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ABSTRACT
360-degree video streaming for VR visualisation is characterised
by large transmission data volume and stringent interactive latency
demands; hence guaranteeing suitable transmission quality, while
meeting the existing constraints, is highly challenging. This paper
addresses the relevant "grand challenge" presented at MMSys 2024
on 360-degree video on-demand streaming, aiming at designing and
implementing a 360-degree video on-demand streaming solution
using the open-source evaluation platform E3PO. The proposed so-
lution incorporates several strategies including viewport prediction,
tiling, encoding tile selection for streaming and upsampling. The
source code for the proposed solution will be publicly available on
Github1.
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1 INTRODUCTION
The emergence of Virtual Reality (VR) applications has enriched
the user experience in terms of interactive and immersive media
consumption [33]. VR technologies have been developed based on
omnidirectional videos, which are commonly known as 360◦ videos.
A 360◦ space is generated such that a sphere of uniform radius
encloses the space around a source point. Assuming that the view-
points are uniformly distributed, the observable 3-D space of such
videos becomes isotropic. Thus, unlike in traditional 2-D videos,
the observation space of omnidirectional videos could be defined

1https://github.com/Adhuran/GC_MMSys_Challenge
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as a spherical surface. These omnidirectional videos are known as
spherical or 360◦ videos and can be represented by the parameters
of the spherical coordinate system, latitude, longitude, and radius
(𝜃 ∈ (−𝜋/2, 𝜋/2), 𝜙 ∈ (−𝜋, 𝜋), and 𝑅 respectively). They are of-
ten projected to 2-D space to support the existing video processing
procedures.

In 360◦ videos, the Field of View (FOV) of the user encloses only
a portion of the spherical information, also known as the viewport,
which is a rectilinear image generated from the user’s head position.
Since the user’s observation path is unknown when encoding is per-
formed, the standard encoding procedure of a 360◦ video does not
address the user-observed viewports, resulting in an abundance of
non-observed video information being coded, hence an additional
transmission cost. To exploit the fact that the FOV of the user en-
closes only a portion of the spherical information, state-of-the-art
360◦ video streaming technologies specifically address the character-
istics of 360◦ videos and viewports of interest for the user. However,
further optimization is necessary to address the bandwidth cost and
improve the quality of user-observed viewports.

2 PROBLEM STATEMENT
The aim of this work is to maximize the objective video quality of
the user’s actual viewing area on the terminal device, measured by
Mean Square Error (MSE), while minimizing the resources. In terms
of system resources, three major costs are considered:

• the bandwidth cost 𝐶𝑏 of streaming all data from the server
to user;
• the storage cost 𝐶𝑠 of storing video data on the server;
• the computation cost 𝐶𝑐 for some solutions that require real-

time processing or transcoding.

.
The final metric to maximize is the following:

𝑆 =
1

𝛼𝑀𝑆𝐸 + 𝛽 (𝑤1𝐶𝑏 +𝑤2𝐶𝑠 +𝑤3𝐶𝑐 )
(1)

where 𝛼 = 0.006, 𝛽 = 10; 𝑤1 = 0.09, 𝑤2 = 0.000015, and 𝑤3 =

0.000334. The unit for 𝐶𝑏 and 𝐶𝑠 is GB, and 𝐶𝑐 represents the dura-
tion of the video playback in seconds.

The solution was expected to be implemented in the E3PO frame-
work (Bytedance) [11], schematized in Figure 1, in the blocks re-
ported with blue text. The details of the implementation of the solu-
tion are reported below in the paper (Section 4).
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Figure 1: E3PO Framework [11]

3 RELATED WORK
3.1 Projection of spherical video
In order to process and encode appropriately the relevant data, 360◦

videos are usually projected into 2-D space, and rearranged in recti-
linear formats. The respective inverse operations at the decoder are
also performed to retrieve the original representation. Furthermore,
padding may also be applied as part of the content projection pro-
cess, in order to reduce the discontinuity along the boundaries of
the video frame [13]. The most commonly used technique is a sin-
gle face rectilinear mapping projection called the EquiRectangular
projection (ERP). Although areas do not match between a sphere
and rectangular surface, ERP involves one-to-one mapping of pixel
values from the spherical image in the 3-D domain to the rectilinear
image in the 2-D image, causing sample density discrepancies. Other
projection and packaging techniques include rhombus dodecahedron
projection [18], CubeMap (CMP) [41], octahedron projection [22],
Truncated Square Pyramid (TSP) [34], icosahedron projection [7],
adjusted cubemap [15], rotated sphere projection [1] and segmented
sphere projection [40].

