Kingston University London

Veracity Judgements: Reinterpreting the processes behind "deception detection"

MIRCEA ZLOTEANU

Detecting Lies and Truths: Usual suspects

- People lie often and for various reasons
- However, de
 - Lies detection
- Bias toward

All deception papers reiterate these claims!

- 54% accuracy
- veracity effect
 - truth bias
- (mysterious) "cues"
- astute "decoders"

- No one definitive cue of lying (DePaulo et al., 2003)
- Meta-analyses find (inconsistent) "cues"

Theory: How do people judge veracity?

Deception Detection

- Default position
- Reliable dif. b/w Liars and Truth-tellers
- Assumes diagnostic cues
- "Decoders" perceive behavioural cues
- Accuracy exists > properly interpreting cues
- (universal, cross-cultural, involuntary)

Evidence? weak

Veracity Judgements

- "Judges" make inferences about others' veracity
- No need for "deception cues"
- Does not assume (a priori) accuracy is possible (no diagnosticity)
- Measure shifts in judgement (e.g., bias, confidence)
- Focus on situation, contexts, & individuals

Compatible with most findings

Ē

- paradigm shift (hard)
- open science (moderate)
- better analysis plan (easy!)

Traditional (inappropriate) Analysis Plan

- Too many "researcher degrees of freedom"
 - Issues with transforming data
 - Issues with aggregating data
- Running up to 4 (!) unconnected analyses
- Ignoring the design structure
- Loosing important information
 - Treating all Participant responses as having no variance
 - Treating all Videos as equivalent trials
- Focus on "finding effects" and "significance" (p < .05)</p>
 - Most deception studies find "no effect", why don't we plan for that?

Typical study

Ę

Dishonest	Somewhat Dishonest	Unsure	Somewhat Honest	Honest
Not at all Confident	2	3	4	Very Confident

Typical Data Processing

This is where the magic happens (read: QRPs)

	А	В	С	D		E		F							
1	Participant	Condition	AnswerV1	Answe	rV2 Ans	werV3	Ans	werV4							
2	1	Control	Lie	Lie	Lie		Lie								Input Responses
3	2	Training	Truth	Truth	Trut	th	Lie								
4	3	Control	Lie	Truth	Lie		Lie								
5	4	Training	A		В	С		D	I	E	F				
6			1 Partici	pant Co	ndition	Answe	rV1	AnswerV2	Answ	verV3	Answer\	/4			
			2	1 Co	ntrol	Correct	t	Incorrect	Incor	rect	Incorrect	t			Matab Varaaity
			3	2 Tra	aining	Incorre	ect	Correct	Corre	ect	Incorrect	t			Match veracity
			4	3 Co	ntrol	Correct	t	Correct	Incor	rect	Incorrect	t			
			5	4 Tra	aining		Α	E	3		C	D			
						1 Pa	artici	ipant Cond	ition	Truth	n.# Lie	e.#			
						2		1 Contr	ol		5	3			Tally Correct
						3		2 Train	ing		3	1			Tally Correct
						4		3 Contr	ol		3	0			
						5		4 Train	ing		А	В	С	D	
						_				1 P	articipant	Condition	Truth.%	Lie.%	
										2	1	Control	50%	30%	Developte
										3	2	Training	30%	10%	Percentage
										4	3	Control	30%	0%	
										5	4	Training	40%	20%	

Typical Data Processing: NOT DONE YET!!!

Response Bias

		А		В		С		D		Е		F	
1	Pa	articipant	Со	nditio	n Ar	nswerV	1 Ar	swerV	2 An	swerV3	Ans	swerV4	1
2		1	Со	ntrol	Lie	è	Lie	9	Lie		Lie		
3		2	Tra	aining	Tru	uth	Tr	uth	Tru	ıth	Lie		
4		3	Со	ntrol	Lie	è	Tr	uth	Lie		Lie		
5		1	Tre	nining	Lie		. 116		Tri	ith F	Lio	-	
^		A		E)	C		L)	E		F	
	1	Participa	Int	Cond	ition	Answ	erV1	Answ	erV2	Answe	erV3	Answe	rV4
	2		1	Contr	ol		-1		-1		-1		-1
	3		2	Traini	ng		1		1		1		-1
	4		3	Contr	ol		-1		1		-1		-1
	5		4	T		A		В		С	1		-1
				1	Parti	cipant	Cond	dition	Bias				
				2		. 1	Cont	rol		-4			
				3		2	Trair	ning		2			
				4		3	Cont	rol		-2			
				5		4	Trair	ning		-2			

