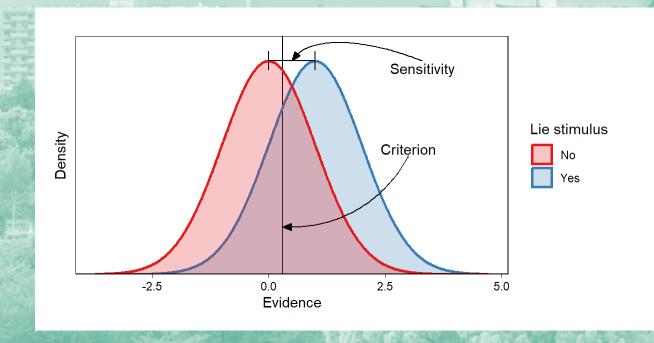
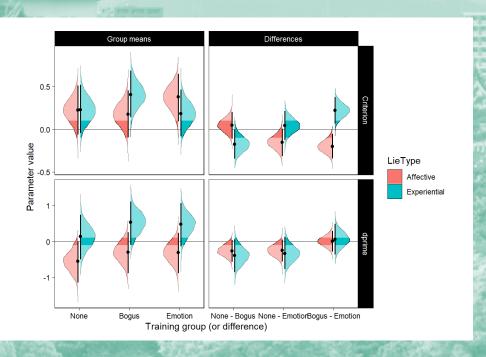


Veracity Judgements: Reinterpreting the processes behind "deception detection"

MIRCEA ZLOTEANU





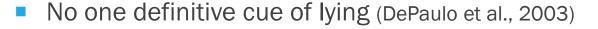
Detecting Lies and Truths: Usual suspects

People lie often and for various reasons.

- However, de
 - Lies detection
- Bias toward

All deception papers reiterate these claims!

- 54% accuracy
- veracity effect
 - truth bias
- (mysterious) "cues"
- astute "decoders"



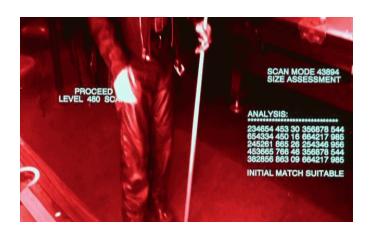
Meta-analyses find (inconsistent) "cues"

Theory: How do people judge veracity?

Deception Detection

- Default position
- Reliable dif. b/w Liars and Truth-tellers
- Assumes diagnostic cues
- "Decoders" perceive behavioural cues
- Accuracy exists > properly interpreting cues
- (universal, cross-cultural, involuntary)

Evidence? weak



Veracity Judgements

- "Judges" make inferences about others' veracity
- No need for "deception cues"
- Does not assume (a priori) accuracy is possible (no diagnosticity)
- Measure shifts in judgement (e.g., bias, confidence)
- Focus on situation, contexts, & individuals

Compatible with most findings

Solutions?

- paradigm shift (hard)
- open science (moderate)
- better analysis plan (easy!)