3.2 360-degrees video compression
360◦ video compression involves several stages. A 360◦ video is
captured using an omnidirectional camera and the several images
obtained are stitched to create a spherical video frame [31]. Follow-
ing projection into 2-D space, video is encoded using a conventional
2-D video codec. In the post-processing stage, video is decoded and
the respective inverse operations to packaging and projections are
performed. Finally, viewports are generated as per the user’s head
movements to deliver the 360◦ video content to the user.

Several solutions have been proposed recently for 360◦ video
coding, in particular to boost compression efficiency [2, 4, 6, 12, 20,
27, 38]. In general, these research works on 360◦ video coding can be
classified into three categories, namely: pre- and post-coding, context
adaptive coding, perceptual coding. Pre- and post-coding primarily
refers to the re-projection techniques of the existing 2-D projected
360◦ video contents as well as the packaging mechanisms of the
video frames. In contrast, in context adaptive coding, the spherical

properties of the 360◦ videos are exploited and used with the video
compression tools such as quantization and motion compensation in
order to improve the coding efficiency. Finally, perceptual coding
addresses the deployment of user perceptual models, specifically
viewport dependent encoding schemes in the video coding processes.

Perceptual video coding has been a vastly researched area in the
video coding domain which focuses on enhancing the user perceived
visual quality by improving the fidelity of the regions of interest
(ROI) [14]. While in the context of conventional videos ROI detec-
tion and ROI based video coding is a vastly investigated research
topic [23, 29, 36], in 360◦ videos the identification of the regions
of human interest is very challenging because the viewports that
represent user observed regions are constructed instantly according
to the user’s head movement. Viewport centric coding methodolo-
gies can be generally categorized as tiled and non-tiled approaches.
Benefiting from parallel processing features, tiled approaches are
mainly applicable for streaming of the 360◦ video content. As such,
viewport based ROI video coding research works either follow a
scalable coding approach [24, 30] or assign high bitrates to the tiles
that represent primary viewports [5, 17, 28]. In the scalable coding
approach multiple layers are encoded at different qualities, with the
base layer being encoded at the lowest quality. However, the major
drawback in this approach is the requirement to transmit the base
layer at all times which can increase the bandwidth.

3.3 Viewport prediction for 360◦ video streaming
In order to stream the appropriate portion of the 360◦ video, avoid-
ing wasting resources to stream regions the user is not interested in,
future viewport prediction techniques can be adopted. For example,
the authors in [24] propose Weighted Linear Regression (WLR)
based future viewport prediction to identify the tiles which need to
be transmitted. This methodology reportedly achieves over 28% cod-
ing efficiency vs. scalable HEVC codec at the enhancement layers.
This method benefits from increased Quality of Experience (QoE)
performance compared to non-scalable tiled approaches; predicting
user observed viewports to select the tiles brings higher coding gains
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compared to a tiled approach that does not apply viewport predic-
tion technique. For example, the authors of the research work in
[17] deploy two viewport predictions which are used in adaptively
selecting Quantization Parameters (QPs) for different tiles. This
approach results in an increased coding gain of 45% over viewport-
independent approach when Viewport PSNR (VPSNR) [39] is used
as the quality metric in assessing the coding gain. The literature has
also addressed the combination of the viewport dependent tiles with
scalable solutions to ensure the QoE of users is enhanced [16, 32].
Recent works focus on semantic-aware prediction [35] [8], saliency
[37], real-time prediction [19], and deep-learning and bidirectional
optical flow based prediction [3].

