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Abstract: Chronic ocular diseases can seriously impact the eyes and could potentially result in
blindness or serious vision loss. According to the most recent data from the WHO, there are more than
2 billion visually impaired people in the world. Therefore, it is pivotal to develop more sophisticated,
long-acting drug delivery systems/devices to treat chronic eye conditions. This review covers several
drug delivery nanocarriers that can control chronic eye disorders non-invasively. However, most
of the developed nanocarriers are still in preclinical or clinical stages. Long-acting drug delivery
systems, such as inserts and implants, constitute the majority of the clinically used methods for the
treatment of chronic eye diseases due to their steady state release, persistent therapeutic activity, and
ability to bypass most ocular barriers. However, implants are considered invasive drug delivery
technologies, especially those that are nonbiodegradable. Furthermore, in vitro characterization
approaches, although useful, are limited in mimicking or truly representing the in vivo environment.
This review focuses on long-acting drug delivery systems (LADDS), particularly implantable drug
delivery systems (IDDS), their formulation, methods of characterization, and clinical application for
the treatment of eye diseases.

Keywords: chronic eye diseases; inserts; implants; ocular delivery

1. Introduction

Over the last three decades, the prevalence of sight-related diseases has received
increased attention; this is mainly due to the increasing life expectancy of the global popula-
tion. There were around 188 million people who had minor vision impairment, 216 million
people who had moderate-to-severe sight impairment, and approximately 40 million peo-
ple who were legally blind [1]. These numbers are only expected to increase over time. The
eye has a complicated vital structure with several anatomical and physiological constraints.
The anterior part of the eye, which is implicated in refraction and vision, is made up of
several ocular tissues, including the cornea, conjunctiva, aqueous humor, iris, ciliary body,
and the lens, whereas the back segment of the eye is mostly made up of the vitreous humor,
choroid, retina, and posterior sclera. The posterior segment recognizes and transmits light
signals though the optic nerve so that the eye can view the outside world. Many chronic
eye diseases can affect these specialized ocular tissues.

Common conditions that affect the front of the eye include glaucoma, anterior uveitis,
cataracts, and dry eye diseases [2,3], while the conditions that most often affect the back of
the eye include AMD, diabetic retinopathy (DR), CMV, vitreoretinopathy, and posterior
uveitis [3]. Topical eye drops supply drugs to most of anterior segment tissues, whilst
eye injections (most notably, intravitreal) are the standard drug administration option for
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posterior segment diseases. Poor bioavailability (less than 5%) represents a major issue
with topically administered ocular medications, while invasiveness (typically repeated
monthly intravitreal injections) and non-compliance issues are the main hurdles to treating
the diseases of the posterior segment.

The barriers to treating diseases of the anterior segment include a tight corneal–
epithelial junction, reflex blinking and tearing, ocular tissue/s metabolism, tear turnover,
nasolacrimal drainage, efflux transporter pumps, and the blood–aqueous barrier [4]. These
anatomical and physiological constraints have been discussed in detail elsewhere [3,5].
The main barrier to medication absorption following topical application is the corneal
epithelium. Tight intercellular connections surround cells that are on the surface serve
as barriers to prevent drug molecules from entering the cells through the paracellular
route [6]. The typical drop size of topically instilled eye drops, which is delivered to
the eye, is in the volume range of 25–56 µL. Although the human eye can temporarily
accommodate up to 30 µL, any excess amount is quickly wasted due to reflex blinking,
greatly reducing the amount of medication that is ultimately accessible for a therapeutic
effect [7,8]. P-glycoprotein and multidrug resistant proteins primarily cause drug efflux.
P-glycoprotein, which is located in the blood–aqueous and blood–retinal barriers [9,10],
eliminates amphipathic substances, while multidrug resistant proteins, which are found
in the ciliary body and blood–aqueous barrier [11], are known to export organic anions.
Endothelial cells from the blood vessels in the iris and cilia form the blood–aqueous barrier
together with the non-pigmented ciliary epithelium. This prevents the bulk of medications
from reaching deeper ocular tissues and controls the diffusion of soluble molecules between
the front and back of the eye by building tight connections at the cellular level [12,13].

For drugs targeted at the back of the eye, the retinal pigmented epithelium, ciliary body,
and ocular metabolic enzymes reduce how much of the drug remains [13,14]. The posterior
segment barriers include the inner limiting membrane, vitreous diffusion, tight retinal–
pigmented epithelium junctions, and the blood–retinal barrier [15]. The inner limiting
membrane is a substantial physical barrier that inhibits drugs from being delivered to the
posterior portion of the eye [16]. The vitreous body represents a second major barrier for
drug delivery for the posterior segment. In the human eye, the vitreous body, a transparent,
gel-like substance, accounts for around 80% of the total volume. The vitreous body consists
of extraordinarily high water content (>97%) and collagen fibers [17,18]. The collagen fibers
make up the network that fabricate the gel structure in the 3D shape and make it flexible
and strong against mechanical pressures. The vitreous body can act as a barrier either
physiologically or anatomically. The physiological barrier action is represented by the
slowing down of drug diffusion and the anatomical barrier is represented by the 3D gel-like
structure [19]. The retina and retinal pigment epithelium’s limiting structure prevents
the free flow or diffusion of therapeutic drugs, which is what gives the retina its tight
junctions [20]. Another significant challenge to drug delivery to the posterior portion is the
blood–retinal barrier. The outer and inner blood–retinal barriers make up the blood–retinal
barrier. The inner blood–retinal barrier is made up of retinal capillary endothelial cells,
whereas the outside blood–retinal barrier is composed of tightly connected retinal pigment
epithelial cells. Similar to the blood–brain barrier, the absence of wide gaps in the retinal
pigment epithelium and retinal endothelial cells prevents passive drug transport. Only
very small molecules from the choroid, including carbon dioxide, oxygen, and lipophilic
compounds, can diffuse to the inner retinal tissues [21].

In this review, the most common ocular chronic disorders will be discussed. These
conditions necessitate longer treatment intervals with drugs, and the most effective drug
delivery systems should ideally improve the activity, stability, and distribution of drug
molecules to target the ocular tissues. The utilization of long-acting drug delivery systems
(LADDS), particularly implantable drug delivery systems (IDDS), and their formulation
and methods of characterization, assessment, and their clinical application are covered.
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2. Chronic Eye Diseases That Require Long-Acting Therapy
2.1. Dry Eye Diseases

Dry eye diseases, which are characterized by symptoms such as ocular surface irri-
tation and vision impairment, are brought about by insufficient tear production or tear
hyperosmolarity [22]. Accordingly, dry eye diseases could be classified into deficient or
evaporative diseases [23]. The tear film’s osmolality rises as a result, and the ocular surface
becomes inflamed [24]. According to estimates, 5–30% of adults over 50 are at risk for
developing dry eye diseases [25–27]. Increasing evidence suggests that ocular inflammation
is a major contributor to the pathophysiology of dry eye because it has demonstrated that
regardless of the origin of dry eye condition, proinflammatory cytokines and T helper cells
are present on the ocular surface [28].

There are various pathophysiological factors that might trigger dry eye diseases
(Figure 1). The major etiological causes are ocular surface injury, meibomian gland dys-
function, and tear film hyperosmolarity and instability [29,30]. Thus, for dry eye to be
defined with the greatest degree of precision and to be distinguished from other ocular
surface disorders, the etiological factors are essential. In addition, the symptoms dry eye
syndrome are associated with malfunction in particular brain regions [31]. In addition, gut
microbiome disturbance or dysbiosis was identified to be associated with the development
of dry eye, particularly primary Sjogren’s disease (Figure 1) [32].
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To provide comfort to the ocular surface, tears are replenished with a variety of lubri-
cants. These lubricants, which are called artificial tears, include several polymer solutions,
such as hyaluronic acid, carboxymethyl cellulose, polyvinyl alcohol, polyethylene glycol,
and polyvinyl pyrrolidone [33]. Products made of these polymers can be supplemented
with additional additives to increase lubrication and prolong their duration in the eye
because they do not include any physiologically bioactive molecules such as those found
in real tears [34,35]. Diquafosol sodium and other aqueous secretagogues are useful for
treating dry eye conditions and promoting mucin and tear production [36]. Punctal plugs,
which are microscopic implants made of silicone or collagen, were initially developed to
treat dry eyes by occluding the punctal duct, causing tear fluid to accumulate [37]. Topical
glucocorticoid formulations have gained widespread acceptance as a temporary therapeutic
option for dry eye diseases due to their well-recognized anti-inflammatory effects. Topical
steroids have been demonstrated to have anti-inflammatory effects on a number of targets
associated with the symptoms and signs of dry eye, such as lowering cytokine expression,
maintaining the integrity of the corneal epithelium [38–40], and increasing tear production
in animal models [41]. Topical glucocorticoid drops have been demonstrated to ameliorate
symptoms and clinical indicators after a month of usage in various trials, and provided
prominent lowering in the level of pro-inflammatory cytokines [40–43]. Nonsteroidal
anti-inflammatory drugs were also employed topically to treat dry eye syndrome. Topical
diclofenac and topical ketorolac have demonstrated enhanced effectiveness against dry
eye syndrome [44,45]. Topical cyclosporine A, a typical immunomodulatory, reduces the
number of T cells that are activated and the level of inflammatory markers in dry eye
syndrome, as well; it controls inflammation, as well as the death of conjunctival epithelial
cells [46–48]. Tacrolimus, which is a 10–100 times more potent immunosuppressant than
cyclosporine A, is routinely used to treat dry eye diseases [49].

The continuous precorneal clearing caused by the dynamic nature of the ocular surface,
together with blinking, nasolacrimal discharge and response, and basal tearing, all help to
quickly remove foreign particles from the eye. Less than 20% of the applied dosage remains
on the ocular surface after a single blink, providing a brief window for drug absorption
(5–7 min) [50]. This is especially true when the quick turnover of tear fluid is taken into
consideration. When two or more eye drops are applied at once, there is greater competition
for space in the precorneal cavity, which can further reduce precorneal retention time and
ocular bioavailability when treating dry eye diseases [51]. As a result, the development of
better drug delivery systems might increase the efficacy of drugs used topically to treat dry
eye disorders. Punctal plugs have been proven to increase the action of loaded medications
in the treatment of dry eye diseases and to move beyond the ocular barriers [52–54]. The
incorporation of mucin secretagogue rebamipide into nanocarriers significantly increased the
activity and penetration into ocular tissues. The optimum use of cyclosporin A to treat dry eye
disorders is hampered by its very hydrophobic nature and very poor water solubility [55,56].
Nanocarriers have been widely utilized to increase the activity, effectiveness, penetration,
and duration of cyclosporin A [57]. The FDA had approved the use of several cyclosporine A
drug delivery systems, such Restasis®, Ikervis®, and Cequa®, for the treatment of individuals
with moderate-to-severe dry eye diseases [57–59]. Corticosteroids and non-steroidal anti-
inflammatory drugs showed improved activity and bioavailability, reduced toxicity, and
extended release upon incorporation into nanocarriers for ocular applications [60,61]. The
drug delivery systems used to develop treatments for dry eye disease are summarized
in Table 1.