Signal Detection Theory (SDT)

	А	В	С	D	Е	F	
1	Participant	Condition	CR	FA	НІТ	MISS	
2	1	Control	4	2	3	2	
3	2	Training	3	1	1	3	
4	3	Control	4	3	0	1	
5	4	Training	1	3	2	0	
-							

Do some shady 0 and 1 correction

	А	В	С	D	E
1	Participant	Condition	dprime	с	bias
2	1	Control	0.39	0.21	0.11
3	2	Training	0.87	0.63	0.19
4	3	Control	0	0.26	0.05
5	4	Training	0.21	1.01	-0.17

Typical Analyses

Ę

Then, we report up to 4 (unconnectable) analyses (ANOVAs)

Accura	acy %					
Within Subjects Ef	fects					
Cases	Sum	of Squares	df I	Mean Square	F	р
Veracity		156.641	1	156.641	74.413	< .00
Veracity * Cond	lition	2.150	2	1.075	0.511	0.60
Residuals <i>Note.</i> Type III Sum	n of Squares	216.817	103	2.105		
Residuals Note. Type III Sum Between Subjects Cases S	n of Squares Effects um of Squares	216.817	103 Mean Squa	2.105 are F	p	_
Residuals Note. Type III Sum Between Subjects Cases S Condition	n of Squares Effects um of Squares 10.459	216.817 df	103 Mean Squa	2.105 are F 0 1.700	p 0.188	

Bia	S				
ANOVA - BDS	_Bias				
Cases	Sum of Squares	df	Mean Square	F	р
Condition	17.199	2	8.600	0.511	0.602
Residuals	1734.537	103	16.840		
Note. Type III	Sum of Squares				

OK-ish (but could be better)

SDT – Accuracy (d')

ANOVA - BDS_Aprime

Cases	Sum of Squares	df	Mean Square	F	р			
Condition	0.102	2	0.051	1.433	0.243			
Residuals	3.655	103	0.035					
Note. Type III Sum of Squares								

SDT – Bias (c)

ſ	ANOVA - BDS	_b2p 🔻						
	Cases	Sum of Squares	df	Mean Square	F	р		
	Condition	0.167	2	0.083	0.6 1 7	0.541		
	Residuals	13.906	103	0.135				
	Note. Type III Sum of Squares							

The tools we are using are not fit for purpose

- Models that assume unbounded and normal data will produce inappropriate estimates
 - ANOVAs will estimate 120% or -10% values (which are impossible), and 'create' differences that don't exist

We can do better: Bayesian Mixed Effects Models

Advantages of LMMs over RM-ANOVA

- Same results as simple analyses
- All data types permitted
- Complex designs
- Missing data
- Differing number of repeats (unbalanced data)

Bayesian vs. Frequentist

- Better chance of model fit
- No issues with dfs and computing "significance"
- Provides the information one wants (Prob. of hypothesis given data)
- Richer data (everything has a posterior distribution to interpret)
- No dichotomous thinking (p-values)
- More flexibility in exploring competing models/explanations

Model / Complete pooling / No pooling / Partial pooling

We can do better: Bayesian Mixed Effects Models

• ANOVAs treat all Trials/Videos as equivalent, but:

F

Not all the same, regardless of labels

• ANOVAs treat all Participants as homogenous, but:

All response differences are ignored

Signal Detection Theory (briefly)

- Classify a stimulus into one of two categories, e.g., Y/N, Old/New, Lie/Truth
- Measuring a *latent psychological dimension*
- Uses the binary classification: "lie" and "truth"
- Participants judge if a stimulus belongs to A or B, based on some internal process (decision rule)
 - d': sensitivity; distance between distributions
 - c: location of decision threshold (relative to no-bias)

We can do better: Bayesian Mixed Effects Models

Solution:

Ę

- Probit Models !
- Directly model the binary (L/T) responses
- Translate into a SDT model (DeCarlo, 1998)
 - intercept = -c (bias)
 - $\beta 1 = d'$ (sensitivity)
- Incorporates all sources of variance
- Bayesian inferences
 - Magnitude & uncertainty
 - Existence
 - Importance
 - (prediction)

Probit Models

` -+	oto Droporation						
Jat	ан	repara	ation				ong format
		_					
		Α	В	С	D	E	
	1	Participan	Stimuli	Veracity	Answer	Condition	-
	2	1	video1L	1	1	ERT	
	3	1	video2L	0	0	ERT	
	4	1	video3T	0	1	ERT	Truth $= 0$
	5	1	video4T	1	1	ERT	1 is -1
	6	2	video1L	0	0	BT	Lie – T
	7	2	video2L	0	1	BT	
	8	2	video3T	1	1	BT	
	9	2	video4T	0	1	BT	
	10	3	video1L	0	1	СТ	
	11	3	video2L	1	0	СТ	
	12	3	video3T	0	1	СТ	
	13	3	video4T	1	1	СТ	

R package

library(brms)
library(bayestestR)
library(emmeans)

Bayesian Priors (optional)

As the probit CDF back-transforms to a Z-curve, we can see the parameter space the same as a Normal distribution with mean = 0, and SD = 1.

So, think in terms of Cohen's d!

Some acceptable priors for the coefficients is $N \sim (0,1)$

But, avoid being too specific for interactions.

Full details in paper:

Preprint PsyArxiv

(submitted to JONB)

https://psyarxiv.com/fdh5b/

https://osf.io/kuhzj/

Probit Models Easy to do ď -C Syntax Plots m0 <- brm(sayLie ~ 1 + isLie + (1 + isLie | Participant) + (1 | Stimulus),</pre> data = sdt.data, family = bernoulli(link = probit)) Parameter dprime Output # Fixed Effects 95% CI | pd | Rhat | Parameter Mean | ESS (Intercept) | -0.27 | [-0.47, -0.08] | 99.83% | 1.009 | 574.00 isLie1 0.004 | [-0.35, 0.38] | 50.78% | 1.003 | 819.00 Criterion --0.25 0.75 -0.75 -0.50 0.00 0.25 0.50 Parameter value 'Conservative' criterion Probability distribution Probability distribution of signal + noise of noise alone Sensitivity? Correct rejections *Note*: c = -Intercept "0.27" ergo a "truth bias" ... 0 Correct rejections/misses Hits/false alarms

Response (arbitrary units)

Complex designs model, easy:

• Within-participant factors:

Both within and between factors

Compare Models

>]	loo_models	
	elpd_diff	se_diff
m2	0.0	0.0
mO	-2.5	2.7
m3	-2.9	2.7
m1	-3.6	3.3

Easy way to select the "best" model (considers model fit and complexity)

All data-types welcome!

Syntax

Syntax

Categorical

• Ordinal (Likert, scale)

Just scratching the surface! More options:

Type-II SDT

Ę

- Veracity + Confidence meta-detection
- Different SDT models
 - Mixture, dual-process, etc.
- Unequal variance (honesty scales)
 - see Zloteanu, et al. <u>2022</u>; in SI
- Taking guessing into account
 - 50% [chance] correction
- Dealing with outliers (w/o needing to remove)

Open Research

Reproducible

Share your analysis code

Open

- Make your data public
- Share your videos!!!

Interpretable

- Use estimation language
- Plot your data

Transparent

- Pre-register your study!
- Differentiate Planned from Exploratory analyses

Conclusion

Benefits

- 1 analysis instead of 2 or 4
- Easy way to incorporate complex designs
- Take into account variability and uncertainty from ALL sources (in your data)
 - Demeanour bias (important and overlooked)
- Can easily be adapted to theoretical decision (e.g., are people guessing? How does suspiciousness move the threshold for judging something as a 'lie'?)
- Works with small samples!
- Clear inferences

Contact

- : m.zloteanu@kingston.ac.uk : @mzloteanu
- 😧 : mz555.github.io

Kingston University London

Matti Vuorre Tilburg University,

Thank you!

Questions ???

https://osf.io/kuhzj/ For R script