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Abstract—Compressing video sequences characterized by dif-
ferent content complexity results in different compression bi-
trates for the same quality level or in different quality levels
for the same bitrate; for instance it is well known that content
with high spatial complexity and/or high motion requires high
bitrates for compression with adequate quality. To address
this, per-title optimization is used recently (e.g., by Netflix) to
generate appropriate rate-quality representations for different
Video on demand (VoD) content to be streamed via adaptive
video streaming. However, this cannot be adopted for live video
streaming as it requires encoding (multiple times) each video
content. Spatial Information (SI) and Temporal Information (TI)
have been often used as an indicator of video complexity, for
instance for preparing and describing content for video quality
assessment tests, and for rate-distortion modeling. However, it
has been questioned recently if different metrics could lead to a
better estimation of ”compressibility” of video. In this paper we
compare multiple metrics in terms of their ability to estimate
”compressibility”. This supports quality-rate estimation and the
possibility to create appropriate ”quality ladders” (different
quality representations) for adaptive live video streaming.

Index Terms—Spatial Information, Temporal Information,
Spatial Complexity, Temporal Complexity, Live Video Streaming

I. INTRODUCTION

The measurement of a scene complexity can be used to
determine the expected data rate after compression and hence
the bandwidth requirement for diverse content types. In fact,
more spatially and temporally complex videos require a higher
data rate to achieve a satisfactory quality. Measuring the scene
complexity plays an important role in key applications ranging
from the design of video quality metrics well representative
of the quality experienced by the actual users [1][2] to the
clustering and classification of different video sequences [3],
and data-rate modelling and adaptation [4][5][6]. The metrics
used to measure scene complexity range from subjective
complexity measures [7] (not suitable for live operation and
optimization) to diverse objective metrics [8]. The Spatial
Information (SI) of an image [9], as a measure of edge energy,
is one of the most widely-used metrics for scene complexity
estimation. SI and Temporal Information (TI), as defined by
ITU-T Rec. P.910 [10] as an approximate measure of video
content complexity, have been widely used in the field of
quality assessment, in particular for the selection of the video
content to be used for the subjective tests, that should be
representative of different complexity classes. For instance,
in [4] scene complexity information is used in terms of the

spatial content of frames and temporal information is calcu-
lated between consecutive frames to derive a rate-distortion
model for video sequences. The authors in [11] measure the
video quality objectively by utilizing the spatial content of
the sequences. The authors in [2], [12] and [1] proposed
machine learning based Quality of Experience (QoE) models,
where spatial and temporal information values are used along
with other influence factors for quality estimation of gaming
videos. The applications of spatial and temporal information
are not only limited to traditional video sequences and have
found application in other fields such as neuromorphic vision.
For example, the authors in [6], [5] proposed several spatial
information based models to predict the data rate output by
Neuromorphic Vision Sensors (NVS).

In [13] we performed a study on spatial and temporal
information for different video sequences where we also
highlighted that SI and TI do not only depend on video
content as often considered, but factors such as resolution,
bit depth, compression have an impact on the values of SI
and TI for a specific video content. In [14] the authors tested
the performance of SI and TI with different pooling methods
as complexity measures for video compression.

In order to assess the capability of the complexity metrics
to provide a reliable indication on the complexity to compress
a specific video, in this paper we compare multiple metrics,
also beyond SI and TI, in terms of their ability to estimate
”compressibility” of videos. Understanding the best method
to estimate video bit-rate would support the creation of
appropriate versions of compressed video (different quality
representations) for adaptive live video streaming. The rest
of this paper is organised as follows: in Section II we list
and propose metrics based on spatial complexity, whiles in
Section III we list and propose metrics based on temporal
complexity. In Section IV we briefly describe alternative
metrics proposed very recently. The evaluation methodology
adopted is described in Section V, while results are presented
and discussed in Section VI.

II. MEASURING SPATIAL COMPLEXITY

A. Methods based on Gradient approximation of Intensity
Images

In order to quantify the spatial information as a scene com-
plexity metric, we can consider the mean, standard deviation
and root-mean-square of the gradient magnitude image G



[5]. These metrics are computed across all the pixels of the
image. Let M and N be the number of rows and columns
respectively. The metrics are mathematically expressed as:
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where SCmean, SCrms and SCstd are the mean, root-mean-
square and standard deviation based spatial content metrics
representing the edge energy of the intensity image I.

The gradient of an image specifies the directional change
in the intensity of an image. The main step in computing
the gradient approximation of an image is to convolve the
intensity image with a small finite filter known as kernel.
Three well known methods to calculate such gradient are
Sobel [15], Prewitt [16] and Roberts [17] filters.

