partially illuminated images by extracting 
information from well segmented sections of the vasculature. 
Hence, all deep learning modules in QUARTZ have been 
trained and evaluated on a diverse range of images, including 
those with low levels of illumination. Whereas other systems 
[21], [22] select images for analysis based on the EyeQ dataset 
[23], which is specific to lesion detection and requires the 
main structures and lesions to be clear enough to provide a 
diabetic retinopathy grade.  

In this paper, using UK Biobank, the performance of the 
core modules of the latest version of QUARTZ is presented, 
demonstrating a shift from the previous version [5] to a deep 
learning pipeline. Additionally, the performance of QUARTZ 
is presented for two other large retinal image datasets from the 
Canadian Longitudinal Study on Aging [24] and the North 
East London Diabetic Eye Screening Programme [25]. 
Following training and evaluation on subsets, QUARTZ was 
used to automatically process the entire retinal datasets. A 
generalised system [21], [22], trained across multiple retinal 
datasets would offer broader application. However, our 
current focus is optimising performance, so a separate version 
of QUARTZ has been tailored to each dataset. This approach 
will create a performance baseline to enable comparative 
analyses into the advantages and disadvantages of 
transitioning QUARTZ towards a generalised system. 

II. MATERIALS 

UK Biobank (UKBB) [4] is a large prospective cohort 
study for which baseline biomedical and physical assessments 
were carried out in 2006–2013, in 502,682 adults aged 40–69 
years recruited from 22 UK centres. During 2009-2013, a 
subset of 85,746 participants had retinal images captured, 
providing 175,856 images. Colour images were captured with 
the Topcon 3D-OCT 1000 Mark 2 fundus camera. Images 
were non-mydriatic, macular centred, from both eyes, with a 
45° field-of-view (FOV), and saved in PNG format with a 
resolution of 2048 x 1536 pixels. The UKBB study was 
approved by the Northwest Region NHS research ethics 
committee. 

The Canadian Longitudinal Study on Aging (CLSA) [24] 
is a large long-term cohort study for which baseline 
biomedical and physical assessments were carried out in 
2012-2015 in 30,097 adults aged 45-85 years recruited from 
11 sites (in 7 Canadian provinces). Participants were seen 
every 3 years. From baseline and the first follow-up 
examinations, 29,635 participants had retinal images 
captured, providing 106,506 images. Of which, 24,160 
participants had images captured from both examinations. 
Age-related eye disease is evident in the dataset due to the 
participant age range. Colour images were captured with the 
Topcon TRC-NW8 fundus camera with the Nikon D90 
camera attached. Images were non-mydriatic, macular 
centred, from both eyes, with a 45° FOV, and saved in JPEG 
format with resolutions of 4288 x 2848 and 4928 x 3264 
pixels. All images were resized to the most common 
resolution of 4288 x 2848 pixels, simplifying future pixel-
micron conversions. The CLSA study was approved by 13 
research ethics boards across Canada. 

The North East London Diabetic Eye Screening 
Programme (NEL DESP) [25] is based at the Homerton 
Healthcare NHS Foundation Trust and offers annual diabetic 
eye screening to a large ethnically diverse (with high 
representation of white, South Asian, and black individuals) 
population with diabetes, with a spectrum of diabetic eye 
disease and a wide age range. An initial dataset was made 
available for training and evaluating QUARTZ, consisting of 
1000 expired screening encounters, providing 6,268 images. 
A larger dataset was curated from 202,886 consecutive routine 
screening encounters between 1st January 2021 and 31st 
December 2022, resulting in over 100,000 patients and 
1,175,423 images. Patient IDs were pseudonymised. Colour 
images were captured from a range of fundus cameras 
including models from Canon and Topcon. Images were 
mydriatic, macular centred and optic disc centred, from both 
eyes, with a 45° FOV, and saved in JPEG format with various 
resolutions ranging from 150 x 300 to 6000 x 4000 pixels. 
Non-retinal images (e.g., crystalline lens, eyelids, hands) were 
included as part of the usual protocol to document anterior 
segment pathology or to confirm camera functioning when the 
patient could not be photographed. All images were resized to 
the second most common resolution of 3648 x 2432 pixels, 
simplifying future pixel-micron conversions. The study was 
approved by the NHS Health Research Authority, although 
full research ethics approval was not required as all data were 
pseudonymised. 

