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ABSTRACT The integration of distributed energy resources (DERs), such as renewable energy (RE) and
energy storage systems, can have many environmental and economic benefits. The sharing of medium-scale
DERs can enhance these benefits by ensuring efficient resource utilisation and can promote sharing economy
and economies of scale opportunities. In this paper, we design a combinatorial double auction (CDA) for
DER sharing between multiple DER providers and a community of consumers. The proposed DER market
addresses the complementarity of DER services and supports the environmentally sustainable behaviour of
consumers. The purpose of the proposed auction is to allocate the limited DER resources efficiently without
compromising the privacy or the comfort of consumers. First, the combinatorial bidding rules are designed
and the social welfare optimisation problem is formulated. Then, utility maximising strategies for consumers
with both economic and environmental objectives are proposed. Additionally, three types of DER providers
are introduced, and their revenue maximising strategies are investigated. A case study with real world RE
generation and demand data from the UK is presented. Simulation results show that the proposed CDA can
greatly reduce energy emissions (by 24%) while also enhancing the revenues of DER providers, with gains
up to 82%, when compared with the case where DER energy is sold through a k-double auction.

INDEX TERMS Distributed energy resources, sharing economy, local energy markets, mechanism design,
combinatorial double auction, charging station, vehicle-to-grid.

NOMENCLATURE
ABBREVIATIONS
BESS Battery energy storage system.
BW Buyers’ welfare.
CDA Combinatorial double auction.
DER Distributed energy resources.
DSO Distribution system operator.
EI Environmental impact.
EV Electric Vehicle.
FIT Feed-in tariff.
LEM Local energy market.
MEF Marginal emission factor.
PV Photovoltaic.
RE Renewable energy.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chandan Kumar .

SES Shared energy storage.
SoC State of charge.
SR Sellers’ revenue.
SWO Social welfare optimisation.
V2G Vehicle-to-grid.
WT Wind turbine.

NOTATION
N Set of consumers (buyers) {1, .., i, ..,N }.
M Set of DER providers (sellers)

{1, .., j, ..,M}.
Kj Set of DER services (items) offered by

provider j {1, .., k, ..,K }.
T Set of time slots {1, .., t, ..,T }.
L Set of EVs {1, .., l, ..,L}.
di Energy demand of consumer i in kWh.
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γi Weight for emission savings of consumer i
in £/g.CO2eq.

λg Price of grid energy in £/kWh.
eg MEF of grid energy in g.CO2eq/kWh.
Rji Equivalent resistance between DER

provider j and consumer i in �.
Vj Nodal voltage at the bus DER provider j is

connected to in kV.
λkj Price of resource k offered by DER provider

j in £/kWh.
ekj MEF of resource k offered by DER provider

j in g.CO2eq/kWh.

E
k
j Energy limit of resource k offered by DER

provider j in kWh.
uij Utility of consumer i by being matched with

DER provider j in £.
dkij Energy demand requested by consumer i for

resource k offered by DER provider j in
kWh.

xij Boolean (0 or 1) variables to match con-
sumer i with DER provider j.

Jij Disutility of consumer i resulting from
energy cost and emissions in £.

Cij Energy cost of consumer i if matched with
DER provider j in £.

Eij Energy emissions of consumer i if matched
with DER provider j in g.CO2eq.

dgi Energy demand of consumer i satisfied by
grid in kWh.

PtPV ,gen Predicted PV generation at time t in kWh.
PtPV Offered PV energy at time t in kWh.
λtPV Price of PV energy at time t in £/kWh.
PtPV ,B PV energy used to charge BESS at time t in

kWh.
Ptg,B Grid energy used to charge BESS at time t

in kWh.
PtB Offered BESS energy at time t in kWh.
λtB Price of BESS energy at time t in £/kWh.
ηc/ηd BESS charging/discharging efficiency.
ηinv Inverter efficiency.
Pc,max BESS charging power limit in kW.
Pd,max BESS discharging power limit in kW.
CB BESS capacity in kWh.
SoCinit BESS initial SoC in %.
SoCmax BESS maximum allowable SoC in %.
etPV MEF of PV energy at time t in

g.CO2eq/kWh.
etB MEF of BESS energy at time t in

g.CO2eq/kWh.
PtWT ,gen Predicted WT generation at time t in kWh.
PtWT ,B WT energy used to charge BESS at time t in

kWh.
PtWT Offered WT energy at time t in kWh.
λtWT Price of WT energy at time t in £/kWh.
etWT MEF of WT energy at time t in

g.CO2eq/kWh.

tarrl /tdepl Real arrival/departure time of EV l.
tal /t

d
l Arrival/departure time of EV l mapped onto

T .
SoCarr

l SoC of EV l at arrival.
SoCdep

l Requested SoC of EV l at departure.
SoCmin,l Minimum allowable SoC of EV l.
SoCmax,l Maximum allowable SoC of EV l.
Cl Storage capacity of EV l in kWh.
Pmax,l Charging/discharging power limit of EV l in

kW.
ηc,l /ηd,l Charging/discharging efficiency of EV l.
ts/t f Start/finish time slot of the scheduling hori-

zon.
SoC init

l SoC of EV l at the start of the scheduling
horizon.

