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ABSTRACT Support Vector Machine (SVM) is a supervised machine learning algorithm, which is used
for robust and accurate classification. Despite its advantages, its classification speed deteriorates due to its
large number of support vectors when dealing with large scale problems and dependency of its performance
on its kernel parameter. This paper presents a kernel parameter optimization algorithm for Support Vector
Machine (SVM) based on Sliding Mode Control algorithm in a closed-loop manner. The proposed method
defines an error equation and a sliding surface, iteratively updates the Radial Basis Function (RBF) kernel
parameter or the 2-degree polynomial kernel parameters, forcing SVM training error to converge below a
threshold value. Due to the closed-loop nature of the proposed algorithm, key features such as robustness
to uncertainty and fast convergence can be obtained. To assess the performance of the proposed technique,
ten standard benchmark databases covering a range of applications were used. The proposed method and
the state-of-the-art techniques were then used to classify the data. Experimental results show the proposed
method is significantly faster and more accurate than the anchor SVM technique and some of the most
recent methods. These achievements are due to the closed-loop nature of the proposed algorithm, which
significantly has reduced the data dependency of the proposed method.

INDEX TERMS Support vector machine, sliding mode control, RBF kernel, 2-degree polynomial kernel,
optimal parameter, classification speed.

I. INTRODUCTION
Support Vector Machine (SVM) is one of the widely used
machine learning classification algorithms, among other
classifiers such as: nearest neighbor [1], boosted decision
trees [2], regularized logistic regression [3], neural net-
works [4], and random forests [5]. SVM can be used to
achieve robust and accurate classification results, even from
non-linearly separable input data, by mapping the data into
a higher-dimensional space using kernels [6], [7]. SVM is
a Quadratic Programming (QP) problem that is aimed at
finding a separating hyperplane to achieve maximum margin
between classes of data [8], [9]. It was first proposed for
binary classification by Vapnik in the early 1990s, however,
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its extensions can be used for multi category problems [10].
Since SVM achieves a unique solution and can learn inde-
pendently from the dimensionality of feature space, it is
robust against overfitting and it is superior to other classi-
fiers [6], [10]. SVM has been used in many applications,
including text categorization [11] and face detection [12],
where it delivers robust and accurate results. SVM has also
been used in some control branches, e.g., nonlinear con-
trol [13] and optimal control [14], because of the unique and
optimal answer that it generates. Despite the advantages and
wide range of applications of SVM, it suffers from some
limitations such as low classification speed, especially when
dealing with large scale problems, due to the large number of
support vectors that SVM uses for classification [15], [16],
dependency of its performance on kernel parameter, kernel
selection and its regularization parameter. SVM’s test phase

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 17003

https://orcid.org/0000-0002-3100-9935
https://orcid.org/0000-0003-0677-7083


M. Yalsavar et al.: Kernel Parameter Optimization for Support Vector Machine Based on Sliding Mode Control

time complexity is O(1) + 4O(n) + 2O(n3), where n is the
number of support vectors [10]. This indicates that the SVM
classification computation cost increases as its number of
support vectors increases. Various methods have been pro-
posed by the researchers to find optimal kernel for SVM and
reducing its number of support vectors as the performance
and speed of the algorithm depend on the kernel function
and its parameters. These techniques can be classified into
two main groups called: closed-loop and open-loop methods,
where they either try to find the optimal kernel function and
its parameters or dealing with some of the SVM’s problems
by modifying the training set or its set of support vectors.
Closed-loop systems/algorithms have a feedback in their
structure so that when a control input (input) changes the out-
put of the system/algorithm, the resulting output is used for
correcting and changing the control input (input) for arriving
at the desired output. They operate in a self-adjusting mode,
while open-loop systems/algorithms need a person to manu-
ally review andmake the adjustments. Therefore, a close loop
system/algorithm converges faster than open loop systems
and is more robust to uncertainties and disturbances [17].

The closed loop-based methods for finding optimal ker-
nel function and its parameters mainly use two approaches
to achieve this. The group 1 methods first introduce an
objective function, which is dependent on SVM and kernel
parameters, then use different gradient descent methods to
find optimal parameters for the kernel functions [18]–[23].
The group 2 methods try to find the global optimal solution
for the kernel and its regularization parameters [24]–[31].
Since the goal is arriving at a global solution, they use var-
ious optimization algorithm including genetic-, dragonfly-
and evolutionary-algorithms with different fitness functions.
Genetic Algorithm (GA), Ant Colony Optimization (ACO)
algorithm and Particle Swarm Optimization (PSO) algorithm
are all Swarm Intelligence (SI) based methods, that one of
their main properties is acting in a self-organized mode, and
their capability to evolving the components into a good form
without any external help. GA is population-based strategy
which mainly includes five components: a random number
generator, a fitness evaluation unit, a reproduction process,
a crossover process, and a mutation operation. It first cre-
ates an initial population by random or heuristic, then deter-
mines the fitness and performance of each individual, and
ranks them using a fitness function. When all individuals are
ranked, the resulting low ranked individuals are omitted from
the population, and the rest will be used in the reproduction
process. GA uses confounded parameter settings, which is
one of its main positive points, however, using a random
procedure in the crossover and mutation process reduces the
GA’s convergence speed towards the optimal values, which is
considered as its biggest drawback.

ACO is a metaheuristic approach, which has four main
components: ant, pheromone, daemon action, and decen-
tralized control. The ACO tries to find the shortest path
to the optimal solution in a weighted graph. Hence, in the
first step of each iteration every ant constructs its own

solution (path) stochastically, then the paths that are built by
different ants are compared and in the last step the level of
each edge’s pheromone is updated. The ACO algorithm can
be used in dynamic applications due to its great adaptation
to changes such as new distances and suggests a positive
feedback results in rapid discovery of good solutions. How-
ever, it has slower convergence speed compared with other
heuristic-based methods and its theoretical analysis is diffi-
cult, research is experimental rather than theoretical and lacks
a centralized processor to guide the algorithm towards good
solutions. PSO is an optimization technique that is inspired
by swarm behavior in birds flocking and fish schooling for
searching global optimal solutions. The PSO algorithm first
initializes the population, then calculates the fitness value
for everyone. After finding all fitness values, it updates the
population, the speed, and particles’ position. Except its first
step, the other steps are repeated till termination condition
is satisfied. The PSO has no mutation calculation, and its
searching speed is very fast, but it cannot address scattering
and non-coordinate system problems, and it is less exact at the
regulation of its speed and the direction [32], [33]. Although
GA, ACO, and PSO algorithms are acting in a self-organized
mode. They are not purely and truly closed-loopmethods. For
clarification, a block diagram representation of a closed-loop
and open loop system are shown in Fig. 1.

FIGURE 1. A block diagram of (a) a closed loop-, (b) an open loop-system.