III. METHOD 

QUARTZ was structured into the core modules of 
arteriole/venule segmentation, optic disc/cup segmentation, 
image quality classification, and vessel analysis (see Fig. 1). 
Algorithm details of the first three modules are described in 
this section, each designed with a novel approach. Separate 
models were trained for each of the three datasets; the training 
hyperparameters listed in this section were for the UKBB 
dataset. The vessel analysis module, which included 
measurements of width and tortuosity, used previous well 
documented and validated techniques [5]. 

A. Pre-processing 

Colour images were cropped to FOV, and then adjusted to 
achieve a square shape by either centrally cropping or evenly 
zero padding the vertical dimension. Zero padding was 
particularly useful for the NEL DESP dataset which included 
some images with the circular FOV truncated at the top and 
bottom. 

B. Arteriole/Venule Segmentation 

For performing arteriole/venule (A/V) segmentation the 
U-Net architecture [26] was used as a starting point, which is 
a convolutional neural network (CNN) that was initially 
proposed for biomedical image segmentation. The U-Net was 
adapted to employ a multi-segmentation technique [27] where 
the network outputs three independent channels to generate 
separate binary segmentation maps for the structures of 
arterioles, venules, and vessels. This configuration allowed 
vessel crossings to be handled more intuitively, avoiding 
commonly used output pixel labels of crossing and uncertain. 
The U-Net was further adapted using ConvNeXt blocks [28], 
which followed from ConvNeXts [29] (a family of pure CNN 
models) having been previously demonstrated to compete 
favourably with Transformers [30].

 



The adapted U-Net underwent pretraining via self-
supervised learning using the EyePACS dataset from Kaggle 
[31], consisting of 88,702 retinal images. An autoencoder 
architecture was achieved by modifying the model to generate 
the reconstructed input image as its output, along with the 
removal of skip connections between the encoder and decoder 
to prevent early feature maps from the encoder being directly 
employed in image reconstruction. The encoder section of the 
autoencoder was then used as weights for the encoder section 
of the adapted U-Net. 

For each of the three datasets, two human observers 
manually annotated 25 randomly selected retinal images. 
Random selection was repeated until a wide spectrum of 
image qualities was achieved, along with inclusion of cases 
with eye disease for the CLSA and NEL DESP datasets, 
replacing those deemed of inadequate quality by further 
random selection. Images were annotated as standard, with 
pixel labels of arteriole, venule, crossing (arteriole and venule 
overlap), uncertain (vessel undistinguishable as either 
arteriole or venule), and background. The annotations were 
then adapted so each channel was represented as a binary map 
with the positive classes of arterioles, venules, and vessels 
respectively. Crossing pixels belonged to all three positive 
classes, and uncertain pixels belonged only to the positive 
class in the binary map for vessels. Uncertain pixels were 
masked out of the binary maps for arterioles and venules to 
stop them being labelled as the negative class. The annotated 
images were divided with a random 60:20:20 training, 
validation, and test split. 

The pre-processed images were resized to 1024 x 1024 
pixels for input to the model, the output was the same size. 
Horizontal and vertical flipping, scaling, translation, rotation, 
brightness, contrast, and saturation were used to augment the 
training data. The batch size was 2. Adam optimization was 
used with a learning rate of 0.001 for 1000 epochs, learning 
rate decay presented no improvements. A weight decay of 

0.005 was used. The loss function was pixel-wise binary 
cross-entropy summed across the channels. Weighting the loss 
function (e.g., sample weights) offered no improvements. The 
model was saved at the epoch with the minimum validation 
loss. The model was built on the training set and 
hyperparameters were derived from performance on the 
validation set.  

The output probability maps were returned to the size prior 
to pre-processing and then thresholded to produce binary 
segmentation maps, followed by simple post-processing [5] to 
eliminate spurious objects. Morphological thinning was 
applied to the vessel binary map to create vessel centrelines, 
followed by removal of spurs, bifurcations, and crossover 
points to create vessel segments [5]. The scores from the 
arteriole and venule probability maps were used as soft votes 
and accumulated along the vessel centreline pixels to 
determine the AV probability for each vessel segment. Using 
the centrelines proved more effective than using the entire 
vessel segment. 