PtPV ,l PV energy used to charge EV l at time t in
kWh.

Ptg,l Grid energy used to charge EV l at time t in
kWh.

PtEV ,l Offered discharging energy from EV l at
time t in kWh.

PtEV Offered EV energy at time t in kWh.
λtEV Price of EV energy at time t in £/kWh.
etEV MEF of EV energy at time t in

g.CO2eq/kWh.
λFIT Fixed FIT price in £/kWh.

I. INTRODUCTION
Distributed energy resources (DERs) such as solar photo-
voltaic (PV), wind turbines (WT), and battery energy stor-
age systems (BESS) have several technical, economic, and
environmental benefits. Distributed generation can enhance
system resilience and lower transmission losses. Dependence
on grid supply can be reduced, thus deferring generation and
transmission investments [1]. The utilisation of BESS can
smooth demand volatility and counter the intermittency of
renewable energy (RE) supply [2], thus allowing for higher
penetration of RE, and reducing the CO2 emissions of elec-
tricity consumption [3]. Nonetheless, reductions in feed-in
tariffs [4] and low utilisation of individually-owned DERs [3]
have motivated the design of DER sharing mechanisms,
where prosumer communities can trade energy amongst
themselves in peer-to-peer (P2P) markets. Such markets,
however, suffer from privacy concerns [5], and complex-
ity due to the large number of players who can be buyers
and sellers interchangeably [6]. These limitations coupled
with the high investment and space requirements of small-
scale (1-10 kW) individually-ownedDERs have promoted the
investment in medium-scale (10-100 kW) community shared
DERs [3]. Unlike the uncontrollable small-scale DERs, Com-
munity shared DERs can also limit some of the technical
challenges of DER integration, which include voltage viola-
tions and overloading of distribution lines [7]. Investing in
community shared DERs can also open the opportunity for
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economies of scale, which can further cut down the costs of
DER integration.

One of the main challenges of DER sharing is the design
of a local energy market (LEM) that governs the strategic
interactions between the DER owners and the consumers who
wish to utilise DER energy services. A market mechanism
consists of a tuple ⟨B, µ, π⟩; a messaging (bidding) space
B where market players interact by sharing information or
by submitting their bids, an allocation rule µ that maps the
players’ bids to an outcome, and a payment rule π [8]. The
challenge is to design the rules of the DER sharing market in
a way that allocates the limited energy resources efficiently
(i.e., in a way that maximises social welfare) while also pre-
serving the privacy of consumers (i.e., without asking them
to share their private information).

A. RELATED WORKS
Some studies have proposed LEM mechanisms for com-
munity shared DERs. The authors in [9] propose an opti-
misation approach for the capacity allocation of a shared
energy storage (SES) to a community of consumers. In [10],
a Stackelberg game is proposed to model the interactions
between an SES provider and a retailer serving a community
of prosumers. The authors in [11] propose a pricing scheme
for a load aggregator that operates a SES serving consumers
with demand elasticity. A cooperative game is formulated
in [12] for buildings sharing an energy storage. The authors
propose a fair cost sharing approach based on nucleolus and
demonstrate its superiority to the Shapley approach. In [13],
a two-stage optimisation model for sharing an energy storage
is proposed. The SES provider determines capacity prices
in the first stage and users determine their optimal charg-
ing schedule in the second stage. A bi-level energy trading
framework is presented in [14], where the operation schedule
of an energy storage shared by prosumers is determined in
the lower level and the feasibility of this schedule is checked
in the upper level according to the distribution network con-
straints. The authors in [15] propose a double auction mech-
anism based on a multi-armed bandit algorithm for energy
trading between prosumers, where buyers/sellers select their
bid prices from a discrete price set that is bounded from below
by the FIT and by the grid price from above. The common
limitation of these studies is that they treat the various DER
energy services as substitutable items, failing to capture their
complementary nature [8].

