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Abstract—Retinal imaging offers a non-invasive means to 
assess the circulatory system, with morphological features 
of retinal vessels serving as biomarkers for systemic 
disease. QUARTZ (QUantitative Analysis of Retinal vessel 
Topology and siZe) is a fully automated artificial intelligence-
enabled retinal vasculometry system designed to process 
large-scale retinal image datasets to obtain quantitative 
measures of vessel morphology for use in epidemiological 
studies. Previously reliant on traditional image processing 
and machine learning, QUARTZ has now transitioned to a 
deep learning pipeline. Currently individually trained 
versions are tailored to specific datasets. Evaluation using 
the UK Biobank retinal dataset shows improvements in 
performance metrics: the F1 score for vessel segmentation 
increased from 0.7753 to 0.8472, accuracy for the A/V 
segment-level decision increased from 0.8524 to 0.9022, the 
detection rate for optic disc localization increased from 
0.9760 to 0.9933, and the F1 score for image quality 
classification increased from 0.8872 to 0.9750. QUARTZ 
distinguishes itself from other deep learning based retinal 
vasculometry systems through its efficient use of data, 
extracting valuable information despite issues such as low 
levels of illumination. The high performance of QUARTZ is 
consistent across two other extensive retinal datasets, 
namely the Canadian Longitudinal Study on Aging (CLSA) 
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and the North East London Diabetic Eye Screening 
Programme (NEL DESP). Evaluation on subsets was 
preceded by the automatic processing of entire retinal 
datasets by QUARTZ, processing over 1.4 million images. 
These retinal vasculometry outputs will serve as a valuable 
resource for epidemiological studies. 
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I. INTRODUCTION 

XAMINATION of retinal images offers a direct and 
non-invasive view of the blood circulatory system. The 
morphological characteristics of retinal vessels, 

including width and tortuosity, have been prospectively 
associated with systemic disease [1], [2]. Therefore, the eye can 
be considered a window to the health of the body, providing 
biomarkers for risk prediction not only of ocular disease (e.g., 
glaucoma and diabetic retinopathy) but also systemic disease 
such as diabetes and cardiovascular disease, which includes 
heart attack and stroke [3]. 
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QUARTZ (QUantitative Analysis of Retinal vessel 
Topology and siZe) is a fully automated artificial intelligence-
enabled retinal vasculometry system developed by our research 
group. QUARTZ has previously been used to process large 
retinal image datasets from the UK Biobank [4], [5], EPIC-
Norfolk [6], [7], and FOREVER [8], [9] cohorts to obtain 
quantitative measures of vessel morphology. This has 
contributed to many epidemiological studies [3], [10], [11], 
[12], [13], [14] and recently demonstrated that risk scores to 
predict circulatory mortality, heart attack, and stroke derived 
using retinal vasculometry performed similarly to established 
risk scores [3]. Whilst end-to-end deep learning disease 
prediction models continue to gain prominence [15], [16], [17], 
[18], retinal vasculometry is still a very active methodology as 
it offers interpretable results, identifying specific vascular 
features and changes which predict disease status. 

Whilst artificial intelligence has already been integrated into 
QUARTZ via deep learning [5], [19], the system heavily relied 
on traditional image processing and machine learning. Deep 
learning has now been extended to all core modules of 
QUARTZ. Other comparable systems exist, which include 
VAMPIRE [20], AutoMorph [21], RMHAS [22], some already 
presenting full deep learning pipelines. However, QUARTZ 
remains distinct as it is geared towards epidemiological studies, 
aiming to maximise useful data extracted from large cohort 
studies which can include larger amounts of poorer quality 
images. For instance, QUARTZ can effectively utilise partially 
illuminated images by extracting information from well 
segmented sections of the vasculature. Hence, all deep learning 
modules in QUARTZ have been trained and evaluated on a 
diverse range of images, including those with low levels of 
illumination. Whereas other systems [21], [22] select images 
for analysis based on the EyeQ dataset [23], which is specific 
to lesion detection and requires the main structures and lesions 
to be clear enough to provide a diabetic retinopathy grade.  

In this paper, using UK Biobank, the performance of the core 
modules of the latest version of QUARTZ is presented, 
demonstrating a shift from the previous version [5] to a deep 
learning pipeline. Additionally, the performance of QUARTZ 
is presented for two other large retinal image datasets from the 
Canadian Longitudinal Study on Aging [24] and the North East 
London Diabetic Eye Screening Programme [25]. Following 
training and evaluation on subsets, QUARTZ was used to 
automatically process the entire retinal datasets. A generalised 
system [21], [22], trained across multiple retinal datasets would 
offer broader application. However, our current focus is 
optimising performance, so a separate version of QUARTZ has 
been tailored to each dataset. This approach will create a 
performance baseline to enable comparative analyses into the 
advantages and disadvantages of transitioning QUARTZ 
towards a generalised system. 