2.2. Glaucoma

The progressive loss of retinal ganglion cells is a hallmark of the ocular neuropathy
known as glaucoma [62,63]. Ganglion cell degeneration is currently untreatable, leading
to a focus on slowing the disease’s development as the aim of glaucoma treatment [64].
Glaucoma is therefore seen as a chronic condition that needs ongoing management [65].
Glaucoma, a major contributor to irreversible blindness, affects over 80 million people
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globally today. More than 100 million people are anticipated to be afflicted by this blinding
condition by the year 2040 [66,67]. The primary disease-related risk factor that can be
modified is increased intraocular pressure [68]. Glaucoma can manifest in two different
ways: open-angle and angle-closure. In open-angle glaucoma, the outflow channel is still
accessible, but the outflow resistance is increased because of pathological alterations to
the outflow tissue (Figure 2a). On the other hand, angle-closure glaucoma prevents the
aqueous humor from leaving the anterior chamber of the eye because the iridocorneal angle
is closed (Figure 2b).
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which increase the resistance to aqueous humor outflow. Angle-closure glaucoma prevents aqueous
humor outflow due to blocking of iridocorneal angle.

The type of glaucoma that affects people most frequently is primary open-angle [69].
Consequently, common therapy choices include ocular drops with the goal of lowering
the intraocular pressure, prostaglandin analogues, Rho-kinase inhibitors, β-adrenergic
blockers, α-receptor agonists, carbonic anhydrase suppressors, and cholinergic agonists.
They achieve this either by boosting the aqueous humor’s outflow through a unique method
or reducing its formation [68,70].

The bioavailability of anti-glaucomatous medicines is only 1–7% inside the eye because
of their short time on the corneal surface, poor corneal penetration, and quick drainage with
the tear fluid [71,72]. Additionally, up to three applications each day limit the effectiveness
of their therapeutic effects [72,73]. Therefore, the development of improved drug delivery
systems may boost the effectiveness of medications utilized topically to successfully lower
the intraocular pressure. Prostaglandin analogues, which are medications that are poorly
soluble in water, are typically coupled with preservatives, such as benzalkonium chloride
or polyquaternium, to make them more soluble. However, repeated instillation of these
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medications may irritate the ocular surface [74]. Thus, employment of nanocarriers into
the formulation of prostaglandin analogues would reduce the dependence on the solubi-
lization effect of the preservative and could lead to the development of preservative-free
formulations [75]. Moreover, nanocarriers have been used effectively to enhance ocular
bioavailability and therapeutic activity, as well as to reduce systemic toxicity of topically
applied β blockers, α-adrenergic agonists, and carbonic anhydrase inhibitors [76–78]. A
summary of the drug delivery systems used to enhance the therapeutic activity of anti-
glaucomatous drugs is found in Table 1.

2.3. Uveitis

Uveitis is the inflammation of the uveal tract. The uveal tract, which is the middle
part of the eye, is located between the retina on the inside and the sclera, conjunctiva, and
anterior chamber on the outside and consists of the ciliary body, the choroid, and the iris [79].
Uveitis is considered the fourth most common reason for acquired blindness, especially for
chronic uveitis, and is characterized by a high rate of related complications [80–83]. Uveitis
is subcategorized according to the inflamed anatomical section into either the anterior,
intermediate, or posterior, where the inflammation and accompanied leucocytes are present
in the iris, vitreous humor, or choroid, respectively [79]. The concurrent presence of
anterior, intermediate, and posterior uveitis is called panuveitis. Anterior uveitis, which is
far more common than intermediate, posterior, or panuveitis, accounts for around 85% of
all incidences of uveitis [84]. Corticosteroids, such as fluocinolone acetonide, difluprednate,
fluormetholone, and triamcinolone acetonide, as well as immunomodulatory medications,
including rapamycin, infliximab, and methotrexate, may be applied topically to treat
anterior uveitis.

The inadequate bioavailability and the ocular tissues’ barrier properties prevent the
transfer of administered medications to deeper ocular tissues, which may lead to the failure
of the uveitis treatment. Consequently, the use of an efficient drug delivery system could
enhance the bioavailability and improve the activity of ocularly applied corticosteroids
and immunomodulatory medications [85,86]. As seen in Table 1, the use of different drug
delivery systems led to the formation of more efficient treatment choices.

2.4. Endophthalmitis

The word “endophthalmitis” refers to an infection of the aqueous vitreous humors
and/or the surrounding ocular tissues brought on by bacteria or fungi. Endophthalmitis is
considered an uncommon eye disease; however, it may cause a severe type of inflammation
and might result in irreparable vision loss. Endophthalmitis can be exogenous or endoge-
nous depending on how the infection is transmitted to the eye. Exogenous endophthalmitis
is most usually brought on by microorganisms that enter the eye through an infection in
the cornea, surgery, or an eye injury. In contrast, endogenous endophthalmitis occurs when
the bacteria or fungus enter the eye through the bloodstream [87]. Gram positive bacteria
e.g., Staphylococcus aureus and Streptococcus species [88], as well as gram negative bacteria
e.g., Klebsiella species and E. coli, are the major causes of endophthalmitis [88–90].

The current treatment for endophthalmitis involves repeated intravitreal injections of
antimicrobial, antifungal, or antiviral agents. This procedure increases the complications
and commonly results in blindness by causing irritation, ocular pain, a rise in the intraoc-
ular pressure, intraocular hemorrhage, a greater risk of retinal detachment, and retinal
damage [91–95]. Consequently, the development of drug delivery systems for antimicro-
bial, antifungal, or antiviral agents could enhance ocular tissue penetration and activity
noninvasively (Table 1).
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2.5. Cytomegalovirus Retinitis

Cytomegalovirus (CMV) retinitis is still the most common ocular-invading virus in
patients with acquired immunodeficiency syndrome (AIDS) [96,97]. Patients continue to be
at risk for developing CMV retinitis predominantly as a result of either a delayed diagnosis
of HIV infection or as a result of noncompliance, intolerance, or resistance to antiretroviral
therapy [98]. Even though the prevalence of CMV retinitis has significantly decreased due to
development of more effective treatments, CMV retinitis is still a major contributor to vision
loss in AIDS patients managed with antiretroviral drugs [99]. Therefore, understanding the
incidence rate and risk factors associated with the development of CMV retinitis is essential
for both patients and medical professionals.

CMV retinitis could be controlled via intravitreal injection of antiviral drugs, such as
ganciclovir, foscarnet, and cidofovir [100,101]. These drugs were produced in noninvasive
sustained release nanocarrier formulations employing a range of drug delivery systems
(Table 1).

2.6. Retinal Diseases
2.6.1. Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is a condition that damages the retina’s
macular area and results in a gradual loss of the central vision clarity [102–104]. The
incidence of AMD is rising progressively with age. The percentage of AMD cases in the
United States increases from 2% at age of forty to about 25% by the age of eighty [105].
Wet and dry are two different types of AMD. A persistent disorder called dry AMD often
causes some degree of visual impairment and sometimes leads to complete blindness. In
contrast, wet AMD only affects about 15% of AMD patients; it manifests suddenly and, if
untreated, advances quickly to blindness [106,107]. When AMD is first developing in the
asymptomatic early stages, the retina develops drusen, which are aggregates of insoluble
extracellular lipid and protein [108]. Although AMD typically never develops without
antecedent drusen development, drusen regression is connected to the progression of
intermediate AMD to geographic atrophy [109,110]. Geographic atrophy, which is one late
stage of dry AMD, is characterized by dispersed zones of degeneration of the overlaying
light-sensitive receptors of the retina, which depend on the retinal pigment epithelium
cells for alimentary maintenance [111]. Choroidal neovascularization (Figure 3, CNV),
another late stage of AMD in which newly immature blood vessels sprout from the choroid
toward the retina, is considered a hallmark of the wet type of AMD [111,112]. Due to
lack of rigidity, fluids leak around or into the retina from these blood vessels. The late
stage of AMD includes the development of neovasculature. Thus, intraocular injections
of medications that target vascular endothelial growth factor (VEGF), one of the key
molecules in the development of neovascularization, have been shown to be particularly
effective [113,114]. Tyrosine kinase inhibitors are furthermore utilized in AMD to reduce
choroidal neovascularization [115]. VEGF can activate CNV via binding to two receptors,
VEGFR-1/flt-1 and VEGFR-2/KDR, both of which have intrinsic tyrosine kinase activity.
Small molecule tyrosine kinase inhibitors are used to disrupt this pathway [116]. Patients
with early, moderate, or atrophic AMD, however, are not eligible for any form of treatment.
Additionally, there are no effective ways to stop the transition from early to advanced
phases at this time [117,118].

Anti-VEGF agents are not readily able to cross the biological membranes that limit
their therapeutic activity in the management of AMD [119]. Modern drug delivery systems
could make the currently prescribed treatments more effective and delay this change
(Table 1).
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2.6.2. Diabetic Retinopathy

Diabetic retinopathy, which is a microvasculature diabetes-related problem, continues
to be a predominant cause of vision loss and preventable blindness in individuals aged
20 to 74, especially in middle- and high-income nations [120]. Globally, an estimated
415 million people had diabetes in 2015, and by 2040, that figure is projected to increase to
642 million [121]. The number of those who have diabetic retinopathy and visual impair-
ment is growing globally due to the rising incidence of diabetes and the increasing number
of diabetics living longer [122]. The primary pathophysiology of diabetic retinopathy is
a combination of changes brought on by hyperglycemia that leads to neovascularization
(Figure 4). The neovascularization is caused by increased retinal vascular permeability,
increased thickness of the retinal capillary basement membrane, inadequate blood supply
to the tissues, and the release of numerous vasoactive molecules. The neovasculature is usu-
ally fragile, unstable, and leaky, causing retinal detachment and vitreous bleeding. Diabetic
retinopathy combined with neovasculature is usually referred to as proliferative diabetic
retinopathy, which can ultimately cause vision loss. Contrarily, the subtype of diabetic
retinopathy known as non-proliferative diabetic retinopathy lacks neovascularization in
the early stages. The development of microaneurysms and the minor dilatation of retinal
blood vessels, which are recognized as early clinical indications of diabetic retinopathy, are
common features of non-proliferative diabetic retinopathy [123,124]. The most common
cause of visual loss in those with diabetic retinopathy is diabetic macular edema. In dia-
betic macular edema, the macula swells or thickens as a result of fluid building up sub-
and intra-retinally and inside the macula as a result of the collapse of the blood–retinal
barrier [125].

