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Abstract. A common challenge for organisations managing confidential
customer information is to respect obligations due to legal requirements
while advocating the privacy of their users’ data. In the context of digital
forensics and cyber security scenarios, we define cyber evidence sharing
as the task of verifying that mutual knowledge exists about confidential
information or digital evidence, without revealing or disclosing the infor-
mation itself. An attractive cryptographic solution to this problem is the
concept of Zero-Knowledge Proofs (ZKPs). In this paper, we propose a
flexible and efficient approach for sharing cyber evidence based on us-
ing ZKPs. We present a protocol that allows a verifier to establish the
proof of knowledge of hash digest information. This provides computa-
tional security and can be implemented efficiently using a Merkle-tree
data structure. The protocol has been implemented, the resulting proof-
of-concept system is evaluated, and its efficiency is demonstrated. We
believe that it could be a valuable tool for use in practical real-world
applications.

Keywords: Privacy · Cyber Evidence · Information sharing · Zero-
Knowledge Proofs.

1 Introduction

Data is a critical asset for organisations and is under constant threat from dis-
closure, modification or destruction by external or internal attackers. Whether
it is in the healthcare, finance or energy sector, there are many different types of
sensitive information being managed and maintained: human behaviour, client
credentials or intellectual property, biometric data or any other personal infor-
mation. A particular sensitive data asset is information about suspected illegal,
criminal activities that an organisation might have of their customers. While
this information is recorded and protected within specific departments, they
may not be able to disclose it to other parties, even within the same organisa-
tion, for legal reasons. On the other hand, if several departments independently
acquire this information, there might be a need to exchange this knowledge and
to take further action. Sharing the information must be done in such a way
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that it maximises privacy. In particular, no unnecessary information about the
nature of the allegations must be revealed. There are various legal obligations
that organisations have to adhere to, concerning their collection, use, storing
and sharing of data. It is the latter aspect that is of interest in this paper, in the
context of cyber evidence sharing. For example, a regulatory body may interpret
sharing of information as breaking anti-trust laws, due to sensitive competitive
information involved in cyber evidence sharing. There is also a risk in sharing
sensitive information that is liable to violating laws that protect privacy. It may
also be difficult for a company to decide on sharing threat intelligence with
the government for which the regulators can choose to punish the company for
unsatisfactory security practices. For example, Uber was fined $148 million in
2018 after paying $100,000 for non-disclosure to a perpetrator that found data
exploits in 2016 [4].

We define cyber evidence sharing as the task of verifying that mutual knowl-
edge exists about confidential information or digital evidence, without revealing
or disclosing the information itself. Cyber evidence sharing constitutes a signif-
icant challenge, and traditional solutions require the involvement of a trusted
third party as an intermediary, for example, the police or an ombudsman. How-
ever, there is always a risk of information leakage, as trust can never be com-
pletely guaranteed. For this reason, in this paper we propose the use of cryptog-
raphy, thereby relying on openly published security solutions, in order to tackle
this challenge. An attractive scheme that can be used as a solution to this prob-
lem is the concept of Zero-Knowledge Proofs (ZKPs). A ZKP is an asymmetric
protocol, run between a prover Peggy (who will be represented by Department
P) as well as a verifier Victor, aka Department V. In our scenario, we will as-
sume that cyber evidence information is presented as structured data D and
that a hash digest value H = h(D) has been created, using a secure hash func-
tion h. Department P and Department V wish to prove the correctness of the
mutual knowledge of H. ZKP properties ensure that the protocol is complete,
ensuring that in any scenario with a piece of correct shared knowledge, it can
be verified by Department V. Furthermore, the protocol is sound, meaning that
Department P cannot trick Department V into proving wrong information. The
Zero-knowledge property implies that no additional information other than the
outcome of the proof can be obtained.

ZKPs have been invented in the 80s [3] and subsequently extended and refined
for increasingly sophisticated types of proofs. Since only fairly recently, there has
been a considerable uptake of ZKPs and their use in innovative applications such
as the Blockchain. For example, ZK-SNARKs [6] allows verifying the correctness
of a computation, rather than just a value. This scheme is derived from decades of
research of Microsoft’s Pinocchio Protocol [9] which made the protocol succinct,
non-interactive and zero-knowledge. ZK-SNARK is a complex protocol due to
the series of components required to flatten code into verifiable proofs. The result
however is a powerful scheme, which enables cryptocurrencies to provide privacy
by having encrypted transactions being verifiable using ZK-SNARK proofs. The
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aim of our research is to add to the list of innovative applications of ZKPs by
looking at its use in cyber evidence signalling.