II. MATERIALS 

UK Biobank (UKBB) [4] is a large prospective cohort study for 
which baseline biomedical and physical assessments were carried 
out in 2006–2013, in 502,682 adults aged 40–69 years recruited 

from 22 UK centres. During 2009-2013, a subset of 85,746 
participants had retinal images captured, providing 175,856 
images. Colour images were captured with the Topcon 3D-OCT 
1000 Mark 2 fundus camera. Images were non-mydriatic, macular 
centred, from both eyes, with a 45° field-of-view (FOV), and saved 
in PNG format with a resolution of 2048 x 1536 pixels. The UKBB 
study was approved by the Northwest Region NHS research ethics 
committee. 

The Canadian Longitudinal Study on Aging (CLSA) [24] is a 
large long-term cohort study for which baseline biomedical and 
physical assessments were carried out in 2012-2015 in 30,097 
adults aged 45-85 years recruited from 11 sites (in 7 Canadian 
provinces). Participants were seen every 3 years. From baseline 
and the first follow-up examinations, 29,635 participants had 
retinal images captured, providing 106,506 images. Of which, 
24,160 participants had images captured from both examinations. 
Age-related eye disease is evident in the dataset due to the 
participant age range. Colour images were captured with the 
Topcon TRC-NW8 fundus camera with the Nikon D90 camera 
attached. Images were non-mydriatic, macular centred, from both 
eyes, with a 45° FOV, and saved in JPEG format with resolutions 
of 4288 x 2848 and 4928 x 3264 pixels. All images were resized to 
the most common resolution of 4288 x 2848 pixels, simplifying 
future pixel-micron conversions. The CLSA study was approved 
by 13 research ethics boards across Canada. 

The North East London Diabetic Eye Screening Programme 
(NEL DESP) [25] is based at the Homerton Healthcare NHS 
Foundation Trust and offers annual diabetic eye screening to a 
large ethnically diverse (with high representation of white, South 
Asian, and black individuals) population with diabetes, with a 
spectrum of diabetic eye disease and a wide age range. An initial 
dataset was made available for training and evaluating QUARTZ, 
consisting of 1000 expired screening encounters, providing 6,268 
images. A larger dataset was curated from 202,886 consecutive 
routine screening encounters between 1st January 2021 and 31st 
December 2022, resulting in over 100,000 patients and 1,175,423 
images. Patient IDs were pseudonymised. Colour images were 
captured from a range of fundus cameras including models from 
Canon and Topcon. Images were mydriatic, macular centred and 
optic disc centred, from both eyes, with a 45° FOV, and saved in 
JPEG format with various resolutions ranging from 150 x 300 to 
6000 x 4000 pixels. Non-retinal images (e.g., crystalline lens, 
eyelids, hands) were included as part of the usual protocol to 
document anterior segment pathology or to confirm camera 
functioning when the patient could not be photographed. All 
images were resized to the second most common resolution of 
3648 x 2432 pixels, simplifying future pixel-micron conversions. 
The study was approved by the NHS Health Research Authority, 
although full research ethics approval was not required as all data 
were pseudonymised. 

III. METHOD 

QUARTZ was structured into the core modules of 
arteriole/venule segmentation, optic disc/cup segmentation, 
image quality classification, and vessel analysis (see Fig. 1). 
Algorithm details of the first three modules are described in this 
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Fig. 1. The use of QUARTZ, from dataset to biomarker discovery. (a) Large retinal image dataset, (b) pre-processing, (c) no pre-processing, (d) 

arteriole/venule segmentation, (e) optic disc/cup segmentation, (f) image quality classification, (g) vessel analysis, (h) data exclusion, and (i) 

statistical modelling for biomarker discovery. 

 
section, each designed with a novel approach. Separate models 
were trained for each of the three datasets; the training 
hyperparameters listed in this section were for the UKBB 
dataset. The vessel analysis module, which included 
measurements of width and tortuosity, used previous well 
documented and validated techniques [5]. 

A. Pre-processing 

Colour images were cropped to FOV, and then adjusted to 
achieve a square shape by either centrally cropping or evenly 
zero padding the vertical dimension. Zero padding was 
particularly useful for the NEL DESP dataset which included 
some images with the circular FOV truncated at the top and 
bottom. 