Antiangiogenics, steroids, anti-inflammatories, and antioxidant medications are the
most popular treatments for diabetic retinopathy. However, most of these medicaments
have poor ocular penetration and require implantation via surgery. Therefore, the develop-
ment of more advanced drug delivery technologies may improve the potency of currently
prescribed drugs, as shown in Table 1.
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Table 1. Chronic eye conditions, available therapies, and drug delivery systems and their merits.

Disease Treatment Drug Delivery System Platform Advantages of Delivery
Systems In Vivo Refs.

D
ry

ey
e

sy
nd

ro
m

e

Te
ar

su
bs

ti
tu
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s Hypromellose Solution [126]

Methylcellulose and
derivatives Solution [127]

hyaluronic acid Solution [128]

A
qu

eo
us

se
cr

et
ag

og
ue

s

Diquafosol sodium Solution [129]

Pu
nc

ta
l

pl
ug

s Collagen and atelocollagen In situ hydrogel Prolonged activity [49,50,130]

methacrylate-modified silk
fibroin In situ hydrogel Prolonged activity [54]

M
uc

in
se

cr
et

a-
go

gu
es

Rebamipide
Nanoparticles Sustained release [131]

Liposomes Improved activity [132]
Micelles Improved penetration [133]
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Cyclosporine Micelles Improved activity [134]
Self-nanoemulsifying Improved efficacy [135]

Liposomes Improved activity [136]
Nanoparticles Improved activity [137]

Nano-emulsion Improved penetration [138]
Solid lipid nanoparticles Controlled release [139]

In situ hydrogel Improved activity [134]
Epigallocatechin gallate Nanoparticles Extended activity [140]

In situ gels Enhanced efficacy [141]
Lactoferrin Nanoparticles Enhanced efficacy [142]

Nanocapsules Controlled release [143]
Liposomes Reduced irritation [144]

Nanostructured lipid carriers Controlled release [145]
Vitamin A Liposomes Improved activity [146]
Tacrolimus Nanoparticles Improved penetration [147]

Progylcosomes Improved activity [148]
Microcrystals Improved efficacy [149]

Liposomes Improved retention time [150]
Micelles Prolonged activity [151]

Nanocapsules Improved activity [152]

C
or

ti
co

st
er

oi
ds

Dexamethasone Dendrimer Improved activity [153]
Nano-wafer Improved activity [154]

Nanostructured lipid carriers Improved activity [155]
Nanoparticles Improved penetration [156]

Micelles Release modulation [157]
Nanosuspension Prolonged activity [158]
Nano emulsion Improved activity [159]
Nanosponges Improved permeability [160]

Fluorometholone Nanoparticles Improved activity [161]
Triamcinolone acetonide Micelles Release modulation [60]

Nanoparticles Improved activity [162]
Hydrocortisone Nanosuspension Prolonged activity [158]

Micelles Improved targeting [163]
Nanoparticles Improved penetration [163]

Nanosuspension Prolonged activity [158]
Prednisolone Nanoparticles Prolonged activity [164]

Nano capsules Reduced toxicity [165]
Lotep

rednol etabonate Nanoparticles Improved penetration [166]

N
on
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ti
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nfl
am

m
at
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y
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s

Diclofenac sodium Nanoparticles Improved bioavailability [167]
Nanosuspension Prolonged activity [168]

Pranoprofen Nanosuspension Improved activity [169]
Nanoparticles Improved activity [169,170]

Bromfenac sodium Liposomes Extended release [171]
Nanoparticles Improved permeation [172]

Cubosomes Improved bioavailability [61]
Ketorolac Nanoparticles Improved delivery [173]

ly
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yt
e
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Lifitegrast Solution [174,175]
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Systems In Vivo Refs.
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s

Latanoprost Nanoparticles Controlled release [176]
PEGylated solid lipid Improved permeability [177]

Micelles Extended release [178]
Cubosomes Sustained release [179]

Nanoparticles Improved permeability [180]
Travoprost Gold nanoparticles Improved stability [181]

Liposomes Sustained release [182]
Spanlastics Prolonged activity [183]

Nanoemulsion Improved pharmacokinetics [75]
Implant Controlled release [184]

Bimatoprost Nanoparticles Improved therapeutic activity [185]
Gold nanoparticles Controlled release [186]

Nanoparticle hydrogel Controlled release [187]
Microemulsion Improved permeability [188]

Graphene oxide-laden Controlled release [189]
Implants Sustained release [190]

Nanovesicular systems Sustained release [191]
Inserts Extended release [192]

Unoprostone Transscleral device Sustained release [193]

R
ho

ki
na

se
in

hi
bi

to
rs Fasudil Liposomes Enhanced bioavailability [194]

Microspheres Sustained release [195]
Ripasudil Solution [196]
Netarsudil Solution [197]

β
-a

dr
en

er
gi

c
bl

oc
ke

rs

Timolol Nanoparticles Extended release [198]
Micelles Extended release [178]

Cubosomes Improved bioavailability [199]
Nanogel Sustained release [200]

Gelatinized core liposomes Improved encapsulation [201]
Microemulsion Improved bioavailability [202]

Levobunolol Nanoparticles Extended release [203]
Microparticles Sustained release [76]

Carteolol Nanocapsules Improved activity [204]
Nanoparticles Improved activity [205]
Chitosomes Improved penetration [206]

Metipranolol Nanocapsules Reduced systemic side effects [207]
Betaxolol Liposomes Extended activity [208]

Nanoparticles Controlled release [209]
Niosomes Improved bioavailability [210]

Bilosomes Improved transcorneal
permeation [211]

α
-a

dr
en

er
gi

c
ag

on
is

ts

Brimonidine Nanoparticles Sustained release [212]
Inserts Controlled release [213]

Niosomes Sustained release [214]
Microspheres Sustained release [215]

Liposomes Improved effectiveness [216]
Implant Sustained release [217]

Gelatin-core liposomes Improved drug loading [77]
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Dorzolamide Nanoparticles Improved activity [218]
Nanoemulsion Enhanced ocular delivery [219]

Liposomes Prolonged action [78]
Microparticles Sustained release [220]

Niosomes Improved activity [221]
Implant Extended drug delivery [222]
Inserts Improved activity [223]

Brinzolamide Nanoparticles Improved therapeutic activity [224]
Nanocrystals Improved penetration [225]

Liposomes Sustained release [226]
Nanocapsules Improved bioavailability [227]
Nanoemulsion Improved therapeutic efficacy [228]

Nanofibers Improved patient compliance [229]
Implant Sustained release [230]

Acetazolamide Cubosomes Improved therapeutic efficacy [231]
Spanlastics Enhanced ocular delivery [232]

Transgelosomes Enhanced ocular delivery [233]
Implants Sustained release [234]
Niosomes Improved permeability [235]
Bilosomes Improved permeability [236]

Microsponges Improved therapeutic efficacy [237]
Dendrimers Sustained release [238]

C
ho

lin
er

gi
c

ag
on

is
ts Pilocarpine Nanoparticles Sustained release [239]

Nanocapsules Improved bioavailability [240]
Dendrimers Prolonged residence time [241]

U
ve

it
is

C
or

ti
co

st
er

oi
ds

Fluocinolone acetonide Implant (Retisert®) Sustained release [242]
Nanoparticles Improved bioavailability [243]

Difluprednate Microneedles Sustained release [244]
Fluormetholone Nanoparticles Improved penetration [245]

Nanocrystals Improved sustained activity [246]
Triamcinolone acetonide Nano lipid carriers Improved penetration [247]

Im
m

un
om

od
ul

at
or

dr
ug

s

Adalimumab Hydrogel Improved permeability [248]
Infliximab Liposomes Prolonged activity [249]

Methotrexate Implant Sustained release [250]
Sirolimus (Rapamycin) Implant Extended release [251]

Micelles Sustained release [252]
Exosomes Improved therapeutic activity [253]
Liposomes Improved therapeutic activity [86]

En
do

ph
th

al
m

it
is

A
nt

im
ic

ro
bi

al
s

Daptomycin Nanoparticles Noninvasive and improved
activity [254]

Vancomycin Nanostructured lipid carriers Improved permeability and
activity [255]

Nanoparticles Sustained release [256]
Thermoresponsive hydrogels Controlled release [257]

Liposomes Improved permeability [258]
Implant Controlled release [259]

Niosomes Improved permeability [260]

Ceftazidime Nanoparticles Improved activity and
permeability [261]
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Table 1. Cont.

Disease Treatment Drug Delivery System Platform Advantages of Delivery
Systems In Vivo Refs.