The Spatial Index (SI) complexity metric [18] uses Sobel
filtering. The statistic used for spatial pooling is the standard
deviation of the magnitude of spatial information (SIstd =√

1
P

∑
(SIp − SImean)2, where P is the number of pixels

in the image. For video sequences, ITU-T Rec. P.910 [10]
defines spatial information as:

SI = maxtime

{
SIstd

}
. (4)

According to (4), SIstd is computed for each of the frames
in the video sequence and the maximum of SIstd, among
all the frames, is taken (over the whole time duration of the
sequence).

III. MEASURING TEMPORAL COMPLEXITY

A. Temporal Information (TI)

ITU-T Rec. P.910 [10] defined temporal information as:

TI = maxtime

{
std[Mn

p ]
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(5)

Mn
p = Fn
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where Mn
p is the pixel intensity difference between Fn

p ,
current frame n, and Fn−1

p , previous frame n − 1. For the
difference frame the standard deviation is applied across all
the pixels. According to (5), the standard deviation of Mn

p is
computed for every frame and the maximum is taken over the
entire time duration of the video sequence.

IV. RECENTLY PROPOSED SPATIAL AND TEMPORAL
COMPLEXITY INDEXES

The Video Complexity Analyzer (VCA) [19] [20] [21] is an
open source video complexity analyzer that predicts Spatial
Complexity (SC) and Temporal Complexity (TC) (denoted as
E and H, respectively) for each frame, video segment, and
video. We note that in the rest of this paper we will use SC
and E, as well as TC and H, interchangeably.

To calculate SC and TC the following is first calculated:
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where k is the block address in the p−th frame, w×w pixels
is the size of the block, and DCT (i, j) is the (i, j)− th DCT
component when i+ j > 1, and 0 otherwise.

The SC is then defined as follows:

E =
C−1∑
k=0

Hp,k

C · w2
(8)

Where C represents the number of blocks in frame p.
The temporal complexity feature is defined as the block-

wise sum of the sum of absolute differences (SAD) in refer-
ence to the texture energy of each frame (p) compared to its
previous frame (p− 1).

H =
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k=0

SAD(Hp,k, Hp−1,k)

C
(9)

V. EVALUATION METHODOLOGY

A. Datasets

We consider compression artefacts produced by standard-
ized video codecs (H.264, HEVC/H.265), available as open
source.

In order to support reproducibility of the results, we
conducted experiments on publicly available datasets. The
datasets considered for the studies in this paper are described
in the following.

BVI-HD [22] is a high definition video quality database
that includes 32 references and 384 distorted video sequences
(compressed via HEVC), as well as subjective assessments.
Six different QP values were considered for HEVC compres-
sion (from 22 to 47 with an interval of 5). The sequences
have frames rates of 60 fps, 30fps, 50 fps. The duration of
the video sequences was truncated to 5s. We consider in our
study the subset of sequences at 60fps. Subjective research
was conducted to establish the range of quantisation param-
eters included in the database. Using a double stimulus test
approach, the subjective opinion scores for all 384 distorted
videos were obtained from a total of 86 individuals. Using a
double stimulus test approach, the subjective opinion scores
for all 384 distorted videos were obtained from a total of 86
individuals. Figure 1 reports a sample frame for each of the
videos in the dataset.

GamingVideoSET [23] is a dataset that contains 24 un-
compressed gaming video sequences with a duration of 30
seconds, a resolution of 1080p, and a frame rate of 30 frames



Fig. 1: Examples frames for the videos in BVI-HD dataset [22].
.

Fig. 2: Examples frames for the videos in GamingVideoSet [23].
.

per second, for researchers working on gaming video quality
evaluation. Figure 2 reports a sample frame for each of the
videos in the dataset. Furthermore, the data set contains sub-
jective quality evaluation scores for 90 video sequences cre-
ated by encoding six distinct gaming videos in 15 resolution-
bitrate pairings using the H.264/MPEG-AVC coding standard
(x264) at three resolution and five bitrates each.l A total of
576 distorted videos in MP4 format, obtained by encoding
the videos in 24 different resolution-bitrate pairs, and their
objective quality assessment results (average and per-frame)
using three video quality assessment metrics, are also included
in the dataset, in addition to the reference videos. Since the
duration of the sequences is too long for the type of study in
this paper, we shortened each sequence to 3 seconds (trying

to exclude scene cuts in the selected portion).

B. Content characterization metrics compared

Table I shows the details of the metrics compared in this
study. Spatial complexity metrics are listed in the first part,
followed by temporal complexity metrics.

C. Evaluation method for content charaterization metrics

We restrict our analysis to short duration video sequences
of YUV planar colorspace with 4:2:0 chroma subsampling
(YUV420) which is the most widely used chroma subsam-
pling scheme across all video streaming and broadcast appli-
cations.



Fig. 3: MOS vs. BR (kbps) for three example contents in [23]
.