As it can be seen from Fig. 1b, in an open loop system,
a collection of inputs (population) is fed to the system and
the input (s) that create the best output, will be used for
controlling the system or generating the new set of the inputs.
This is exactly the procedure in SI based algorithms, while in
a closed-loop system (Fig. 1.a) after choosing an initial value
as the input, the closed-loop structure will update the input
value based on the resulting output. In a closed-loop method,
the best input value is not selected by comparing different
potential inputs.

Sliding Mode Control (SMC) is a closed-loop method,
which benefits from this great property, because acting in
a closed-loop manner brings more robustness against distur-
bances, uncertainties, and un-modeling, and has a superiority
to those of SI based algorithms from this aspect. Unlike GA
and ACO, the SMC has a vivid, simple, and well-defined the-
ory and mathematics behind itself, which makes it possible to
theoretically analysis it. Unlike GA, SMC has no randomness
in its structure, and based on the results it just takes around
8 steps on average to arrive at its best result for different
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datasets, which is significantly faster than other methods.
By defining the SVM algorithm as a closed-loop control sys-
tem, it provides capability to control and monitor its transient
and steady state behavior in detail. In the proposed method,
Sliding Mode Control (SMC), which is a powerful tool for
robust control of nonlinear systems, is used. Since there are
uncertainties in the modeling of real-world systems, it is hard
to control such plants with uncertain models and arrive at
the desired performance. The SMC is often used to deliver
good tracking in systems with uncertain models [34], [35].
For achieving this goal an error equation and a sliding surface
are first defined and the SMC then tries to drive the state
trajectory of the system onto the sliding surface and force
the trajectory to maintain on this surface for all subsequent
time by using a control input. The state trajectory is driven
to the sliding surface by just estimating that it is in which
part of the sliding surface. There is no strict region, and it
is not important that how far the state is from the sliding
surface. Due to this feature of the SMC, it is more robust than
other approaches in the control field. Hence, the uncertainties
of the system model do not affect its performance and its
convergence is guaranteed [36]. Hence, in this research the
application of the SMC in improving the performance of
the SVM algorithm and reducing its limitation when deal-
ing with large data, which are coming from different fields
with no information and knowledge about their dynamic, is
investigated.

In this paper, a support vector machine based on sliding
mode control RBF kernel parameter optimization is pre-
sented. The proposed method does not need a system model
to find the optimum value for the RBF kernel parameter and
2-degree polynomial kernel for speeding up the test phase of
SVM and improving its prediction accuracy. The proposed
method first defines the specification of an error equation and
the sliding surface and then it tries to arrive at a good tracking
and low training error by updating the parameter(s) of those
kernels. This procedure will be repeated until the validation
accuracy continues its decreasing trend for a specific number
of iterations. The effort of the proposed method to achieve
high training accuracy results in prediction accuracy enhance-
ment and finding a smaller set of support vectors, thereby
reducing the speed of classification. Experimental results
show that the anchor SVM does not necessarily generate the
optimal number of support vectors and its kernel parameter
selection could affect both accuracy and its resulting number
of support vectors, where an optimal and smaller set of sup-
port vectors will increase both the speed and accuracy of the
classification. Hence, the proposed method is significantly
faster and more accurate than the anchor SVM technique.
Furthermore, the proposed method generated more accurate
results in compared with some of the latest techniques. All of
these and its high robustness against uncertainties, which are
existed in the data comes from different sources, are due to the
closed-loop nature of the SMC algorithm used in conjunction
with SVM method. The main contribution of this paper can
be summarized as follows:

(i) Looking at SVM’s problems and concepts from a con-
trol field of view and making a connection between
these two fields.

(ii) Using a non-model based and close loopmethod, SMC,
for finding the optimal value for RBF kernel parameter.

The rest of this paper is organized as follows.
In Section II-III, a brief overview of SVM and SMC meth-
ods are presented, respectively. In Section IV, the pro-
posed method for finding the optimum kernel parameters is
explained. Experimental results are presented in Section V
and Section VI concludes the paper.

II. SUPPORT VECTOR MACHINE
There are manymethods that can be used to classify two-class
linearly separable data but all of them give infinite answers.
To find the best answer, the SVMmethod could be one of the
solutions. The SVM finds the best hyperplane that separates
the data using the idea that the best decision boundary is the
one that has the maximum distance and margin from both
classes of the data. SVM called maximum margin classifier,
too. SVM has been shown to produce accurate results that
can be explained easily, unlike other methods, e.g., neural
networks. If the data known to be linearly separable, hard
margin SVM is usually used. Assume that there are n data
points in the dataset that their labels are either −1 or 1. The
first step is to find its margin and then maximize it. If the
equation of hyperplane be wT x + b = 0, where w is an
orthogonal vector to the hyperplane and b is the bias then the
distance of a point to the hyperplane can be formulated as:

di(x) =
wT xi + b
‖w‖

∀i = 1, · · · , n. (1)

where xi is the ith data point and di (x) is its signed distance.
It means if the data is on one side of the hyperplane, its sign
will be positive, otherwise its sign is negative. By multiplying
the distance of each point by its label, an unsigned distance,
yidi(x) is calculated, where yi is the label of the data. To find

the margin, min
{
yi
wT xi+b
‖w‖

}
is determined. w and b can be

rescaled in a way that distance of all points to the hyperplane
become at least one so the margin drives as follow:

margin = min
{
yi
wT xi + b
‖w‖

}
and

yi
(
wT xi + b

)
≥ 1

yields
−→ margin =

1
‖w‖

. (2)

SVM is searching for the maximum margin. So, based on
eq. 2, the problem can be formulated as following quadratic
problem:

min
w

1
2
‖w‖2

s.t. yi(wT xi + b) ≥ 1 ∀i = 1, · · · , n. (3)

Quadratic Problem (QP) is a convex problem that results in
a global minimum or global maximum solution. By solving
this QP problem, both w and the hyperplane are calculated.
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Classifying nonlinear data with a linear algorithm like SVM
can be done by reshaping and increasing the dimension of
the data, resulting in a linear dataset. However, increasing the
dimensionality of the data, the curse of dimensionality will
appear. SVM uses the kernel concept in case of nonlinear
data to benefit of dimension enhancement but gets rid of
its curse [37]. In the case that SVM is used for classifying
nonlinear data, it called soft margin SVM. In this case, the
decision boundary is nonlinear because the data is not linearly
separable. It means that some points cross the margin or
locate in the other side of the hyperplane and cause misclas-
sification like the one that shows in Fig. 2.

FIGURE 2. A nonlinearly separable classification problem.