En
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Amphotericin B Liposomes Improved activity-reduce
toxicity [262]

Voriconazole Thermo-sensitive in situ gel Sustained release [263]
Nanoparticles Improved permeability [264]
Microemulsion Controlled release [265]

Elastosomes Improved activity and reduced
toxicity [266]

Micelles Improved stability [266]
Liposomes Improved permeability [267]

A
nt

iv
ir

al
s

Cidofovir Micelles Prolonged activity [268]
Liposomes Prolonged activity [269]

Foscarnet Liposomes Improved activity and
permeability [270]

Ganciclovir Nanoparticles Sustained release [271]
Glycerosomes Sustained release [272]
Microemulsion Improved permeability [273]

Vitrasert Prolonged activity [274]
Minitablets Sustained release [275]

R
et

in
al

di
se

as
es

A
ge

-r
el

at
ed

m
ac

ul
ar

de
ge

ne
ra

ti
on

A
nt

i-
V

EG
F

A
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Ranibizumab Nanoparticles Improved activity [276]
(Antibody fragment) Microparticles Improved intravitreal delivery [277]

Liposomes Increased encapsulation-release [278]
Quantum dots Sustained release [279]

Implant Sustained release [280]
Bevacizumab Nanoparticles Sustained delivery [281]

(Monoclonal antibody) Bi-layered capsule Sustained delivery [282]
Nanocapsules Improved bioavailability [283]

Implant Sustained release [284]
Microparticles Sustained release [285]

Liposomes Sustained release [286]
Aflibercept (VEGF-Trap) Nanoparticles Sustained drug release [287]

Microspheres Extended release [288]
Sunitinib Nanoparticles Superior prolonged activity [289]

Micelles Extended release [290]
Axitinib Nanoparticles Superior activity [291]

Pegaptanib PEGylated aptamer Prolonged activity [113]

G
en

e
th

er
ap

y VEGF-siRNA Liposomes Improved activity-stability [292]
Nanoball Improved activity-targeting [293]

Nanoparticles Improved therapeutic activity [294]

In
te

gr
in

an
ta

go
ni

st
s

C16Y peptide Nanoparticles Sustained release [295]

A
nt

io
xi

da
nt

s Serine-threonine-tyrosine
peptide Nanoparticles Targeting [296]

Resveratrol Nanoparticles Sustained release [297]
Curcumin Liposomes Improved activity [298]

Astragaloside Nanocapsules Improved activity [299]
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Anti-Flt1 peptide Nanoparticles Sustained release [300]
Micropump implant On-demand targeting [301]

Fenofibrate Nanoparticles Controlled release [302]
Pioglitazone Nanoparticles Controlled/improved activity [303]

Apatinib Nanoparticles Improved activity [304]
Silicate Nanoparticles Improved activity [305]

Tacrolimus Nanoparticles Improved activity [306]
Sorafenib tosylate Nanoparticles Improved activity [307]

Octreotide Nanoparticles Improved activity-targeting [308]

A
nt

i-
in

fla
m

m
at

or
y

an
d

an
ti

ox
id

an
ts

p-Coumaric acid Nanoparticles Improved activity [309]
Connexin43 mimetic peptide Nanoparticles Targeting [310]

Inulin D α-tocopherol
succinate Nanomicelles Improved activity [311]

Citicoline Liposomes Improved permeation [312]

Melatonin Nanoparticles Controlled release and enhanced
tolerability [312]

3. Overview of Ocular Delivery Systems

Many disorders of the anterior region of the eye may be efficiently treated via topical
administration; however, it is more challenging to target conventional therapeutic doses
to the posterior of the eye in this manner. Thus, various nanocarriers have been created
and investigated for the transport of drugs and genes to the anterior or the posterior
portions of the eyes. The most popular nano-drug delivery systems are depicted in Figure 5,
and these can be utilized to increase the activity and bioavailability, and/or lessen the
toxicity of the active pharmaceutical ingredients used. Liposomes, nanoparticles, micelles,
inserts, implants, hydrogel, and emulsions are some of the most frequently utilized drug
delivery systems.
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3.1. Liposomes

Liposomes (Figure 5) are closed vesicles made of a phospholipid bilayer that can
contain both drugs that are soluble in fat [313] and those that are soluble in water [314].
Due to their biodegradability, biocompatibility, and capacity to serve as drug carriers,
liposomes have been thoroughly investigated for topical ocular administration (Table 1).
Liposomes are particularly useful for large molecular weight and inadequately water-
soluble drugs because they promote drug permeation through ocular tissues by virtue
of their superior spreading ability and rheological properties that enable prolonging the
drug availability on the surface of the eye [86,315]. Liposomes’ amphiphilic lipids form a
tear compound-interacting sublayer when they make contact with tear lipid components.
Polar heads and tails face the polar and non-polar tear lipid components, respectively, and
help distribute the medication throughout the ocular surface [316]. Extensive research
has examined the merits of liposomes for ocular use, minimizing potential drug toxicity
and improving their absorption and bioavailability compared to an unencapsulated drug.
These medications include vancomycin, tobramycin, ganciclovir, fluconazole, brinzolamide,
triamcinolone acetonide, and cyclosporine A. Drug-loaded liposomal formulations injected
intravitreally have a number of benefits. Some benefits include lengthening the half-life of
drugs [317], safeguarding labile compounds [318], and prolonging the time that liposomes
spend in the tissues of the eye [319].

3.2. Polymeric Micelles

Amphiphilic polymers can self-assemble into different structures, known as micelles
(Figure 5). The formation of micelles within the nanometer range can efficiently improve
the aqueous stability and enhance cell permeability. Prior research has demonstrated that
the use of a nanomicelle formulation increased medication absorption in the eye [320,321].
Nanomicelle formulations are primarily used to improve the solubility of medications
with low solubility and subsequently improve their bioavailability. Hesperidin, Sirolimus,
Voriconazole, and Sunitinib are only a few of the medications that were made into polymeric
nanomicelles with better solubility and therapeutic efficacy (Table 1).

3.3. Polymeric Nanoparticles

Polymeric nanoparticles (Figure 5) could be produced by the use of naturally occurring
or synthetically produced polymers. Chitosan, hyaluronic acid, carboxymethylcellulose
sodium, albumin, and sodium alginate are some examples of natural polymers, whereas
poly(lactic-co-glycolic acid), poly(-caprolactone), and poly(ethylene glycol) are examples
of synthetic polymers [322]. Some retinal drugs are currently not performing as expected
due to the physical and chemical properties of the medications, as well as the distinctive
anatomical structure of the eye. The bioavailability of these drugs was significantly in-
creased [323], their toxicity was reduced [324], invasive procedures could be avoided [325],
and pharmacokinetic modulation was achieved [326] via incorporation into polymeric
nanoparticles (Table 1). These drugs include dexamethasone, cyclosporin, latanoprost,
voriconazole, and ganciclovir. Hyaluronic acid, polyethylene glycol, and chitosan are ex-
amples of mucoadhesive polymers that may be employed to alter nanoparticles to lengthen
their pericorneal residence duration [327]. Moreover, mucus penetrating nanoparticles,
which possess low surface tension, low viscosity, and higher hydration water content,
can enhance the penetration of therapeutic medicines through the cornea, increasing their
bioavailability and resulting in better pharmacologic results. Consequently, mucus pene-
trating nanoparticles may significantly improve the treatment of posterior ocular problems,
which include posterior uveitis, CMV, and retinal disorders [328].

3.4. Solid Lipid Nanoparticles

Lipids have been used to ameliorate the limited water solubility of several lipophilic
drugs and adapt them as a drug delivery system [329]. Müller and Lucks initially developed
solid lipid nanoparticles (SLNs, Figure 5) in 1996, which received the attention of scientists
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as a popular, stable, safe, and effective nanoscale drug delivery device. A surfactant layer
that surrounds a solid lipid core in SLNs stabilizes and holds the medication [330]. Drug
molecules can be found mostly in the center of particles or molecularly scattered throughout
the matrix, depending on the drug solubility and the drug/lipid ratio [331]. SLNs are
considered an efficient system intended for ocular drug delivery. SLNs can improve corneal
drug absorptivity, enhance ocular tissue penetration and bioavailability, prolong residence
time, and provide extended drug release properties [332]. SLNs were efficiently used
to improve the delivery of bimatoprost [185], ofloxacin [333], and dorzolamide [334], as
shown in Table 1.

3.5. Hydrogels

Hydrogels (Figure 5) are produced when polymeric solutions are crosslinked to form
a network. The hydrogel complexation is formed on the basis of hydrophilic interactions
between the polymer tail and water molecules [335]. Hydrogels are widely employed to
provide ocularly applied or injectable dosage forms to a variety of eye regions. For ocular
application, there are various hydrogel formulations that have FDA approval. A hydrogel
sealant called ReSure® has been authorized for use in the non-operative treatment of clear
corneal incisions. Hydrogels were also used to formulate and enhance the therapeutic
activity of ocularly applied drugs, such as dexamethasone [336], bevacizumab [337], and
timolol [338], as shown in Table 1.

3.6. Dendrimers

Dendrimers (Figure 5) are globular, negatively, positively, or neutrally branch-like
nanostructured polymers. They derive their net charge from the functional groups, which
are located at the ends of their branches [339]. These molecules consist of a fundamental
unit called the “core”, which comprises the major component, and side chain units called
“dendrons” [340]. Drugs may be conjugated to the ligands on the dendrimer surface or may
be retained in the dendrimer core. Dendrimer manufacturing, generation, surface character-
istics, and conjugation technique all have an impact on the drug-loading and drug-release
kinetics of dendrimers [341]. As a result of their ability to selectively target inflammatory
cells while causing no harm to healthy tissue, dendrimers have proven to be a viable drug
delivery vehicle for the treatment of inflammatory eye conditions. The capacity to lower
medication toxicity off-target is the key advantage of dendrimers’ targeting abilities [153].
Utilizing dendrimers effectively can increase the therapeutic effectiveness of various ac-
tive pharmaceutical compounds (Table 1), including pilocarpine [241], tropicamide [241],
dexamethasone [342], brimonidine, and timolol [343].

3.7. Nanocrystals

Nanocrystals (Figure 5) are crystals of therapeutic drugs with particle sizes as small as
a few hundred nanometers, where pure drug crystals may occasionally be stabilized by the
addition of surface active agents or polymeric solutions [344]. The benefits of nanocrystals
over conventional nanocarriers, such as their high drug payload and comparative ease
of manufacture, make them appealing candidates for the delivery of medications that are
not readily water soluble [345,346]. The preparation of therapeutic drugs in the form of
nanocrystals for ocular administration has various advantages. These advantages include
better tolerability, increased ocular absorption, providing intermediated and prolonged
release of drugs in the eye, and improved ocular permeation [347]. They also include
improved ocular safety, increased formulation retention in cul-de-sac, and enhanced ocular
permeation [152]. A number of medications used ocularly have been transformed into
nanocrystals (Table 1) with enhanced properties, and these include dexamethasone [348],
itraconazole [349], tedizolid [350], and brinzolamide [227]. Moreover, Novartis Pharmaceu-
tical Corporation’s formulation of nepafenac nanocrystals received approval for commercial
release (FDA, 2012) under the brand name Ilevro®.
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3.8. Cubosomes

Cubosomes (Figure 5) are made up of two inner aqueous pathways that are separated
into two arched interpenetrating lipid bilayers, which are structured in three dimensions
resembling honeycombs [351]. These pathways can be occupied by a variety of bioactive
molecules, including natural bioactives, chemical pharmaceuticals, peptides, polypeptides,
and proteins [352]. Cubosomes are thought to be promising delivery systems because of
their special characteristics, including thermodynamic stability, bioadhesion, the capacity
to encapsulate different types of drugs, and their potential to control drug release [353].
Active medicines and macromolecules can successfully be applied topically to the posterior
portion of the eye using cubosomes (Table 1). These drugs include beclomethasone [352],
flurbiprofen [354], timolol [199], and brimonidine [355].