B. Arteriole/Venule Segmentation 

For performing arteriole/venule (A/V) segmentation the U-
Net architecture [26] was used as a starting point, which is a 
convolutional neural network (CNN) that was initially proposed 
for biomedical image segmentation. The U-Net was adapted to 
employ a multi-segmentation technique [27] where the network 
outputs three independent channels to generate separate binary 
segmentation maps for the structures of arterioles, venules, and 
vessels. This configuration allowed vessel crossings to be 
handled more intuitively, avoiding commonly used output pixel 
labels of crossing and uncertain. The U-Net was further adapted 
using ConvNeXt blocks [28], which followed from ConvNeXts 
[29] (a family of pure CNN models) having been previously 
demonstrated to compete favourably with Transformers [30].  

The adapted U-Net underwent pretraining via self-supervised 
learning using the EyePACS dataset from Kaggle [31], 
consisting of 88,702 retinal images. An autoencoder 
architecture was achieved by modifying the model to generate 
the reconstructed input image as its output, along with the 
removal of skip connections between the encoder and decoder 

to prevent early feature maps from the encoder being directly 
employed in image reconstruction. The encoder section of the 
autoencoder was then used as weights for the encoder section 
of the adapted U-Net. 

For each of the three datasets, two human observers manually 
annotated 25 randomly selected retinal images. Random 
selection was repeated until a wide spectrum of image qualities 
was achieved, along with inclusion of cases with eye disease for 
the CLSA and NEL DESP datasets, replacing those deemed of 
inadequate quality by further random selection. Images were 
annotated as standard, with pixel labels of arteriole, venule, 
crossing (arteriole and venule overlap), uncertain (vessel 
undistinguishable as either arteriole or venule), and 
background. The annotations were then adapted so each 
channel was represented as a binary map with the positive 
classes of arterioles, venules, and vessels respectively. Crossing 
pixels belonged to all three positive classes, and uncertain 
pixels belonged only to the positive class in the binary map for 
vessels. Uncertain pixels were masked out of the binary maps 
for arterioles and venules to stop them being labelled as the 
negative class. The annotated images were divided with a 
random 60:20:20 training, validation, and test split. 

The pre-processed images were resized to 1024 x 1024 pixels 
for input to the model, the output was the same size. Horizontal 
and vertical flipping, scaling, translation, rotation, brightness, 
contrast, and saturation were used to augment the training data. 
The batch size was 2. Adam optimization was used with a 
learning rate of 0.001 for 1000 epochs, learning rate decay 
presented no improvements. A weight decay of 0.005 was used. 
The loss function was pixel-wise binary cross-entropy summed 
across the channels. Weighting the loss function (e.g., sample 
weights) offered no improvements. The model was saved at the 
epoch with the minimum validation loss. The model was built 
on the training set and hyperparameters were derived from 
performance on the validation set.  



4 
 
 

The output probability maps were returned to the size prior to 
pre-processing and then thresholded to produce binary 
segmentation maps, followed by simple post-processing [5] to 
eliminate spurious objects. Morphological thinning was applied 
to the vessel binary map to create vessel centrelines, followed 
by removal of spurs, bifurcations, and crossover points to create 
vessel segments [5]. The scores from the arteriole and venule 
probability maps were used as soft votes and accumulated along 
the vessel centreline pixels to determine the AV probability for 
each vessel segment. Using the centrelines proved more 
effective than using the entire vessel segment. 

C. Optic Disc/Cup Segmentation 

The adapted U-Net architecture in the A/V segmentation 
module was repurposed for optic disc and optic cup 
segmentation. The network outputs two independent channels 
to generate separate binary segmentation maps for the 
structures of optic disc (OD) and optic cup (OC). This 
configuration enables the model to understand that the entirety 
of the area belongs to the OD, whilst only the inner area belongs 
to the OC. The adapted U-Net was pretrained using the 
REFUGE dataset [32], consisting of 1200 annotated retinal 
images. 

For each of the three datasets, two human observers manually 
annotated 100 randomly selected retinal images. The same 
selection procedure as detailed for the A/V segmentation 
module. Images were annotated as standard, with pixel labels 
of OD, OC, and background. The OC annotation is an 
approximation based on the colour difference between the area 
of central pallor which contrasts to the pink/orange of the 
neuroretinal rim. Accurately defining the OC would require 
detailed contour information such as that available from optical 
coherence tomography. The annotations were then adapted so 
each channel was a binary map with the positive classes of OD 
and OC respectively. OC pixels belonged to both positive 
classes. The annotated images were divided with a random 
60:20:20 training, validation, and test split. 

The training strategy closely resembled that of the A/V 
segmentation module, with a few modifications: pre-processed 
images resized to 512 x 512 pixels, used a batch size of 8, 
trained for 100 epochs, and employed a cosine decay learning 
rate schedule.  