So, the constraint in hardmargin SVM is not valid anymore
because some points have yi(wT xi+b) ≤ 1. The constraint is
changed to include these cases or points, too. The nonlinear
case problem is formulated as follows [38], [39]

min
w

1
2
‖w‖2 + C

∑n

i=1
ξi

s.t. yi(wT xi + b) ≥ 1− ξi where ξi ≥ 0 and

∀i = 1, · · · , n. (4)

In (4), ξi is added to the constraint for the points that
violate the constraint. But by changing the constraint in this
way all points can violate this. So, the number of points
that can violate the margin restricted by adding a penalty
or regularization parameter, C . One can solve the dual form
of eq. (4) as:

max
αi

∑n

i=1
αi −

1
2

∑n

i=1

∑n

j=1
αiαjyiyjxTi xj

s.t.
∑n

i=1
αiyi = 0, 0 ≤ αi ≤ C ∀i = 1, · · · , n (5)

where αi is the dual variable that obtains via the QP. The
points that their αiis greater than zero are support vectors and
the points that their αi is equal to C are the ones that violate
the constraint in hard margin SVM.

Besides the advantages of SVM, due to the lack of a control
perspective on the SVM problem, there are many aspects that
are ignored. By studying SVM from a control point of view,

the kernel function and its parameters are like the inputs of the
SVM algorithm along with data, and that the algorithm finds
support vectors as the output of SVM by using them in its
training mode. So, both kernel and its parameters are vitally
importance in SVM. Their unwise selectionwill result in poor
set of support vectors, which increases the test error and time.

It can be concluded that by using control methods, the
inputs of the SVM algorithm can be found in a way that
increase both performance and accuracy of the SVM algo-
rithm. As both model and dynamic of the datasets are
unknown, model-based methods of control theory are not
applicable. Therefore, Sliding Mode Control (SMC), which
is not a model-based algorithm and is highly robust to the
dynamic of the data and is a closed-loop procedure, seems
to be one of the solutions to speed up the algorithm when
dealing with large nonlinear data. Moreover, both soft margin
and hardmargin problems have counterparts in control theory
because they both grapple with training error in different
ways. In hard margin SVM, a zero-training error is desired,
while in soft margin SVM, a limited non-zero value error
is acceptable; these two trends are achieved by defining
some constraint in the SVM. In control theory, there are
many procedures for managing the error, e.g., using integral
of absolute/square error or paying attention to the transient
behavior of the error besides its steady-state error, while in
SVM mainly, steady state error is considered. In addition,
there is a vast variety of control methods for dealing with the
steady-state errors like methods in classical control, robust
control, adaptive control, optimal control, nonlinear control,
and intelligent control. In the next sections, after a brief
introduction, SMC as a suitable robust control strategy will
be used to develop desired kernel functions. Other control
algorithms can be applied in the same way.

III. SLIDING MODE CONTROL
Sliding Mode Control (SMC) is a powerful tool for robust
control of nonlinear systems [40]. It is based on the idea
that controlling 1st -order systems are much easier than con-
trolling nth−order systems, so by defining a notation, an
nth order system is reformulated as a 1st -order model [34].
This provides the construction of a sliding surface and drives
the states of the system on it in the state space. Once the
sliding surface is reached, the SMC keeps the states of the
system on the close neighborhood of the sliding surface [40].
SMC consists of two part: the sliding surface, and the off-
surface dynamics. The first step to drive this controller is to
examine the expression of the error [40]. For the single input
dynamic system of form y = f (x) + b(x)u, where y is the
output, u is the input signal, f (x) and b(x) are system model,
which are not exactly specified and have uncertainties. The
goal is tracking the desired signal yd by output, y. So, the
error expression can be written as follows:

e = y− yd (6)

where y and yd are the output and desired output, respectively.
A time-varying surface S(y; t) in the state space R can then
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be defined by the scaler space S (y; t) = 0, where:

S(y; t) = (
d
dy
+ λ)n−1e (7)

where λ is a strictly positive constant and for n = 2,
Eq. (7) can be written as: S = ė + λe. The problem of
tracking y ≡ yd is equivalent to that of remaining on the
surface S(t) for all t > 0; indeed S (y, t) ≡ 0 represents a
linear differential equation whose unique solution is e ≡ 0,
given its initial condition. Thus, the problem of tracking the
n-dimensional vector yd can be reduced to that of keeping the
scalar quantity S at zero.

S = ė+ λe ≡ 0 (8)

when the surface is driven to zero, the error drives to zero
too, for t → ∞ [40]. To show that, we work backward by
postulating that the off-surface dynamics must be of the form:

Ṡ = −f (S) (9)

where f (S) can be any non-decreasing odd function. This
shows that the change in S and the ’distance’ of the current
state of the sliding surface, it is always opposite the sign of
the S. The control input should force the states to approach it.
So, Ṡ must be a function of our control input, u. Ṡ must
also be a function of the second derivative of the error, ë,
to just be a function of the input, u, this implies that S should
only be a function of error, e, and its first derivative, ė. The
simplest form of such a function that guarantees e → 0 as
t →∞ is given in Eq. (8) [40]. Consequently, driven of S to
zero, drives the tracking error, e, to zero, too. For Eq. (8) the
sliding surface is a line with a slope of−λ in the phase plane.
By starting from any initial condition, the state trajectory
drives to the sliding surface and then it slides along the
surface exponentially towards the desired value, yd , with a
time constant of 1/λ [34]. This procedure is shown in Fig. 3.
SVM has widely used to classify non-linear separable

data where there is always some uncertainty in selection of
its parameters such as regularization and kernel. This has
inspired the author to use the concept of sliding mode control
to improve the performance of the SVM algorithm.

IV. PROPOSED ALGORITHM
SVMuses the kernel function to increase the dimension of the
data and make the data linearly separable in the resulting high
dimension space. However, the desired kernel function or its
parameters are not specified, as a result, variousmethods have
been introduced to find the best kernel function and its param-
eters to increase the performance of SVM. There is a variety
of kernel functions and some of their well-known functions
are RBF kernels and polynomial kernels, where different
combination of these functions, e.g., linear, and nonlinear,
are used to extend SVM capability to deal with non-linear
data. All these kernels have some parameters, which need
to be chosen in an appropriate way to solve the mentioned
problems. In this paper, the Sliding Mode Control (SMC)
is used to find optimum parameters of the kernel functions.

FIGURE 3. The state trajectory approaches to the sliding surface and its
slide along the surface towards the desired value, xd (Graphical
configuration of eq. 8) [34].

To prove the effectiveness and performance of the proposed
method, without losing its generality, the γ parameter of the
RBF kernel as an advanced form and parameters of a 2-degree
polynomial kernel as a basic form are calculated using the
proposed method. In sub-section A, the application of SMC
to determine the optimum γ parameter of the RBF kernel is
presented. In sub-section B, the SMC is used to compute the
parameters of a polynomial kernel.