Although tiled based coding systems are useful for streaming pur-
poses as they reduce transmission delays, provide higher flexibility
and improve the QoE, the associated coding losses remain an issue.

Chunk
Metadata
analysis

Tiling

Hybrid
viewport tile

prediction
Tile encoding Representation

set

Figure 2: Overview of the pre-processing proposed strategy.

4 PROPOSED STRATEGY
This work aims at delivering a solution for the on-demand streaming
scenario of 360◦ videos. In this context, as shown in Figure 1, E3P0
breaks the total process into three phases: pre-processing, decision
making and evaluation. In the pre-processing phase, potential tiles of
the video chunks are retrieved, encoded and stored. In the decision
making stage, tiles with potential match for a particular user are
selected. Finally, during the evaluation, the selected tiles are used to
retrieve the user observed viewports based on realtime head move-
ment data and network conditions, including bandwidth limitations
and rendering and transmission delays.

4.1 Pre-processing
4.1.1 Projection. We adopted equirectangular projection (ERP)
for the main tiles and Equi-Angular Cubemap (EAC) for the back-
ground/low resolution version of the video, as reported in the ex-
ample in Figure 3 for the Release_video_1 video sequence that was
used in the test phase (reported in Section 5). We define width and
height of the projected source video as𝑊 and 𝐻 . A block diagram
of the subsequent pre-processing steps is reported in Figure 2 and
the different steps are described in more detail below.

4.1.2 Metadata analysis. Here, we analyze the metadata of the
source video, such as frame rate, colour space, chroma subsampling,
which are subsequently used during hybrid viewport tile predic-
tion and tile encoding, explained in Section 4.1.4 and Section 4.2
respectively.

4.1.3 Tiling. Four tiling modalities, corresponding to different
bitrates, are considered and reported in Figure 4. In all of them,
the top and bottom "large tiles" are the same, while different tiling
methods are used for the central portion of the video.

The rationale for these different tiling modalities is to address the
compromise between:

• need to select for streaming only the portions relevant to the
viewer;
• higher coding efficiency obtained for larger portions of the

scene due to better exploitation of redundancy.

For instance, if tiles 1 and 2 from the first representation are
selected by the streaming selector, these are directly streamed. How-
ever, if tiles 1, 2, 3, 4 from representation 1 are selected by the
streaming selector, tile 1 in representation 2 is streamed, since this
would achieve better compression efficiency.

The four tiling modalities are described in detail below.

• Representation 1 (𝑅1) (Figure 4(a))
The scene is divided in 10 tiles.
1st tile: width=𝑊 , height = 1

6𝐻 , starting at (0,0);
10th tile: width=𝑊 , height 1

6𝐻 , starting at (0, 5
6𝐻 );

tiles 2-9 have equal size, each of width =𝑊 /4 , height = 1
3𝐻 .

• Representation 2 (𝑅2) (Figure 4(b))
The scene is divided in 5 tiles.
1st tile: width=𝑊 , height = 1

6𝐻 , starting at (0,0);
5th tile: width=𝑊 , height = 1

6𝐻 , starting at (0, 5
6𝐻 );

overlapping tiles
3rd tile: width = W/2 , height = 2/3 H, starting at (0, 1/6 H)
4th tile: width = W/2 , height = 2/3 H, starting at (1/4 W, 1/6
H)
5th tile: width = W/2 , height = 2/3 H, starting at (2/4 W, 1/6
H)
(only one out of the 3rd, 4th, or 5th tile will be selected).
• Representation 3 (𝑅3) (Figure 4(c))

The scene is divided in 6 tiles.
1st tile: width =𝑊 , height = 1

6𝐻 , starting at (0,0);
6th tile: width =𝑊 , height = 1

6𝐻 , starting at (0, 5
6𝐻 );

remaining 4 tiles equally split with width = 1/4 W and height
= 2/3 H.
• Representation 4 (𝑅4) (Figure 4(d))

The scene is divided in 3 tiles.
1st tile width=𝑊 , height = 1

6𝐻 , starting at (0,0);
2nd tile: width=𝑊 , and height = 2/3 𝐻 ;
3rd tile: width=𝑊 , height = 1

6𝐻 , starting at (0, 5
6 H).

