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Introduction
Established methods and extensive previous research have proved that it could be pos-

sible to fly outside the earth’s atmosphere and re-enter reaching speeds that could go above 
the speed of sound by 5 folds [1]. However, sharp leading edges, combustors and thermal 
protection systems of such hypersonic vehicles require materials that can withstand extreme 
thermal, mechanical and shock-wave loadings. Ultra-High Temperature Ceramics (UHTCs) are 
potential candidates that can be utilised as non-ablative TPS for a space vehicle due to their 
low volatility, high melting point and high heat-flux resistance [1-4]. The current trend in 
barrier coatings utilised by designers and engineers involves randomised choice of material 
combinations based upon historical experiments and extensive testing to ensure safety and 
vehicle manoeuvrability [5]. However, experimental preparation of UHTCs and the testing for 
harsh environmental conditions require hypersonic wind tunnel facility and the availability of 
such facilities is scarce. Further, using such exotic techniques, materials can only get evaluated 
for limited time leading to lack of information over time. 

Computer-based simulation, based upon the Finite Element Modelling (FEM) and Com-
putational Fluid Dynamics (CFD) have been utilised to estimate the rate of change of fluid 
field across the vehicle to determine safety parameters, such as heat flux and shock wave 
resistance, which could be provided by understanding structural integrity and thermal effi-
ciency [6]. However, computer-based simulations do not bear any environmental and physical 
properties of wind tunnel in terms of accuracy and requires high performance computing and 
time and further not very efficient for hypersonic conditions owing to its time consumption 
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[7]. As a result of these limitations, the current TPS are built as ab-
lative layers to protect C/C composites which are majorly utilised 
as the substrates, meaning that in extreme conditions such as high 
temperature during atmospheric re-entry, the energy is dissipated 
against the coating making all the TPS non-reusable in nature [8-
10]. 

Modern development in data to knowledge ideas have created a 
new pillar in scientific discovery that has been acknowledged as the 
big data driven discovery. This approach is based upon the combi-
natorial solutions of the Euler - Lagrange equations of the Density 
Functional Theory (DFT) [11], that in computer science is known as 
Machine Learning (ML) [12,13]. Use of such methodologies coupled 
with powerful data processing and high prediction performance 
algorithm is slowly replacing the traditional method for material 
discovering based upon trial and error and allow a more efficient 
way to predict key failures points while reduce significant compu-
tational power required [14].

The purpose of this study is to analyse the stress distribution 
across a solid boundary of a known space vehicle using a surrogate 
model and multiple level deep learning algorithm to give insights 
about the computational power needed as well as the possibility of 
further application of such methodologies for broader application. 
Given the lack of application of ML algorithms specific for UHTCs at 
the times when the study was conducted, most of the comparison 
has been done using results from similar materials that are subject-
ed to stress in highly stochastic environment. This paper will fo-
cus on determining the stress distribution across a solid semi-cone 
shaped leading edge coated with a TPS layer made up of a com-
posite blend of Zirconium Diboride (ZrB2) and 15% Silicon Carbide 
(SiC). The first two datasets generated for the model will be about 
the geometry and fluid field. The geometrical dataset will be de-

rived using linear regression and topological mapping as previously 
utilised [15], whereas the fluid field is attained through Monte-Car-
lo based CFD through Ansys software [16]. After generating these 
datasets, sets will be added as an input for an unsupervised model 
based upon a method that reflect the human brain and allows com-
puter program to recognize patterns to solve problems, these kinds 
of models are known as neural networks. To understand the stress 
distribution, a surrogate model is introduced, and further datasets 
and unsupervised algorithm are utilised which aim to predict lo-
cations of high stress accumulation and make an average, such ap-
proach is called k-mean clustering [17].

Computational details 
The schematics of the machine learning model is illustrated in 

Figure 1 and the corresponding material properties of the UTHCs 
were attained from our previous study and reported in Table 1 [18]. 
In Figure 1, geometry and thermo-fluid parameters are mapped 
into dataset using topology. The dataset is used as training data for 
segmentation that leads to the generation of a dataset that is then 
coupled with another topological mapping of the material proper-
ty data. The first stage of this research involved estimation of fluid 
around space vehicle to understand the temperature and pressure 
distribution as well as boundary layer separation point and shock 
waves occurring due to extreme frictional heating during re-entry. 
This analysis was conducted through CFD technique through Ansys 
with randomised Navier Stokes Equations based upon the Direct 
Monte Carlo method. The attained CFD results were used as input 
to evaluate stress distribution and the points of high stress through 
ML approach using a surrogate model built by combining k-mean 
clustering and neural network gradient boosting algorithm using 
the open source keras library.