A. SLIDING MODE CONTROL BASED SUPPORT VECTOR
MACHINE RADIAL BASIS FUNCTION’S KERNEL
PARAMETER OPTIMIZATION
Fig. 4 shows a block diagram of the proposed Sliding
Mode Control based Support Vector Machine Radial Basis
Function’s kernel parameter optimization (SMC-SVM-RBF)
method. The proposed method takes the input data and splits
the data into three subsets, named training, test, and vali-
dation subsets. Then SVM trains with training subset and
by using the initial value of the mentioned parameters. The
‘Train SVM’ block takes training subset and initial param-
eters including Radial Basis Function (RBF) kernel param-
eter, γnew, regularization parameters, C, λ, d , VEold , which
represent the state of the training error to train the SVM,
generating some Support Vectors (SVs) and their numbers,
NSVs. The resulting classification information, SVs and NSVs,
are then used to classify the train and validation data subsets,
separately.

The resulting classified train and validation subsets data are
the independently assessed and Mis-Classified training data
(MC) and their Mis-Classified labels (MC-lbs), the Training
Error (TE) of the classified training subset and Validation
Error (VE) of the classified validation data are calculated.
The calculatedMC andMC-lbs parameters are used to update
the RBF kernel parameter, TE is used to define the time to
perturb the initial value of the RBF kernel parameter and VE
is used to terminate the algorithm. For perturbing the value
of γ , the algorithm checks the value of the TE . If it is zero,
γold will be perturbed as follows until a non-zero training
error is achieved: it checks the value of the RBF kernel
parameter, if its value is smaller than a threshold, it perturbs
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FIGURE 4. Block diagram of the proposed algorithm.

the kernel parameter with a small value, otherwise it will be
perturbed with a larger value. In this research, the process
is started with a small initial RBF kernel parameter value
and when then the training procedure starts updating γ as
follows: It first initializes three counters named r1, r2, and
r3 with values of 1, thr1 with the Number of MisClassified
train data (NMC), and thr2 with the Number of Training
Data (NTD) and the Maximum Number of acceptable iter-
ations to improve the Validation Error (MNVE) with a con-
stant value. Then the algorithm goes through each element
of Mis-Classified training data using its label, MC-lbs[r1],
calculating its p and Q. If MC-lbs[r1] = -1, q will be cal-
culated using q = − 1

2Q
†pT . After that the algorithm goes

through elements of q using counter r2 and for each positive
element of q, γ r22 is calculated, when all elements of γ r22 are
calculated, it computes γ1 = 1

l

∑l
i=1 γ

i
2 but if MC-lbs[r1]

in not equal to -1, it assigns γnew to γ1. The algorithm then
assigns γ1 and 0 to γ ′ and γ1, respectively and increment r1
to point to the next misclassified train data. This procedure is

repeated for all misclassified train data.When γ ′ is calculated
for all misclassified train data, the algorithm will check r3,
to see if r3 has reached its maximum number of iterations that
are acceptable for improving the validation error (MNVE)
threshold value. If not, a new value for γ is calculated as
γnew =

∑m
j=1 γ

′ and it backs to ‘Train SVM’ block and
the procedure is repeated until MNVE reaches its prede-
fined threshold value, otherwise the training is completed and
γnew is taken γ and use it to calculate the SVs. The resulting
SVs are then used to classify the test subset.

The main aim of the proposed Sliding Mode Control
based Support VectorMachine Radial Basis Function’s kernel
parameter optimization (SMC-SVM-RBF) is to use sliding
mode control to find an optimum value for γ parameter
of the RBF kernel to improve the SVM’s performance in
terms of its classification accuracy and speed. Mathematical
prove of the proposed Sliding Mode Control based Sup-
port Vector Machine Radial Basis Function’s kernel param-
eter optimization (SMC-SVM-RBF) method is detailed
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as follows: To make a relationship between SVM and SMC
in this article, the error expression, considering equation (6),
can be assumed as:

ej =
1
2

∣∣∣yj − yjd ∣∣∣2 (10)

where ej is the classification error, yjd and yj are the desired
and predicted output values for each training data point
related to the j-th misclassified training data, respectively.
Based on SVM algorithm yj can be formulated as follows:

yj(x) = sign
[∑n

i=1
α
j
iy
j
iexp

(
−γ j ‖x − xi‖2

)
+ β j

]
(11)

where αji is a dual variable, yji represent the output of the
training data xi, x is a misclassified training data but the aim
is to find its true class label, yj (x) is the predicted class label
for the misclassified training data, x, n is the number of the
training data and β j is a bias related to the jth misclassified
training data. After defining the expression for error, sliding
surface is defined by equation (8). In equation (8), γ is
considered as the input and the aim is finding an optimum
value for γ to minimize the training error. By calculating Ṡ
from eq. 8 and replacing Ṡ with its value in eq. 9, the eq. 9 can
be rewritten as:

ë+ λė = −f (S) (12)

where ë and ė are the second and first derivative of the error, e,
respectively, f (S) is time-varying surface in the state space R
and λ is a strictly positive constant. From equation (12), it can
be seen that the first and second derivatives of y are needed,
as e is a function of y and y is a function of γ . Since sign func-
tion does not have a derivative, the sign function is replaced
with a sigmoid function in different ways to solve and formu-
late this problem. As the algorithm uses misclassified training
points to update the γ parameter, it may result in two types of
misclassified data: a) the mis predicted label for the training
point is −1 ( y = −1), where its correct label should be 1.
In this paper, y = sigmoid(x) is considered as a function
defining the belongness of a data point to the class Sign and
sigmoid functions are illustrated in Figure 5. Figure 5 shows
that the larger positive x values represent data with labels
of 1 and when x → +∞, the data point is classified to
y = 1 class. However, if x → −∞, y becomes zero, this
implies that this data point is not belong to class y = 1. This
misclassification is due to using unoptimized value for RBF
parameter, γ , andαi. SVMuses the sign function to determine
the class of each data point within the dataset. However, the
proposed method uses different functions to find accurate
class for identified misclassified data points. For simplicity,
in this article sigmoid(x) = 1

1+e−x and −sigmoid(−x) =
−1
1+ex functions, which are reversible functions with known
derivative, are used to deal with misclassified data points in
class −1 and 1, respectively. These two functions help to
tackle the sign function irreversibility problem.

Using the first assumption, eq. 11 can be re-written as:

y (x)=sigmoid(
∑n

i=1
αiyiexp (−γ ‖x−xi‖2)+β) (13)

FIGURE 5. illustration of (a) sign(x) and (b) sigmoid(x) function.

and the derivative of eq. 13 can be written as:

dy
dx
= y(x)(1− y(x)) (14)

Thus, by substituting eq. 13 into eq. 10 and removing j,
which represent the jth data point in eq. 10 and eq 11, e, ė and
ë can be rewritten as:

e =
1
2
|y− yd |2

ė = |y− yd |
dy
dγ

ė =
[
|y− yd |

∑n

i=1

(
−αiyi ‖x − xi‖2

)
× exp (−γ ‖x − xi‖2)

]
y(1− y) (15)

where x ∈ X is a misclassified training data point within
the set of misclassified training data points, X , αis are dual
variables, y is predicted class label for the misclassified data
point, x, yd is the desirable class label for the misclassified
data point, x, yi is the true label of the training data point, xi,
and n is the total number of the training data points.