The output probability maps were returned to the size prior to 
pre-processing and then thresholded to produce binary 
segmentation maps, with the largest segmented connected 
component determining the object of interest in each map. OD 
localization was determined from the centroid of the segmented 
OD. Additionally, the segmented OD and OC were used to 
calculate the vertical cup-to-disc ratio (vCDR) [32]. 

D. Image Quality Classification 

Large retinal datasets used in epidemiological studies can 
contain large amounts of poorer quality images. However, 
useful information can be extracted from well segmented 
sections of the vasculature, even if this only represents a portion 
of the vascular tree. A dual CNN model employing two 
instances of the EfficientNetV2-S architecture [33] was created 
to evaluate image quality with respect to suitability for 
epidemiological studies. One network took A/V segmentation 
maps as input, while the other took colour retinal images as 

input. The feature maps generated by both networks were 
concatenated and subjected to global average pooling. This was 
followed by two fully connected layers of 256 nodes each and 
a binary classification layer for distinguishing the classes of 
inadequate and adequate. Each instance of the EfficientNetV2-
S was pretrained on the ImageNet dataset, followed by further 
pretraining of the entire model using 28,792 labelled retinal 
images from the EyeQ dataset and their output from the A/V 
segmentation module. 

For each of the three datasets, a human observer manually 
labelled 2000 randomly selected retinal images as either 
inadequate or adequate. Using both the A/V segmented maps 
and the retinal images, images were labelled as inadequate if 
they met any of the following criteria: (i) contained 
considerable blur, (ii) were non-retinal images, (iii) less than 
half of the vasculature was segmented, (iv) the segmentation 
was considerably fragmented or unconnected, (v) multiple non-
vessel objects were segmented (e.g., false segmentation caused 
by eyelashes, lens artefacts, choroidal vessels, exudates, 
haemorrhages, the fovea, the optic disc, retinal scars, retinitis 
pigmentosa, asteroid hyalosis etc.). The UKBB dataset had 
79.10% of images manually labelled as adequate, while the 
CLSA dataset had 82.90%. The NEL DESP dataset had the 
lowest proportion of adequate images at 63.15%, mainly due to 
the inclusion of many non-retinal images, this increased to 
84.77% when considering only retinal images. The labelled 
images were divided with a random 80:10:10 training, 
validation, and test split. 

Images were not pre-processed as determining the correct 
FOV location for cropping is not always viable for some low 
quality images. Images were resized to 384 x 384 pixels for 
input to the model. Data augmentation was consistent with 
other modules, except for excluding translation and scaling as 
these can alter the amount of retina captured which is an 
important indicator for quality. The batch size was 16. Adam 
optimization was used with a learning rate of 0.001, learning 
rate decay presented no improvements. A weight decay of 
0.0001 was used. The loss function was binary cross-entropy. 
Weighting the loss function offered no improvements. The 
model was saved at the epoch with the minimum validation 
loss. The model was built on the training set and 
hyperparameters were derived from performance on the 
validation set. The pretrained model's three-class softmax 
classification layer for the EyeQ dataset was replaced with a 
sigmoid classification layer with randomly initialised weights. 
Only the top layers of the model were trained, initially 5 epochs 
for the classification layer, followed by 20 epochs for the rest 
of the top. 

A threshold was applied to the output probability score to 
determine and exclude images of inadequate quality. 
Additionally, using the original image size prior to any resizing 
detailed in the Materials section, images failing to meet the 
dataset's predominant aspect ratio were excluded. Deviation 
from this aspect ratio was likely due to cropped images or 
images with odd capture settings, which then becomes 
problematic as it impedes the camera’s pixel-to-micron 
conversion. Also, images with dimensions below 500 pixels 
were excluded to ensure a minimum resolution requirement. 
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Fig. 2. QUARTZ-DL segmentation example for UKBB. Left: original 

retinal image. Middle: A/V segmentation, figure depicts the RGB 

composition of three independent binary segmentation maps for the 

structures of arterioles, venules, and vessels. Right: OC/OD 

segmentation, figure depicts the RGB composition of two independent 

binary segmentation maps for the structures of the OD and OC. ©UK 

Biobank. 

 

 
 
Fig. 3. Comparison of UKBB vessel segmentations. Top: original retinal 

image. Middle: vessel segmentation maps from QUARTZ [5]. Bottom: 

vessel segmentation maps from A/V segmentation for QUARTZ-DL. 

©UK Biobank. 