Figure 1: Schematics of machine learning model utilised in this research.
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Table 1: Properties of UHTCs adapted from our previous study [18]. 

Properties
Materials

ZrB2 ZrB2- 15% SiC

Thermal Conductivity 75W/mm 99W/mm

Density 10.03g/cm3 5.57g/m3

Coefficient of thermal expansions 8.8x10-6K 7.6x10-6K

Young’s Modulus at 1400 °C 75GPa 280GPa

Thermo-fluid analysis
The reference geometry chosen for the study is a semi-cone 

shaped leading edge similar to traditional re-entry space vehicles 
as illustrated in Figure 2. The design was analysed using Ansys to 
understand the thermo-fluid field to achieve initial data for the ML 
approach. The hypersonic hydro-dynamic and molecular gas-flow 

solver was utilised for the study based upon the high stochastic 
study made by Swartzentruber et al. which uses revised Monte Car-
lo model for flow prediction developed and implemented by Bird et 
al. [19, 20]. The solver has the capability to model physical phenom-
ena relative to high-speed and chemically reactive that are typical 
of re-entry conditions.

Figure 2: Computer Aided Design of a semi cone shaped leading edge.

Table 2 summarizes the initial and boundary conditions that 
have been utilised to obtain the thermo-fluid profile and the subse-
quent dataset with free steam velocity, temperature, pressure and 
density which are the typical values that a re-entry vehicle would 
face, the wall temperature is assumed to be circa 1000 K. The use 
of the Monte Carlo method to compute the transient hyper-veloc-

ity reacting flow in a vacuum employs the non-equilibrium Navi-
er-Stokes-Fourier equations [21]. Therefore, in cartesian coordi-
nates, the flux-divergences (W) are given by:

, ,i Inv i VISi

i

F FUW
t x

∂ − ∂∂
∇ ⋅ = +

∂ ∂       (1)

Table 2: Parameters used for the CFD simulation. 

Properties Value Unit

Free Stream Velocity (U) 1815 m/s

Free- Stream Temperature (T) 220 K

Free Stream pressure (p) 0.88 Pa

Free stream density (ρ) 1.36 x 10-5 Kg/m3

Free- stream mean path (λ) 4.45 Mm

Wall Temperature (Tw) 1000 K

Overall Knudsen number (Kn) 0.03 -
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Where ,i InvF and ,i VISF  are Fourier transform of the induced pres-
sure gradients and U is velocity vector field in cartesian coordinate 
i=(u,v,w). The flux vector (W) will be made up of continuum and 
non-continuum functions. It is important to point out, a random-
ized solution will only need to consider the part where continuum 
assumption cannot be made, considering a microscopic flow quan-
tity Φ. The non-continuum Knudsen number is approximated as:

nK
Lφ
λ φ
φ

= ⋅ ∇
      (2)

where λ is the local mean free path of flow, L is the characteris-
tic length of the sample molecules and ∇ϕ can be assumed to be the 
gradient of the non-continuum part of the velocity vector. For the 
simulation, velocity will be assumed to be in only one direction and 
therefore the local non-continuum Knudsen number will be given 
by:

0.0045 1815 1.04
1.1815nK φ = ⋅ =       (3)

Computational fluid dynamics
A tailored solver based upon Monte Carlo approximations in 

fluid flow was chosen to be used for the thermo-fluid analysis and 
the field distributions across the designed geometry. Ansys Fluent 
has such solver, however, given the impossibility to modify the code, 
it was not possible to work out an accurate linear function that de-
scribes the two parameters. i.e., temperature and pressure. Hence, 
it will be assumed adequate accuracy of the simulation. The mesh 
towards the 2D design was based on a fine mesh with growth rate 
of 1.2 and orthogonal quality of 0.96. Using a fine mesh and consid-
ering the parameters from Table 2 the profiles were obtained for 
(a) total pressure, (b) velocity and (c) temperature distribution as 
illustrated in Figure 3. 

Figure 3a: Profile attained for Total pressure distribution.