3.9. Niosomes

Niosomes, which are a type of vesicular system that includes a non-ionic surfactant,
are closed bilayer structures produced once the nonionic surfactants self-assemble in an
aqueous media to create nanocarriers (Figure 5). Researchers have begun using niosomal
systems to treat severe inflammatory diseases and conditions, such various malignancies,
because of their potential to boost the bioavailability and efficiency of the encapsulated
therapeutics [356]. Niosomes are being investigated more and more for improving drug
delivery to both segments of the eye, anterior and posterior, as well as promoting drug
penetration and retention in ocular tissues. As a consequence, niosomes showed a con-
siderable increase in the absorption and transcorneal permeability of topically applied
drugs at the ocular surface (Table 1). These drugs include cyclopentolate [357], voricona-
zole [358], acetazolamide [359], gentamicin [360], brinzolamide [361], pilocarpine [362], and
tacrolimus [363]. Additionally, niosomes, particularly charged vesicles, have been effec-
tively used to transfer genes by subretinal or intravitreal injection to the retinal area [364].

3.10. Emulsions

An emulsion (Figure 5) is a uniform dispersion system that is formed upon mixing two
or more immiscible liquids under certain circumstances [365]. Lipid-based emulsions have
become a potential vehicle for ocular medication administration. The emulsions enhance
ocular delivery using one of two major strategies, either by improving ocular permeability
or by lengthening the period the formulation is retained on the ocular surface [366]. Both
hydrophilic and lipophilic drug types may be loaded into emulsions [367,368]. Emulsions
have been successfully used to create more effective formulations for several medications
used intraocularly that have increased absorption and therapeutic effectiveness. These
drugs include cyclosporine A [369], coumarin-6 [370], azithromycin, and disulfiram [371].

3.11. Bilosomes

One type of vesicular drug delivery system is the bilosome (Figure 5), which is made
up of non-ionic amphiphilic compounds with integrated bile salt molecules. The nega-
tively charged bile salts serve to maintain the bilosomal structure [372]. In comparison to
niosomes and liposomes, these drug carriers are more stable and can effectively increase
drug absorption through biological membranes [373]. Moreover, bilosomes can enhance
the permeability of polysaccharides, proteins, and polypeptides, which are poorly trans-
ported through mucosal epithelial cells [374]. Previous research studies have assessed
the effectiveness of bilosomes in the administration of ocular drugs (Table 1) and found
that bilosomes are well tolerated by corneal tissues [236]. These drugs include tercona-
zole [375], acetazolamide [236], ciprofloxacin [376], ciprofloxacin [376], agomelatine [377],
and betaxolol [211].

3.12. Nanocapsules

Nanocapsules (Figure 5) are a subtype of nanoparticles that are comparable to vesicular
systems, in which a medicine is contained in a hollow vessel with an inner liquid core
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encircled by a polymeric coating [378]. Nanocapsules are well-known to be retained in
the cornea for a prolonged time and to enhance penetration throughout the deep ocular
tissues [152]. Thus, the development of topically applied drug-loaded nanocapsules could
reduce uncomfortable intravitreal injections and systemic delivery, which have serious side
effects [152]. The therapeutic action of several medications was effectively potentiated via
formulation in the form of nanocapsules (Table 1). These drugs include bevacizumab [379],
prednisolone [165], tacrolimus [152], brinzolamide [227], and cyclosporine [380].

3.13. Spanlastics

Elastic niosomes, also known as spanlastics (Figure 5), are a subtype of vesicular drug
delivery systems that are relatively new to the market. They resemble niosomes (non-ionic
surfactant vesicles), except they contain an edge activator. They were first described as
systems for ocular drug delivery [381], but since then, they have been used to deliver
medications to a variety of bodily organs. The spanlastics’ bilayers become more elastic
and deformable when an edge activator is present, which improves drug absorption across
biological membranes. Spanlastics were efficiently used to payload hydrophilic, hydropho-
bic, and amphiphilic therapeutic pharmaceuticals for ocular use, especially the delivery
to the posterior segment (Table 1). These drugs include ketoconazole [381], cyclosporine
A [382], clotrimazole [383], and vanillic acid [384].

4. Long-Acting Ocular Drug Delivery Devices
4.1. Solid Devices

Solid ocular devices are applied to the eye in a solid form and include inserts, implants,
contact lenses, and films. Ocular inserts are objects that could be loaded with therapeutic
drugs and inserted into the conjunctival sac for extending the duration of medicine de-
livery. Based on their physicochemical characteristics, the inserts are divided into three
categories: bioerodible, soluble, and insoluble [385]. Soluble and erodible devices gradually
dissolve while dispensing the medication and require no need for removal, while insoluble
inserts can typically distribute medications at a controlled, predetermined rate through
reservoir and matrix systems, but they must be removed from the eye [386]. The system
prolongs drug activity, increases drug residency, improves bioavailability, and prevents
crest and trough release profiles to subvert the negative effects that go along with those
features [385]. Bimatoprost [387], acyclovir [388], triamcinolone acetonide [389], voricona-
zole [390], ketorolac [391], azithromycin [392], and dorzolamide [223] are just a few of the
medications that have been delivered non-invasively to the eye using ocular inserts. A list
of the commercially available long-acting drug delivery systems is shown in Table 2.

Table 2. Commercial ocular drug delivery systems/devices for different chronic eye conditions.

Platform/
Device

Commercial
Brand

Therapeutic Agent (Approval
Year, Country) Excipient Composition Clinical

Implication
Route of

Administration Refs.

Li
po

so
m

es

Visudyne® Verteporfin (2000, USA)
Dimyristoylphosphatidylcholine

and egg yolk
phosphatidylglycerol

Choroidal
neovascularization

in AMD
IV [393]

Amphotec® Amphotericin B (1996, USA) Cholesteryl sulfate Fungal
endophthalmitis IV [394]

Abelcet® Amphotericin B (1995, USA)
Dimyristoylphosphatidylcholine
and dimyristoylphosphatidyl-

glycerol

Fungal
endophthalmitis IV [395]

AmBisome® Amphotericin B (1997, USA)

Hydrogenated soy
phosphatidylcholine,

cholesterol, and
distearoylphosphatidylglycerol

Fungal
endophthalmitis IV [396]

Ozodrop® Sunflower ozonized oil (NA,
Italy)

LipozonEye, hypromellose and
polyhexamethylene biguanide

Post-cataract
surgery

inflammation
Topical [397]

Lacrisek® Vitamin A palmitate, vitamin E
(NA, Italy) Hydrogenated phospholipids Dry eye syndrome Topical [398]

Tears Again® Vitamin A palmitate, vitamin E
(NA, USA) Soy lecithin, phenoxyethanol Dry eye syndrome Topical [398]
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Table 2. Cont.

Platform/
Device

Commercial
Brand

Therapeutic Agent (Approval
Year, Country) Excipient Composition Clinical

Implication
Route of

Administration Refs.

Em
ul

si
on

s

Restasis® Cyclosporine A (2002, USA) Polysorbate 80, castor oil Dry eye syndrome Topical [399]

Emustil® Cyclosporine A (NA, Italy) Soybean oil, egg yolk
phospholipids Dry eye syndrome Topical [400]

Refresh
Endura® Cyclosporine A (2020, USA) Polysorbate 80, castor oil Dry eye syndrome Topical [401]

Xelpros® Latanoprost (2018, USA) Castor oil, propylene glycol Glaucoma Topical [402]

Durezol® Difluprednate (2008, USA) Castor oil, polysorbate 80 Diabetic macular
edema Topical [85]

Verkazia® Cyclosporine A (2017, UK) Medium-chain triglyceride,
Tyloxapol, and poloxamer 188

Vernal
keratoconjunctivitis Topical [403]

M
ic

el
le

s

Cequa® Cyclosporin A (2018, USA) Polyoxyl hydrogenated castor
oil, polyalkoxylated alcohol Dry eye syndrome Topical [54]

AzaSite® Azithromycin (2007, USA) Polycarbophil Blepharitis Topical [404]

M
ic

ro
an

d
na

no
pa

rt
ic

le
s

Macugen® Pegaptanib (2004, USA) PEG-40kDa AMD IVT [405]

Trivaris® Triamcinolone acetonide
(2005, USA) Sodium hyaluronate Uveitis IVT [406]

Inveltys® Loteprednol etabonate
(2018, USA) Pluronic F127 Post-operative

inflammations Topical [407]

Eysuvis® Loteprednol etabonate
(2020, USA) Pluronic F127 Dry eye syndrome Topical [407]

Triesence® Triamcinolone acetonide
(2005, USA) Carboxymethyl cellulose Dry eye syndrome IVT [408]

Tobradex ST® Tobramycin and dexamethasone
(2003, USA) Xanthan gum Bacterial

conjunctivitis Topical [403]

BromSite® Bromfenac (2016, USA) Polycarbophil
Post-operative

inflammation and
pain reliver

Topical [409]

Besivance® Besifloxacin (2009, USA) Polycarbophil Bacterial
conjunctivitis Topical [410]

Im
pl

an
ts

Ozurdex® Dexamethasone (2009, USA) Acid-terminated PLGA (30%) +
ester-terminated PLGA (10%) Macular edema IVT [411]

Retisert® Fluocinolone acetonide (2005,
USA)

Ethylene-vinyl acetate coated
with polyvinyl alcohol Uveitis IVT [412]

Vitrasert® Ganciclovir (1996, USA) Ethylene-vinyl acetate coated
with polyvinyl alcohol

Cytomegalovirus
retinitis IVT [412]

I-vation® Triamcinolone acetonide
(2007, USA)

Poly (methyl methacrylate) and
ethylene vinyl acetate

Diabetic macular
edema IVT [413]

Iluvien® Fluocinolone acetonide
(2014, USA)

Polyimide tube coated with
Polyvinyl alcohol

Diabetic macular
edema IVT [414]

Medidur® Fluocinolone acetonide
(2014, USA) Polyvinyl alcohol Diabetic macular

edema IVT [415]

Posurdex® Dexamethasone (2009, USA) PLGA Macular edema IVT [416]

Surodex® Dexamethasone (2008, USA) PLGA Post-operative
inflammation

Subscleral
placement [417]

Renexus® Encapsulated cell technology
(NA) Polyethylene terephthalate AMD IVT [418]

Yutiq® Fluocinolone acetonide
(2018, USA) Polyimide/polyvinyl alcohol Diabetic macular

edema IVT [419]

Durysta® Bimatoprost (2020, USA)
Poly(D,L-lactide), PLGA, and

poly (D,L-lactide) with an acid
end group

Glaucoma ICI [420]

Dexycu® Dexamethasone (2018, USA) Acetyl triethyl citrate Post-operative
inflammation

Posterior chamber
injection [421]

Susvimo® Ranibizumab (2020, Germany) Polysulphone, silicone AMD IVT [422]

In
se

rt
s

Ocusert® * Pilocarpine (1972, USA) Polyethylene co-vinyl acetate Glaucoma CI [423]

Lacrisert® Hydroxypropyl methyl cellulose
(1992, USA)

Hydroxypropyl methyl
cellulose

Moderate-to-severe
dry eye syndrome CI [424]

BIM ring® Bimatoprost (NA)
Support made of

polypropylene and covered in a
silicone matrix.