IV. RESULTS 

Evaluations were performed on the test sets. The operating 
point for each CNN model was determined by finding the 
probability threshold that maximised the F1 score on the 
validation set, which was the preferred metric due to the class 
imbalance for most of the tasks. Performance metrics include 
sensitivity, specificity, precision (positive predictive value), 
negative predictive value (NPV), accuracy, F1 score, 
intersection over union (IoU), area under the receiver operating 
characteristic curve (AUC ROC), and area under the precision-
recall curve (AUC PR) [34]. In this section, the suffix -DL will 
be appended to QUARTZ to distinguish the newer deep 
learning version of the system. 

The results of A/V segmentation are reported in Tables I-II. 
For QUARTZ-DL, the binary segmentation of each structure 
(arteriole, venule, and vessels) was evaluated separately. Only 
pixels within the circular FOV were used for evaluation. 
Further to this, uncertain pixels were excluded from the 
evaluation of arteriole and venule segmentation, but not for the 
vessel segmentation. The F1 score for vessel segmentation 
increases by 0.0719 from QUARTZ to QUARTZ-DL for 
UKBB, from 0.7753 to 0.8472. After post-processing, that F1 
score increase is 0.0596, from 0.7724 to 0.8320. The 

introduction of post processing may reduce the F1 score but it's 
essential to keeping the segmentation of non-vessel objects to a 
minimum. Examples of outputs from A/V segmentation are 
provided in Fig. 2-3. The subsequent A/V segment-level 
performance, based on a 0.5 probability threshold, is reported 
in Table III. Accuracy increases by 0.0498 for the A/V segment-
level decision from QUARTZ to QUARTZ-DL for UKBB, 
from 0.8524 to 0.9022. To further increase performance, 
epidemiological studies [3] have adopted a 0.8 threshold at the 
cost of only retaining 51.75% of the vessel segments, for 
QUARTZ-DL on UKBB this threshold now retains 73.58% of 
the vessel segments. 

The results of OD/OC segmentation are reported in Table IV. 
For QUARTZ-DL, the binary segmentation of each structure 
(OD and OC) was evaluated separately. Only pixels within the 
circular FOV were used for evaluation. An output example of 
OD/OC segmentation is provided in Fig. 2. The detection rate 
for OD localization, evaluated over a further 300 test images, is 
reported in Table VI. The detection rate for OD localization 
increases by 0.0173 from QUARTZ to QUARTZ-DL for 
UKBB, from 0.9760 to 0.9933. The mean absolute error (MAE) 
for vCDR is reported in Table VI. 

The F1 score for image quality classification (Table V) from 
QUARTZ to QUARTZ-DL for UKBB increases by 0.0878, 
from 0.8872 to 0.9750. It is noteworthy that the retinal images 
in Fig. 3 were all classified as adequate quality, with adequate 
segmentations achieved despite the presence of heavily visible 
ocular disease and poor illumination. 

The reported results from other retinal vasculometry systems 
offering a generalised approach [21], [22] (compared to the 
dataset specific versions of QUARTZ and QUARTZ-DL) have 
been incorporated within Tables I, IV, and V. Reported results 
from [21] include evaluation on external datasets and multiclass 
performance for A/V segmentation and OD/OC segmentation. 
However, direct comparison by utilizing datasets in this paper 
was hindered because numerous test images were deemed as 
insufficient quality by those systems, resulting in no outputs 
being provided. Instead, for each segmentation task, a UKBB 
test subset using only images deemed as sufficient quality by 
AutoMorph [21] was used for comparison. To aid comparison, 
binary segmentation maps for each structure (arteriole, venule, 
OD, and OC) were extracted from the AutoMorph multiclass 
segmentation maps, while the vessel map came from the binary 
vessel segmentation module. 

The results from processing the entire datasets are detailed in 
Table VII, reporting the numbers of images that have useful 
information extracted for use in epidemiological studies. 
Participant consent withdrawals result in a small reduction in 
the number of UKBB retinal images. The number of images 
labelled as adequate quality for UKBB from QUARTZ to 
QUARTZ-DL increases by 7.77 percentage points, from 
67.50% to 75.27%. Not meeting the dataset’s predominant 
aspect ratio was only an issue for NEL DESP, accounting for 
7.68% of the dataset. A range of Nvidia graphics processing 
units (GPUs) was used including the RTX 3080 Ti, RTX 4090, 
and A100. The average processing time for a single image on a 
standard machine (i9 3.60GHz, RTX 3080 Ti) was 5, 12, and 
21 seconds for UKBB, NEL DESP, and CLSA, respectively. 
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TABLE I: PERFORMANCE OF A/V SEGMENTATION. 