Others have proposed market mechanisms that allow for
combinatorial bidding for the sharing of DERs. A com-
binatorial auction mechanism for SES capacity allocation
and pricing is presented in [16], where consumers request
SES capacity for multiple time intervals. The authors use a
genetic algorithm to solve the winner determination problem.
Although the temporal complementarity of energy usage is
taken into consideration in the proposed mechanism, other
types of complementary SES resources such as energy,
charging, and discharging power were not considered. This

is limiting as consumers have specific needs for energy and
charging/discharging power. In [17], an online scheduling
mechanism is developed for a community of prosumers shar-
ing an energy storage. Prosumers bid their optimal SES usage
profiles along with their valuation of these profiles in real-
time, and the SES manager accepts/rejects those requests
and updates its prices in a way that satisfies the operational
constraints of the SES. The proposed online mechanism
takes advantage of the complementarity of SES resources
and accounts for the uncertainty in prosumers’ storage needs,
however it produces sub-optimal outcomes and does not
account for the strategic behaviour of SES providers who can
be profit oriented in practice with an objective to maximise
their revenue. The authors in [18] propose a credit-based
mechanism for DER sharing, where capacity and energy from
an energy storage are priced using cost-based and demand-
based methods. Although the proposed mechanism captures
the revenue maximising behaviour of the DER provider and
the cost minimising behaviour of the prosumers, it cannot
be readily extended to more practical scenarios where mul-
tiple DER providers compete to provide their services to a
community of consumers. The authors in [19] formulate the
trading of energy storage usage rights as a bilevel optimisa-
tion problem, where consumers bid their optimal charging
schedule in the upper level, allocation is determined in the
lower level, and pricing is calculated based on the optimalities
of both levels. The proposed tradingmechanism is an iterative
one, which can suffer from convergence complications due
to communication delays or failure. In [20], two models
for DER sharing in an apartment building are proposed; a
social welfare optimisation model, where the objective of
the DER provider is to maximise the aggregate benefit of
its consumers, and a game-theoretic model, where the DER
provider’s objective is to maximise its revenue. Consumers’
valuation function is formulated as the sum of cost saving,
emission saving, and a value for the availability of DER. The
main drawback of the proposed scheme is the assumption
that the private preferences of consumers are known to the
DER provider a priori, whereas in practice, consumers tend
to avoid sharing their private information. An SES combina-
torial auction is proposed in [21]. In the proposed auction,
consumers submit their demand-price bids for the capacity,
energy, charging power, and discharging power services of
the SES, upon which the SES provider runs a winner deter-
mination and payment calculation algorithm that is based
on social welfare maximisation. The auction is implemented
in a day-ahead format, which can suffer in practice due
to the uncertainty and stochasticity of distributed genera-
tion and due to the uncertainty and volatility of electricity
demand. Additionally, the proposed auction cannot be readily
extended to scenarios with multiple DER providers.

More relevantly, a few studies have presented energy
market structures based on combinatorial double auctions.
In [22], electric and heat energy resources are traded between
multiple producers and consumers. Buyers bid their energy
requirements and their reservation price (i.e., maximum price
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TABLE 1. A comparison between the proposed CDA and the previous
studies that proposed combinatorial auctions for DER sharing.

they are willing to pay) while sellers offer their produced
energy and bid their reservation price (i.e., minimum price
they are willing to accept). The authors propose a heuristic
based on open book call markets to match demand and supply
for both electricity and heat. The proposed market can result
in inefficient outcomes and it does not take the environmen-
tal impact of the energy resources into consideration. The
authors in [23] propose an auction for trading SES capac-
ity, charging power, and discharging power resources, where
sellers/buyers submit supply/demand and price bids. The
auctioneer determines the clearing price and quantities by
matching the supply and demand curves of each SES resource
individually. Although the proposed double auction offers a
simple methodology for trading multiple resources, it does
not implement combinatorial bidding where bundled requests
can either be accepted fully or rejected altogether. This is
essential in combinatorial auctions because bidders value
their requested bundles differently to each requested service
individually. Additionally, the proposedmechanism also does
not account for network losses, which can be significant in
low voltage distribution networks. A combinatorial double
auction for energy trading between microgrids is presented
in [24]. Microgrids with surplus/deficiency in energy submit
their quantity-price bids to an auctioneer, who then runs a
winner determination algorithm based on a combination of
a genetic algorithm and particle swarm optimisation. The
authors, however, do not investigate the bidding strategies of
the market players or the concept of emission reduction as a
motivation for microgrids to choose which energy trades to
undertake. The authors in [25] propose a day-ahead LEM for
trading electricity and hydrogen between multiple providers
and consumers. The proposed auction maximises social wel-
fare and preserves the privacy of its consumers. Nonetheless,
market clearing is based on an iterative algorithm where
players keep updating their bids and the auctioneer keeps
clearing the market until a convergence criterion is met.

Iterative mechanisms can have convergence speed concerns
and can be manipulated by strategic behaviour (cf. [8]).
Table 1 summarises the research gaps and highlights the
contributions of the proposed CDA.