C. Optic Disc/Cup Segmentation 

The adapted U-Net architecture in the A/V segmentation 
module was repurposed for optic disc and optic cup 
segmentation. The network outputs two independent channels 
to generate separate binary segmentation maps for the 
structures of optic disc (OD) and optic cup (OC). This 
configuration enables the model to understand that the entirety 
of the area belongs to the OD, whilst only the inner area 
belongs to the OC. The adapted U-Net was pretrained using 
the REFUGE dataset [32], consisting of 1200 annotated 
retinal images. 

For each of the three datasets, two human observers 
manually annotated 100 randomly selected retinal images. 
The same selection procedure as detailed for the A/V 
segmentation module. Images were annotated as standard, 
with pixel labels of OD, OC, and background. The OC 

 

 
 
Fig. 1. The use of QUARTZ, from dataset to biomarker discovery. (a) Large retinal image dataset, (b) pre-processing, (c) no pre-processing, (d) 
arteriole/venule segmentation, (e) optic disc/cup segmentation, (f) image quality classification, (g) vessel analysis, (h) data exclusion, and (i) statistical 
modelling for biomarker discovery. 



annotation is an approximation based on the colour difference 
between the area of central pallor which contrasts to the 
pink/orange of the neuroretinal rim. Accurately defining the 
OC would require detailed contour information such as that 
available from optical coherence tomography. The 
annotations were then adapted so each channel was a binary 
map with the positive classes of OD and OC respectively. OC 
pixels belonged to both positive classes. The annotated images 
were divided with a random 60:20:20 training, validation, and 
test split. 

The training strategy closely resembled that of the A/V 
segmentation module, with a few modifications: pre-
processed images resized to 512 x 512 pixels, used a batch size 
of 8, trained for 100 epochs, and employed a cosine decay 
learning rate schedule.  

The output probability maps were returned to the size prior 
to pre-processing and then thresholded to produce binary 
segmentation maps, with the largest segmented connected 
component determining the object of interest in each map. OD 
localization was determined from the centroid of the 
segmented OD. Additionally, the segmented OD and OC were 
used to calculate the vertical cup-to-disc ratio (vCDR) [32]. 

D. Image Quality Classification 

Large retinal datasets used in epidemiological studies can 
contain large amounts of poorer quality images. However, 
useful information can be extracted from well segmented 
sections of the vasculature, even if this only represents a 
portion of the vascular tree. A dual CNN model employing 
two instances of the EfficientNetV2-S architecture [33] was 
created to evaluate image quality with respect to suitability for 
epidemiological studies. One network took A/V segmentation 
maps as input, while the other took colour retinal images as 
input. The feature maps generated by both networks were 
concatenated and subjected to global average pooling. This 
was followed by two fully connected layers of 256 nodes each 
and a binary classification layer for distinguishing the classes 
of inadequate and adequate. Each instance of the 
EfficientNetV2-S was pretrained on the ImageNet dataset, 
followed by further pretraining of the entire model using 
28,792 labelled retinal images from the EyeQ dataset and their 
output from the A/V segmentation module. 

For each of the three datasets, a human observer manually 
labelled 2000 randomly selected retinal images as either 
inadequate or adequate. Using both the A/V segmented maps 
and the retinal images, images were labelled as inadequate if 

they met any of the following criteria: (i) contained 
considerable blur, (ii) were non-retinal images, (iii) less than 
half of the vasculature was segmented, (iv) the segmentation 
was considerably fragmented or unconnected, (v) multiple 
non-vessel objects were segmented (e.g., false segmentation 
caused by eyelashes, lens artefacts, choroidal vessels, 
exudates, haemorrhages, the fovea, the optic disc, retinal 
scars, retinitis pigmentosa, asteroid hyalosis etc.). The UKBB 
dataset had 79.10% of images manually labelled as adequate, 
while the CLSA dataset had 82.90%. The NEL DESP dataset 
had the lowest proportion of adequate images at 63.15%, 
mainly due to the inclusion of many non-retinal images, this 
increased to 84.77% when considering only retinal images. 
The labelled images were divided with a random 80:10:10 
training, validation, and test split. 

