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Abstract: We discuss the problem of the quantization and dynamic evolution of a scalar free field
in the interior of a Schwarzschild black hole. A unitary approach to the dynamics of the quantized
field is proposed: a time-dependent Hamiltonian governing the Heisenberg equations is derived.
It is found that the system is represented by a set of harmonic oscillators coupled via terms corre-
sponding to the creation and annihilation of pairs of particles and that the symmetry properties of
the spacetime, homogeneity and isotropy are obeyed by the coupling terms in the Hamiltonian. It
is shown that Heisenberg equations for annihilation and creation operators are transformed into
ordinary differential equations for appropriate Bogolyubov coefficients. Such a formulation leads
to a general question concerning the possibility of gravitationally driven instability, that is however
excluded in this case.

Keywords: Schwarzschild black hole interior; scalar field; time-dependent Hamiltonian

1. Introduction

The horizon of a black hole (BH) may be regarded as a geometrical singularity (“fake
geometrical singularity”). Indeed, considering a Schwarzschild BH in Schwarzschild
coordinates one finds the metric tensor exhibiting an on-horizon singularity that is absent in
other, singularity-free coordinate systems. There are a variety of singularity-free coordinate
systems in this case, e.g., Kruskal-Szekers, Eddington-Finkelstein, Novikov and others [1,2].
Two interesting observations might be made here. The first is to notice that the presence of
the event horizon is manifested both in coordinates revealing the horizon’s singularity as
well as in the singularity-free systems. The second one is to note the surprising similarities
and/or analogies for phenomena taking place outside and inside black holes. A rather well-
known example of such a property is the so-called BSW effect [3]. Two-particle collisions
occuring in the vicinity of the black hole’s horizon may lead to a high-energy outcome
according to two scenarios [4,5]. These two scenarios turn out to be the same in the exterior
as well as in the interior of BH. A variety of other aspects of the Exterior vs. Interior
(a)symmetry have been discussed in Ref. [6].

It was shown by Doran et al. [7] that the interior of a Schwarzschild BH’s, which is
a dynamically changing spacetime, may be regarded as a solution of Einstein’s equation.
This interior spacetime, also called “T-sphere” (see [8]) which is globally hyperbolic, gains
then the status of a cosmological model. Its 3D spatial-like section is a hypercylinder
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R1× S2, expanding longitudinally, along the homogeneity direction R1, (see also [6–8]) and
contracting transversally, perpendicularly to this direction in the angular coordinates of
the sphere S2. However, as shown in Ref. [7], such a process may be preceded by a process
of expansion of the sphere and collapsing of the cylinder to its base sphere of radius rS.
Such an expansion followed by a contraction constitutes the full cycle for the cosmological
model introduced in [7].

Various phenomena and processess have been considered both in the interior of
the Schwarzschild BH [8–12] and in its extension [7] to which we will hereafter refer
to as the “T-model”, an anisotropic cosmological model. In particular the Yang-Mills
and Higgs fields in the Kantowski-Sachs anisotropic, cigar-like—referred to above as
a hypercylinder—cosmological model were discussed in [13] (see also [14]). Canonical
quantization of the scalar field inside a Schwarzschild BH was presented by Yajnik and
Narayan [15], where a so-called tortoise coordinate was used, in consequence leading to
a Hamiltonian of diagonal form and, as claimed by the authors, to “QFT set up by the
freely falling observer”. Other studies of the quantum properties of scalar field were given
for instance in Refs. [16,17] and the investigations of the interior of the Schwarzschild BH
were presented in Refs. [18,19]. The most recent results have been given by Almeida and
Rodrigues in Ref. [20] where the quantization of the BH gravity was discussed and by
Giddings and Perkins in Ref. [21], in which the quantum evolution of the Hawking state in
Schwarzschild spacetime was investigated.

In this paper we will present a particular quantum aspect of the “T-model”. Namely
the problem of dynamics, i.e., the temporal evolution of the quantized scalar field in the case
of such a cosmology will be introduced and briefly discussed within a unitary approach.
The Hamiltonian of the system, represented by a set of harmonic oscillators, coupled via
creation and annihilation of pairs of particles, revealing interesting symmetry properties,
will be derived. The Heisenberg equations of motion for appropriate annihilation and
creation operators will be converted into ordinary differential equations for Bogolyubov
coefficients and will be shown to reveal the possibility of an instability that is referred to as
a gravitationally driven instability.