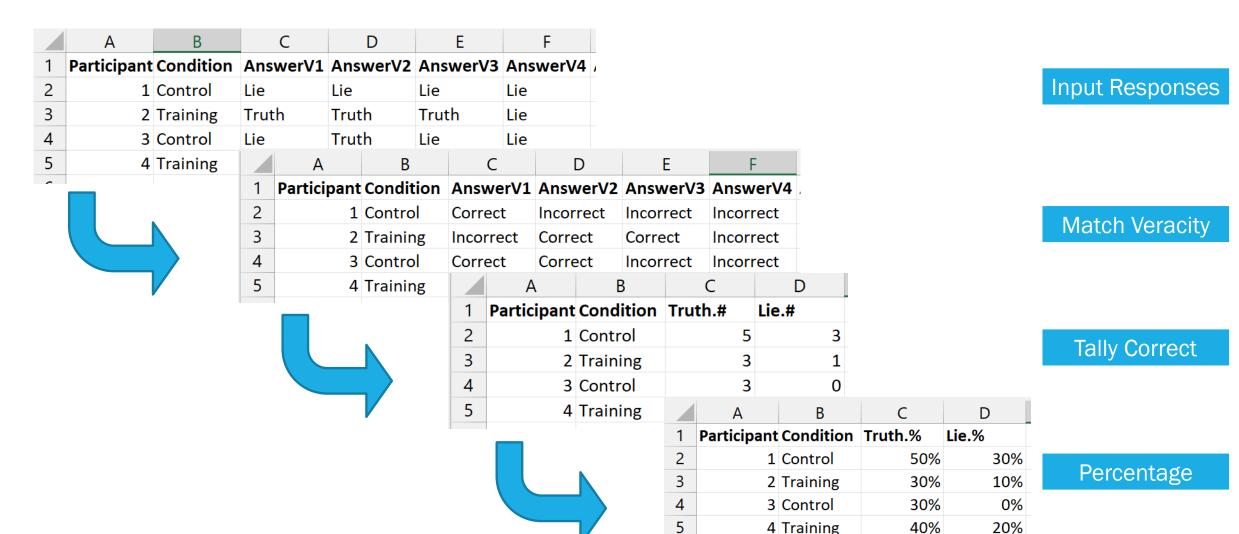
Typical study

Dishonest Unsure Somewhat Honest Honest

Not at all Confident 2 3 4 Very Confident

Typical Data Processing

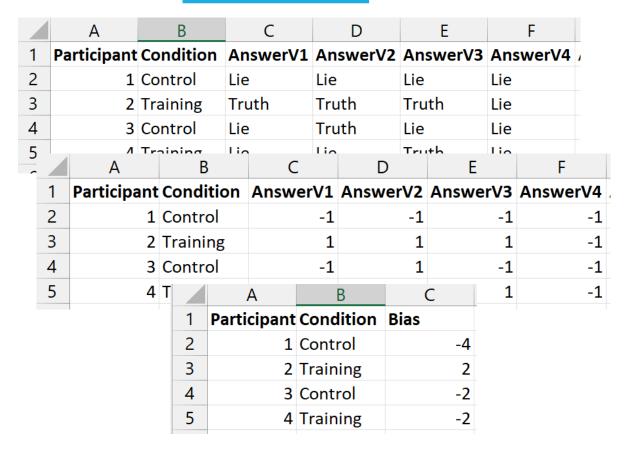
This is where the magic happens (read: QRPs)



4 Training

Typical Data Processing: NOT DONE YET!!!

Response Bias



Signal Detection Theory (SDT)

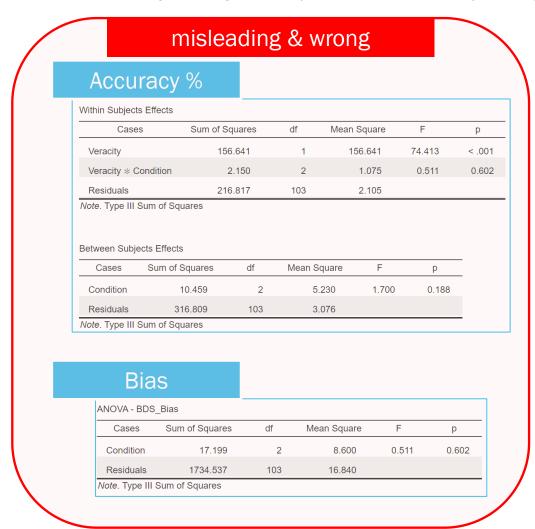
	Α	В	С	D	Е	F
1	Participant	Condition	CR	FA	HIT	MISS
2	1	Control	4	2	3	2
3	2	Training	3	1	1	3
4	3	Control	4	3	0	1
5	4	Training	1	3	2	0
_						

Do some shady 0 and 1 correction

	Α	В	С	D	Е	
1	Participant	Condition	dprime	С	bias	
2	1	Control	0.39	0.21	0.11	
3	2	Training	0.87	0.63	0.19	
4	3	Control	0	0.26	0.05	
5	4	Training	0.21	1.01	-0.17	

Typical Analyses

Then, we report up to 4 (unconnectable) analyses (ANOVAs)



OK-ish (but could be better)

SDT – Accuracy (d')