Images were not pre-processed as determining the correct 
FOV location for cropping is not always viable for some low 
quality images. Images were resized to 384 x 384 pixels for 
input to the model. Data augmentation was consistent with 
other modules, except for excluding translation and scaling as 
these can alter the amount of retina captured which is an 
important indicator for quality. The batch size was 16. Adam 
optimization was used with a learning rate of 0.001, learning 
rate decay presented no improvements. A weight decay of 
0.0001 was used. The loss function was binary cross-entropy. 
Weighting the loss function offered no improvements. The 
model was saved at the epoch with the minimum validation 
loss. The model was built on the training set and 
hyperparameters were derived from performance on the 
validation set. The pretrained model's three-class softmax 
classification layer for the EyeQ dataset was replaced with a 
sigmoid classification layer with randomly initialised weights. 
Only the top layers of the model were trained, initially 5 
epochs for the classification layer, followed by 20 epochs for 
the rest of the top. 

A threshold was applied to the output probability score to 
determine and exclude images of inadequate quality. 
Additionally, using the original image size prior to any 
resizing detailed in the Materials section, images failing to 
meet the dataset's predominant aspect ratio were excluded. 
Deviation from this aspect ratio was likely due to cropped 
images or images with odd capture settings, which then 
becomes problematic as it impedes the camera’s pixel-to-
micron conversion. Also, images with dimensions below 500 
pixels were excluded to ensure a minimum resolution 
requirement. 

 
Fig. 2. QUARTZ-DL segmentation example for UKBB. Left: original retinal image. Middle: A/V segmentation, figure depicts the RGB composition of 
three independent binary segmentation maps for the structures of arterioles, venules, and vessels. Right: OC/OD segmentation, figure depicts the RGB 
composition of two independent binary segmentation maps for the structures of the OD and OC. ©UK Biobank. 



IV. RESULTS 

Evaluations were performed on the test sets. The operating 
point for each CNN model was determined by finding the 
probability threshold that maximised the F1 score on the 
validation set, which was the preferred metric due to the class 
imbalance for most of the tasks. Performance metrics include 
sensitivity, specificity, precision (positive predictive value), 
negative predictive value (NPV), accuracy, F1 score, 
intersection over union (IoU), area under the receiver 
operating characteristic curve (AUC ROC), and area under the 
precision-recall curve (AUC PR) [34]. In this section, the 
suffix -DL will be appended to QUARTZ to distinguish the 
newer deep learning version of the system. 

The results of A/V segmentation are reported in Tables I-
II. For QUARTZ-DL, the binary segmentation of each 
structure (arteriole, venule, and vessels) was evaluated 
separately. Only pixels within the circular FOV were used for 
evaluation. Further to this, uncertain pixels were excluded 
from the evaluation of arteriole and venule segmentation, but 
not for the vessel segmentation. The F1 score for vessel 
segmentation increases by 0.0719 from QUARTZ to 
QUARTZ-DL for UKBB, from 0.7753 to 0.8472. After post-
processing, that F1 score increase is 0.0596, from 0.7724 to 
0.8320. The introduction of post processing may reduce the 
F1 score but it's essential to keeping the segmentation of non-
vessel objects to a minimum. Examples of outputs from A/V 
segmentation are provided in Fig. 2-3. The subsequent A/V 
segment-level performance, based on a 0.5 probability 
threshold, is reported in Table III. Accuracy increases by 
0.0498 for the A/V segment-level decision from QUARTZ to 
QUARTZ-DL for UKBB, from 0.8524 to 0.9022. To further 
increase performance, epidemiological studies [3] have 
adopted a 0.8 threshold at the cost of only retaining 51.75% of 
the vessel segments, for QUARTZ-DL on UKBB this 
threshold now retains 73.58% of the vessel segments. 

The results of OD/OC segmentation are reported in Table 
IV. For QUARTZ-DL, the binary segmentation of each 
structure (OD and OC) was evaluated separately. Only pixels 
within the circular FOV were used for evaluation. An output 
example of OD/OC segmentation is provided in Fig. 2. The 
detection rate for OD localization, evaluated over a further 
300 test images, is reported in Table VI. The detection rate for 

OD localization increases by 0.0173 from QUARTZ to 
QUARTZ-DL for UKBB, from 0.9760 to 0.9933. The mean 
absolute error (MAE) for vCDR is reported in Table VI. 