The paper is organized as follows. In Section 2 we discuss the properties of the
Schwarzschild BH and a T-model is formulated. In Section 3 a scalar field and its quan-
tization are discussed. In Section 4. the Hamiltonian of the scalar field is derived and
a discussion is presented in the final section, Section 5; Appendix A is devoted for a deriva-
tion of explicit form the temporal part of (factorized) Klein-Gordon equation.

2. “T-Sphere” Model—An Anisotropic Cosmological Model

The metric gµν for the exterior of the Schwarzchild black hole, diagonal in the Schwarzschild
coordinates (t, r, θ, ϕ), reveals the singularity on the horizon:

ds2 = gt(r)dt2 − gr(r)dr2 − g2(r)dΩ2. (1)

where
gt = 1− 2M

r
= g−1

r (2)

g2(r) = r2, and dΩ2 denotes the metric on the two-dimensional unit sphere S2 with the
coordinates (θ, φ) :

dΩ2 = dθ2 + sin2 θdφ2. (3)

The geometrical singularity at the horizon, rS = 2M may be removed by a transformation
to a singularity-free coordinate system, such as Kruskal-Szekeres, Eddington-Finkelstein,
Novikov, Lemaitre or other systems [1,2].

The coordinate system (1), though ill-defined on the horizon, may be applied inside
the horizon (see e.g., [6,7]). The interior of a BH, r < rS possesses, apart from some well-
known, some not so well-known, properties too (see [22]). The Killing vector ∂t becomes
a spatial one that results in momentum conservation instead of energy conservation, as
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obeyed outside BH (see below). This is accompanied by the interchange of the roles of the
coordinates: t and r play the role of the spatial- and temporal-like coordinates, respectively.

The interesting feature of the interior of a Schwarzschild BH is that it may be re-
garded as a unique spacetime, a cosmological anisotropic model called a “T-sphere” model
or simply T-model [8]. It is described by the line element (1) for r < rS but now ex-
pressed in terms of T(= −r) (temporal) and z (spatial) coordinates instead of r and t,
coordinates, respectively

ds2
− = gTdT2 − gzdz2 − g2(T)

(
dθ2 + sin2 θdϕ2

)
, (4)

where, T ∈ 〈−rS, 0〉, z ∈ (−∞,+∞), gT =
( rS

T − 1
)−1

= g−1
z . At each instant of T0 the

spatial slice is a hypercylinder R1 × S2, longitudinally expanding and transversally, a two-
sphere of radius |T0|, contracting (see e.g., [6]). Along the cylinder axis z the system is
homogeneous and that represents the momentum z-component conservation.

Phenomena of a classical nature have been considered in the T-model both within
a more traditional approach (see e.g., [9–12]) as well as from other specific perspectives
(see [22–25]). Here we will consider a special quantum phenomenon, namely the problem
of dynamics of the quantized scalar field in the case T-model will be introduced and briefly
discussed within a unitary approach.

3. Scalar Free Field in a T-Model

A scalar free field Φ in a space-time M with a metric gµν is described in terms of
Lagrangian density L:

L =
1
2
√
−ggµν∂µΦ∂νΦ−

(
µ2 + ξR

)
Φ2, (5)

where −g = det
[
gαβ

]
, the parameter µ can be interpreted as the mass only in asymp-

tomatically flat space-time, R is the scalar curvature of M and ξ is the field coupling to the
spacetime curvature.

In the case of the spacetime (4) the coupling with gravitational field vanishes (as R = 0)
and the action of the scalar free field (5) takes the form

S =
1
2

∫
dT
∫
Σ

dzdΩT2
[

1
gT

(∂TΦ)2 − 1
gz
(∂zΦ)2 +

1
T2 Φ∆S2 Φ− µ2Φ2

]
, (6)

where Σ = R1× S2, dΩ = sin θdϕdθ and we have integrated by parts in the sector S2 which
resulted in the Laplace operator ∆S2 on S2:

∆S2 Φ =
1

sin θ

∂

∂θ

(
sin θ

∂Φ
∂θ

)
+

1
sin2 θ

∂2Φ
∂ϕ2 . (7)

The Klein-Gordon (or Euler-Lagrange) equation

1√−g
∂µ

(√
−ggµν∂νΦ

)
+ µ2Φ = 0, (8)

takes in this case the following form:

∂T

(
T2gz∂TΦ

)
− T2

gz
∂2

zΦ− ∆S2 Φ + µ2T2Φ = 0. (9)

Taking the field Φ in the form of a product:

Φ(T, z, θ, φ) = R(T)u(z)Y(θ, φ). (10)
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it follows that the wave Equation (9) separates into the following equations:

∆S2Y = −l(l + 1)Y, (11)

d2uε

dz2 = −ε2uε, (12)

d
dT

(
T2gz

dRεl
dT

)
+ T2

(
ε2

gz
+ µ2 +

l(l + 1)
T2

)
Rεl = 0, (13)

where ε is a (separation) constant. The solution of Equation (11) is given by the spherical
harmonics Ylm(θ, φ), ∫

S2

dΩYlm(θ, ϕ)Y∗l′m′(θ, ϕ) = δll′δmm′ , (14)

∫
S2

dΩYlm(θ, ϕ)Yl′−m′(θ, ϕ) = δll′δm,−m′ (15)

where m = −l,−(l − 1), . . . 0 . . . , l. The solution of Equation (12) is

u(z) = e±iεz. (16)

One can decompose the field Φ into the complete system of functions on R1 and S2. Thus,
the real field Φ = Φ∗ is represented as:

Φ(T, z, θ, ϕ) = ∑
ε,l,m

[
Rεl(T)eiεzYlm(θ, ϕ)Aεlm + R∗εl(T)e

−iεzY∗lm(θ, ϕ)A∗εlm

]
, (17)

where Rεl(T) are the functions of the temporal variable T satisfying second order differential
Equation (13) and Aεlm are Fourier-like coefficients.

The scalar product (·, ·) (Klein-Gordon) is in general defined as:

(Φ, Ψ) = i
∫
Σt

(
Φ∗∂µΨ−Ψ∂µΦ∗

)
nµdvol(Σt), (18)

where n = nµ∂µ denotes the unit time-like vector field orthogonal to a space-like hyper-
surface (slice) Σt and Φ, Ψ are the solutions of the Klein-Gordon equation. In this case
Σt ' A× S2 and the scalar product takes the form (see [16,26]):

(Φ, Ψ) = iT2gz

∫
S2

sin θdθdφ
∫
A

(Φ∗∂TΨ−Ψ∂TΦ∗)dz. (19)

There is the following normalization condition

Aεlm =
(

Rεl(T)eiεzYlm(θ, ϕ), Φ
)

(20)

where Φ is given by (10), which is equivalent to the claim of the canonical commutation
relations (see also below).

After some (lengthy but simple) algebra one finds that condition (20) is satisfied iff

T2gz

[
R∗εl

·
Rεl −

·
R
∗
εl Rεl

]
= −i, (21)

R∗εl

·
R
∗
−εl − R∗−εl

·
R
∗
εl = 0. (22)
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The condition (21) is derived from the differential Equation (13). First, one writes
Equation (13) for the complex conjugated function R∗εl ; then one multiplies it by Rεl and
Equation (13) by R∗εl ; finally one subtracts the former from the latter obtaining

dT

(
T2gz

[
R∗εl

·
Rεl −

·
R
∗
εl Rεl

])
= 0. (23)

Therefore, Equation (21) turns out to be a normalization condition for Rεl i.e., the Wronskian
in this case, as it should be. On the other hand Equation (22) is just an equivalence.

Quantization

Quantization of the field (5) and (6) is performed in a canonical way. Namely, one
introduces the momentum field as the field canonically conjugated to Φ(T, z, θ, ϕ), i.e.,

π =
∂L

∂(∂TΦ)
=

T2

gT
∂TΦ. (24)

Then one imposes canonical commutation relations[
Φ̂(t, x), π̂(t, y)

]
= iδ(x, y), (25)[

Φ̂(t, x), Φ̂(t, y)
]

= [π̂(t, x), π̂(t, y)] = 0,

where x, y ∈ Σt. In our case the slice Σt has the topology of the product space of the set
A ⊂ R1 and the two-dimensional sphere S2. The momentum field given in its Fourier
decomposed form is:

π̂(t, r, θ, φ) =
T2

gT
∑

ε,l,m

[
Âεlm

·
Rεl(T)eiεzYlm(θ, φ) + Â†

εlm

·
R
∗
εl(T)e

−iεzY∗lm(θ, φ)

]
(26)

The canonical commutation relations Equations (25) turn out to be satisfied under the
following conditions:

(a) Âεlm, Â†
εlm, are the annihilation and creation operators, respectively, i.e., the only

nonvanishing commutator is[
Âεlm, Â†

ε′ l′m′

]
= δεε′δll′δmm′ (27)

(b) the Wronskian (21) must hold.