Method Map Sensitivity Specificity Precision Accuracy F1 score IoU AUC ROC AUC PR 

RMHAS [22] (In-house) 
Arteriole 0.72 0.96 - 0.95 0.48 - 0.94 - 
Venule 0.80 0.97 - 0.96 0.57 - 0.96 - 

AutoMorph [21] (IOSTAR-AV) A/V 0.64 0.98 0.68 0.96 0.66 0.53 0.95 - 
AutoMorph [21] (DR HAGIS) Vessel 0.84 0.98 0.73 0.97 0.78 0.64 0.98 - 

AutoMorph (UKBB subset) 
Arteriole 0.6198 0.9916 0.7871 0.9738 0.6935 0.5308 - - 
Venule 0.6813 0.9920 0.8269 0.9754 0.7471 0.5963 - - 

AutoMorph (UKBB subset) Vessel 0.7688 0.9895 0.8954 0.9665 0.8273 0.7054 - - 
QUARTZ [5] (UKBB) Vessel 0.7366 0.9814 0.8183 0.9564 0.7753 0.6330 - - 

QUARTZ-DL (UKBB) 
Arteriole 0.7699 0.9875 0.7526 0.9773 0.7612 0.6144 0.9866 0.8479 
Venule 0.7832 0.9902 0.8144 0.9794 0.7985 0.6645 0.9901 0.8895 
Vessel 0.8545 0.9814 0.8401 0.9684 0.8472 0.7349 0.9896 0.9313 

QUARTZ-DL (UKBB subset) 
Arteriole 0.7730 0.9869 0.7484 0.9767 0.7605 0.6135 - - 
Venule 0.7823 0.9895 0.8076 0.9785 0.7947 0.6594 - - 
Vessel 0.8577 0.9807 0.8380 0.9678 0.8478 0.7357 - - 

QUARTZ-DL (CLSA) 
Arteriole 0.7757 0.9872 0.7642 0.9764 0.7699 0.6259 0.9859 0.8499 
Venule 0.7976 0.9894 0.8187 0.9785 0.8080 0.6779 0.9893 0.8961 
Vessel 0.8581 0.9803 0.8445 0.9667 0.8513 0.7410 0.9883 0.9312 

QUARTZ-DL (NEL DESP) 
Arteriole 0.7627 0.9905 0.7861 0.9806 0.7742 0.6316 0.9878 0.8585 
Venule 0.8046 0.9913 0.8262 0.9821 0.8153 0.6881 0.9908 0.8966 
Vessel 0.8462 0.9836 0.8471 0.9703 0.8467 0.7341 0.9896 0.9309 

 
TABLE II: PERFORMANCE OF A/V SEGMENTATION AFTER POST-PROCESSING. 

Method Map Sensitivity Specificity Precision Accuracy F1 score IoU 

QUARTZ [5] (UKBB) Vessel 0.6912 0.9888 0.8752 0.9584 0.7724 0.6292 

QUARTZ-DL (UKBB) 
Arteriole 0.7506 0.9890 0.7710 0.9778 0.7607 0.6138 
Venule 0.7697 0.9910 0.8249 0.9795 0.7963 0.6616 
Vessel 0.8112 0.9841 0.8539 0.9664 0.8320 0.7123 

QUARTZ-DL (CLSA) 
Arteriole 0.7496 0.9888 0.7814 0.9766 0.7652 0.6197 
Venule 0.7897 0.9901 0.8275 0.9788 0.8082 0.6781 
Vessel 0.8357 0.9823 0.8551 0.9661 0.8453 0.7321 

QUARTZ-DL (NEL DESP) 
Arteriole 0.7372 0.9921 0.8099 0.9810 0.7718 0.6285 
Venule 0.7947 0.9920 0.8364 0.9823 0.8150 0.6878 
Vessel 0.8198 0.9864 0.8657 0.9702 0.8421 0.7273 

 

TABLE III: PERFORMANCE OF A/V SEGMENT-LEVEL DECISION. 

Method Class Sensitivity Specificity Precision Accuracy F1 score 

QUARTZ [5] (UKBB) 
Arteriole 0.8514 0.8532 0.8123 0.8524 0.8314 
Venule 0.8532 0.8514 0.8849 0.8524 0.8688 

QUARTZ-DL (UKBB) 
Arteriole 0.9079 0.8971 0.8857 0.9022 0.8967 
Venule 0.8971 0.9079 0.9173 0.9022 0.9071 

QUARTZ-DL (CLSA) 
Arteriole 0.8804 0.8713 0.8567 0.8755 0.8684 
Venule 0.8713 0.8804 0.8929 0.8755 0.8820 

QUARTZ-DL (NEL DESP) 
Arteriole 0.8882 0.9290 0.9073 0.9111 0.8977 
Venule 0.9290 0.8882 0.9140 0.9111 0.9214 

 

TABLE IV: PERFORMANCE OF OD/OC SEGMENTATION. 