TABLE I: Summary of the coding complexity metrics com-
pared

Metric Definition
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As defined in ITU-T Rec. P.910 [10], SI and TI calculations
are performed only on the luminance (Y) channel of the YUV
colorspace.

We used MATLAB to read the YUV videos and then
performed all SI and TI calculations on the Y channel for all
the frames of the YUV videos. In some cases SI and TI values
were reported in the datasets. We note that we considered
our SI/TI calculation results in the case where we found a
discrepancy between our results and those in the dataset.

FFmpeg [24] was used to calculate the Video Multimethod
Assessment Fusion (VMAF), Peak Signal to Noise Ratio
(PSNR), and Structural Similarity (SSIM) video quality met-
rics when not provided in the datasets.

D. Performance indicators

In order to select the best metrics to estimate ”compress-
ibility” or ”compression complexity” of a video content we
considered compression at different bitrates and the video
quality associated to each of them, drawing a quality vs.
bitrate curve. Quality was measured based on SSIM, VMAF
and/or Mean Opinion Score (MOS). An example of MOS vs.
bitrate curves for different contents with different complexity
is reported in Figure 3 for content in the dataset [23]. We
then calculated for each content the area under the curve
(K). Considering that, given a fixed bitrate, lower values of
quality are associated to higher complexity of the content in
terms of ”compressibility”, we consider the area under the

quality-rate curve as an index of ”compression complexity” or
”compressibility”. This is in line with the Bjontegaard delta
method used to compare different codecs [25].

In order to be able to compare the area under the curve for
different contents, we restricted the curves to a fixed bitrate
range. When the data in the dataset was provided for fixed
QP values rather than fixed bitrate values, we extrapolated
data missing in curves (for instance once a curve saturated to
the top VMAF value, we assumed the same top quality value
also for the higher bitrates in the range) to cover the selected
bitrate range.

We then evaluate the correlation of this measure of ”com-
pressibility” (requiring encoding all the contents at all bitrates)
with the simpler indexes listed in Table I above, in terms of
Pearson Linear Correlation Coefficient (PLCC), the Kendall
Rank Correlation Coefficient (KROCC) and Spearman’s Rank
Correlation Coefficient (SROCC).

VI. RESULTS

We report here the results obtained for the BVI-HD dataset,
considering VMAF as quality metric.

Since the videos in the dataset were obtained for fixed QP
values rather than fixed bitrate values, we extrapolated data
missing in curves as mentioned above. We also removed all
values corresponding to VMAF lower than 40 in order to align
the curves and facilitate the comparison.

Figures 4 and 5 report the correlation values between area
under the quality/bitrate curves (for the VMAF video quality
metric) and complexity metrics for the BVI-HD dataset. For
the second figure, we removed videos with scene cuts, since
the purpose of this study is to study the complexity of
video contents per scene. Scene cuts would introduce major
discontinuities resulting in higher local (in temporal domain)
bitrates since motion compensated prediction would fail at the
scene cut location. We note that we only compared videos
with the same resolution (HD) and same frame rate (60 fps).
We observe that, as expected, the complexity metrics usually
correlate negatively with the ”compressibility” parameter K
calculated as area under the quality-rate curve. Indeed, a
higher K means that the video sequence can easily be
compressed / reach low bitrates with high quality, hence
its complexity for compression is low. The temporal index
and temporal complexity in [20] are the best performing
metrics for this dataset. Considering spatial complexity only,
the spatial complexity metric in [20] and SCmeanPrewitt are
the best performing metrics for this dataset.

Figure 6 shows the scatter plots complexity metric vs. area
under the VMAF vs. rate curve (KVMAF ) for two sample
spatial complexity metrics (SCmean Roberts), E); Figure 7
shows the scatter plots complexity metric vs. KVMAF for two
complexity metrics related to variance in luminance values,
pooled in the time domain via mean and max; finally, Figure
8 shows the scatter plots complexity metric vs. KVMAF for
two temporal complexity metrics (TI, H).

Performing tests on different datasets (not reported here
for space constraints) we observed that the best performing
metrics are not the same in the different datasets as the



Fig. 4: Bar plot depicting the correlation between complexity measures and KVMAF (area under the VMAF-bitrate curve),
BVI-HD dataset.

Fig. 5: Bar plot depicting the correlation between complexity measures and KVMAF (area under the VMAF-bitrate curve),
BVI-HD dataset no scene cuts.

performance also depends on the type of content / genre (e.g.,
animation, gaming videos, cinema movies, news, sport).

VII. CONCLUSION AND FUTURE WORK

The comparison of multiple metrics in terms of their ability
to estimate ”compressibility” has shown that alternatives to the
popular SI and TI metrics exist. Results with different types
of content/datasets can help further generalising the results
and in an extended version of this work we will present more
detailed results for more contents in different datasets and also
including different metrics for content characterization.
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