From Figure 3, it could be noted that the maximum tempera-
ture of 5262 K was observed near the flow stagnation point and 
there was a uniformly crescent profile around the leading edges. 
Another crucial point that needs to be noticed from Thermo-Fluid 
analysis is that the change of pressure occurs only in areas where 
there is a highly randomise change in temperature, making low 
pressure points directly proportional to high temperature points. 
Experimental data from hypersonic wind tunnel availability is 
scarce, and in most cases has very limited applicability as it looks 
only at small samples with diameters of 10-20 mm and with an ex-
posure that does not exceed 1-2 seconds A similar hafnium based 
CMC was tested in a plasma wind tunnel by Savino et al. [22] using 
several different geometries including one very similar to the shape 
considered in this paper. The results of the CFD analysis shows a 
temperature distribution similar to the ones observed using Ansys 
Fluent MC with a maximum temperature of 3890 K at the stagna-
tion point [23]. White et al. [23] developed a bespoke solver using 

Direct Monte Carlo Simulations within the Open Foam framework, 
such solver was based upon similar parameters used in these simu-
lations but was applied against a cylinder. Published results of this 
analysis only consider the rotational temperature distribution with 
a peak temperature of 4800 K at the stagnation point, there was no 
data on translational temperatures or pressure distribution. Cas-
seau et al. applied the exact framework using a Pyfoam based solver 
across the cylinder, temperature and pressure distributions were 
very similar to the ones found by Fluent solver [24]. Traditional 
FEM based model would use an average value of temperature and 
pressure to calculate the heat-flux and such value will then be used 
as an input value for the stress analysis, such methodology tends to 
have a negative effect on the overall results of the simulation. Hence 
it is often necessary to perform multiple simulations with multiple 
paraments to increase accuracy. Hence, purpose of this paper is to 
use big data driven experiment to derive the data set and then to 
export the data set as a csv file in the machine learning model.
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Machine learning model
Geometry and Thermo-fluid data sets generation: Machine 

learning can be defined as a part of artificial intelligence (AI) that 
provides systems with the ability to automatically learn and im-
prove from experience with minimal human intervention [25]. 
Such definition, from a physical perspective, involves the use of a 
set of data and information that is here by referred as training data 
set. Therefore, for the model to work, there is a need to generate a 
training data set using both the geometry and fluid data [12]. The 
branch of mathematics that studies the generation of datasets from 
geometrical figures is called topology and that part of topology that 
generates datasets is referred as shape encoding [26]. Encoding is 
a method of representing a vectorial shape by a small number of 
scalar values. Some of the methodology that topology uses includes 
method available for shape encoding, including Principal Compo-
nent Analysis (PCA), independent component analysis and sparse 
coding [27]. A PCA algorithm was developed from Heiman et al. to 
encode both the shape and the geometrical representation of the 

fluid field into a unique dataset [28]. By using PCA, a shape X can 
be rep-resented by:

1

M
PCA m m mm

X X Wα λ
=

= +∑         (4)

Where X is the mean shape, and mW  and mλ are the eigenvec-
tor and eigenvalues of the covariance matrix, respectively. By using 
equation (4) and the fact that eigenvectors are orthogonal to each 
other, the shape code of the geometries and the fluid filed can be 
estimated as:

( )T
M

m
m

W X Xα
λ
−

=
      (5)

Where T
MW  is the transpose of the column vector mW , when m is 

limited to three dimensions (1,2,3) the column vector is equivalent 
to a neural network with linear unites and no hidden layers. The 
geometry of the sample has therefore topologically approximated 
as rectangle. Figure 4 shows the results of the transformation done 
using a Matlab code [29] that included the results of equations (4) 
and (5).

Figure 3b: Temperature distribution.

Algorithmic description: As previously mentioned, in order to 
study the overall stress distribution, a surrogate model was devel-
oped specifically for the problem. Surrogacy in this case is seen as a 
combination of supervised linear regression (the topological repre-
sentation), to approximates to triangles and rectangle the input of 
the model and neural network. It is widely accepted that material 
properties (anisotropic) change according to the environment in 
which they are operating and although the ultimate goal of material 
informatics would be to predict the required material based upon 
this condition, for the sole purpose of this study an extra function 
that includes the material properties in Table 2 has been added to 
the code. The simulation should output a stress distribution curve 
that resembles results of traditional FEM software with the advan-

tage of requiring less computational power. The flowchart illustrat-
ed in Figure 5 shows the process the ML code follows to get to the 
results.

Once the datasets have been generated, multi-layer neural net-
work was designed using open source codes from the python scikit-
learn library. The codebase was based upon regression to map the 
shape code that was then placed into a neural network that mapped 
the shape code into the stress code that is essentially a non-linear 
regression with high dimensional outputs. βn=f(α1,….αm) with n=1, 
2, 3 and so on. The structure of the neural network is illustrated in 
Figure 6 and has been simplified with two layers each of which has 
128 nodes.
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Figure 3c: Velocity profile.

Figure 4: Plotted shape encoding representation - the total length of the sample is approximately 4 meters.