The F1 score for image quality classification (Table V) 
from QUARTZ to QUARTZ-DL for UKBB increases by 
0.0878, from 0.8872 to 0.9750. It is noteworthy that the retinal 
images in Fig. 3 were all classified as adequate quality, with 
adequate segmentations achieved despite the presence of 
heavily visible ocular disease and poor illumination. 

The reported results from other retinal vasculometry 
systems offering a generalised approach [21], [22] (compared 
to the dataset specific versions of QUARTZ and QUARTZ-
DL) have been incorporated within Tables I, IV, and V. 
Reported results from [21] include evaluation on external 
datasets and multiclass performance for A/V segmentation 
and OD/OC segmentation. However, direct comparison by 
utilizing datasets in this paper was hindered because numerous 
test images were deemed as insufficient quality by those 
systems, resulting in no outputs being provided. Instead, for 
each segmentation task, a UKBB test subset using only images 
deemed as sufficient quality by AutoMorph [21] was used for 
comparison. To aid comparison, binary segmentation maps 
for each structure (arteriole, venule, OD, and OC) were 
extracted from the AutoMorph multiclass segmentation maps, 
while the vessel map came from the binary vessel 
segmentation module. 

The results from processing the entire datasets are detailed 
in Table VII, reporting the numbers of images that have useful 
information extracted for use in epidemiological studies. 
Participant consent withdrawals result in a small reduction in 
the number of UKBB retinal images. The number of images 
labelled as adequate quality for UKBB from QUARTZ to 
QUARTZ-DL increases by 7.77 percentage points, from 
67.50% to 75.27%. Not meeting the dataset’s predominant 
aspect ratio was only an issue for NEL DESP, accounting for 
7.68% of the dataset. A range of Nvidia graphics processing 
units (GPUs) was used including the RTX 3080 Ti, RTX 
4090, and A100. The average processing time for a single 
image on a standard machine (i9 3.60GHz, RTX 3080 Ti) was 
5, 12, and 21 seconds for UKBB, NEL DESP, and CLSA, 
respectively. 

V. DISCUSSION AND CONCLUSION 

QUARTZ is a robust fully automated artificial 
intelligence-enabled retinal vasculometry system which can 
process large retinal datasets to obtain quantitative measures 
of vessel morphology for use in epidemiological studies which 
have shown that these measures can be used in risk prediction 
models with application to population screening, particularly 
for circulatory disease, stroke, and coronary heart disease. In 
this paper, the latest version of QUARTZ (i.e., QUARTZ-DL) 
is evaluated, presenting the performance increases from 
shifting to a deep learning pipeline. These increases include 
+0.0719 to the F1 score for vessel segmentation, +0.0498 to 
accuracy for the A/V segment-level decision, +0.0173 to the 
detection rate for OD localization, and +0.0878 to the F1 score 
for image quality classification. The deep learning pipeline 
ensures that the previous two modules of vessel segmentation 
and A/V classification can be streamlined into a single A/V 
segmentation module. Also, the new addition of OD/OC 
segmentation, enables the new metric of vCDR to be 
calculated. The enhancements made to QUARTZ will result 

 
 
Fig. 3. Comparison of UKBB vessel segmentations. Top: original 
retinal image. Middle: vessel segmentation maps from QUARTZ [5]. 
Bottom: vessel segmentation maps from A/V segmentation for 
QUARTZ-DL. ©UK Biobank. 