B. CONTRIBUTION
In this paper, we address the gaps highlighted in Table 1
and propose an LEM where multiple DER providers offer
their energy services to a community of consumers. Con-
sumers are modelled as rational agents who wish to minimise
their energy costs. The DER sharing mechanism is designed
in a way that allows for the environmentally sustainable
behaviour of consumers who wish to minimise their energy
emissions. The strategic revenue maximising behaviour of
DER providers is also captured in the proposed mechanism.
Due to the complementarity of DER services, the LEMmech-
anism we propose for DER sharing is based on a combina-
torial double auction (CDA). The purpose of the proposed
auction is to allocate the limited DER resources efficiently
without compromising the privacy of consumers. The pro-
posed auction also accounts for DER network losses, which
are relevant when multiple DER providers are located dis-
tantly in low voltage distribution networks [26]. Additionally,
to limit the effect of uncertainty in generation and demand
on market outcomes, the proposed CDA is designed to be
implemented in real-time format (hour-ahead). We simulate
the proposed framework on the IEEE 37-bus network using
real world generation and demand data from the UK. We also
investigate the impact of DER sizing and pricing on generated
revenue, and that of DER placement on DER energy losses.
The key contributions of this study are as follows:

• A novel CDA is proposed for sharing DERs between
multiple providers and a community of consumers.
Social welfare maximisation, privacy preservation, and
environmental impact consideration are key features of
the proposed market.

• DER revenue maximising strategies of three types of
DER providers operating different energy resources are
proposed. Consumers’ utility maximising strategies are
also examined.

• Simulation of the proposed CDA on a modified IEEE
37-bus network with real-world generation and demand
data is implemented. Strategic sizing, pricing, and place-
ment of DERs are investigated.

C. PAPER ORGANISATION
The rest of the paper is organised as follows. The problem
statement is discussed in Section II. Section III presents
the proposed CDA market mechanism for DER sharing and
investigates the bidding strategies of both buyers and sellers.
Simulation results are shown and discussed in Section IV.
Section IV also evaluates the performance of the proposed
CDA in terms of some desired properties, which include
efficiency, privacy preservation, and tractability. Conclusions
are drawn and future research directions are discussed in
Section V.
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II. PROBLEM STATEMENT
In this section, we describe the problem facing the distribu-
tion system operator (DSO) who is tasked with designing
and regulating a market for DER sharing between multiple
DER providers and consumers. We assume that the DSO is
a selfless non-profit operator whose objective is to maximise
the total welfare of all market players, specifically by allo-
cating the limited resources offered by the DER providers
to the consumers who value these resources the most. The
DER sharing market is assumed to be spatially bounded to
a given area which lies within a distribution network oper-
ated by the DSO. We assume that the distribution network
has bidirectional power flow capabilities that are not limited
by physical network constraints (this assumption is further
discussed in Section IV-E5). We also assume that the network
is integrated with a communication infrastructure that allows
for the exchange of information between the DSO and all
market players. Consumers are assumed to be equipped with
an automated agent that acts as an interface in the DER
sharing market. Consumers need only input their preferences
and their automated agents would bid in the auction on their
behalf.

The system architecture of the proposed framework for
DER sharing is shown in Fig. 1. Suppose that a distribu-
tion network has a number of DER providers, where M =

{1, . . . , j, . . . ,m} is the set of DER providers, and a number
of consumers where N = {1, . . . , i, . . . , n} is the set of
consumers. Each DER provider has a set of energy resources
Kj = {1, . . . , k, . . . ,K }. Each resource k ∈ Kj can be char-
acterised by three parameters; energy limit in kWh, price in
£/kWh, and emission factor in g.CO2eq/kWh. The marginal
emission factor (MEF) of energy can be used as a represen-
tative to calculate the emissions of electricity consumption.
According to [27], MEF is the best metric to evaluate the
environmental impact of electricity demand. We assume that
in the future smart grid, each unit of energy can be traced to
its origin and it can be integrated with information about its
MEF. The DSO can useMEF information in order to optimise
the benefit of DER integration and capitalise on the environ-
mentally sustainable behaviour of consumers. Furthermore,
we assume that consumers have a fixed energy demand di,
measured in kWh, and are not willing to compromise their
comfort by reducing or shifting this demand. Consumers can
value utilising the offered DER services in two ways; saving
on their energy costs, and reducing their energy carbon foot-
print [28]. Consumers who value reducing their emissions
can do so by setting a weight γi to their expected emission
savings, which has a unit of £/g.CO2eq.Moreover, we assume
that grid power is accessible to all market players and that
grid prices λg are demand-dependent and are broadcasted a
day-ahead. We also assume that the MEF of grid power eg is
calculated in real-time (hourly) and shared publicly. Finally,
we assume that for each consumer i ∈ N , the DSO calculates
the equivalent resistance Rji connecting them to each DER
provider j ∈ M and provides them access to this information
alongwith the nodal voltageVj for eachDER provider. This is

FIGURE 1. System architecture of the proposed DER sharing market,
where the DSO acts as a central auctioneer and governs the energy
trading between multiple DER providers and a community of consumers.

to provide consumers with the necessary network parameters
for them to be able to estimate the network losses that result
from DER utilisation. Note that only the losses in the shared
DERs are considered in this study, since these losses affect
the trading volume and revenues of the proposed LEM.