Fig. 1. A brief overview of our proposed solution to Cyber-Evidence Sharing. De-
partment V and P begin by establishing that they both exactly have the same base
information. With both parties having the same base data, they proceed to begin pop-
ulating these records with Tactics, Techniques and Procedures (TTPs, [7]). After some
time, a department may send a signal to the other department to request verification
of any mutual information that has been discovered since populating the records. The
signal is replied with proofs of knowledge derived from the current department’s data
structure. The initiator now verifies these proofs using their own knowledge and are
then able to realise any actionable information.

The contribution of this paper is the design, implementation and evaluation
of a proof-of-concept system for simple and yet flexible as well as efficient verifi-
cation of knowledge in the context of cyber evidence sharing. The communication
scheme that is used builds on sound cryptographic schemes [3] and establishes a
non-interactive protocol between the departments, wishing to verify knowledge
without leaking any additional information. Rather than designing a complex
scheme, we present a simple protocol that allows a verifier to establish the proof
of knowledge of hash digest values, obtained from structured information in any
format. This offers flexibility and would be suitable for e.g. the use of frame-
works such as Tactics, Techniques and Procedures (TTPs, [7]) which allows the
forming of a coherent and detailed description of cyber attacks. A careful choice
of data structures using a Merkle-tree improves the efficiency, when dealing with
repeated protocol runs required for realistic scenarios involving multiple report
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verification. We demonstrate the achieved efficacy by comparing argumentation
to a naive implementation, using a linear list. We believe that our tool could
become a valuable tool for use in practical real-world applications. This paper
is structured as follows: in Section 2, we outline past work comprising of both
the aspects of cyber evidence sharing and practical ZKP schemes. Section 3 con-
tains a description of our protocol design, followed by its implementation and
evaluation in the next section. Section 5 outlines the more complex alternative
to the ZKP method used in the our scheme and finally the paper is concluded
in Section 6.

2 Previous Work

In this section, we discuss previous work on traditional mechanisms for cyber
evidence sharing as well as the Non-Interactive Fiat-Shamir Identity Scheme
which is a specific ZKP that we have used in our system.

2.1 Traditional Cyber Evidence Sharing Approaches

There are several solutions that attempt to share cyber evidence between par-
ties legally, although these do not take advantage of any means that are crypto-
graphic in nature. These include LISTSERV, Information Sharing and Analysis
Centers (ISACs), Information Sharing and Analysis Organizations (ISAOs) [10]
which aim for a collaboration on sharing threat intelligence. Additionally, subject
to any sovereign nation, there are public sector national cyber centres to work
with [7]. These are however constrained by lengthy and bureaucratic processes
for which a cryptographic solution would give advantages such as the removal
of an operating trusted third party. Although the scope of the paper is not to
exhaustively explore these non-cryptographic solutions, there is effectively no
extensive previous work on the topic that uses cryptography to solve this prob-
lem. In addition, it is difficult to find solutions for such legal and confidential
matter for which organisations will have built their own private solutions and
models.

2.2 The Fiat-Shamir ZKP Scheme

It is critical to review the concise description of the Fiat-Shamir Non-Interactive
Identification Scheme [13] to understand the interactions in the application and
its context in the evaluation. The Scheme may also be described as Random
Oracle Access which is a ZKP Scheme used to verify that there exists com-
mon knowledge and is not probabilistic. This is a non-interactive protocol of
the Feige-Fiat-Shamir Identity Scheme [2] which uses the Fiat-Shamir Heuristic
to prove the correctness of proofs [3]. We have chosen this particular scheme
because it fundamentally achieves the objective of verifying mutual information
without disclosure in a way that constructing this proof system is not complex.
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The non-interactive version facilitates its implementation in both the crypto-
graphic method and network messaging where less messages are required to be
exchanged. The scheme itself is not complex to implement because computing
the proof is a matter of modular exponentiation which can be suited for mi-
croprocessor devices. The method of checking the correctness in the verification
relies on the exponentiation of; r = v − cx which is also present in Schnorr’s
Signature Scheme [12]. In addition, the scheme will be used multiple times to
check multiple secrets and there is an opportunity to merge all the secrets into
a single value.