TABLE I: PERFORMANCE OF A/V SEGMENTATION. 
Method Map Sensitivity Specificity Precision Accuracy F1 score IoU AUC ROC AUC PR 

RMHAS [22] (In-house) 
Arteriole 0.72 0.96 - 0.95 0.48 - 0.94 - 
Venule 0.80 0.97 - 0.96 0.57 - 0.96 - 

AutoMorph [21] (IOSTAR-AV) A/V 0.64 0.98 0.68 0.96 0.66 0.53 0.95 - 
AutoMorph [21] (DR HAGIS) Vessel 0.84 0.98 0.73 0.97 0.78 0.64 0.98 - 

AutoMorph (UKBB subset) 
Arteriole 0.6198 0.9916 0.7871 0.9738 0.6935 0.5308 - - 
Venule 0.6813 0.9920 0.8269 0.9754 0.7471 0.5963 - - 

AutoMorph (UKBB subset) Vessel 0.7688 0.9895 0.8954 0.9665 0.8273 0.7054 - - 
QUARTZ [5] (UKBB) Vessel 0.7366 0.9814 0.8183 0.9564 0.7753 0.6330 - - 

QUARTZ-DL (UKBB) 
Arteriole 0.7699 0.9875 0.7526 0.9773 0.7612 0.6144 0.9866 0.8479 
Venule 0.7832 0.9902 0.8144 0.9794 0.7985 0.6645 0.9901 0.8895 
Vessel 0.8545 0.9814 0.8401 0.9684 0.8472 0.7349 0.9896 0.9313 

QUARTZ-DL (UKBB subset) 
Arteriole 0.7730 0.9869 0.7484 0.9767 0.7605 0.6135 - - 
Venule 0.7823 0.9895 0.8076 0.9785 0.7947 0.6594 - - 
Vessel 0.8577 0.9807 0.8380 0.9678 0.8478 0.7357 - - 

QUARTZ-DL (CLSA) 
Arteriole 0.7757 0.9872 0.7642 0.9764 0.7699 0.6259 0.9859 0.8499 
Venule 0.7976 0.9894 0.8187 0.9785 0.8080 0.6779 0.9893 0.8961 
Vessel 0.8581 0.9803 0.8445 0.9667 0.8513 0.7410 0.9883 0.9312 

QUARTZ-DL (NEL DESP) 
Arteriole 0.7627 0.9905 0.7861 0.9806 0.7742 0.6316 0.9878 0.8585 
Venule 0.8046 0.9913 0.8262 0.9821 0.8153 0.6881 0.9908 0.8966 
Vessel 0.8462 0.9836 0.8471 0.9703 0.8467 0.7341 0.9896 0.9309 

 
TABLE II: PERFORMANCE OF A/V SEGMENTATION AFTER POST-PROCESSING. 

Method Map Sensitivity Specificity Precision Accuracy F1 score IoU 

QUARTZ [5] (UKBB) Vessel 0.6912 0.9888 0.8752 0.9584 0.7724 0.6292 

QUARTZ-DL (UKBB) 
Arteriole 0.7506 0.9890 0.7710 0.9778 0.7607 0.6138 
Venule 0.7697 0.9910 0.8249 0.9795 0.7963 0.6616 
Vessel 0.8112 0.9841 0.8539 0.9664 0.8320 0.7123 

QUARTZ-DL (CLSA) 
Arteriole 0.7496 0.9888 0.7814 0.9766 0.7652 0.6197 
Venule 0.7897 0.9901 0.8275 0.9788 0.8082 0.6781 
Vessel 0.8357 0.9823 0.8551 0.9661 0.8453 0.7321 

QUARTZ-DL (NEL DESP) 
Arteriole 0.7372 0.9921 0.8099 0.9810 0.7718 0.6285 
Venule 0.7947 0.9920 0.8364 0.9823 0.8150 0.6878 
Vessel 0.8198 0.9864 0.8657 0.9702 0.8421 0.7273 

 

TABLE III: PERFORMANCE OF A/V SEGMENT-LEVEL DECISION. 
Method Class Sensitivity Specificity Precision Accuracy F1 score 

QUARTZ [5] (UKBB) 
Arteriole 0.8514 0.8532 0.8123 0.8524 0.8314 
Venule 0.8532 0.8514 0.8849 0.8524 0.8688 

QUARTZ-DL (UKBB) 
Arteriole 0.9079 0.8971 0.8857 0.9022 0.8967 
Venule 0.8971 0.9079 0.9173 0.9022 0.9071 

QUARTZ-DL (CLSA) 
Arteriole 0.8804 0.8713 0.8567 0.8755 0.8684 
Venule 0.8713 0.8804 0.8929 0.8755 0.8820 

QUARTZ-DL (NEL DESP) 
Arteriole 0.8882 0.9290 0.9073 0.9111 0.8977 
Venule 0.9290 0.8882 0.9140 0.9111 0.9214 