III. CDA FOR DER SHARING
The proposed auction is designed to have an hour-ahead
format. This is preferable to the day-ahead format because
it lessens the level of uncertainty in RE generation [29] and
because it reduces the dimensionality, and thus complexity of
the allocation problem. First, the DSO announces the start of
the current auction round and broadcasts the price and MEF
of grid power for the next hour, respectively, λg and eg. Then,
the DER providers who wish to participate in the current
auction round are requested to bid their price λkj , MEF ekj ,

and energy limit E
k
j for each energy resource type k ∈ Kj

they wish to offer. Consumers then submit their bids to the
DSO for utilising the resources of each DER provider. Each
consumer can submit up tom number of bids, each containing
their demand for each resource offered by eachDER provider.
They are also asked to report the value they gain from getting
the demand they are requesting. This value is denoted uij,
representing the utility consumer i gains by being matched
with DER provider j. Hence, each consumer i is asked to
submit bidi(j) = {dkij , uij} to the DSO for each DER provider
j ∈ M, where dkij is the demand request vector ∀k ∈ Kj, and
uij is the scalar utility.
Example:Consider the following simple example with two

DER providers, each offering two energy services. Table 2
shows the prices and MEF of the grid and the offered DER
services. Assume Consumer A has a demand of 1 kWh
and is a strictly cost minimising customer. The only ser-
vice that would cut their cost is resource 1 from Provider I,
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TABLE 2. Simple example with two DER providers, each with two
resources.

saving them £0.1. Therefore their bid for Provider I would
be bid1(I ) = {1, 0, 0.1} while their bid for Provider II
would be bidA(II ) = {0, 0, 0}. Now assume Consumer
B has a demand of 2 kWh and a value for emission reduc-
tion of γB = 0.5 £/kg.CO2eq. Similarly, the only resource
that would offer cost savings is resource 1 from Provider
I. However it has no effect on emissions. Therefore Con-
sumer B’s value for getting their demand from this resource
uBI would only derive from the cost saving of 2 kWh ×

(0.2 − 0.1) £/kWh = £0.2. Hence, their bid for Provider I
would be bidB(I ) = {2, 0, 0.2}. In contrast, resource 2 from
Provider II is the only resource that offers emission savings,
however, without cost implications. The value of utilising
this resource uBII would be 0.5 £/kg.CO2eq × 2 kWh ×

(0.2 − 0.05) kg.CO2eq/kWh = £0.15. Therefore, Con-
sumer B would submit bidB(II ) = {0, 2, 0.15} for DER
provider II.

Given the combinatorial nature of DER sharing, con-
sumers’ bids can either be accepted fully or rejected by the
DSO. In the proposed auction, the DSO matches the con-
sumers’ bids to the bundles offered by the DER providers
in a way that maximises social welfare. In settings with
multiple sellers and buyers, social welfare consists of the sum
of buyers’ utilities and the sum of sellers’ revenues. Denote
the boolean variable vector that represents whether a bid is
accepted or rejected as xij, which is of length (n×m). Where
xij = 1 means that bidi(j) is accepted and consumer i is
matched to DER provider j, while xij = 0 means that bidi(j)
is rejected. Consumers’ total welfare (i.e., buyers’ welfare)
BW becomes:

BW =

∑
i∈N
j∈M

xijuij (1)

However only one bid can be accepted from each con-
sumer, thus implementing an XOR bidding rule for buyers,
which can be formulated as:∑

j∈M
xij ≤ 1 ∀i ∈ N (2)

the DER providers are assumed to be independent enti-
ties who are financially driven to optimise their own oper-
ating revenues. Note that investments and operating costs
are neglected in the proposed CDA, given its short horizon
(an hour-ahead). The total operating revenues of the DER

providers (i.e., sellers’ revenues) SR is:

SR =

∑
j∈M
i∈N

xij ∑
k∈Kj

dkijλ
k
j

 (3)

The objective of the DSO is to maximise social welfare by
optimising the boolean variable vector xij:

max
xij

BW + SR

=

∑
i∈N
j∈M

xijuij +
∑
j∈M
i∈N

xij ∑
k∈Kj

dkijλ
k
j

 (4)

subject to
∑
j∈M

xij ≤ 1 ∀i ∈ N (4a)

∑
i∈N

xijdkij ≤ E
k
j ∀j ∈ M ∀k ∈ K (4b)

xij = 0 or1 ∀i ∈ N ∀j ∈ M (4c)

Constraint 4a implements the XOR bidding rule, while
constraint 4b ensures that energy limits of the DER resources
are not violated. This social welfare optimisation (SWO)
problem is an integer linear program (ILP) with boolean
variables, which is similar to the 0-1 knapsack problem and
is NP-hard. However, it can be solved using the branch and
cut method [30] or using heuristics such as genetic algo-
rithms [31].