The stress distribution of the leading edge will be represented 
by re-constructed scalar field. The encoding and decoding process-
es can be described conceptually by a bi-directional neural network 
with multiple layers and linear units. The first part of the machine 
learning algorithm utilises the same non-linear regression algo-
rithm to train the model in mapping nodes and networks of the fluid 
field. However, to facilitate the processes, each leading-edge mesh 
was divided into 50 regions consisted of a set number of nodes us-
ing Low Rank Approximation (LRA) [30]. In the decoding process 
the stress code βn is converted into stress code for each area (A) of 
the sample and is given by: 

1

N
n n nn

A Uβ µ
=

=∑         (6)

With 1
,......,

N

T T
area areaA A A =   which is the stress codes for Nth area, 

Un are the left singular vectors and μn are the corresponding singu-
lar values with βn approximating the LRA parameters. To simplify 
the algorithm, only the 16 most significant components were re-

tained in the LRA, which led to an approximation error less than 
2%. Therefore, the stress distribution (sk) matrix elements are giv-
en by:

64

1
k k k k

i i ii
S a v V

=
=∑        (7)

A further LRA was carried out on the matrix element of Eq. (7) 
where k

iV is defined as the right singular vectors and k
iv  are the cor-

responding singular values and k
ia  the LRA leading also to an ap-

proximation error of circa 2%. Using the 64 top significant results 
it has been possible to evaluate the key areas of Von-Mises stress 
points that will need to be used in the deep learning surrogate. 
Those stress codes are given by the following relationship.

( )K T k
k i
i k

i

V Sa
v

=
         (8)

T
n

n
n

U Aβ
µ

=
            (9)
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Given that singular vectors are orthogonal to each other, it has 
been possible to reduce complexity and each sub-networks share 
the same weight and hence the stress code can be implemented 
via a transposed-convolution layer [31]. While the stress encoding 
can be implemented via a neural network with convolution layers 
[32]. Following mapping of the geometry and fluid filed and encod-
ing and decoding of the stress distribution the deep learning was 
applied by the use of k-means clustering. Using a python scripts, 
the material property dataset was generated and used as target 
test data whilst the output stress distribution dataset was used for 
training purposes. Clustering output a plot that would predict high 
stress point locations values for the given sample.

Results and Discussion
Once the stress learning code and decode had been developed 

and tested using scikit learn, data in regard to the material prop-
erties were brought into the model to generate a cluster. The deep 
learning modules were designed for specifics tasks (flying and 
re-entry at hypersonic speed) and therefore a further algorithm 
was implemented to generate a map of the high stress points to-
gether with the stress distribution graph. After the two modules 
were trained, the parameters of the non-linear mapping mod-
ule were obtained through supervised learning by using a mean-
square loss function and the Adamax optimization algorithm [33] 
to predict the stress code from the shape code, for which the stress 
code is obtained through stress-encoding. The Adamax algorithm 
performs stochastic optimization to find the optimal parameters of 
the non-linear mapping module, implementing this methodology 
within the model allowed the generation of the first set of training 
data. Stress analysis and simulations are usually performed using 
the FEM and it is well known that the maths behind is based upon 
approximation and averages. As already mentioned, the purpose 
of this paper is to find data and, eventually, estimate accuracy for 

a specific type of material combinations, therefore a second set of 
training data i.e., material property dataset, has been incorporated 
in in order model. From the keras library another algorithm based 
upon clustering has been implemented into the mode. As previous-
ly mentioned, in data science, a cluster is a group of homogenous 
or similar data point, the surrogate deep learning will then look 
for similar patterns based upon the training data set and the stress 
code to generate plots of homogenous stress points that are expect-
ed to be in line with what an FEM-based software would generate, 
with the advantage that it would not require significant computer 
power.

A surrogate deep learning model has been developed using a 
combination of supervised and unsupervised machine learning 
algorithm combined with a thermo-fluid analysis data set that has 
been generated using traditional CFD. Experimental data showed 
that ZrB2/SiC UHTC had a strength of ~700 MPa with various 
degree of ablation [3]. Using the Direct Monte Carlo Simulation 
code embedded within Ansys Workbench, a thermo-fluid data 
profile has been generated and exported as a csv file for it to be read 
by the model. The datasets have then been loaded into the module 
using the open-source python interpreter and the Jupiter Notebook 
[34] within the Anaconda environment [35]. The datasets relative 
to the topological approximation of the geometry and thermo-fluid 
filed have been trained using the algorithm in the surrogate model. 
De-coupling the data set generated and plotting in a bi-dimensional 
orthogonal projections shows that the total stress distribution is 
high in the bottom part and lower in the lower part as shown in 
Figure 7 with the Von Mises Stress being mainly in the top part of 
the sample. It is important to point out that plots in Figures 7 & 8 
are approximations of the cross session of the considered samples 
and that the total stress distribution contours are shown in Figure 
9.