ë =

[
n∑
i=1

αiyi ‖x − xi‖2 exp (−γ ‖x − xi‖2)

]2
× y2(1− y)2sign(y− yd )

+

[
|y− yd |

n∑
i=1

αiyi ‖x − xi‖4exp (−γ ‖x − xi‖2)

]
× y (1− y)+ |y− yd | (1− y)

×

[
n∑
i=1

αiyi ‖x − xi‖2 exp (−γ ‖x − xi‖2)

]2
× y (1− y)

− |y− yd | y2 (1− y)

×

[
n∑
i=1

αiyi ‖x − xi‖2 exp (−γ ‖x − xi‖2)

]2

=

[
n∑
i=1

αiyi ‖x − xi‖2exp (−γ ‖x − xi‖2)

]2
× (sign(y− yd )y2(1− y)2 + |y− yd |

×

[
(1− y)2y− y2(1− y)

]
)

+ |y− yd | (1− y) y

×

n∑
i=1

αiyi ‖x − xi‖4 exp (−γ ‖x − xi‖2). (16)
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For simplification mi, ni, and qi are defined as:

mi = αiyi ‖x − xi‖2 (17)
dy
dx
= y(x)(1− y(x)) (18)

qi = exp (−γ ‖x − xi‖2) (19)

Now by replacing e and the resulting expression for ė in
eq. 8, S can be rewritten as:

S = ė+ λe

S =

[
|y− yd |

n∑
i=1

(−αiyi ‖x − xi‖2)exp (−γ ‖x − xi‖2)

]

× y(1− y)+
λ

2
|y− yd |2 (20)

And by substituting (17), (18) and (19) into (15) and (16)
and then substituting (15) and (16) into (12), Ṡ can be derived
as:

Ṡ = (sign(y− yd )y2(1− y)2

+ |y− yd |
[
(1− y)2y− y2(1− y)

]
)

×

[∑n

i=1
miqi

]2
+ |y− yd | (1− y) y

×

∑n

i=1
niqi − λ |y− yd | (1− y) y

[∑n

i=1
miqi

]
= −f (S) (21)

As these equations are derived for misclassified training
data points with y = −1, by replacing y and yd into eq. 21,
it results in:

−16
[∑n

i=1
miqi

]2
− 4λ

[∑n

i=1
miqi

]
− 4

∑n

i=1
niqi

= −f (S) (22)

To solve eq. 22, this equation is written in matrix form as
follows:

−16(qTMMT q)− 4
[
NT
+ λ ∗MT

]
q = −f (S) (23)

where 

M = [m1,m2, . . . ,mi, . . . ,mn]T

N = [n1, n2, . . . ., ni, . . . , nn]T

q =
[
q1, q2, . . . , qi, . . . , qn

]T
i = 1, 2, · · · , n

(n is the total number of training data),

For simplicity, by assuming Q = −16MMT and p =
−4[NT

+ λ ∗MT ], eq. 23. Can be rewritten as:

qTQq+ pq+ f (S) = 0 (24)

where QεRn∗n, pεR1∗n, and f (S) are a matrix, a vector and a
constant, respectively, where the value of f (S) is calculated
using the previous value of γ . The optimum value of q can be
determined by calculating the derivative of eq. 24with respect
to q:

∂
(
qTQq+ pq+ f (S)

)
∂q

= qTQ+ Qq+ pT

= 0
Q is a symetric matrix

−→ 2Qq = −pT (25)

As eq. 25 is an underdetermined problem, Q is not a full
rank matrix and may have many solutions. In this paper,
pseudo-inverse method is used to find an estimation for vec-
tor q. Since pT is not in the column space of Q in general, the
calculated q vector is an estimation of q, where the column
space of Q, named as C (Q) can be written as: C(Q) =
−16m1M and p = −4MT [RT + λI ] and R is an nbynmatrix.
Consequently, q can be calculated using pseudo-inverse
of Q as:

q = −
1
2
Q†pT (26)

where Q† represents pseudo-inverse of Q and q vector can
be determined by solving eq. 26. However, only the positive
elements of q, which satisfy eq. 19, are acceptable. Using
eq. 19, 0 vector can be calculated and written as follows:

0 =
[
γ 1
2 , γ

2
2 , . . . , γ

i
2, . . . , γ

l
2

]
∀i = 1, · · · , l. (27)

where l is the number of positive elements of q vector and γ i2
is the corresponding γ value of the ith positive element of q.
By calculating the average of all elements of r vector, γ1 is
derived as:

γ1 =
1
l

∑l

i=1
γ i2 (28)

In the second stage, for the mis-predicted data with y = 1,
y = −sigmoid(−x) function, which is illustrated in Fig. 6,
is used to determine the level of belongness of each of these
data points to their current class. From Fig. 6, it can be seen
that data points with large negative x values are belonging
to y = −1 class and data points with large positive values
(x → +∞), which have y = 0, are belonging to other
class. By considering −sigmoid(−x) function for these mis-
classified data points, eq. 11 can be re-written as:

y (x) = −sigmoid(−
∑n

i=1
αiyiexp (−γ ‖x − xi‖2)− β)

(29)

and the derivative of eq. 29 can be written as:

dy
dx
= −y(x)(1+ y(x)) (30)

Thus, by substituting eq. 29 into eq. 10 and removing j,
which represent the jth data point in eq. 10 and eq 11, e, ė and
ë can be rewritten as:

e =
1
2
|y− yd |2

ė = |y− yd |
dy
dγ

ė = −
[
|y−yd |

∑n

i=1
(−αiyi ‖x−xi‖2)exp (−γ ‖x−xi‖2)

]
× y(1+ y) (31)

ë =
[∑n

i=1
αiyi ‖x − xi‖2 exp (−γ ‖x − xi‖2)

]2
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FIGURE 6. An illustration of y = −sigmoid (−x) function.