Glaucoma CI [425,426]

Dextenza® Dexamethasone (2018, USA) Polyethylene glycol Post-operative
inflammation CI [414]

Mydriasert®

Tropicamid, phenylephrine
hydrochloride, and

hydroxypropyl methyl cellulose
(2015, UK)

Ammonium methacrylate
copolymer

Diagnosis (pupil
dilator)

Intracanalicular
insertion [427]
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Table 2. Cont.

Platform/
Device

Commercial
Brand

Therapeutic Agent (Approval
Year, Country) Excipient Composition Clinical

Implication
Route of

Administration Refs.

M
ic

ro
ne

ed
le

s

Xipere™ Triamcinolone acetonide (2019,
USA)

Carboxymethylcellulose
sodium, and polysorbate 80

Macular edema
associated with

uveitis
SCS [428,429]

D
ru

g
el

ut
in

g
co

nt
ac

tl
en

s

Acuvue® Ketotifen fumarate (2017, USA) Etafilcon A Ocular allergic itch Topical [430]

Abbreviations: IVT: intravitreal injection; IV: intravenous; PLGA: poly (lactic-co-glycolic acid); SCS: suprachoroidal
space injection; ICI: intracameral injections; CI: cul-de-sac insertion. * The pilocarpine-loaded non-biodegradable
insert (Ocusert®) is obsolete due to lack of clinical outcomes.

Ocular implants are solid devices that are used as medication delivery systems to
slowly release molecules from polymeric matrices that are either biodegradable or not
over the course of months to years. Contrary to non-biodegradable implants, which must
be surgically removed after treatment, biodegradable solid implants are made utilizing
biodegradable polymers, including polycaprolactones, polyglycolic acid, polylactic acid,
and polylactic-co-glycolic acid, and polyanhydrides. However, these implants can have
unpredictable drug release characteristics [431]. These implants can be placed at different
sites in the eye, including the cameral, vitreal, scleral, episcleral, and subconjunctival areas.
Implants have a number of benefits over more conventional means of administering medi-
cation to the eye, including bypassing the blood–ocular barrier and delivering a defined
drug amount directly to the target site for a long period. Therefore, the danger of infection
or retinal detachment may be reduced with the use of implants placed intravitreally, which
may also localize therapy to the vitreous with minimal exposure to the systemic circula-
tion [412]. In addition, implants minimize the need for repeated treatments by continuously
supplying medication over a long period and are consequently suitable as a treatment of
long-term eye disorders. DurasertTM is a solid polymer implant technology in which small
drug molecules can be released for up to three years. Three FDA approved implants using
this technology including Iluvien®, Retisert®, and Vitrasert® [432].

Drug-eluting contact lenses are solid dosage forms that have high potential to produce
prolonged drug residence and close drug contact with the cornea, resulting in a major
enhancement of drug bioavailability [433]. Consequently, drug-laden contact lenses pro-
vide several advantages, such as lowering the overall amount of medication required,
decreasing dosing frequency, and diminishing the quantity of medication lost through
systemic absorption [434]. Molecular imprinting, supercritical fluids, ion ligation, and
colloidal polymeric nanoparticles are a few techniques that have been designed to pay-
load pharmaceuticals into contact lenses [435]. Many medications have been placed into
contact lenses in an effort to increase their pharmacological activity and move past the
eye’s barriers, which hinder drug delivery, especially for the posterior chamber of the eye.
These medications include dexamethasone [436], phomopsidione [437], latanoprost [438],
a timolol–bimatoprost combination [433], and flurbiprofen [439]. Before some of these
technologies can be used in clinical settings and made commercially available, a number of
problems need to be resolved, including protein adhesion, diversity in the swelling ability,
changes in water content, opacity, surface integrity, strength properties, ion and oxygen
permeation, and drug leakage during manufacturing and storage.

Ocular films are solid sterile dosage forms that are applied topically on the eye sac to
improve ocular bioavailability and remove barriers to ocular drug delivery [440]. The use of
ocular films improves therapeutic efficacy, reduces systemic adverse effects, and minimizes



Pharmaceutics 2023, 15, 1746 21 of 50

dose frequency. In order to maximize the therapeutic response and patient compliance,
ocular films could present intriguing prospects as a vehicle for the administration of thera-
pies. They could thus replace the conventional dosage forms. However, the designation of
efficient films for the ocular delivery of therapeutic medications depends on a thorough
understanding of the medication, the restrictions of drug permeation to ocular tissues,
and the excipients employed. The construction of ocular films should therefore take into
account each of these elements. In an effort to maximize their therapeutic action, a plethora
of medications were administered as ocular films, including acetazolamide [441], timolol
maleate [440], ofloxacin [442], fluconazole [442], and dorzolamide hydrochloride [443].

4.2. Microneedles

Microneedles are structures of a metallic or polymeric nature that range in size from
a few to 200 µm. Microneedles contain tiny protrusions, which reduces their degree of
invasion. There are several microneedle subtypes with a variety of pharmaceutical pur-
poses; however, just three microneedle subtypes play a substantial role on drug delivery to
ocular tissues. These subtypes include solid coated, hollow, and microneedles of dissolving
polymers, as shown in Figure 6 [444].
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Figure 6. Different types of microneedles frequently used for ocular drug delivery. Ocularly applied
microneedles can be classified into (a) solid-coated, (b) hollow, and (c) polymeric microneedles.
(a) Solid coated microneedles are used to puncture the ocular tissue and allow the coated medication
to disperse. (b) Hollow microneedles are tiny needles that completely contain the medication formu-
lation. (c) Polymeric microneedles are constructed of a variety of polymers that are biocompatible
and biodegradable and are easy to install into the ocular tissue, where they then dissolve upon ocular
application and initiate drug release.
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Microneedles with solid coatings are the type that can be used to pierce tissue and
the coating instantly disintegrates. They can then be removed. The perforation will create
a channel with a diameter of a few microns that will effectively distribute the drug [445].
Consequently, the main goal of solid microneedles is to increase the porosity of the cornea
or sclera of the eye (Figure 6a). Metals such as stainless steel and materials such as
silicon probes are employed in the manufacture of microneedles. These materials’ non-
biodegradability and complexity in production make them undesirable for use in ocular
delivery [446]. Coated microneedles have been used successfully to improve the effective-
ness of loaded medications in a variety of eye conditions. Pilocarpine, a medication used
to treat glaucoma, has shown improved absorption when loaded onto coated micronee-
dles [447]. The anti-VEGF drug, bevacizumab, provided customized medicament delivery
to the corneal stroma and a potential impact with fewer adverse effects to treat corneal
neovascularization when loaded into coated microneedles [448].

Micron-sized hollow microneedles are needles with the drug formulation entirely
inside the needles. The loading of microneedles with drug delivery systems could poten-
tially improve therapeutic drug activity [449]. Microneedles were efficiently loaded with
nanoparticles, nano-emulsions, liposomes, and microparticles [450]. Hollow micronee-
dles are mainly composed of borosilicate; however, stainless steel might be used for their
manufacturing. The method for administering medication involves puncturing the ocular
tissue, after which the drug will leak from the microneedles’ hollow spaces (Figure 6b) [449].
Several medicaments were included in hollow microneedles with improved therapeutic
activity. Triamcinolone acetonide was injected into the suprachoroidal area in hollow mi-
croneedles to efficiently manage posterior acute uveitis. The utilization of the microneedles
helped to successfully alleviate posterior uveitis for up to three days with minimal invasion
and without affecting the retina or raising the intraocular pressure [451].

Dissolving polymeric microneedles have been developed as a solution to the many
drawbacks of hollow and solid coated microneedles, such as their manufacture, appli-
cation, and reliability. They have demonstrated their compatibility with ocular tissue in
comparison to their hollow and solid coated counterparts [452]. They are made of several
biocompatible and biodegradable polymers that are simple to implant into the ocular tissue.
After applying the polymeric microneedles to the eye tissue, the medication, which has al-
ready been loaded into the polymeric matrix, is released into the eye tissue (Figure 6c) [453].
Dissolving polymeric microneedles have significantly improved the therapeutic action of
several drugs. The poorly soluble medication amphotericin B was effectively used with
dissolving polymeric microneedles to increase its antifungal effectiveness by enabling
rapid dissolution, excellent tissue penetration, low toxicity, and long-lasting therapeutic
action [454]. By incorporating cyclosporin A into polymeric microneedles that dissolve, a
high molecular weight medication with weak water solubility was effectively delivered to
the ocular tissue with improved drug permeability and activity [455].

4.3. Three-Dimensional Printable Systems

In recent years, experts have predicted that 3D printing will revolutionize the phar-
maceutical industry since it can generate specific doses of individualized medications
with novel designs [456], drug mixtures [457], and targeted drug release properties [458].
Additionally, 3D printing could be employed for the development of highly accurate,
individualized medical instruments [459]. Over the past 10 years, 3D printing has been
heavily utilized in the fields of contact lens manufacturing, drug delivery to ocular tissues,
implants, ocular research, and diagnostic models production [460].