Figure 5: Deep learning methodology for attaining stress distribution.
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Figure 6: Nodes and network shapes and stress codes.

Figure 7: General stress distribution and Von-Mises clustering at hypersonic conditions Highest points are in red; 
lowest points in blue.

It is important to point out that the material property dataset 
has been generated randomly and does not take into consideration 
possible environmental changes nor takes for example into consid-
eration the different layers of Zirconia or Silica Carbide used. Whilst 
the former may have affected the accuracy of the results, it has also 
contributed to obtain data in a fast and efficient way without the 
need for a high-performance computer or GPU. The model has been 
deepened using k-mean clustering after generating the material 
property dataset, since the LRA algorithm and the nodes of the con-
volution layers had been limited to 16, it is safe to say that this clus-
tering has been done average 16 clusters. The results illustrated 
in Figure 8 therefore show the stress distribution with high stress 
points in the zirconium-based sample, both for total and Von Misses 
stress to be around the bottom and middle of the sample and there 
is therefore the part where the shock wave generates the boundary 
layer separation and where likely there is a higher concentration of 
ionized air (stagnation point).

The final step that python mat-plot library [35] output as a re-
sult is a maximum total stress of 400 MPa. These results are in-line 
with the previous study based on finite element modelling when 
applied with known initial conditions of atmosphere re-entry con-
ditions [3,36]. Figure 9 illustrates the stress distribution map, and 
it could be observed that the map mimics the average results of 16 
mean cluster on the total stress distribution (Figure 8 (left)) and 
Von-Mises distribution (Figure 8 (Right)) for the ZrB2 - SiC material 
dataset (Figure 9).

From Figure 9, it could be observed that the stress distribution 
is highest in the boundary layer separation which is believed to 
be due to the ionization of air particles at hypersonic conditions. 
At hypersonic speed, the bow shocks forms in front of the noise 
tip which results in compressing of gases passing through the 
bow shock causing an increase of the static enthalpy which leads 
to dissociation or boundary layer separation and ionization. This 
condition significantly contributes to the aero-thermal heating 
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experienced by the components. The results for stress distributions 
that can be observed in Figure 9 (left) can be compared with some 
previous experimental and modelling studies. Most of the ablative 
TPS that have been utilised in the past for re-entry including 
Russian Soyuz which have indicated mostly part damages at the 
points were high ionization and boundary layer separation occurs 
[9]. Some zirconium-based thermal protection system have also 
been tested in hypersonic wind tunnel facilities, Savino et al. 
reported effects of arc-jet facilities on zirconium-based composites 
with high enthalpy of 20 MJ Kg−1 and an absolute temperature of 
2000 K which indicated similar damages patterns as of Figure 9; 

[22,37]. Their study was carried out across a series of different 
geometries including a hemispherical sample that is similar to the 
semi-cone used in this study and showed similar patters described 
by the machine learning model [37]. Although the attained stress-
distribution of ~400 MPa was verified by various above-mentioned 
researchers as in our results it is fair to say that there may be some 
reservations over the accuracy of the values calculated through this 
model. However, ultimate goal of this research is to predict and 
aid design against events, it remains safe to say that this surrogate 
model could and should be applied using different problem 
statement and different datasets.

Figure 8: Stress distribution based on the ZrB2 - SiC dataset red points represents highest point of stress and blue 
points represents the lowest point of stress.

Figure 9: Total stress distribution (right) and Von-Mises (left) distribution on the ZrB2-SiC dataset.
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Conclusion 
The use of machine learning in solving tailored material science 

problems is likely going to make future discoveries faster and more 
efficient. The use of open-source bespoke algorithm coupled with 
traditional FEM based thermo-Fluid analysis has been shown in 
this paper to generates insights not only about the maximum stress 
distribution, but also location of likely high (or low) stress points in 
specific sample. Data science can only be as accurate as the quality 
of the data that is fed into a model, therefore this example where 
limited number of clusters and nodes have been used and a specific 
material data set has been created cannot be considered to be fully 
accurate to what would really happen to the sample in a wind tun-
nel or a real re-entry scenario, however, given that the cost of devel-
oping such model is limited and the computational power required 
to run the simulation is significantly lower than the one required 
by high performing FEM studies, it is worth to conclude that this 
model should be tried and used with bigger data sets and against a 
larger material repository .
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