Table 1. Table of notations and definitions for a Non-Interactive Fiat-Shamir Identity
Scheme.

Notation Definition

p Prime integer.

g Generator value.

x Alleged common value.

v Random value.

t, c, r Commitment, Challenge & Response respectively.

The scheme takes two entities, Peggy and Victor, Prover and Verifier respec-
tively for which they share g, p and will only successfully complete the protocol
if x is the same. To begin, both parties compute y with their independent knowl-
edge of x:

y = gx mod p (1)

CreateProof() : Peggy must compute the following pair of values (r, c) which
is the proof to be sent to Victor. Peggy chooses a random v ∈ Fp and computes
the following:

t = gv mod p

c = Hash(g, y, t)

r = v − cx mod p

(2)

Verify() : Victor now works with the proof (r, c) that he receives from Peggy
and also y derived from his own knowledge of x that is supposed to be the
value that Peggy is attempting to prove. Victor will reconstruct t by using r, c
from Peggy’s proof and subsequently allows Victor to compute ĉ and compare
it with Peggy’s c. Victor can reconstruct t without knowing v because he uses
gr = gv−cx and yc = (gx)c ∴ gv−cx × gcx = gv−cx+cx = gv = t.

t̂ = gr × yc (mod p)

ĉ = Hash(g, y, t̂)

(ĉ = c) −→ Verified

(3)
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3 Design

In this section, the design of the proposed system is discussed featuring the data
structures and its protocol.

3.1 Merkle-Trees

Merkle Trees are generally used as an efficient representation of a data structure
to be used for comparison. Assuming that most of the data blocks are the same,
the efficiency is O(log2(n)), for n depth of the binary tree. A popular use case
is cryptocurrency transaction blocks being represented as Merkle Trees. Crypto-
graphic hash function such as SHA256 or higher are used in Merkle Trees where
each conjunction of 2 nodes is concatenated and hashed until a single root node
is left. The Merkle Tree allows a fast comparison of some blocks of data. For each
leaf node that doesn’t match, participants can enter a sub protocol to discover
further mutual knowledge in that subset data block. For this, further subset of
data in the block is converted into a list of prompts for other participants to
prove in the form of ZKP proofs. The participants will agree on a list of queries
and the format for which they are answered where each query prompts for po-
tential mutual knowledge. Queries will be answered as ZKP Proofs for which the
query creator will verify them. From this exchange, it is possible for participants
to acknowledge mutual information and proceed on actionable information.

Fig. 2. ZKP Binary Tree where each node is a Proof derived from the hash digests of
the original Merkle Tree. The bold arrows show the path taken down the tree where
there is a difference in information. The hash comparison function is replaced with
ZKP Verification which prevents participants from learning any new information.

3.2 ZKP

By using the scheme outlined in Section 2.2, the functions are arranged to take
binary trees as inputs where subsequently each node can be operated on. There-
fore, a CreateProof function taking a Merkle Tree will go through each node’s
hashes and convert them into proofs. The proofs retain the structure of the bi-
nary tree given. Likewise a Verify() function will take the output binary tree of
the CreateProof() and also a normal Merkle Tree to compare with where the
output results in a list of unverifiable leaf nodes.
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3.3 Protocol

Our network consists of a centralised server relaying messages between partic-
ipants. These communication channels are secured conventionally using certifi-
cates and TLS. The protocol we outline using Fiat-Shamir Identity scheme does
not provide non-repudiating authentication. Our proposed protocol is therefore
simplified and safer by having the setup of communications being delegated to
TLS.

Department V and Department P may interchangeably become provers or
verifiers in different parts of the protocol. For the example in Figure 3, Depart-
ment P is the prover throughout, although this role may be swapped in the
intermediate stage where separate changes in records occur. In terms, of the
data structure, it is possible to include each record and their subset elements
as one Merkle Tree, however the protocol respects the original data structure
hierarchy and stops before going into the next dimension.

Fig. 3. A more detailed overview of our protocol which describes the use of ZKP in
combination of Binary Trees. See Protocol 3.3 for the protocol steps.
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Protocol 1 Cyber-Evidence Sharing

Goal. Parties compare large lists of data and establish mutual knowledge without
revealing or learning any new information.
The protocol:

1. Each party begins with the same base knowledge represented in a Merkle
Tree X. They then check if they have the same data by converting their
Merkle Tree nodes into proofs using the proof creation method in Section
2.2. That is, CreateProof(X) −→ Z for which Z is exchanged and verified
against their own X in Verify(X,Z).