Method Map Sensitivity Specificity Precision Accuracy F1 score IoU AUC ROC AUC PR 

AutoMorph [21] (IDRID) OD/OC 0.90 0.95 0.94 0.99 0.94 0.91 0.95 - 

AutoMorph (UKBB subset) 
OD 0.8367 0.9993 0.9618 0.9958 0.8949 0.8098 - - 
OC 0.8425 0.9988 0.7225 0.9982 0.7779 0.6365 - - 

QUARTZ-DL (UKBB) 
OD 0.9568 0.9991 0.9571 0.9982 0.9569 0.9174 0.9999 0.9945 
OC 0.8746 0.9993 0.8209 0.9988 0.8469 0.7344 0.9997 0.9318 

QUARTZ-DL (UKBB subset) 
OD 0.9464 0.9991 0.9603 0.9980 0.9533 0.9108 - - 
OC 0.8819 0.9993 0.8255 0.9988 0.8527 0.7433 - - 

QUARTZ-DL (CLSA) 
OD 0.9704 0.9992 0.9632 0.9985 0.9668 0.9358 0.9999 0.9965 
OC 0.8873 0.9993 0.8414 0.9989 0.8640 0.7606 0.9998 0.9471 

QUARTZ-DL (NEL DESP) 
OD 0.9582 0.9984 0.9289 0.9975 0.9433 0.8927 0.9997 0.9880 
OC 0.8254 0.9991 0.8374 0.9982 0.8313 0.7114 0.9994 0.9215 

 

TABLE V: PERFORMANCE OF IMAGE QUALITY CLASSIFICATION, POSITIVE CLASS = INADEQUATE. 

Method Sensitivity Specificity Precision NPV Accuracy F1 score AUC ROC AUC PR 

AutoMorph [21] (EyeQ) 0.85 0.93 0.87 - 0.92 0.86 0.97 - 
QUARTZ [5] (UKBB) 0.9500 0.9395 0.8321 0.9835 0.9420 0.8872 0.9679 - 
QUARTZ-DL (UKBB) 0.9512 1.0000 1.0000 0.9876 0.9900 0.9750 0.9974 0.9922 
QUARTZ-DL (CLSA) 0.9118 1.0000 1.0000 0.9822 0.9850 0.9538 0.9945 0.9793 

QUARTZ-DL (NEL DESP) 0.9737 0.9919 0.9867 0.9840 0.9850 0.9801 0.9950 0.9937 
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TABLE VI: OD LOCALIZATION AND THE MAE FOR VCDR. 

Method Detection rate MAE for vCDR 

QUARTZ [5] (UKBB) 0.9760 - 
QUARTZ-DL (UKBB) 0.9933 0.0560 
QUARTZ-DL (CLSA) 0.9900 0.0378 

QUARTZ-DL (NEL DESP) 0.9900 0.0651 

 
TABLE VII: PROCESSING ENTIRE DATASETS. 

Method Processed Adequate image quality 

QUARTZ [5] (UKBB) 135,867 97,188 (71.53%) 
QUARTZ (UKBB) 175,856 118,702 (67.50%) 

QUARTZ-DL (UKBB) 175,764 132,293 (75.27%) 
QUARTZ-DL (CLSA) 106,506 88,155 (82.77%) 

QUARTZ-DL (NEL DESP) 1,175,423 803,555 (68.36%) 

V. DISCUSSION AND CONCLUSION 

QUARTZ is a robust fully automated artificial intelligence-
enabled retinal vasculometry system which can process large 
retinal datasets to obtain quantitative measures of vessel 
morphology for use in epidemiological studies which have 
shown that these measures can be used in risk prediction models 
with application to population screening, particularly for 
circulatory disease, stroke, and coronary heart disease. In this 
paper, the latest version of QUARTZ (i.e., QUARTZ-DL) is 
evaluated, presenting the performance increases from shifting 
to a deep learning pipeline. These increases include +0.0719 to 
the F1 score for vessel segmentation, +0.0498 to accuracy for 
the A/V segment-level decision, +0.0173 to the detection rate 
for OD localization, and +0.0878 to the F1 score for image 
quality classification. The deep learning pipeline ensures that 
the previous two modules of vessel segmentation and A/V 
classification can be streamlined into a single A/V 
segmentation module. Also, the new addition of OD/OC 
segmentation, enables the new metric of vCDR to be calculated. 
The enhancements made to QUARTZ will result in higher-
quality retinal vasculometry data, thereby contributing to the 
improvement of future epidemiological studies. 