× y2(1+ y)2sign(y− yd )

−

[
|y− yd |

∑n

i=1
αiyi ‖x − xi‖4 exp (−γ ‖x − xi‖2)

]
× y (1+ y)

+ |y−yd | (1+y)
[∑n

i=1
αiyi ‖x−xi‖2

× exp (−γ ‖x−xi‖2)
]2
y (1+ y)

+ |y−yd | y
[∑n

i=1
αiyi ‖x−xi‖2 exp (−γ ‖x−xi‖2)

]2
× y (1+ y)

=

[∑n

i=1
αiyi ‖x − xi‖2 exp (−γ ‖x − xi‖2)

]2
× (sign(y− yd )y2(1+ y)2

+ |y− yd |
[
(1+ y)2y+ y2(1+ y)

]
)

− |y− yd | (1+ y)y
∑n

i=1
αiyi ‖x − xi‖4

× exp (−γ ‖x − xi‖2) (32)

And by substituting (17), (18) and (19) into (31) and (32)
and then substituting (31) and (32) into (12), and replac-
ing y and yd with 1 and −1, respectively, Ṡ can be
derived as:

16
[∑n

i=1
miqi

]2
− 4λ

[∑n

i=1
miqi

]
− 4

∑n

i=1
niqi

= −f (S) (33)

To solve eq. 33, assuming Q = 16MMT and p = −4[NT
+

λMT ], eq. 33 can be written in matrix form as follows:

qTQq+ pq+ f (S) = 0 (34)

where M , N and q were introduced in eq. 23. The resulting
eq. 34 along with the procedures explained in eq. 25 to 28 are
then used to calculate γ1 parameter for this misclassified data
point with y = 1.

For each mis-classified data point, based on its predicted
y, one of the above-mentioned two methods is used to cal-
culate its γ1 value. The resulting γ1s for all mis-classified
data points are then put together to form the γ ′ vector,

as follows:

γ ′=
[
γ1

1, γ1
2, . . . , γ1

i, . . . , γ1
m
]
∀i=1, · · · ,m (35)

where m is the total number of mis-classified data points and
γ i
1 represents γ1 for mis-classified data point i.
Finally, a value for RBF kernel parameter, γ , is deter-

mined by calculating the average of γ ′ vector components
using eq. 36:

γ =
1
m

∑m

i=1
γ i1 (36)

where m is the total number of misclassified training data
points. The resulting γ will be used as the RBF kernel param-
eter in the next iteration.
γ optimization procedure will be continued until the total

number or iteration is reached or the validation error does not
change for a pre-defined number of iterations.

B. POLYNOMIAL OPTIMAL KERNEL PARAMETER
ESTIMATION USING SVM BASED ON SMC
Without losing the generality of the algorithm, the general
form of a 2nd order polynomial kernel is considered as(
axT xj + b

)2, where a and b are the polynomial kernel param-
eters, x is a mis-classified training data point and xjis the jth

training data point for j = 1, . . . , n and n is the total number
of the training data points. The aim of this algorithm is to find
optimum polynomial parameters. In this paper, for simplicity
a 2nd order polynomial was considered. However, a higher-
order polynomial can also be used in a similar way. The
procedure of the proposed SVM based on SMC algorithm for
finding polynomial kernel optimum values is the same as the
one that is explained for RBF method, which is illustrated in
Fig. 4 with some differences. These differences are detailed
as follows:

1. In this algorithm, polynomial kernel parameters, a
and b, are first initialized with ones and then updated
in each iteration. If using these initial values results
in a zero-training error, their values are perturbed in
the same way that was explained in Section IV.A for
RBF parameter. These initial values were used because
Zhang [23] and Zhiliang Liu [30] had also used them
in their techniques and the performance of the pro-
posed method in this paper, will be compared with their
techniques.

2. Both resulting positive and negative values of q vector
are acceptable in polynomial kernel parameter opti-
mization, while only positive values of q vector were
acceptable for updating RBF parameter optimization,
as explained in Section IV.A.

To find optimum values for the polynomial kernel param-
eters, a and b, the procedure is started using eq. 8 and 12,
where sigmoid(x) and −sigmoid(−x) functions are used for
the two types of the mis-classified data points, y = −1 and
y = 1, respectively. Hence, eq. 8 and 12 are derived using
eq. 10 and 11 for each type of mis-classified data points,
as follows:
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1) PROCEDURE FOR FINDING OPTIMUM VALUE
FOR a WHEN y = −1
By replacing the 2nd order polynomial kernel in eq. 13, y (x)
can be written as:

y (x) = sigmoid(
∑n

i=1
αiyi

(
axT xi + b

)
+ β) (37)

And ė, ë can be derived by replacing eq 37 into eq. 10 and
calculating 1st and 2nd derivative with respect to a.

ė = |y− yd |
dy
da

ė =

[
|y−yd|

n∑
i=1

2αiyixTxi(axTxi+b)

]
y(1− y) (38)

ë = (sign(y− yd )y2(1− y)2 + |y− yd |

×

[
(1− y)2y− y2(1− y)

]
)

×

[
n∑
i=1

2αiyixT xi(axT xi + b)

]2

+ |y− yd | (1− y) y
n∑
i=1

2αiyixT xixT xi (39)

Now by replacing e and the resulting expression for ė in
eq. 8, S can be rewritten as:

S = ė+ λe

S =
[
|y− yd |

∑n

i=1
2αiyixT xi(axT xi + b)

]
× y(1− y)+

λ

2
|y− yd |2 (40)

And by substituting eq. 38 and 39 into eq. 12, Ṡ can be derived
as:

Ṡ = ë+ λė = −f (S)

Ṡ = (sign(y− yd )y2(1− y)2

+ |y− yd |
[
(1− y)2y− y2(1− y)

]
)

×

[∑n

i=1
2αiyixT xi

(
axT xi + b

)]2
+ |y− yd | (1− y)y

∑n

i=1
2αiyixT xixT xi

× + λ |y− yd | (1− y)y

×

[∑n

i=1
2αiyixT xi(axT xi + b)

]
= −f (S) (41)

Now by considering mi = 2αiyixT xi, ni = 2αiyixT xixT xi
and qi = (axT xi + b) and replacing y = −1 and yd = 1 in
eq. 41 and rewriting it in amatrix form, eq. 41 can be rewritten
as:

qTQq+ pq+ f (S)+ NT r = 0 (42)

where Q = −16MMT , p = −4λMT , N = −4
[
n1,

n2, . . . , nn
]T , M = [

m1,m2, . . . ,mn
]T , r = [

1, 1, .., 1
]T

and n is the total number of the training data points. The
optimum value of q can be determined by calculating the
derivative of eq. 42 with respect to q:

∂
(
qTQq+ pq+ f (S)+ NT r

)
∂q

= qTQ+ Qq+ pT

= 0
Qis a symetric matrix

−→ 2Qq = −pT

Now the q vector can be written as:

q = −
1
2
Q†pT (43)

where Q† represents pseudo-inverse of Q and q vector can be
determined by solving eq. 43. By using qi = (ai2x

T xi + b), 0
vector is obtained as:

0 =
[
a12, a

2
2, . . . , a

i
2, . . . , a

l
2

]
∀i = 1, . . . , l (44)

where lis the total number of q elements and ai2 is the
ith element of 0 and ai2 =

qi−b
xT xi

.
Finally, a1 is computed by determining the average of all

0 elements:

a1 =
1
l

∑l

i=1
ai2 (45)