A. CONSUMER BIDDING STRATEGY
Consumers are assumed to be rational agents whose objective
from participating in CDA is to minimise their disutility.
Consumers can lower their energy cost by purchasing from
resources priced cheaper than the grid. They can also lower
their environmental impact by using low-emission energy
resources, thus gaining social value [32]. We assume that
consumers can predict their energy demand di of the next hour
with negligible errors. Given the announced DER prices λkj
and MEF ekj , consumer i can determine the optimal demand
vector dkij they wish to get from each DER provider j by
minimising their disutility Jij, where:

Jij = Cij + γi Eij, (5)

where Cij and Eij respectively represent the cost and energy
emissions of consumer i, if matched with DER provider j.
γi is the weight set by consumer i for emission reduction in
£/g.CO2eq. Denoting the demand that is satisfied by the grid
as dgi , the disutility function can be formulated as:

Jij = dgi λ
g
+

∑
k∈Kj

dkijλ
k
j + γid

g
i e

g
+ γi

∑
k∈Kj

dkije
k
j (6)

Demand di can either be met by the grid dgi or by DER
sharing

∑
k∈Kj

dkij . Nonetheless, losses in the demand met by
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DER can only be compensated by the grid.

dgi = di −
∑
k∈Kj

dkij +

(∑
k∈Kj

dkij
Vj

)2

Rji × 10−3 (7)

whereVj is the nodal voltage where DER provider j is located.
The consumer’s disutility minimisation problem becomes:

min
dkij

Jij = dgi λ
g
+

∑
k∈Kj

dkijλ
k
j + γid

g
i e

g

+ γi
∑
k∈Kj

dkije
k
j (8)

subject to di −
∑
k∈Kj

dkij ≥ 0 (8a)

dkij ≥ 0 ∀k ∈ Kj (8b)

where dgi is from (7). Constraint 8a ensures that the energy
provided by DER does not exceed demand. This optimi-
sation problem is a quadratic programming problem that
can be solved using Karush–Kuhn–Tucker (KKT) multipliers
method. The optimal disutility J ∗

ij can be used to calculate
utility uij, where:

uij = di(λg + γieg) − J ∗
ij (9)

At each auction round, consumers run this disutility min-
imisation problem for each DER provider and submit their
bids containing optimal demand vector dkij and utility uij to
the DSO.

B. DER PROVIDER BIDDING STRATEGY
DER providers are modelled as independent investors who
wish to maximise their revenue by offering their energy
services in CDA. In this section, we discuss the bidding
strategies of three different types of DER providers; (i) a DER
provider equippedwith PV generation and a BESS, (ii) a DER
provider equippedwithWTgeneration and a BESS, and (iii) a
DER provider operating an EV charging station and equipped
with PV generation. Fig. 2 shows the different configura-
tions of the three types of DER providers. Given that DER
providers do not have access to the consumers’ private utility
information or to other providers’ bidding information, DER
providers can only assume that their offered services will be
sold in CDA, and thus can optimise the offered quantities of
these services.

1) DER PROVIDER WITH PV AND BESS (TYPE I)
Assume that a DER provider who has PV generation and a
BESS can predict its PV supply a day-ahead. Denote this PV
generation as PtPV ,gen, where t ∈ T , representing the 24 time
steps (hours) in a day. The DER provider can either sell this
supply directly in CDA whenever it is generated PtPV at price
λtPV or use it to charge their BESS PtPV ,B and sell it at a later
time step. The DER provider can also charge its BESS from
the grid Ptg,B during off-peak demand periods when price
is low and sell any stored energy PtB during peak demand

FIGURE 2. Configurations of the three types of DER providers, operating
(a) PV generation and BESS, (b) WT generation and BESS, and (c) PV
generation and an EV charging station.

periods at price λtB. The DER provider schedules its BESS
utilisation a day-ahead in order to optimise its revenue:

max
{Ptg,B,

PtPV , PtB}

∑
t∈T

(
PtPVλtPV + PtBλ

t
B − Ptg,Bλ

t
g

)
(10)

subject to PtPV /ηinv + PtPV ,B = PtPV ,gen ∀t ∈ T (10a)

ηinvPtg,B + PtPV ,B ≤ Pc,max ∀t ∈ T (10b)

PtB/ηinv ≤ Pd,max ∀t ∈ T (10c)

SoCinit +
1
CB

t∑
τ=0

(
ηc(Pτ

PV ,B + ηinvPτ
g,B)