2. As time passes, parties populate their own records with their discoveries of
TTPs.

3. A party can initiate a check to verify any mutual information where other
parties become provers. The party sends a signal to request some proof,
parties that receive the signal compute CreateProof(X) −→ Z where X is the
binary tree representation of the current private knowledge that includes any
recorded TTPs. This proof is replied back and verified by signal sender with
Verify(X,Z) −→ X̄. The result X̄ is a list of unverified nodes xi ∈ X, i ∈ [X].

4. Request proof for the subset information of all unverified nodes xi ∈ X. The
party fulfilling this request finds record xi which contains j elements, thus
j ∈ [xi]. A proof is derived from this by computing CreateProof(xi,j) −→
zi,j ∈ Z̄ where zi,j is the proof representing element xi,j . This is sent back
to the requesting party.

5. The received list of proofs Z̄ is used to verify any potential mutual informa-
tion in a record by checking subset data Verify(xi,j , zi,j).

4 System Implementation and Evaluation

In this section we report on the implementation of our system, and its evaluation
comparing the performance of proof creation and verification using the method
outlined in Section 2.2 with a variable number of secrets.

4.1 Implementation

The system has been implemented on a Windows 10 machine using an i-9 10900K
CPU @ 3.70 GHz (up to 5.30 GHz) on a single thread where the implementation
of the ZKP protocol is written in C#. The implementation of the Merkle Tree
in Section 3.1 and the scheme in Section 2.2, was done using standard libraries
on the .Net Framework 4.7.2. Namely, the BigInteger library was used to handle
arbitrary precision integers and SHA256 was used as the hashing function and
converting the secret into an integer. This also includes the secure cryptographic
pseudo-random number generator provided by the standard library.
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4.2 Fiat-Shamir Identity Scheme Performance

In this section, we evaluate the Non-Interactive Fiat-Shamir Identity Scheme
in itself for the time taken in proof creation and proof verification. Figure 4
shows using a box plot that a single proof creation for a 20 byte input is fast
(in the order of milliseconds). Proof verification is only slightly slower, and still
using the same method, the functions’ performance is linear whilst still in the
range of milliseconds. As shown in Figure 5, a 1 megabyte input takes around
12 milliseconds.

Fig. 4. Time boundaries for Creating Proofs and Verification of Proofs with secrets
the size of 20 bytes. Time taken to compute a proof takes around 2.4 - 2.5 milliseconds
whilst proof verification takes around 3.3 milliseconds.

4.3 Merkle Tree Performance

We now proceed to look at binary tree performance incorporated in our imple-
mentation which uses the ZKP method for verifying nodes. Evidently, the total
computation time to produce a number of proofs is a multiplied with the time
taken for one proof as previously discussed and is therefore linear. For large num-
ber of secrets, e.g. for 100,000 secrets, the time taken to convert the Merkle Tree
hashes into proofs would take just over 8 minutes on a single thread. Although
this takes considerably longer than creating the hash tree or verifying the proofs,
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Fig. 5. Scatter Graph showing the time it takes to create and verify a proof for large
secrets ranging from 10 kilobytes to 1 megabyte.
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this process is improvable by several magnitudes with multi-threading. For pe-
riodic Merkle Tree transformations, the process is viable for some large lists
although it may take a few minutes. The Binary Tree verification is compared
with a linear list to show that indeed the verification process is logarithmic in
Figure 6. The linear list procedure, Algorithm 1, is a single loop through each el-
ement. Meanwhile Algorithm 2, is a recursive procedure that verifies nodes from
the root to the leaf nodes. It can be invoked using the following instructions:

if rootNodeZ.Verify(rootNodeM) = False then
Call RecVerify(rootNodeZ, rootNodeM)
end if

It is also worth to note that if the algorithm had to check for multiple dif-
ferences at once, going through different paths will result in a longer total veri-
fication albeit logarithmic with respect to the number of nodes.