 

TABLE IV: PERFORMANCE OF OD/OC SEGMENTATION. 
Method Map Sensitivity Specificity Precision Accuracy F1 score IoU AUC ROC AUC PR 

AutoMorph [21] (IDRID) OD/OC 0.90 0.95 0.94 0.99 0.94 0.91 0.95 - 

AutoMorph (UKBB subset) 
OD 0.8367 0.9993 0.9618 0.9958 0.8949 0.8098 - - 
OC 0.8425 0.9988 0.7225 0.9982 0.7779 0.6365 - - 

QUARTZ-DL (UKBB) 
OD 0.9568 0.9991 0.9571 0.9982 0.9569 0.9174 0.9999 0.9945 
OC 0.8746 0.9993 0.8209 0.9988 0.8469 0.7344 0.9997 0.9318 

QUARTZ-DL (UKBB subset) 
OD 0.9464 0.9991 0.9603 0.9980 0.9533 0.9108 - - 
OC 0.8819 0.9993 0.8255 0.9988 0.8527 0.7433 - - 

QUARTZ-DL (CLSA) 
OD 0.9704 0.9992 0.9632 0.9985 0.9668 0.9358 0.9999 0.9965 
OC 0.8873 0.9993 0.8414 0.9989 0.8640 0.7606 0.9998 0.9471 

QUARTZ-DL (NEL DESP) 
OD 0.9582 0.9984 0.9289 0.9975 0.9433 0.8927 0.9997 0.9880 
OC 0.8254 0.9991 0.8374 0.9982 0.8313 0.7114 0.9994 0.9215 

 

TABLE V: PERFORMANCE OF IMAGE QUALITY CLASSIFICATION, POSITIVE CLASS = INADEQUATE. 
Method Sensitivity Specificity Precision NPV Accuracy F1 score AUC ROC AUC PR 

AutoMorph [21] (EyeQ) 0.85 0.93 0.87 - 0.92 0.86 0.97 - 
QUARTZ [5] (UKBB) 0.9500 0.9395 0.8321 0.9835 0.9420 0.8872 0.9679 - 
QUARTZ-DL (UKBB) 0.9512 1.0000 1.0000 0.9876 0.9900 0.9750 0.9974 0.9922 
QUARTZ-DL (CLSA) 0.9118 1.0000 1.0000 0.9822 0.9850 0.9538 0.9945 0.9793 

QUARTZ-DL (NEL DESP) 0.9737 0.9919 0.9867 0.9840 0.9850 0.9801 0.9950 0.9937 

 

 

  



TABLE VI: OD LOCALIZATION AND THE MAE FOR VCDR. 
Method Detection rate MAE for vCDR 

QUARTZ [5] (UKBB) 0.9760 - 
QUARTZ-DL (UKBB) 0.9933 0.0560 
QUARTZ-DL (CLSA) 0.9900 0.0378 

QUARTZ-DL (NEL DESP) 0.9900 0.0651 
 

TABLE VII: PROCESSING ENTIRE DATASETS. 
Method Processed Adequate image quality 

QUARTZ [5] (UKBB) 135,867 97,188 (71.53%) 

QUARTZ (UKBB) 175,856 118,702 (67.50%) 

QUARTZ-DL (UKBB) 175,764 132,293 (75.27%) 

QUARTZ-DL (CLSA) 106,506 88,155 (82.77%) 

QUARTZ-DL (NEL DESP) 1,175,423 803,555 (68.36%) 

 

in higher-quality retinal vasculometry data, thereby 
contributing to the improvement of future epidemiological 
studies. 