4.1.4 Hybrid viewport tile prediction. Hybrid viewport tile cal-
culation is performed on the 2-second video chunk to predict the tiles
for representations that are needed to be encoded. This prediction
process includes two independent techniques: Salience calculation
and VPredSCNN [3] based tile estimation. Salience calculation is
performed every 5 frames (1/6 s), based on an algorithm inspired by
the work in [26] and the code in [25]. We also use viewport-centric
VPredSCNN network to predict the tiles. This is performed every
32 frames in order to reduce the computational complexity.
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(a) EquiRectangular Projection (ERP) representation (b) Equal Area Cubemap (EAC) representation

Figure 3: Projections of omnidirectional videos (Release_video_1) used in the proposed strategy.

(a) Representation 1 (b) Representation 2

(c) Representation 3 (d) Representation 4

Figure 4: Tiling schemes used in the proposed strategy.

4.2 Video encoding
The 2s chunks for the different representations are encoded via H.264
as per E3PO default parameters (that could not be modified). Only
tiles predicted using the Hybrid viewport tile prediction techniques
are encoded. Moreover, tiles {0,9}, {0, 4}, {0, 5} and {0, 2} from
representations 𝑅1, 𝑅1, 𝑅3 and 𝑅4 are dropped from the encoding
process as these areas have higher pixel redundancies due to the
projection methodologies.

The tiling and coding processes determine the storage cost 𝐶𝑠 .

4.3 Streaming selector
4.3.1 Gaze prediction. The gaze prediction algorithm adopted is
a slightly modified version of the algorithm in E3PO [11].

The tiles delivered to the client are only those matching the pre-
dicted gaze and hybrid viewport tile prediction data. The tile selec-
tion algorithm is described in detail in Algorithm 1.

This determines the bandwidth cost 𝐶𝑏 of streaming data from
the server to the user.
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Algorithm 1 Proposed Tile Selection Algorithm
Input: Tile set𝑇𝑝 ,𝑇𝑔 and𝑇𝑐
Output: Selected tile set𝑇

1: Obtain predicted tiles𝑇𝑝 from Hybrid viewport tile prediction
2: Obtain predicted tile𝑇𝑔 from E3PO gaze prediction
3: Obtain predicted tile𝑇𝑐 from E3PO cache for selected tiles
4: Obtain tiles 𝑇 𝑖

𝑟1, 𝑇 𝑖
𝑟2, 𝑇 𝑖

𝑟3 and 𝑇 𝑖
𝑟4 from representations 𝑅1, 𝑅2, 𝑅3 and

𝑅4 where 𝑖 is the tile number. 𝑖 = [1 : 8] for 𝑅1, 𝑖 = [1 : 3] for 𝑅2, 𝑖 =
[1 : 4] for 𝑅3 and 𝑖 = 1 for 𝑅4.

5: 𝑇𝑠 = 𝑇𝑔 ∩𝑇𝑝
6: Set 𝑡 = 𝑡𝑠 , ∀ 𝑡𝑠 ∈ 𝑇𝑠 , and 𝑡 ∈ 𝑇 where𝑇 is the selected tiles set.
7: if (𝑡 ∈ 𝑇 1