Ocular prostheses, which aid ophthalmic patients in restoring the symmetry of their
face, were successfully developed throughout 3D bioprinting technology with minimal
cytotoxic effects. The 3D-printed prosthesis showed no negative effects on the conjunctival
sac or membrane and provided the best resemblance to the look of a human eye, including
iris color, sclera, and vascular structures [461]. Ocuserts made by 3D printing were also
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used to modulate the pharmacokinetics of ganciclovir-loaded glycerosomes, resulting in
prolonged release, enhanced tissue penetration, and therapeutic potential [272].

Three-dimensional (3D) printing was additionally incorporated into the development
of prosthetic corneal structures in an effort to bypass religious restrictions and drug his-
tories. Artificial corneas created by 3D printing technology were proven a reliable, quick,
convenient, and useful choice [462,463]. Gelatin, collagen, polyvinyl alcohol, and sodium
alginate are the primary materials used to create the 3D-engineered corneas because they
are biodegradable, translucent, permeable to oxygen and nutrients, able to endure shear
stress, and sufficiently robust mechanically [464].

The development of artificial retinas is essential for the design of more efficient systems
for drug delivery, research into disease causes, and the development of cutting-edge
therapeutic choices. Artificial retinas with the best cytocompatibility were created via
3D bioprinting, simulating the natural structure of the human retina [465]. Moreover,
human retinal progenitor cells were effectively maintained in vitro by the use of 3D-printed
polymeric scaffolds. The subretinal implantation of the cell-free scaffolds into retinitis
pigmentosa porcine models did not result in inflammation, infections, or cytotoxicity,
supporting the possibility that they may be used in preclinical studies [466].

Dexamethasone-loaded punctal plugs created by 3D printing demonstrated sustained
drug release for 1 to 3 weeks, depending on the particular polymer or blends of polymers
chosen [37]. Ocular 3D-printed patches have successfully been designed to hold various
pharmacological active constituents, and they may be adjusted to release varying amounts
based on the patient’s demands [467]. Timolol maleate-loaded 3D-printed contact lenses
were successfully utilized to treat glaucoma in patients who did not take their prescribed
glaucoma medications [468]. The lenses had a smooth surface with high printing quality
and released timolol maleate steadily over a period of three days [468].

Three-dimensional micro-stereolithography has been enrolled in the production of
therapeutic devices for controlling intraocular pressure and, consequently, glaucoma. It
combines the advantages of both digital light processing and stereolithography technolo-
gies. Over the past ten years, minimally invasive glaucoma devices have been designed to
boost aqueous humor discharge in an effort to control glaucoma [469]. With the use of 3D
printing techniques, a complex surgical device can be produced with significant flexibility
while maintaining functionality [470].

4.4. In Situ Gelling Implants

Drug implants that are generated when certain conditions are fulfilled are known as
in situ forming implants. They are currently quite popular since they do not require regular
injections into the eye or insertion via surgery. In situ forming implants are administered
as low viscosity solutions that solidify as depots or implants at the targeted site, controlling
the administration of drugs [471]. According to the underlying phase separation process,
numerous parameters might be used to influence the sol-to-gel transition [472]. In situ
gelling implants are advantageous since they are simple to use, very stable, have an
optimized drug release profile, and do not require complicated equipment for ocular
injection [191].

In situ gelling implants were used to formulate a number of ocularly administered
drugs in an effort to increase their therapeutic action, facilitate administration, extend
disease management, and boost patient compliance. Moreover, in situ gelling may offer
a good substitute for the currently available therapies. Triamcinolone acetonide was
successfully developed as a gelling implant with extended drug release that met acceptable
rheological and syringe ability standards. Triamcinolone acetonide was maintained by
the formulation for a course of six weeks [473]. Bimatoprost was effectively combined
into in situ gelling implant for subconjunctival injection with higher stability, cheap cost,
improved solubility, and ease of processing using nano-vesicular systems. With just one
injection, the newly developed formulation may maintain intraocular pressure for up to
8 weeks [191]. Additionally, peptides were loaded onto polymeric nanoparticles in an effort
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to lessen the burst release. In situ (light-sensitive) gelling implants with the peptide-loaded
nanoparticles were used to deliver the medication to the posterior eye in a sustained and
effective manner [474,475].

There are currently no in situ gelling implants available for use in the eyes. However,
two formulations, including bevacizumab, are in the final stages of approval. The first
is a photosensitive in situ gelling implant (OcuLiefTM), while the second is a premade
photosensitive implant (EyeLiefTM). Both of these medicines were developed by the Re-
Vana Therapeutics corporation [476].

A list of the commercially available long-acting drug delivery systems and devices is
shown in Table 2.

5. Implantable Systems/Devices for Drug Delivery

Many chronic ocular illnesses necessitate the use of implanted drug-delivery systems
or devices (IDDS) for management or therapy. IDDS are made to be implanted in order to
regulate the drug efflux and, as a result, lengthen the time that the disease condition is under
control. IDDS have significant benefits over conventional systemic administration. Higher
medicament concentrations in the intended locations can be achieved via site-specific
implantation, which can avoid oral absorption and distribution phases [477]. Additionally,
IDDS increases patient compliance, minimizes parenteral treatment pain, and sustains the
drug concentration in the therapeutic window by a continuous controlled release of the loaded
medication [478]. As a result, IDDS were successfully used in the production of a number
of authorized marketed medications to control a variety of chronic diseases, including eye
chronic disorders, which include glaucoma, uveitis, endophthalmitis, dry eye diseases, AMD,
and diabetic retinopathy. These products include Ozurdex® (Allergan Co., Ltd.), Retisert®

(Bausch&Lomb), Vitrasert® (Bausch&Lomb), and I-vation® (Surmodics Inc.). The technologies
or techniques used to generate IDDS and characterize these products are discussed in the
following sections.

5.1. Polymers Used to Formulate IDDS

The choice of polymer is essential for adjusting the release profile of IDDS. Polymers
used for intraocular IDDS might be biodegradable or nonbiodegradable. In the next section,
we will discuss the polymers often used to formulate ocular IDDS.

5.1.1. Nonbiodegradable Polymers

The virtue of nonbiodegradable polymers, which are used to formulate nonbiodegrad-
able IDDS, is that they may achieve very long-term release and have high biocompati-
bility [479]. On the other hand, the matrix polymer needs to be surgically removed after
drug exhaustion. These polymers include EVA, polyimide, polyethylene terephthalate,
and silicones. Several intraocular IDDS are commercially available, including Retisert®,
Vitrasert®, Iluvien®, and Renexus®.

5.1.2. Biodegradable Polymers

Biodegradable polymers have the benefits of degrading once implanted into biolog-
ical tissues. However, the type of polymer and degree of crosslinking greatly affect the
degradation dynamics [421]. Biodegradable polymers include PLGA, polycaprolactone,
and acetyl triethyl citrate. These polymers were successfully employed to develop several
commercially available implants, including Ozurdex®, Posurdex®, Durysta®, and Dexycu®.

Table 2 outlines several commercially available IDDS with their polymeric composition.

5.2. Techniques for the Preparation of IDDS
5.2.1. Solvent Casting

For the production of polymeric inserts and implants, solvent casting is an efficient and
scalable technique. Various experimental conditions, such as heating and lyophilization,
were used to produce and cast polymeric solutions containing drug(s) and plasticizer(s).
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The type of drug loaded, as well as its thermal stability, play a major role in the choice of
the condition. In an effort to improve the stability and therapeutic activity and prolong
residency, this approach was used to formulate inserts or implants for several therapeutic
medications that had received approval for ocular use. These drugs include dexametha-
sone [480], acetazolamide [234], bimatoprost [387], etoposide [481], and dorzolamide [482].
Table 3 displays a list of the FDA-approved polymers or copolymers used in ocular prepa-
rations. Figure 7a displays a schematic illustration showing the solvent casting process.

Table 3. List of polymers that the FDA has authorized for use in the manufacture of ocular formulations,
(https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm; accessed on 25 September 2022).

Polymer Route Pharmaceutical Forms CAS Number

Carbomer a Eye surface Emulsion
Carbomer b Eye surface Emulsion
Carbomer b Eye surface Gel
Carbomer b Eye surface Suspension
Carbomer b Eye surface Suspension/drops
Carbomer b Eye surface Suspension
Carbomer b Eye surface Suspension/drops
Carbomer c Eye surface Gel

Ethylene-vinyl acetate copolymers (EVA) Eye surface Insert, extended release 24937788
Ethylene-vinyl acetate copolymers (EVA) Eye surface Solution 24937788

PEG/PPG-4/30 copolymer Eye surface Solution
PLGA Intravitreal Implant 26780507
PLGA Intravitreal Injection 26780507
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5.2.2. Extrusion

The hot melt extrusion method involves forcing a polymer(s) through a mold after
it melts or softens at higher temperatures, often with the use of a conveyor system that
leads into a tube. The actual process may be split into a number of processes, including
heating the polymer mixture, loading, blending, transporting, allowing it to flow through
the die, and downstream material processing (Figure 7b) [483]. Controlling each of these
stages will ultimately affect the final features of the product [484]. In the hot melting
extrusion method, a number of polymers were used, including aliphatic polyesters, poly
(ortho esters), polyurethanes, polyvinyl lactams, ethylene-co-vinyl acetate, polyanhydrides,
polyacrylics, polyethylene glycol, and polyethylene oxide [483]. In addition, several FDA-
approved ocular inserts or implants were developed using the hot melt extrusion technique,
including Lacrisert® and Ozurdex® [411,424].

5.2.3. Electrospinning

Electrospun inserts and implants are automatically generated utilizing a system that
includes a syringe pump, collector electrode, and high voltage generator (Figure 7c). Sev-
eral factors may have an impact on the manufactured inserts or implants, including the
polymeric solution pump rate, the distance between the syringe tip and collection electrode,
and the applied volage [485]. Electrospinning became popular due to its benefits, including
simple control of the shape, diameter, surface properties, and porosity, and the simplicity
of achieving nanosized inserts/implants [486]. Moreover, electrospinning enables the
administration of many medicaments at once.

5.2.4. Other Techniques

Several other techniques might be employed in the development of inserts or implants,
including 3D printing, hot isostatic pressing, selective laser melting, and the creation of in
situ systems.