4. Hamiltonian of the Scalar Field in a T-Model

The Hamiltonian of the field described by the Lagrangian density L is determined as
an integral over the spatial part Σ of the spacetime

H =
∫
Σ

d3x[π∂TΦ−L], (28)

and this expression is equivalent to the (integrated) TTT element of the stress-energy tensor.
Applying formula (28) for the case (4) and (5) one obtains

H =
1
2

∫
Σ

dzdθdϕT2 sin θ

[
1

gT
(∂TΦ)2 +

1
gz
(∂zΦ)2 −Φ∆S2 Φ + µ2Φ2

]
. (29)
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Using the Fourier decomposition of the quantized field and momentum (see
Equations (17) and (27)) one finds the Hamiltonian of the quantized scalar field as ex-
pressed in terms of annihilation and creation operators:

H =
1
2 ∑

κ

[
ωκ Âκ Â†

κ + γκκ′ Âκ Âκ′ + (c.c)
]

(30)

where indices κ,κ′ correspond to the appropriate three letter sets εlm. The parameters
ωκ , γκκ′ are given as

γεlm/ε′ lm′ =

[
T2gz

·
Rεl
·
R−εl + T2

{
ε2

gz
+

l(l + 1)
T2 + µ2

}
Rεl(T)R−εl(T)

]
δε,−ε′δm,−m′ (31)

ωεlm =

[
T2gz

·
Rεl
·
R
∗
εl + T2

{
ε2

gz
+

l(l + 1)
T2 + µ2

}
Rεl(T)R∗εl(T)

]
. (32)

Therefore, the Hamiltonian of the scalar field in the T-model, i.e., anisotropic cosmological
model representing interior of the Schwarzschild BH, turns out to be

H =
1
2 ∑

εlm

[
ωεlm

(
Âεlm Â†

εlm + Â†
εlm Âεlm

)
+ γεlm/−εl−m Âεlm Â−εl−m + γ∗εlm/−εl−m Â†

εlm Â†
−εl−m

]
. (33)

representing the set of interacting, time-dependent harmonic oscillators.
On this basis one can study the dynamics of the quantized scalar field. The evolution

of the system is described by the Heisenberg equation of motion for the operators Âεlm

i
d
dt

Âεlm =
[

Âεlm, Ĥ
]
= ωεlm(t)Âεlm(t) + γ∗εlm(t)Â†

−εl−m(t) (34)

where, γεlm/−εl−m ≡ γεlm. One can search for the solutions of the above equations by using
the following ansatz:

Âεlm(t) = αεlm(t)Âεlm + βεlm(t)Â†
−εl−m, (35)

where αεlm(t) and βεlm(t) are some unknown complex functions and Âεlm and Â†
−εl−m are

time independent operators. By definition the relation (35) preserves the commutation
relations (27), hence it turns out to be the Bogolyubov transformation,

|αεlm(t)|2 − |βεlm(t)|2 = 1. (36)

Then, the Heisenberg Equation (34) are converted into differential equations for the Bo-
golyubov coefficients

i
d
dt

αεlm(t) = ωεlm(t)αεlm(t) + γ∗εlm(t)β∗εlm(t), (37)

i
d
dt

βεlm(t) = ωεlm(t)βεlm(t) + γ∗εlm(t)α
∗
εlm(t). (38)

In general, one can’t expect exact solutions of the Equations (37) and (38) and approximate
schemes would therefore be proposed. Our forthcoming paper will be devoted to the
comprehenssive discussion of this problem.

5. Discussion

Considering the interior of a Schwarzschild BH as a unique spacetime, an anisotropic
cosmological model, we have performed the quantization of the free (noninteracting) scalar
field by imposing the canonical commutation relations. One decomposes the field and
momentum in terms of the complete set of solutions of the Klein-Gordon (or in fact Euler-
Lagrange equations) with the coefficients of expansion being annihilation and creation
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operators. This procedure leads to the Hamiltonian of the quantized scalar field taking the
form of the set of harmonic, time-dependent oscillators coupled in a special way: there
are terms in the Hamiltonian corresponding to creation, γεlm Âεlm Â−εl−m and annihilation
γ∗εlm Â†

εlm Â†
−εl−m particles in pairs.