𝑟4 ) ∨ (𝑇 1
𝑟4 ⊄ 𝑇𝑐 ) then

8: Set𝑇 ← {}
9: Insert𝑇 1

𝑟4 into𝑇
10: else
11: if𝑇 1

𝑟2 ⊂ 𝑇𝑐 then
12: if𝑇 1

𝑟1,𝑇 2
𝑟1,𝑇 5

𝑟1,𝑇 6
𝑟1,𝑇 1

𝑟3,𝑇 2
𝑟3⊂ 𝑇 then

13: Remove from𝑇 .
14: end if
15: end if
16: if𝑇 2

𝑟2 ⊂ 𝑇𝑐 then
17: if𝑇 2

𝑟1,𝑇 3
𝑟1,𝑇 6

𝑟1,𝑇 7
𝑟1,𝑇 2

𝑟3,𝑇 3
𝑟3⊂ 𝑇 then

18: Remove from𝑇

19: end if
20: end if
21: if𝑇 3

𝑟2 ⊂ 𝑇𝑐 then
22: if𝑇 3

𝑟1,𝑇 4
𝑟1,𝑇 7

𝑟1,𝑇 8
𝑟1,𝑇 3

𝑟3,𝑇 4
𝑟3 ⊂ 𝑇 then

23: Remove from𝑇

24: end if
25: end if
26: if {𝑇 1

𝑟1,𝑇
2
𝑟1,𝑇

5
𝑟1,𝑇

6
𝑟1 ⊂ 𝑇 } ∧𝑡𝑡 ∈ 𝑇𝑐

where 𝑡𝑡 ∈{𝑇 1
𝑟3,𝑇

2
𝑟3,𝑇

1
𝑟1,𝑇

2
𝑟1,𝑇

5
𝑟1,𝑇

6
𝑟1} then

27: Remove𝑇 1
𝑟1,𝑇 2

𝑟1,𝑇 5
𝑟1,𝑇 6

𝑟1 from𝑇

28: Insert𝑇 1
𝑟2 into𝑇

29: else if {𝑇 2
𝑟1,𝑇

3
𝑟3,𝑇

6
𝑟1,𝑇

7
𝑟1 ⊂ 𝑇 } ∧𝑡𝑡 ∈ 𝑇𝑐

where 𝑡𝑡 ∈{𝑇 2
𝑟3,𝑇

3
𝑟3,𝑇

2
𝑟1,𝑇

3
𝑟1,𝑇

6
𝑟1,𝑇

7
𝑟1} then

30: Remove𝑇 2
𝑟1,𝑇 3

𝑟1,𝑇 6
𝑟1,𝑇 7

𝑟1 from𝑇

31: Insert𝑇 2
𝑟2 into𝑇

32: else if {𝑇 3
𝑟1,𝑇

4
𝑟1,𝑇

7
𝑟1,𝑇

8
𝑟1 ⊂ 𝑇 } ∧𝑡𝑡 ∈ 𝑇𝑐

where 𝑡𝑡 ∈{𝑇 3
𝑟3,𝑇

4
𝑟3,𝑇

3
𝑟1,𝑇

4
𝑟1,𝑇

7
𝑟1,𝑇

8
𝑟1} then

33: Remove𝑇 3
𝑟1,𝑇 4

𝑟1,𝑇 7
𝑟1,𝑇 8

𝑟1 from𝑇

34: Insert𝑇 3
𝑟2 into𝑇

35: end if
36: if {𝑇 𝑗

𝑟1,𝑇
𝑗+4
𝑟1 } ∈ 𝑇 where 𝑗 ∈{1, 2, 3, 4 } then

37: Remove𝑇 𝑗

𝑟1,𝑇
𝑗+4
𝑟1 from𝑇

38: Insert𝑇 𝑗

𝑟3 into𝑇
39: end if
40: if {(𝑇 𝑗

𝑟1 ∈ 𝑇𝑐 ∨𝑇
𝑗+4
𝑟1 ∈ 𝑇𝑐 )𝑇 𝑗

𝑟3 ∈ 𝑇 } ∈ 𝑇 where 𝑗 ∈{1, 2, 3, 4 } then
41: Insert𝑇 𝑗

𝑟1,𝑇
𝑗+4
𝑟1 into𝑇

42: Remove𝑇 𝑗

𝑟3 from𝑇

43: end if
44: end if
45: Insert 𝑡𝑔 into𝑇 , where 𝑡𝑔 is the background encode
46: return tile set𝑇

4.4 Video sequence synthesis and display
We considered optional upscaling of the background portion of the
video to improve the quality in the case of mismatch in the viewport
prediction. We selected the Lanczos filter for upscaling since, based

on our previous works [10][9][21], we have identified it represents a
good trade-off between performance and complexity.