− Pτ
B/ηinvηd

)
∈ [SoCinit , SoCmax] ∀t ∈ T

(10d)

where ηc, ηd , and ηinv are the charging, discharging, and
inverter efficiencies, respectively. Pc,max and Pd,max are the
charging and discharging power limits of the BESS. CB is
the BESS capacity, and SoCinit and SoCmax are the initial and
maximum state of charge (SoC) of the BESS. Constraint 10a
is for PV supply-demand balance, while constraints 10b-10d
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are for BESS operation. The initial (i.e., minimum) and
maximum SoC levels are enforced to limit the operation of
BESS within the linear zone of the charging and discharging
curves, thus avoiding nonlinear charging/discharging cycles,
and preventing overcharging/overdischarging. Note that bat-
tery leakage losses are assumed to be negligible. At each
CDA round t , the DER provider offers their PV energy PtPV
at price λtPV and an MEF of etPV . Similarly, they bid their
stored energy PtB at price λtB and MEF etB. Although the DER
provider can solve its revenue maximisation problem a day-
ahead, it can take advantage of the real-time format of CDA
and adjust its offered services with more accurate predictions
of its RE generation.

2) DER PROVIDER WITH WT AND BESS (TYPE II)
Similar to Type I, we assume that Type II DER provider can
predict its WT generation a day-ahead with negligible errors,
denoted PtWT ,gen. The DER provider can use this supply to
charge its BESS PtWT ,B or sell it directly in CDA PtWT at price
λtWT . The revenue maximisation problem of Type II DER
provider can be formulated as:

max
{Ptg,B,

PtWT , PtB}

∑
t∈T

(
PtWTλtWT + PtBλ

t
B − Ptg,Bλ

t
g

)
(11)

subject to PtWT + PtWT ,B = PtWT ,gen ∀t ∈ T (11a)

ηinv

(
Ptg,B + PtWT ,B

)
≤ Pc,max ∀t ∈ T

(11b)

PtB/ηinv ≤ Pd,max ∀t ∈ T (11c)

SoCinit +
1
CB

t∑
τ=0

(
ηcηinv(Pτ

WT ,B + Pτ
g,B)

− Pτ
B/ηinvηd

)
∈ [SoCinit , SoCmax] ∀t ∈ T

(11d)

TheDER provider then bids {PtWT , λtWT , etWT } for theirWT
energy, and {PtB, λ

t
B, e

t
B} for their stored energy, at each CDA

round.

3) DER PROVIDER WITH RE AND AN EV CHARGING
STATION (TYPE III)
An EV can act as an energy storage system and provide
vehicle-to-grid (V2G) energy to local consumers. Note,
we assume that an agreement between the charging station
operator and the EV owners to use their V2G services is
already in place. Nonetheless, the charging station can offer
V2G energy in CDA. Assume that an EV arrives at the
charging station at real time tarrl with an initial SoC SoCarr

l ,
where l ∈ L, representing the set of connected EVs. Each
EV makes a request by setting the departure time tdepl and
required SoC level at departure SoCdep

l . Each EV is also
required to provide its minimum and maximum SoC levels,
denoted SoCmin,l and SoCmax,l respectively, its capacity Cl
in kWh, its charging/discharging power limit Pmax,l , and its

charging/discharging efficiency ηc,l and ηd,l . The real arrival
time is mapped onto the CDA time steps using a ceiling
rounding operator ⌈⌉ to obtain the smallest following time
step tal ∈ T . Similarly, the real departure time is mapped
onto the CDA time steps using a floor rounding operator ⌊⌋

to obtain the largest previous time step tdl ∈ T . Given that
EV’s arrival is a stochastic process [33], the DER provider
can form its revenue maximisation problem when an event
occurs (i.e. when an EV arrives or departs abruptly before
its scheduled departure time). Consequently, the scheduling
horizon of the EV charging station starts from the time an
event occurs ts ∈ T and ends at the latest departure time
of any of the connected EVs t f = max(tdl ) ∈ T . Similar to
Type I and Type II, theDERprovider of Type III can either use
its PV generation or grid power to charge an EV, respectively
PtPV ,l and P

t
g,l , and offer its remaining PV energy PtPV and its

EV discharging energy PtEV =
∑

l∈L P
t
EV ,l in CDA. Given

that an EV can be involved in multiple scheduling instances
(if an event occurs during its stay), we denote SoC init

l as its
initial SoC level at time ts, where:

SoC init
l =



SoCarr
l ts = tal

SoCarr
l +

1
Cl

ts∑
t=tal

(
ηc,l (Ptg,l

+ ηinvPtPV ,l) − PtEV ,l/ηd,l
)

ts > tal

(12)

Assuming that the DER provider sets prices λtPV and λtEV
for selling its PV and V2G energy services in CDA, the
revenue optimisation problem of the DER provider becomes:

max
{Ptg,l ,P

t
PV ,

PtEV ,l }

t f∑
t=ts

(
PtPVλtPV +

∑
l∈L

PtEV ,lλ
t
EV −

∑
l∈L

Ptg,lλ
t
g

)