QUARTZ’s deep learning modules demonstrate 
performance consistent with other retinal vasculometry systems 
that use a deep learning pipeline, outperforming AutoMorph 
[21] on the UKBB dataset. However, the focus was not on direct 
comparison since [21], [22] are generalised systems offering 
broader application. Instead, QUARTZ provides a contribution 
in terms of its efficient use of data, extracting information from 
well segmented sections of the vasculature, even if this only 
represents a portion of the vascular tree. This is important when 
dealing with large cohorts used in epidemiological studies 
which often include larger amounts of poorer quality images 
including partially illuminated images. A potential impact of 
the approach to include the contribution of partially illuminated 
retinal images is that different areas of the retina have a 
different vascular morphology. However, the requirement that 
at least half of the vasculature must result in a high-quality 
segmentation ensures that a substantial portion of the retinal 
vessels can be reliably represented and this criterion contributes 
towards mitigating this impact. All the deep learning modules 
in QUARTZ have been trained and evaluated on a diverse range 
of images. On the image quality test set of UKBB, AutoMorph 
labels 57.50% of the images as adequate quality compared to 
80.50% labelled by QUARTZ (75.27% on the entire dataset). 

The high performance of QUARTZ achieved on UKBB 
holds for the two other large datasets used in this study, CLSA 
and NEL DESP, demonstrating the robustness of its modules 
across datasets. In the case of the NEL DESP, QUARTZ can 
remove retinal images of inadequate quality, as well as non-
retinal images which are present in all real-world large datasets. 
Removal of non-retinal images is normally not covered in the 
literature. Segmentation via deep learning, in addition to the 
ocular disease present in the CLSA and NEL DESP datasets 
(with the NEL DESP dataset containing ~12% of patients with 
referable diabetic retinopathy), enables QUARTZ to learn to 
better avoid false segmentations in the presence of ocular 
disease. In addition, QUARTZ demonstrates a decrease in false 
segmentations, addressing various factors such as eyelashes, 
lens artefacts, and choroidal vessels, among others. The choroid 
thins with age, making choroidal vessels more prominent [35]. 
Despite QUARTZ improvements, in severe cases, these vessels 
can be mistaken for retinal vessels, resulting in occasional 
incorrect segmentations and hindering quality classification. 
Consequently, the F1 score in image quality classification for 
the CLSA dataset is lower compared with the other two 
datasets, despite remaining notably high at 0.9538. 

QUARTZ achieves a very high OD localization detection 
rate due to high performing OD segmentation on all three 
datasets. This enables the differentiation of left from right eye 
for macular centred images, as well knowing the location of a 
vessel relative to the OD. On the other hand, as our current goal 
is to maximise the usage of segmented vessels, OC 
segmentation and subsequently vCDR are hampered by the 
many poorly illuminated ODs. Using the vCDR in 
epidemiological studies requires a separate image quality 
classification decision based on the clarity of the OD. The 
adapted U-Net architecture when trained and evaluated on the 
REFUGE dataset, which only contains high quality images, is 
in line with the state-of-the-art with a MAE for vCDR of 
0.0330. 

Following evaluation, QUARTZ was used to automatically 
process multiple entire retinal datasets. A high percentage of 
images, 75.27% for UKBB and 82.77% for CLSA, being 
deemed as adequate for use as vasculometry data in 
epidemiological studies. This represents a large improvement 
from the previous version of QUARTZ, due to both improved 
vessel segmentation and image quality classification. For NEL 
DESP, the highest percentage would be expected with respect 
to the quality of the retinal images, instead 68.36% is achieved 
which reflects the removal of non-retinal images and images 
that don’t comply to the dataset’s predominant aspect ratio. A 
retinal vasculometry system processing over a million images 
from a single dataset is a significant milestone, which has been 
achieved in the NEL DESP dataset. The entire NEL DESP 
dataset was processed in 2 months using a system with an AMD 
3.65GHz processor and 4 x A100 GPUs, making the practical 
application of this system to large scale studies feasible. 

Future work will involve the transition to a generic version 
of QUARTZ, expanding its utility to a broader audience. This 
generalised system will undergo training using multiple 
datasets, encompassing diverse demographics, a spectrum of 
diseases, and various camera setups. The advantages and 
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disadvantages will be explored, considering whether 
performance might be compromised compared with a system 
tailored to a single population, as well as whether the increased 
diversity and number of training examples would benefit 
individual populations. 

In conclusion, QUARTZ has transitioned to a deep learning 
pipeline, demonstrating improvements of its modules, and high 
performance across datasets. QUARTZ has been successfully 
used to process large datasets, extracting information from a 
high percentage of retinal images. These retinal vasculometry 
outputs will serve as a valuable resource for epidemiological 
studies. 
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