5 TESTING CONDITIONS
In the test phase (before submission of the solution) a panoramic
video of a natural environment Release_video_1 and the associated
head motion traces from two subjects were provided.

The final evaluation was performed on six segments from three
videos, with head motion traces from one subject per video seg-
ment, namely v1_s1, v1_s2, v2_s1, v2_s2, v3_s1 and v3_s2. The
video segments represent three different video categories (i.e., natu-
ral landscapes, computer-generated animations and outdoor sports).
Additionally, v4_s1 and v4_s2 were used for testing the first three
solutions in the ranking. The thumbnails of the video sequences used
in the final evaluation are shown in Figure 5.

All sequences used during both test phase and final evaluation
were in ERP format with a resolution of 7680 × 3840 and frame rate
of 30𝑓 𝑝𝑠.

6 RESULTS
The first two rows of Table 1 report the results summary of the
test phase. The performance is measured according to Equation
(1) provided. The table also provides the breakdown of cost-related
components that are associated with the grand-challenge score 𝑆 . The
computational cost associated with transcoding scenarios does not
apply to us. On the content available for the test phase, our solution
outperformed the other solutions submitted for the challenge at the
time of the challenge deadline (source: challenge leaderboard). The
results of the evaluation phase for our solution are also reported in
the following rows of Table 1.

7 CONCLUSION
This paper presented the design and implementation of a 360-degree
video on-demand streaming solution using the open-source evalua-
tion platform E3PO. Results highlight a good performance in terms
of MSE with limited costs in terms of data storage and transmission
bandwidth.
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(a) v1_s1 (b) v1_s2 (c) v2_s1 (d) v2_s2

(e) v3_s1 (f) v3_s2 (g) v4_s1 (h) v4_s2

Figure 5: Thumbnails of video sequences used in the final evaluation.

Table 1: Results summary

Sequence 𝑆 MSE Bandwidth Cost (𝑤1 ×𝐶𝑏 ) Storage Cost (𝑤2 ×𝐶𝑠 )
Test Phase

Release_video_1 8.593 13.074 3.794E-03 2.772E-06
Final Evaluation

v1_s1 8.534 12.419 4.264E-03 2.77E-06
v1_s2 6.356 17.2 5.410E-03 3.78E-06
v2_s1 8.826 10.663 4.928E-03 3.33E-06
v2_s2 6.493 12.733 7.757E-03 4.76E-06
v3_s1 9.217 6.222 7.112E-03 4.97E-06
v3_s2 6.303 8.904 1.052E-02 6.75E-06
Average 7.621

Additional Tests
v4_s1 3.997 25.336 9.810E-03 6.62E-06
v4_s2 3.541 27.089 1.198E-02 7.69E-06

[8] Tamay Aykut, Basak Gülezyüz, Bernd Girod, and Eckehard Steinbach. 2020.
Hsmf-net: Semantic viewport prediction for immersive telepresence and on-
demand 360-degree video. arXiv preprint arXiv:2009.04015 (2020).

[9] Nabajeet Barman, Yuriy Reznik, and Maria Martini. 2023. On the performance of
video super-resolution algorithms for HTTP-based adaptive streaming applications.
In Applications of Digital Image Processing XLVI, Vol. 12674. SPIE, 255–264.

[10] Nabajeet Barman, Steven Schmidt, Saman Zadtootaghaj, Maria G Martini, and
Sebastian Möller. 2018. An evaluation of video quality assessment metrics for
passive gaming video streaming. In Proceedings of the 23rd packet video workshop.
7–12.

[11] Bytedance. 2023. E3PO. https://github.com/bytedance/E3PO.
[12] J. Carreira, Sergio M. M. de Faria, Luis M. N. Tavora, Antonio Navarro, and

Pedro A. Assuncao. 2020. Versatile Video Coding Of 360° Video Using Adaptive
Resolution Change. In Proc. IEEE International Conference on Image Processing
(ICIP). 3398–3402. https://doi.org/10.1109/ICIP40778.2020.9190732

[13] Zhenzhong Chen, Yiming Li, and Yingxue Zhang. 2018. Recent advances in
omnidirectional video coding for virtual reality: Projection and evaluation. Signal
Processing 146 (2018), 66–78.