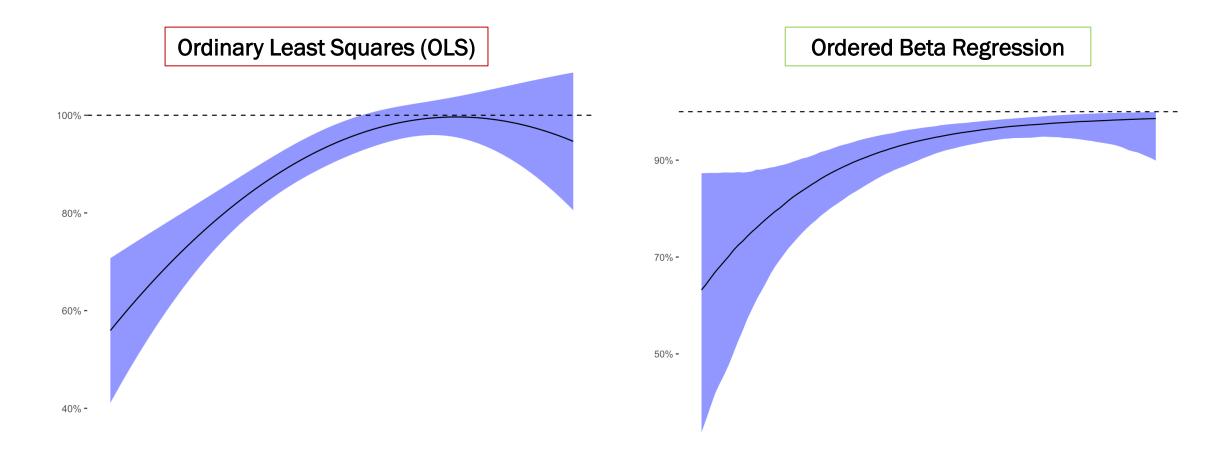
ANOVA - BDS_Aprime							
Cases	Sum of Squares	df	Mean Square	F	р		
Condition	0.102	2	0.051	1.433	0.243		
Residuals	3.655	103	0.035				
Note. Type III Sum of Squares							

SDT - Bias (c)

ANOVA - BDS_b2p ▼								
Cases	Sum of Squares	df	Mean Square	F	р			
Condition	0.167	2	0.083	0.617	0.541			
Residuals	13.906	103	0.135					
Note. Type III Sum of Squares								

The tools we are using are not fit for purpose

- Models that assume unbounded and normal data will produce inappropriate estimates
 - ANOVAs will estimate 120% or -10% values (which are impossible), and 'create' differences that don't exist



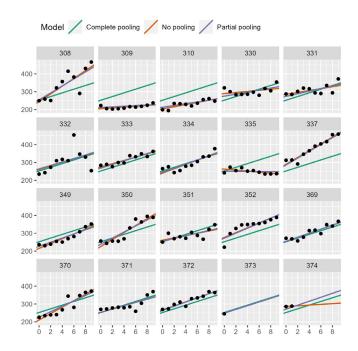
We can do better: Bayesian Mixed Effects Models

Advantages of LMMs over RM-ANOVA

- Same results as simple analyses
- All data types permitted
- Complex designs
- Missing data
- Differing number of repeats (unbalanced data)

Bayesian vs. Frequentist

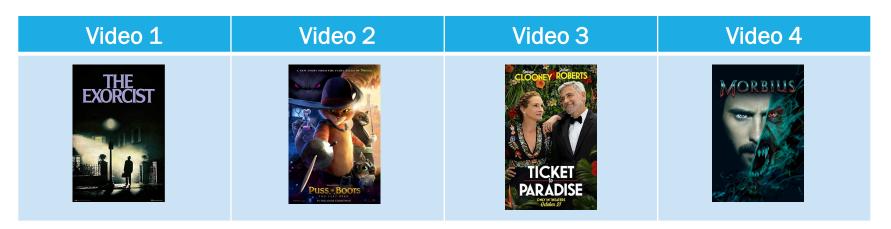
- Better chance of model fit
- No issues with dfs and computing "significance"
- Provides the information one wants (Prob. of hypothesis given data)
- Richer data (everything has a posterior distribution to interpret)
- No dichotomous thinking (p-values)
- More flexibility in exploring competing models/explanations





We can do better: Bayesian Mixed Effects Models

ANOVAs treat all Trials/Videos as equivalent, but:



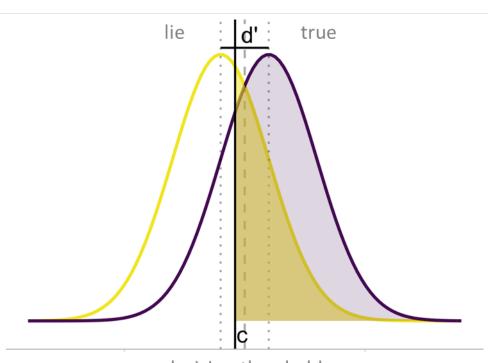
Not all the same, regardless of labels

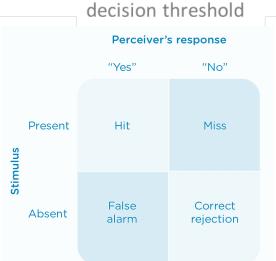
ANOVAs treat all Participants as homogenous, but:

All response differences are ignored

Signal Detection Theory (briefly)

- Classify a stimulus into one of two categories, e.g., Y/N,
 Old/New, Lie/Truth
- Measuring a *latent psychological dimension*
- Uses the binary classification: "lie" and "truth"
- Participants judge if a stimulus belongs to A or B, based on some internal process (decision rule)
 - d': sensitivity; distance between distributions
 - c: location of decision threshold (relative to no-bias)

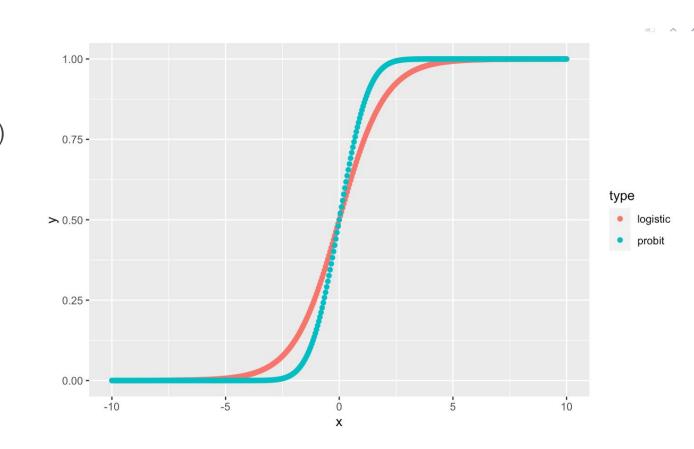




We can do better: Bayesian Mixed Effects Models

Solution:

- Probit Models!
- Directly model the binary (L/T) responses
- Translate into a SDT model (DeCarlo, 1998)
 - intercept = -c (bias)
 - $\beta 1 = d'$ (sensitivity)
- Incorporates all sources of variance
- Bayesian inferences
 - Magnitude & uncertainty
 - Existence
 - Importance
 - (prediction)



Probit Models

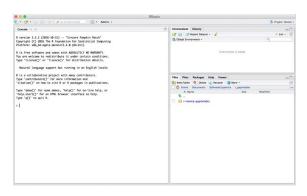
Data Preparation

Long format

	Α	В	С	D	E	
1	Participan	Stimuli	Veracity	Answer	Condition	
2	1	video1L	1	1	ERT	
3	1	video2L	0	0	ERT	
4	1	video3T	0	1	ERT	Truth $= 0$
5	1	video4T	1	1	ERT	
6	2	video1L	0	0	BT	Lie = 1
7	2	video2L	0	1	BT	
8	2	video3T	1	1	BT	
9	2	video4T	0	1	BT	
10	3	video1L	0	1	СТ	
11	3	video2L	1	0	СТ	
12	3	video3T	0	1	СТ	
13	3	video4T	1	1	СТ	

R package

library(brms)
library(bayestestR)
library(emmeans)



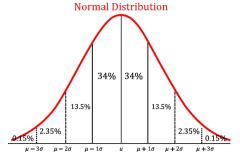
Bayesian Priors (optional)

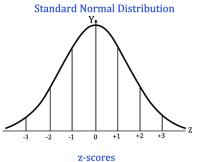
As the probit CDF back-transforms to a Z-curve, we can see the parameter space the same as a Normal distribution with mean = 0, and SD = 1.

So, think in terms of Cohen's d!

Some acceptable priors for the coefficients is $N \sim (0,1)$

But, avoid being too specific for interactions.



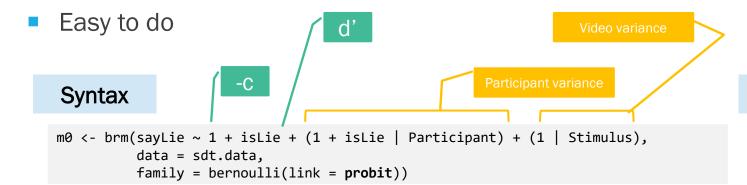


Full details in paper:

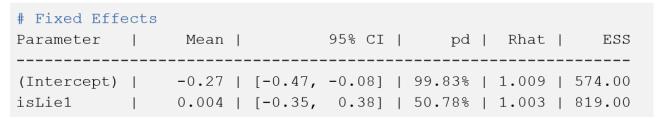
Preprint PsyArxiv (submitted to JONB)

https://psyarxiv.com/fdh5b/

Probit Models

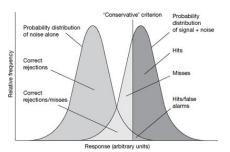


Output

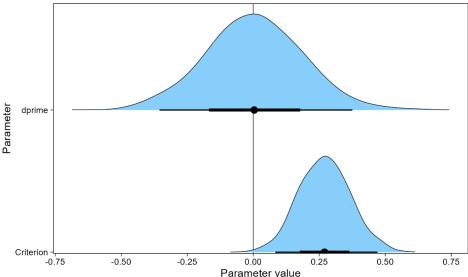


Note: c = -Intercept

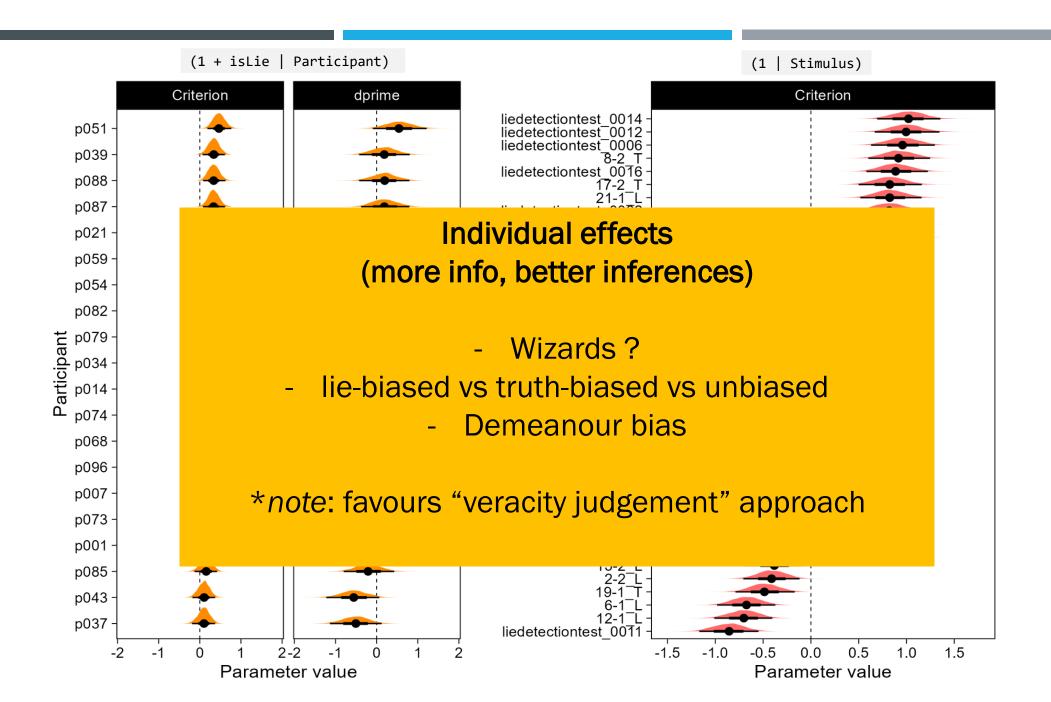
"0.27" ergo a "truth bias"



Plots



Sensitivity? ... 0



Complex designs model, easy:

Within-participant factors:

Syntax Within-subjects (repeated) WS factors require random slopes m2 <- brm(sayLie ~ 1 + LieType + isLie + LieType:isLie + (1 + LieType*isLie | Participant) + (1 | Stimuli), data = sdt.data, family = bernoulli(link = probit))

Both within and between factors

```
Shorthand for main effects + interactions

m3 <- brm(sayLie ~ 1 + Condition*LieType*isLie + (1 + LieType*isLie | Participant) + (1 | Stimuli), data = sdt.data, family = bernoulli(link = probit))
```

Compare Models

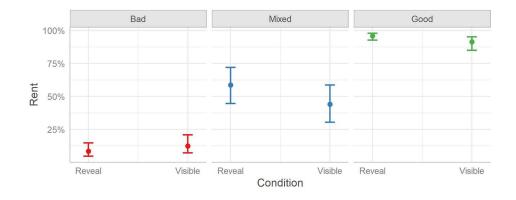
```
> loo_models
elpd_diff se_diff
m2 0.0 0.0
m0 -2.5 2.7
m3 -2.9 2.7
m1 -3.6 3.3
```

Easy way to select the "best" model (considers model fit and complexity)

All data-types welcome!