QUARTZ’s deep learning modules demonstrate 
performance consistent with other retinal vasculometry 
systems that use a deep learning pipeline, outperforming 
AutoMorph [21] on the UKBB dataset. However, the focus 
was not on direct comparison since [21], [22] are generalised 
systems offering broader application. Instead, QUARTZ 
provides a contribution in terms of its efficient use of data, 
extracting information from well segmented sections of the 
vasculature, even if this only represents a portion of the 
vascular tree. This is important when dealing with large 
cohorts used in epidemiological studies which often include 
larger amounts of poorer quality images including partially 
illuminated images. A potential impact of the approach to 
include the contribution of partially illuminated retinal images 
is that different areas of the retina have a different vascular 
morphology. However, the requirement that at least half of the 
vasculature must result in a high-quality segmentation ensures 
that a substantial portion of the retinal vessels can be reliably 
represented and this criterion contributes towards mitigating 
this impact. All the deep learning modules in QUARTZ have 
been trained and evaluated on a diverse range of images. On 
the image quality test set of UKBB, AutoMorph labels 
57.50% of the images as adequate quality compared to 
80.50% labelled by QUARTZ (75.27% on the entire dataset). 

The high performance of QUARTZ achieved on UKBB 
holds for the two other large datasets used in this study, CLSA 
and NEL DESP, demonstrating the robustness of its modules 
across datasets. In the case of the NEL DESP, QUARTZ can 
remove retinal images of inadequate quality, as well as non-
retinal images which are present in all real-world large 
datasets. Removal of non-retinal images is normally not 
covered in the literature. Segmentation via deep learning, in 
addition to the ocular disease present in the CLSA and NEL 
DESP datasets (with the NEL DESP dataset containing ~12% 
of patients with referable diabetic retinopathy), enables 
QUARTZ to learn to better avoid false segmentations in the 
presence of ocular disease. In addition, QUARTZ 
demonstrates a decrease in false segmentations, addressing 
various factors such as eyelashes, lens artefacts, and choroidal 
vessels, among others. The choroid thins with age, making 
choroidal vessels more prominent [35]. Despite QUARTZ 
improvements, in severe cases, these vessels can be mistaken 
for retinal vessels, resulting in occasional incorrect 
segmentations and hindering quality classification. 
Consequently, the F1 score in image quality classification for 

the CLSA dataset is lower compared with the other two 
datasets, despite remaining notably high at 0.9538. 

QUARTZ achieves a very high OD localization detection 
rate due to high performing OD segmentation on all three 
datasets. This enables the differentiation of left from right eye 
for macular centred images, as well knowing the location of a 
vessel relative to the OD. On the other hand, as our current 
goal is to maximise the usage of segmented vessels, OC 
segmentation and subsequently vCDR are hampered by the 
many poorly illuminated ODs. Using the vCDR in 
epidemiological studies requires a separate image quality 
classification decision based on the clarity of the OD. The 
adapted U-Net architecture when trained and evaluated on the 
REFUGE dataset, which only contains high quality images, is 
in line with the state-of-the-art with a MAE for vCDR of 
0.0330. 

Following evaluation, QUARTZ was used to 
automatically process multiple entire retinal datasets. A high 
percentage of images, 75.27% for UKBB and 82.77% for 
CLSA, being deemed as adequate for use as vasculometry data 
in epidemiological studies. This represents a large 
improvement from the previous version of QUARTZ, due to 
both improved vessel segmentation and image quality 
classification. For NEL DESP, the highest percentage would 
be expected with respect to the quality of the retinal images, 
instead 68.36% is achieved which reflects the removal of non-
retinal images and images that don’t comply to the dataset’s 
predominant aspect ratio. A retinal vasculometry system 
processing over a million images from a single dataset is a 
significant milestone, which has been achieved in the NEL 
DESP dataset. The entire NEL DESP dataset was processed 
in 2 months using a system with an AMD 3.65GHz processor 
and 4 x A100 GPUs, making the practical application of this 
system to large scale studies feasible. 

Future work will involve the transition to a generic version 
of QUARTZ, expanding its utility to a broader audience. This 
generalised system will undergo training using multiple 
datasets, encompassing diverse demographics, a spectrum of 
diseases, and various camera setups. The advantages and 
disadvantages will be explored, considering whether 
performance might be compromised compared with a system 
tailored to a single population, as well as whether the 
increased diversity and number of training examples would 
benefit individual populations. 

In conclusion, QUARTZ has transitioned to a deep 
learning pipeline, demonstrating improvements of its 
modules, and high performance across datasets. QUARTZ has 
been successfully used to process large datasets, extracting 
information from a high percentage of retinal images. These 
retinal vasculometry outputs will serve as a valuable resource 
for epidemiological studies. 
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