[14] Zhenzhong Chen, Weisi Lin, and King Ngi Ngan. 2010. Perceptual video coding:
Challenges and approaches. In Proc. IEEE International Conference on Multime-
dia and Expo. 784–789.

[15] M Coban, G Van der Auwera, and M Karczewicz. 2017. AHG8: Adjusted cubemap
projection for 360-degree video. Joint Video Exploration Team of ITU-T SG16
WP3 and ISO/IEC JTC1/SC 29 (2017).

[16] Xavier Corbillon, Gwendal Simon, Alisa Devlic, and Jacob Chakareski. 2017.
Viewport-adaptive navigable 360-degree video delivery. In Proc. IEEE interna-
tional conference on communications (ICC). 1–7.

[17] Yago Sanchez de la Fuente, Gurdeep Singh Bhullar, Robert Skupin, Cornelius
Hellge, and Thomas Schierl. 2019. Delay impact on mpeg OMAF’s tile-based
viewport-dependent 360 video streaming. 9, 1 (2019), 18–28.

[18] Chi-Wing Fu, Liang Wan, Tien-Tsin Wong, and Chi-Sing Leung. 2009. The
rhombic dodecahedron map: An efficient scheme for encoding panoramic video.
11, 4 (2009), 634–644.

[19] Gazi Karam Illahi, Matti Siekkinen, Teemu Kämäräinen, and Antti Ylä-Jääski.
2022. Real-time gaze prediction in virtual reality. In Proceedings of the 14th
International Workshop on Immersive Mixed and Virtual Environment Systems.
12–18.

[20] Sami Jaballah, Amegh Bhavsar, and Mohamed-Chaker Larabi. 2020. Percep-
tual Versus Latitude-Based 360-Deg Video Coding Optimization. In Proc. IEEE
International Conference on Image Processing (ICIP). 3423–3427. https:
//doi.org/10.1109/ICIP40778.2020.9191257

[21] Peter A Kara, Werner Robitza, Nikolett Pinter, Maria G Martini, Alexander Raake,
and Aniko Simon. 2019. Comparison of HD and UHD video quality with and
without the influence of the labeling effect. Quality and User Experience 4 (2019),
1–29.

[22] HC Lin, CY Li, JL Lin, SK Chang, and CC Ju. 2016. An efficient compact layout
for octahedron format, JVET Doc. D0142 (2016).

[23] Holger Meuel, Marco Munderloh, Matthias Reso, and Jörn Ostermann. 2013.
Optical flow cluster filtering for ROI coding. In Proc. IEEE Picture Coding
Symposium (PCS). 129–132.

https://github.com/bytedance/E3PO
https://doi.org/10.1109/ICIP40778.2020.9190732
https://doi.org/10.1109/ICIP40778.2020.9191257
https://doi.org/10.1109/ICIP40778.2020.9191257


Efficient viewport prediction and tiling schemes for
360 degree video streaming MMSys ’24, April 15–18, 2024, Bari, Italy

[24] Afshin Taghavi Nasrabadi, Anahita Mahzari, Joseph D Beshay, and Ravi Prakash.
2017. Adaptive 360-degree video streaming using scalable video coding. In Proc.
ACM International Conference on Multimedia (ICM). 1689–1697.

[25] Massimiliano Patacchiola. 2017 (updated 2020, accessed Feb 2024). DeepGaze.
https://github.com/mpatacchiola/deepgaze/tree/master.

[26] Massimiliano Patacchiola and Angelo Cangelosi. 2017. Head pose estimation
in the wild using convolutional neural networks and adaptive gradient methods.
Pattern Recognition 71 (2017), 132–143.