Algorithm 1 Verify all elements in linear list of proofs Z and list of local secrets
M where [N ] = [M ].

for (i = 0; i < [Z]; i++) do
Verify(Zi,Mi);

end for

Algorithm 2 Verify all elements in a Binary Tree of proofs Z by comparing
with a normal Merkle Tree of the same structure M . Each node contains a left
and right child, if not it is a leaf node. Each node contains information that can
be used in the ZKP verification function.

procedure RecVerify(NodeZ,NodeM)
if NodeZ.leftChild.Verify(NodeM.leftChild) = False then

RecVerify(NodeZ.leftChild,NodeM.leftChild)
else if NodeZ.rightChild.Verify(NodeM.rightChild) = False then

RecVerify(NodeZ.rightChild,NodeM.rightChild)
end if

end procedure

4.4 Subset Data Verification

In this section, we consider an extension of the previously explained features of
our protocol. We are interested in a situation where a modified record contains
enough fields that warrant a further identification differences. For each record
that is modified, there may be some subset of elements that are different. This
task is essential done using either a Merkle Tree or Linear List depending on the
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Fig. 6. Time taken to verify data structures containing Zero-Knowledge Proofs organ-
ised in a linear list compared against a binary tree of variable differences in leaf nodes.
For one difference in the records, the latter is faster when there are 7 or more records.
On the other hand, if there are a greater number of differences, e.g. 32; the Linear List
is faster than the Merkle Tree for about 220 records.

.
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size of this list. For example, each record contains 5 elements where in this case
a linear list is sufficient however, if more than a dozen elements exist, using a
Binary Tree for this task might become more attractive.

5 Related Work

In this section we further detail properties and current uses of the ZK-SNARK
protocol, and we also discuss its potential use for our scenario.

As already stated earlier in this paper, Microsoft’s Pinocchio Protocol [9], was
taken and improved by the privacy orientated cryptocurrency community which
resulted in the ZK-SNARK protocol [6]. This protocol features the following
prominent characteristics:

– Zero-Knowledge – able to prove to another party a statement is true without
revealing said information.

– Succinct – Must be verifiable in milliseconds and proofs produced are of
short length.

– Non-Interactive – Protocol doesn’t require back-and-forth communication
between the prover and verifier.

The ZK-SNARK protocol is used as a method verify the authenticity of confi-
dential transactions. Monero [11] and Zcash [1] have incorporated this scheme.
In addition, a more popular cryptocurrency, Ethereum [8] has a research group
which has explored ZK-SNARK to enhance privacy in transactions.

ZK-SNARK works by combining several concepts. Roughly speaking, code
is flattened into gates, then converted to R1CS (Rank 1 Constraint System) [5].
This is now in a suitable format to convert into a QAP (Quadratic Arithmetic
Program). As a QAP, it is possible to perform homomorphic hiding with blind
polynomial evaluation. Furthermore, the security of the polynomials is enhanced
by using Elliptic Curve Mapping. The improvements made in the succinct version
[6] allow this scheme to be used by cryptocurrencies due to the short length proofs
being produced.

While the ZK-SNARK protocol is very powerful, it is complex and requires
specialist knowledge in order to be implemented correctly. For the purposes of our
cyber evidence sharing scenario, we believe that it would be difficult to do such
an implementation task without a major effort. We hence argue that our system
and lightweight protocol is a reasonable alternative, ready for implementation
in a real world organisation.

6 Conclusion

In this paper, we have used the ZKP Non-Interactive Fiat-Shamir Identity
Scheme, to implement an approach for cyber evidence sharing within an or-
ganisation. The scheme guarantees that the successful verification of identical
shared knowledge cannot be compromised and that no additional information
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is revealed in the case of differing evidence data. The protocol that we have
designed is simple yet flexible and efficient, due to the use of a suitable crypto-
graphic data structure. This makes it an attractive solution for use in real-world
scenarios.

One of the limitations of our system is the need for a semi-trusted envi-
ronment, as the communication channels between the proving and verifying de-
partments are potentially vulnerable to eavesdropping by any overarching entity
at a higher level within the organisational hierarchy. Furthermore, providing
anonymity could be an additional important security goal to implement.

As an item of further work, we remark that an interesting improvement of
our cyber evidence sharing system would be an enhanced cryptographic ZKP
protocol, addressing the proving of mutual code execution, without revealing
the corresponding code akin ZK-SNARK. This would add another dimension
to our proposed scheme and could be beneficial in a range of aspects. Apart
from integrity, in the absence of malicious software alteration, it could also be
applied to specific operations or actions that are triggered by the individual
departments as a secondary investigation, following an initial successful cyber
evidence sharing activity.
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