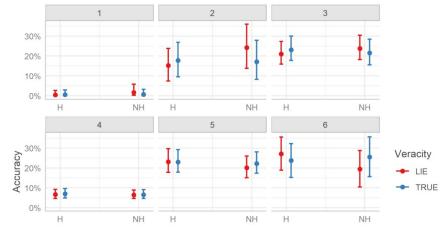
Syntax

Categorical



Syntax

Ordinal (Likert, scale)

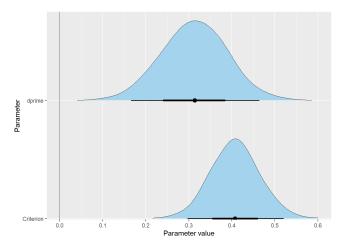


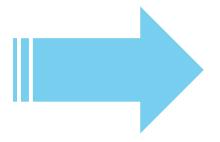
Example of novel insights: Masip, Levine, Somastre, & Herrero (2020)

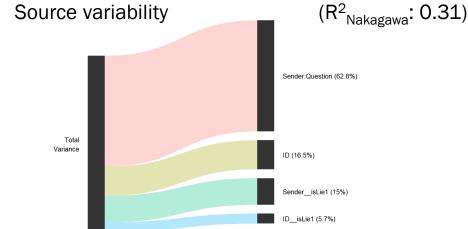
Syntax

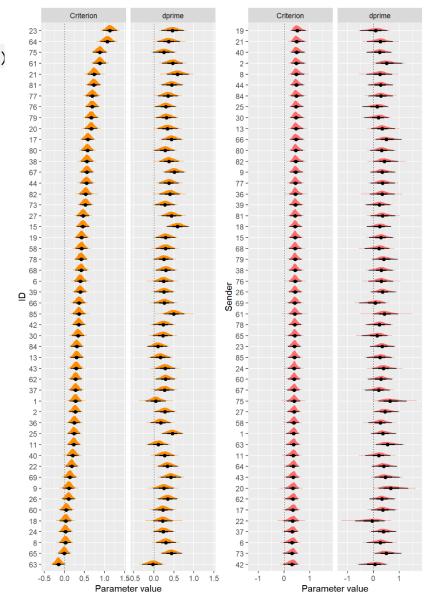
m1 <- sayLie ~ 1 + isLie + (1 + isLie | ID) + (1 + isLie | Sender) + (1 | Sender : Question)

Demeanour bias and Judge variability:



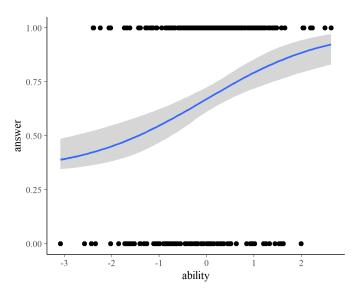


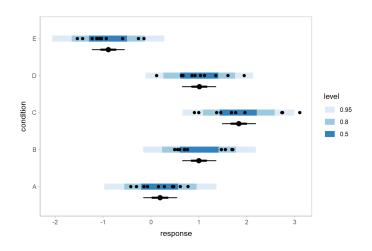




Just scratching the surface! More options:

- Type-II SDT
 - Veracity + Confidence meta-detection
- Different SDT models
 - Mixture, dual-process, etc.
- Unequal variance (honesty scales)
 - see Zloteanu, et al. <u>2022</u>; in Sl
- Taking guessing into account
 - 50% [chance] correction
- Dealing with outliers (w/o needing to remove)





Open Research

Reproducible

Share your analysis code

Open

- Make your data public
- Share your videos!!!

Interpretable

- Use estimation language
- Plot your data

Transparent

- Pre-register your study!
- Differentiate Planned from Exploratory analyses

Conclusion

Benefits

- 1 analysis instead of 4
- Easy way to incorporate complex designs
- Take into account variability and uncertainty from ALL sources (in your data)
 - Demeanour bias (important and overlooked)
- Can easily be adapted to theoretical decision (e.g., are people guessing? How does suspiciousness move the threshold for judging something as a 'lie'?)
- Works with small samples!
- Clear inferences

Thank you!

• Questions ???

Matti Vuorre Tilburg University

Contact

: m.zloteanu@kingston.ac.uk

🔰 : @mzloteanu

: mz555.github.io

Kingston University London