2) PROCEDURE FOR FINDING OPTIMUM VALUE FOR b
WHEN y = −1
By replacing y (x) from eq. 37 into eq. 10 and calculating
1st and 2nd derivatives of the resulting e with respect to b, ė,
and ë can be determined. Then by replacing the resulting e, ė,
and ë into eq. 8 and 9, S and Ṡ, can be derived, as follows:

S = ė+ λe
S =

[
|y− yd |

∑n

i=1
2αiyi

(
axT xi + b

)]
y (1− y)

+
λ

2
|y− yd |2 (46)

Ṡ = ë+ λė = −f (S)
Ṡ = (sign(y− yd )y2(1− y)2

+ |y− yd |
[
(1− y)2y− y2(1− y)

]
)

×

[∑n

i=1
2αiyi

(
axT xi + b

)]2
+ |y− yd | (1− y) y

n∑
i=1

2αiyi

+ λ |y− yd | (1− y) y
[∑n

i=1
2αiyi

(
axT xi + b

)]
= −f (S) (47)

Assuming mi = 2αiyi and qi = (axT xi + b) and replacing
y = −1 and yd = 1 in eq. 47, and eq, 47 can be written in a
matrix form as follows:

qTQq+ pq+ f (S)− 4MT r = 0 (48)

where Q = −16MMT , p = −4λMT , M =
[
m1,m2, . . . ,

mn
]T , r = [1, 1, .., 1]T and n is the total number of the train-

ing data points. The optimum value of q can be determined
by calculating the derivative of eq. 48 with respect to q:

∂
(
qTQq+ pq+ f (S)− 4MT r

)
∂q

= qTQ+ Qq+ pT

= 0
Q is a symetric matrix

−→ 2Qq = −pT
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Now the q vector can be written as:

q = −
1
2
Q†pT (49)

where Q† represents pseudo-inverse of Q and q vector can be
determined by solving eq. 49. By using qi = (xT xi + bi2),
0 vector is obtained as:

0 =
[
b12, b

2
2, . . . , b

i
2, . . . , b

l
2

]
∀i = 1, . . . , l (50)

where lis the total number of q elements and bi2 is the
ith element of 0 and bi2 = qi − xT xi. Finally, the average
of all 0 elements is defined as b1, as follows:

b1 =
1
l

∑l

i=1
bi2 (51)

In the second stage, to find optimum values for the poly-
nomial kernel parameters, a and b, the procedure is started
using eq. 8 and 12, where −sigmoid(−x) function is used
for the mis-classified data points with y = 1. Hence,
eq. 8 and 12 are derived using eq. 10 and 11, as follows:

3) PROCEDURE FOR FINDING OPTIMUM VALUE
FOR a WHEN y = 1
By replacing the 2nd order polynomial kernel in eq. 13, y (x)
can be rewritten as:

y (x) = −sigmoid(−
∑n

i=1
αiyi

(
axT xi + b

)
− β) (52)

By replacing y (x) from eq. 52 into eq. 10 and calculating 1st

and 2nd derivative of the resulting e with respect to a, ė, and ë
can be determined. Then by replacing the resulting e, ė, and
ë into eq. 8 and 9, S and Ṡ, can be derived, as follows:

S = ė+ λe

S =
[
− |y− yd |

∑n

i=1
2αiyixT xi(axT xi + b)

]
× y(1+ y)+

λ

2
|y− yd |2 (53)

Ṡ = ë+ λė = −f (S)

Ṡ = (sign(y− yd )y2(1+ y)2

+ |y− yd |
[
(1+ y)2y+ y2(1+ y)

]
)

×

[∑n

i=1
2αiyixT xi(axT xi + b)

]2
− |y− yd | (1+ y)y

∑n

i=1
2αiyixT xixT xi

− λ |y− yd | (1+ y)y

×

[∑n

i=1
2αiyixT xi(axT xi + b)

]
= −f (S) (54)

Now by considering mi = 2αiyixT xi, ni = 2αiyixT xixT xi
and qi = (axT xi + b) and replacing y = 1 and yd = −1 in
eq. 54 and rewriting it in amatrix form, eq. 54 can be rewritten
as:

qTQq+ pq+ f (S)+ NT r = 0 (55)

where Q= 16MMT , p=−4λMT , N=−4 [n1, n2, . . . , nn]T ,
M = [m1,m2, . . . ,mn]T , r = [1, 1, .., 1]T and n is the total

number of the training data points. The optimum value of q
can be determined by calculating the derivative of eq. 55 with
respect to q:

∂
(
qTQq+ pq+ f (S)+ NT r

)
∂q

= qTQ+ Qq+ pT

= 0
Q is a symetric matrix

−→ 2Qq = −pT

Now the q vector can be written as:

q = −
1
2
Q†pT (56)

where Q† represents pseudo-inverse of Q and q vector can be
determined by solving eq. 56. By using qi = (ai2x

T xi + b),
r vector is obtained as:

0 =
[
a12, a

2
2, . . . , a

i
2, . . . , a

l
2

]
∀i = 1, . . . , l (57)

where lis the total number of q elements and ai2 is the ith

element of 0 and ai2 =
qi−b
xT xi

.
Finally, a1 is computed by determining the average of all

0 elements:

a1 =
1
l

∑l

i=1
ai2 (58)

4) PROCEDURE FOR FINDING OPTIMUM VALUE FOR b
WHEN y = 1
By replacing y (x) from eq. 52 into eq. 10 and calculating 1st

and 2nd derivatives of the resulting e with respect to b, ė, and
ë can be determined. Then by replacing the resulting e, ė, and
ë into eq. 8 and 9, S and Ṡ, can be derived, as follows:

S = ė+ λe

S =
[
− |y− yd |

∑n

i=1
2αiyi(axT xi + b)

]
× y(1+ y)+

λ

2
|y− yd |2 (59)

Ṡ = ë+ λė = −f (S)

Ṡ = (sign(y− yd )y2(1+ y)2 + |y− yd |

×

[
(1+ y)2y+ y2(1+ y)

]
)
[∑n

i=1
2αiyi(axT xi + b)

]2
− |y− yd | (1+ y)y

∑n

i=1
2αiyi − λ |y− yd | (1+ y)y

×

[∑n

i=1
2αiyi(axT xi + b)

]
= −f (S) (60)

Assuming mi = 2αiyi and qi = (axT xi + b) and replacing
y = 1 and yd = −1 in eq. 60, eq. 60 can be rewritten in a
matrix form as follows:

qTQq+ pq+ f (S)− 4MT r = 0 (61)

whereQ = 16MMT , p = −4λMT ,M = [m1,m2, . . . ,mn]T ,
r = [1, 1, .., 1]T and n is the total number of the training
data points. The optimum value of q can be determined by
calculating the derivative of eq. 61 with respect to q:

∂
(
qTQq+ pq+ f (S)− 4MT r

)
∂q

= qTQ+ Qq+ pT

= 0
Q is a symetric matrix

−→ 2Qq = −pT
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Now the q vector can be written as:

q = −
1
2
Q†pT (62)

where Q† represents pseudo-inverse of Q and q vector can be
determined by solving eq. 62. By using qi = (xT xi + bi2),
0 vector is obtained as:

0 =
[
b12, b

2
2, . . . , b

i
2, . . . , b

l
2

]
∀i = 1, . . . , l (63)

where lis the total number of q elements and bi2 is the
ith element of 0 and bi2 = qi − xT xi. Finally, the average
of all 0 elements is defined as b1, as follows:

b1 =
1
l

∑l

i=1
bi2 (64)

The procedures 1 to 4 will be used to determine a1 and
b1 for all misclassified training data. Finally, a and b are
determined by calculating the average of all resulting a1s and
b1s, respectively, as follows:

a =
1
m

∑m

j=1
a1 (65)

b =
1
m

∑m

j=1
b1 (66)

where m is the total number of misclassified training data
points. The resulting aand b are used as the 2-degree poly-
nomial kernel parameters for the next iteration.

The above procedure will be continued until the total num-
ber of iterations is reached or the validation error does not
change for a pre-defined number of iterations.

V. SIMULATION AND EXPERIMENTAL RESULTS
To evaluate the performance of the proposed method, exper-
imental results were generated using ten datasets from UCI
machine learning repository [41] called: Letter Recognition
(LR) (letters ‘A’ and ‘N’ are used for this experiment), Wis-
consin Breast Cancer (WBC), Liver Disorder (LD), Heber-
man, Diabetes, Heart disease dataset, Ionosphere dataset,
Parkinson and Sonar dataset. The letter recognition dataset
consists of 20000 instances with 17 attributes for each data
point (one label and 16 numerical features); Labels consist
of 26 English capital alphabets; Wisconsin breast cancer
database consists of 699 instances with 11 attributes for each
data point, where benign and malignant labels are 2 and 4,
respectively; Liver Disorder dataset consists of 345 instances
with 7 attributes for each data point; Heberman dataset gen-
erated during study on the survival of patients, who had
undergone breast cancer surgery; this database consists of
304 instances with 3 attributes for each of its instances.
Parkinson dataset is composed of a range of biomedical voice
measurements from 31 people, 23 with Parkinson’s Disease
(PD). Each column in the table is a particular voice measure,
and each row corresponds one of 195 voice recording from
these individuals (‘‘name’’ column). The main aim of the
creation of this database was to be used for discriminat-
ing healthy people from those with PD. Diabetes database

TABLE 1. Database description.

has two classes of data and consists of 804 instances with
8 attributes for each data point. Heart disease database con-
sists of 303 instances with 75 attributes for each data point.
Ionosphere database, which is used for binary classification,
consists of radar data with 351 instances and 34 attributes for
each data point. Sonar database contains 208 instances with
60 attributes for each data point.

To generate experimental results, all the databases were
normalized and then each dataset was randomly divided into
three subsets called: train, test, and validation subsets of
size 70, 20 and 10 percent, respectively. Training subsets
were used for updating kernel parameter, validation subsets
were used for terminating the optimization algorithm [20],
as mentioned in Section IV and test subset were used for
evaluation and comparisons of the performance of the pro-
posed algorithm. The following setting were used to gen-
erate results: f (S) = 50∗arctan(S/10), λ = 0.3 and
regularization parameter, C = 100.1. The resulting number
of Support Vectors (SVs) and achieved accuracy for the train
and test data of the proposed technique using its RBF kernel
parameter optimization algorithm were calculated and com-
pared to those of the anchor SVM and tabulated in Table 2.
From Table 2, the proposed technique generates significantly
higher performance in terms of accuracy and the number
of SVs than anchor SVM. The proposed method generates
significantly lower number of Support Vectors (SVs) in com-
pared to anchor SVM (up to 93.51% reduction), while it gives
higher test accuracy. This implies that the proposed method
is faster than its anchor SVM in its test phase.

To give the reader a sense of the number of iterations that
proposed algorithm needs to determine its optimal kernel
parameter, the initial value of γ , the calculated optimal value
of γ , number of iterations that algorithm used to determine
the optimal value for γ for ten different databases are tabu-
lated in Table 3. This table shows that the proposed method
arrives at the optimum value of γ using small number of
iterations.

The performance of the proposed method using its RBF
kernel parameter optimization algorithm were compared to
those of Zhang et al.’s [23] and Liu and Xu’s [30] methods
on five databases (Parkinson, Ionosphere, Sonar, Heberman
and Iris databases) are presented in Table 4. From Table 4,
it can be seen that the propose method gives either superior
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TABLE 2. Performance of SVM based on SMC vs. original SVM.

TABLE 3. The optimal value for the γ parameter of RBF kernel in the final iteration for each data set.

TABLE 4. Experimental results for the PROPOSED method using RBF kernel optimization, ZHANG et al. [23] and Liu and Xu’s [30] methods.

TABLE 5. Experimental results for the PROPOSED method using a 2nd-degree polynomial kernel parameters optimization, ZHANG et al. [23] and Liu and
Xu’s [30] methods.

or very competitive results to those of Zhang et al.’s and
Liu and Xu’s methods. The average γ value that used to
generate experimental results for the three techniques are also
given in Table 4.

The performance of the proposed method using its
2nd-degree polynomial kernel optimization algorithm were
also compared to those of Zhang et al.’s [23] and Liu and
Xu’s [30] techniques on three databases (Iris, Ionosphere, and

Heberman databases) are presented in Table 5. (In [30], Liu
and Xu presented experimental results of the application of a
2nd order polynomial kernel (

(
axT xj + b

)2) for SVM classifi-
cation, where a and b were set to one, on Iris, Ionosphere and
Heberman databases. Therefore, these three databases were
used to generate experimental results for the application of
the proposed method using its 2nd-degree polynomial kernel
optimization algorithm). From Table 5, it can be seen that the
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proposedmethod outperforms both Zhang et al.’s and Liu and
Xu’s techniques in terms of accuracy. The average values of
a and b, which were used to generate experimental results for
the proposed technique are presented in Table 5.

VI. CONCLUSION
In this paper, a kernel parameter optimization algorithm for
support vector machine based on sliding mode control algo-
rithm in a closed-loop manner was presented. The proposed
algorithm introduced an error equation and a sliding surface
and then iteratively updates the kernel parameter until it
reaches maximum number of iterations or the training error
stayed unchanged for a predefined number of iterations. Two
types of kernels, an RBF or a 2-degree polynomial were
considered in this paper. Ten publicly available databases
were used to assess and compare the performance of the
proposed method with the existing methods. Experimental
results show the merit of the proposed method in terms of
accuracy, training and testing speed, total number of the
support vectors and robustness of the algorithm.
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