Over the past 10 years, printing throughout three dimensions has been frequently
employed in the production of implants or inserts [487]. Three-dimensional printing
includes the development of inserts or implants by polymer deposition in a layer-by-layer
manner [488]. The pharmaceutical industry has lately boosted its usage of 3D printing
due to its capacity to produce unique, individualized, and complicated dosage forms and
medical equipment [489,490]. A triamcinolone acetonide sustained release implant with
great clinical promise was produced as a result of a successful 3D printing application [491].
Further, 3D technology makes it possible to manage the features of the produced implants,
including their form, size, and dosage, and to provide customization based on the patient’s
clinical situations [491]. Hot melt extrusion coupled with 3D-printed fused deposition
were effectively used to generate ciprofloxacin-loaded ocular inserts that have improved
therapeutic results for treating ocular pathogenic infections and sustained antibacterial
activity [492].

In the industrial process known as hot isostatic pressing, components or powders are
heated to a high temperature while also being compressed in a pressurized cylinder [493].
Metal-based implants made of titanium [494] and stainless steel [495] are frequently pro-
duced via hot isostatic pressing.

Selective laser melting primarily relies on the employment of a high intensity laser
beam to fuse the powder that is present in its focus zone and enable the manufacturing of
items layer-by-layer from a 3D computer-assisted design [496]. The production of inserts
or implants is now regarded to be a viable application for selective laser melting [496].
Selective laser melting makes it feasible to generate implants that have a crooked structure,
which was previously not conceivable commercially.

In situ forming implants are solutions that go through phase separation to produce a
drug depot formulation. Crosslinking, solidifying, and phase separation are some of the in
situ gelling systems’ mechanisms [472]. In situ crosslinking of polymers could be initiated
chemically, physically, or through photosensitization, while solidifying organogels initiate
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in situ gelling through solubility alteration. In situ gelling through phase separation systems
could be triggered by a pH change, temperature change, or solvent exchange [472]. Drug-
loaded in situ ocular inserts or implants provide benefits in terms of better therapeutic action,
increased stability, simplicity of administration, and control over drug release [191,497].

5.3. Characterization and Evaluation of IDDS

In vitro testing and characterization of drug delivery systems or devices is a key
element in pharmaceutical development’s quality control process for evaluating and deter-
mining the best formulation(s). One of the most crucial characterization criteria, in vitro
testing for dissolution, is utilized to develop in vitro–in vivo relationships, which aid
formulation marketing and reduce medication costs. However, the idea of developing
in vitro–in vivo correlations becomes more difficult for IDDS, owing to the sophistication of
ocular physiological conditions, ocular tissue barriers, and the insertion site of the implant.
Therefore, the design of practical in vitro testing for drug release and dissolution from
IDDS remains challenging. Several in vitro simulation experiments have been developed
to mimic the in vivo insertion of IDDS in the eye tissue.

The static diffusion system (Figure 8a) was developed to investigate the in vitro
efflux rate of drugs formulated as IDDS. In this system, the appropriate release media is
chosen and directly incubated with the IDDS and kept at a standard temperature with or
without mechanical agitation [498]. The amount of medication released is then measured
at predetermined intervals of time. Despite the static diffusion method’s widespread use, it
was restricted in its capacity to investigate IDDS because it lacked ocular flow modelling
and the capacity to control diffusion layers [499].

The agar diffusion system was also adopted to assess the drug release from IDDS
under very viscous conditions [500]. The procedures involved inserting IDDS into agar gel
and, using the proper analytical technique, the gel was evaluated for the amount of drug
dispersed at predetermined time intervals [500]. Figure 8b displays a schematic illustration
of the procedures involved. However, the implants are made to be inserted in certain
environments; this technique does not accurately reflect such environments. Additionally,
this method only relies on a diffusion mechanism to control the drug outflow from the
implant, avoiding any potential impact from the actual vitreous environment [499].

The dialysis bags system is the most straightforward method for predicting the in vitro
dissolution and release of therapeutic drugs from IDDS. This technique employed a dialysis
bag, which was closed on both sides once the implant was inserted (Figure 8c). Drug
molecules should be able to pass through the specified molecular weight cutoff for the
dialysis bag. After that, the dialysis bag is placed in the release medium solution, which is
constantly agitated at standard temperature. At regular intervals, samples from the release
media were obtained, analyzed, and quantified [501]. The Franz diffusion cells or modified
Franz diffusion cells with a modified curved donor compartment to accommodate the
curvature of the excised corneal tissues operates with the same principle of the dialysis bag,
but with a more consistent and reproducible surface area for drug diffusion; they have the
capacity to hold ocular tissues.

The pharmacokinetic eye model is a more complex system that simulates drug clearance
via the anterior chamber, including intraocular aqueous outflow. The apparatus has two
compartments that are partitioned by a dialysis membrane that simulates the posterior and
anterior ocular chambers. It is hypothesized that this model may also be used to determine
how much of the drug would be released from IDDS that are placed in the cavity of the
vitreous [502]. The device was designed to mimic the actual insertion operation of IDDS
into the eye. Both the injection and the aqueous inflow ports were positioned inside the
replicating vitreous cavity, while a single output port was positioned in the simulating
anterior chamber. The device proved highly effective in evaluating the in vitro release studies
of various commercially available medicines, including Kenalog®, Avastin®, and Lucentis®.
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The eye movement system model was created as an in vitro simulation system to
imitate the vitreous body, as well as environmental stimuli that move the eyes, such as
head movement [503]. IDDS were inserted inside the chamber, which imitates eye and
head movements. The release medium is refreshed every 24 h, and the drug concentration
is assessed using the proper analytical technique. The method may demonstrate how
the vitreous body’s gelled region, together with conscious motions of the head and eyes,
influence the release of produced IDDS.

Despite the wide advancements of in vitro testing, there is still no in vitro experimental
design that accurately mimics the factors that determine release in an in vivo setting. This
happens as a result of the drug’s distribution and penetration process in the eye being
more difficult to simulate than with other routes. Furthermore, it would be unethical to
repeatedly monitor drug levels in a living eye in order to demonstrate an in vitro–in vivo
association relationship.
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5.4. Sites for Delivery and Implantation

The selection of an implant location is contingent on the required pharmacokinetics,
biocompatibility, and clinical factors. A close proximity between the insertion site and the
target tissue allows for a high drug concentration in the target tissue. The most popular
sites for implantation include intravitreal [419], intracameral [420], and subconjunctival
injections [504]. The intravitreal injection is widely used to deliver several commercially
available corticosteroids, anti-VEGF agents, antivirals, and encapsulated cells (Table 2).
Extensive research was conducted on intracameral injection during the past decade, and
as a consequence, the FDA granted approval to the first intracamerally injected implant,
Durysta, in the year 2020 (Table 2) [505]. Subconjunctival injection is considered one of the
most effective approaches to deliver several medications to the vitreous and retinal area at
higher levels [506].

5.5. Regulatory Aspects of IDDS

The FDA classifies IDDS as either class II or class III medical devices, which, respec-
tively, denote intermediate and notably higher risk levels, because of their direct and
persistent contact with the living tissues [507]. In order for IDDS to be approved by the
FDA and marketed in the USA, it needs to obtain the pre-market notification 510(K). A
510(K) is a premarket application submitted to the FDA to prove that the product being
marketed is essentially identical to, or equally safe and effective to, a product that has
previously gained FDA approval [508]. If there is no comparable product on the market,
the innovative device must receive pre-market approval with sufficient reliable scientific
data that must prove that it is effective and safe for the intended usage(s) [509].

For medical device manufacturers to follow guidelines while designing, producing,
packing, and distributing their products, the FDA introduced “Design Control Guidance for
Medical Device Manufacturers”. The FDA periodically inspects manufacturers to ensure
that they adhere to the required good manufacturing practice requirements [510]. For
IDDS approval, further laboratory tests, including those for sterility, biocompatibility, and
material characterization, are required.

Sterilization assures patient safety during implantation procedures via the lack of live
microorganisms on the device. The FDA recommends terminal sterilization using either
ethylene oxide or gamma radiation. A vital component of good terminal sterilization is
the packaging mechanism, which must permit gas penetration and radiation to reach the
biomaterial. The FDA’s primary criteria are equipment validation, microbiological testing,
and sterilization testing [511].

The chosen material must also be biocompatible and should not result in any un-
desirable unfavorable biological reactions when in contact with the human body. The
material’s biocompatibility must be verified with tests for cytotoxicity, hemocompatibility,
pyrogenicity, sensitization, genotoxicity, and carcinogenicity [511].

The physical, chemical, and mechanical characteristics should be determined for bio-
materials allowed to generate IDDS. The pore size, pore size distribution, structure, and
connectivity are examples of physical characteristics. The potential for toxicity, carcinogenic-
ity, and immunogenicity are all factors of chemical characterization, and compressibility
and mechanical strength are examples of mechanical properties [512].

6. Conclusions and Future Prospective

The use of IDDS is advantageous for the management of a number of ocular chronic
disorders, including glaucoma, uveitis, endophthalmitis, and retinal disease, over the
traditional ocular dosage forms. Less frequent administration, sustained and local action,
bypassing several ocular barriers, and prolonged pharmacological impact are some of
the positive characteristics of IDDS [386]. However, IDDS suffer several limitations that
affect their pharmacological activity. IDDS are considered an invasive technique for ocular
drug delivery. Additionally, some IDDS that are not biodegradable need to be surgically
removed at the end of the treatment period, which has an impact on patient compliance.
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Likewise, IDDS were made to release the loaded drug over the course of treatment at a fixed
value without being affected by environmental factors. A change in the medication release
profile could be necessary, though, due to fluctuations in the course of the disease, how it
responds to therapy, and other disorders. The key obstacle to the successful implementation
of adjustable delivery ocular implantable drug delivery systems/devices is still related
to their size limitation, which necessitates the use of extremely potent medications to
accomplish long-term release. While this succeeds well with most steroids, it may cause
issues with certain larger biomolecules. Additionally, the expense of therapy is greatly
increased by injection and retrieval procedures for currently marketed IDDS.

This review has identified the most prevalent ocular chronic disorders that require
longer treatment durations with their therapeutic drugs and the most advanced systems
for drug delivery, which might be able to boost the activity, stability, and penetration of
these pharmaceuticals throughout the ocular tissue. The enrollment of drugs into advanced
systems for drug delivery may be sufficient to surmount all the impediments that stand
in the way of drug activity. This approach is also more cost-effective than creating more
effective drug molecules with desirable properties. This review also concentrated on the
use of long-acting drug delivery systems, particularly IDDS, and their production processes,
techniques for characterization, and assessment, as well as the legal and ethical issues of
their clinical implication.
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