Such a picture, peculiar at first sight, appears to have a deeper sense. The spacetime
considered is a dynamic one—there is no energy conservation there, hence the Hamilto-
nian contains terms representing spontaneous creation and annihilation pairs of particles.
Homogeneity of the spacetime along the z-direction results in the presence of a spatial-like
Killing vector representing, z-momentum-component conservation. Hamiltonian (33) re-
flects this symmetry property: pairs of the particles with opposite z-component momenta
may be created, Â†

εlm Â†
−εl−m and annihilated Âεlm Â−εl−m; the Hamiltonian of the system

also obeys rotational invariance.
The conservation of the z-momentum component in the terms represented by γεlm

and γ∗εlm in the Hamiltonian is an analogue of energy conservation outside the BH, i.e., the
particles in a pair carry positive/negative energy; the one with negative energy cannot
survive outside the BH but only within the horizon of the BH.

There is a more or less obvious interpretation of the βεlm(t) coefficient of the Bo-
golyubov’s transformation (35): it is proportional to the number of the particles created
during the evolution of the system,

〈0(t)|Â†
εlm Âεlm|0(t)〉 = 〈0|Â†

εlm(t)Âεlm(t)|0〉 = |βεlm(t)|2, (39)

where |0〉 is the vacuum state for fixed time t = 0 and annihilation operators Âεlm while
|0(t)〉 is the vacuum state for later time t and annihilation operators Âεlm(t). Due to the
violent dynamics of the background spacetime, one may expect the dynamics of the creation
and annihilation of the (pairs of) particles to be violent, and conventional adiabatic-like
approaches (see e.g., [16,17]) could hardly be regarded as a working scheme. Therefore,
attempts to find an approximate solution within a treatment here proposed that might be
called a “unitary approach” as based on a unitarity of the evolution of the system, will be
discussed in our following paper.

An interesting aspect of the dynamics of the model (5) will be however briefly dis-
cussed here. That is the question of the possible instability of the system of interacting
harmonic oscillators (33) (see [27,28]). The oscillators interact in pairs, (εlm)/(−εl −m)
and one can consider diagonalization (at an arbitrary instant T′) of the Hamiltonian corre-
sponding to such a subsystem. Then the frequency in such a diagonalized case is given as:

Ω2
εlm = ω2

εlm − |γεlm/−εl−m|2. (40)

This expression should be positive, otherwise the system is unstable (see [27]) (this
problem will be discussed in detail in our following paper)—this would be named a “gravi-
tationally driven instability”. One can check that in this case, Equations (31) and (32) the
right hand side of Equation (40)

Ω2
εlm =

1
gz

[
ε2

gz
+

l(l + 1)
T2 + µ2

]
(41)

is positive: there is no gravitational instability in the scalar field quantized in Doran et al. [7]
spacetime. An interesting issue is that, apart from the possible instability of type (40), that
might be referred to as “a restoring force instability” there is also another possible instability,
namely “a friction driven instability” but the problem of its origin and character will be
discussed elsewhere.
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P.G., A.R., A.T.A., J.P., O.B.Z. and R.J.Ś.; writing—original draft preparation, P.G., A.R., A.T.A., J.P.,
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Appendix A

Let us briefly analyze the form of the temporal part of Klein-Gordon equation in this
case, i.e., Equation (13):

1
T2

d
dT

(
T2gz

dR
dT

)
+

(
ε2

gz
+ µ2 +

l(l + 1)
T2

)
R = 0, (A1)

where gz = rS
T − 1, and lower labels have been omitted here. Making the substitution,

R = f η, one finds

1
T2

d
dT

(
T2gz

dR
dT

)
=

1
T2

[
(rS − 2T)

(
f ′η + f η′

)
+
(

rST − T2
)(

f ′′η + f η′′ + 2 f ′η′
)]

(A2)

and prime means differentiation with respect to T. Claiming

(rS − 2T) f + 2
(

rST − T2
)

f ′ = 0, (A3)

one gets R(T) in the form

R =
η√

T(rS − T)
, (A4)

and η(T) satisfies the following confluent Heun equation[
d2

dT2 + ν2(T)
]

η = 0, (A5)

where
ν2(T) = A +

B
T
+

C
(rS − T)

+
D
T2 +

E

(rS − T)2 , (A6)

and the five coefficients A, . . . , E are equal to:

A =
(

ε2 − µ2
)

, B =
1

2rS
(2l(l + 1) + 1),

C = rS

(
µ2 + 2ε2

)
+ B, D =

1
4

,

E = D− 2
(

1 + r2
Sε2
)

.
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