[27] Fabien Racapé, F Galpin, G Rath, and E Francois. 2017. AHG8: adaptive QP for
360◦ video coding. JVET-F0038 (2017).

[28] Silvia Rossi and Laura Toni. 2017. Navigation-aware adaptive streaming strate-
gies for omnidirectional video. In 2017 IEEE 19th International Workshop on
Multimedia Signal Processing (MMSP). IEEE, 1–6.

[29] Kalpana Seshadrinathan and Alan Conrad Bovik. 2009. Motion tuned spatio-
temporal quality assessment of natural videos. 19, 2 (2009), 335–350.

[30] Robert Skupin, Yago Sanchez, Cornelius Hellge, and Thomas Schierl. 2016. Tile
based HEVC video for head mounted displays. In Proc. IEEE International
Symposium on Multimedia (ISM). 399–400.

[31] Aljoscha Smolic and Peter Kauff. 2005. Interactive 3-D video representation and
coding technologies. Proc. IEEE 93, 1 (2005), 98–110.

[32] Afshin TaghaviNasrabadi, Anahita Mahzari, Joseph D Beshay, and Ravi Prakash.
2017. Adaptive 360-degree video streaming using layered video coding. In Proc.
IEEE Virtual Reality (VR). 347–348.

[33] Truong Cong Thang, Quang-Dung Ho, Jung Won Kang, and Anh T Pham. 2012.
Adaptive streaming of audiovisual content using MPEG DASH. 58, 1 (2012),
78–85.

[34] Geert Van der Auwera, Muhammed Coban, M Karczewicz Hendry, and M Kar-
czewicz. 2016. AHG8: Truncated square pyramid projection (tsp) for 360
video. In Joint Video Exploration Team of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, JVET-D0071, 4th Meeting.

[35] Shivi Vats, Jounsup Park, Klara Nahrstedt, Michael Zink, Ramesh Sitaraman, and
Hermann Hellwagner. 2022. Semantic-Aware View Prediction for 360-Degree
Videos at the 5G Edge. In 2022 IEEE International Symposium on Multimedia
(ISM). IEEE, 121–128.

[36] Minghui Wang, Tianruo Zhang, Chen Liu, and Satoshi Goto. 2009. Region-of-
interest based dynamical parameter allocation for H. 264/AVC encoder. In Proc.
IEEE Picture Coding Symposium (PCS). IEEE, 1–4.

[37] Shibo Wang, Shusen Yang, Hailiang Li, Xiaodan Zhang, Chen Zhou, Chenren Xu,
Feng Qian, Nanbin Wang, and Zongben Xu. 2022. SalientVR: saliency-driven
mobile 360-degree video streaming with gaze information. In Proceedings of the
28th Annual International Conference on Mobile Computing And Networking.
542–555.

[38] Xiaoyu Xiu, Yuwen He, and Yan Ye. 2018. An adaptive quantization method for
360-degree video coding. In Proc. Applications of Digital Image Processing XLI,
Vol. 10752. 107520X.

[39] Matt Yu, Haricharan Lakshman, and Bernd Girod. 2015. A framework to evaluate
omnidirectional video coding schemes. In Proc. IEEE International Symposium
on Mixed and Augmented Reality (ISMAR). 31–36.

[40] C Zhang, Y Lu, J Li, and Z Wen. 2017. AHG8: Segmented Sphere Projection
for 360-degree video. Joint Video Exploration Team of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11, JVET-E0025 (2017).

[41] Minhua Zhou. 2016. AHG8: A study on compression efficiency of cube projection.
Document JVET-D0022, Chengdu, CN (2016).

https://github.com/mpatacchiola/deepgaze/tree/master

	Abstract
	1 Introduction
	2 Problem statement
	3 Related work
	3.1 Projection of spherical video
	3.2 360-degrees video compression
	3.3 Viewport prediction for 360 video streaming

	4 Proposed strategy
	4.1 Pre-processing
	4.2 Video encoding
	4.3 Streaming selector
	4.4 Video sequence synthesis and display

	5 Testing conditions
	6 Results
	7 Conclusion
	References
	Blank Page