(13)

subject to
1

ηinv

(
PtPV +

∑
l∈L

PtPV ,l

)
= PtPV ,gen

∀t ∈ [ts, t f ] (13a)

Ptg,l + ηinvPtPV ,l ≤ Pl,max

∀l ∈ L ∀t ∈ [ts, t f ] (13b)

PtEV ,l ≤ Pl,max ∀l ∈ L ∀t ∈ [ts, t f ] (13c)

SoC init
l +

1
Cl

t∑
τ=ts

(
ηc (ηinvPτ

PV ,l + Pτ
g,l)

− Pτ
EV ,l/ηd

)
∈ [SoCmin,l, SoCmax,l]

∀l ∈ L ∀t ∈ [ts, t f ] (13d)

SoC init
l +

1
Cl

tdl∑
t=ts

(
ηc (ηinvPtPV ,l + Ptg,l)

− PtEV ,l/ηd
)

= SoCdep
l ∀l ∈ L (13e)

28362 VOLUME 11, 2023



K. Abedrabboh et al.: Combinatorial Double Auction for Community Shared Distributed Energy Resources

Constraints 13a-13d are to ensure that the operational
limits of each EV are not violated, while constraint 13e
ensures that each EV depart with their requested SoC level.
The DER provider bids {PtPV , λtPV , etPV } for their PV energy,
and {PtEV , λtEV , etEV } for their stored energy, at each CDA
round.

IV. RESULTS & DISCUSSION
A. SIMULATION SETUP
Fig. 3 shows the network configuration used in this case
study, which is based on the IEEE 37-bus network. 100 res-
idential consumers were randomly distributed across load
buses with demand data that was taken from the Low Car-
bon London project (LCLP) [34]. Aggregate demand of the
4,173 LCLP non-dynamic consumers was used to calculate
hourly grid prices using a quadratic function (similar to [35],
[36]) with 3.125×10−3 £/MWh2 and 0.1 £/MWh as the
quadratic and linear price coefficients, respectively. Hourly
data of the electricity marginal emission factors from the
UK was provided by Electricity Maps [37] with an average
of 423 g.CO2eq/kWh. Consumers’ weights for environmen-
tal impact were randomly taken from [0, 0.1] £/kg.CO2eq.
PV generation data for DER types I and III were taken
from UK PV measurements [38], but were scaled to simu-
late a 60 kW PV array for type I and 30 kW for type III.
Wind generation data was taken from a 100 kW turbine
measurements [39]. Electricity marginal emission factor for
PV and WT were assumed to be 50 g.CO2eq/kWh and
13.7 g.CO2eq/kWh, respectively [40]. Types I and II DER
providers were each equipped with two Tesla Powerwall
BESS, where each powerwall has 13.5 kWh capacity and
5 kW continuous charging/discharging power [41]. Since a
round trip efficiency of 0.9 is only specified in the datasheet,
we assume that ηc = ηd =

√
0.9. Type III DER provider

is assumed to have level-2 AC chargers with a maximum
power of 19.2 kW each [42]. EV data [43], arrival/departure
times, initial/requested SoC levels, along with all data and
code used in this simulation can be accessed at [44]. Inverter
efficiency is assumed to be 0.98 [41]. DER prices were set at
[0.95, 0.98, 1.00] of grid prices for RE and [0.90, 1.00, 0.95]
of grid prices for stored energy for types I, II, and III respec-
tively. The effect of DER prices on revenue is investigated in
the following sections. Table 3 summarises the DERs used in
this simulation.

B. MAIN RESULTS
In order to demonstrate the superiority of the proposed CDA
over existing works, it is compared with two cases.
Case 1: A baseline system where consumers can only

purchase energy from the grid and DER providers can sell
their energy services through a feed-in tariff (FIT) scheme.
The baseline system for Type III DER provider is based on
cost minimisation where charging from the grid is scheduled
at low price periods while satisfying the requested SoC level
at EV departure. The FIT price λFIT used to calculate DER

FIGURE 3. Network configuration with three types of DER providers and
100 consumers, based on the IEEE 37-bus network.

TABLE 3. Summary of the DERs used in the simulation.

revenues in the baseline system was taken from the UK smart
export guarantee scheme governed by Ofgem [45], where
0.055 £/kWhwas the highest reported FIT in 2020. This tariff
was used in the baseline system.
Case 2: A k-double auction ([15], [46]) where market

clearing is done by matching the supply and demand curves.
In the k-double auction, supply and demand bids are sorted
by price and then the market clearing price is calculated by
λmcp = kλd + (1−k)λs, where λd and λs are the last demand
and supply prices just before the supply-demand intersection
point, and where k ∈ [0, 1] (see [15] for further details).
In this scenario, we assume that consumers bid their demand
and are willing to pay λi ∈ [λFIT , λg]. The parameter k was
set at 0.5.

The proposed CDA and the two cases were simulated for a
day (i.e., 24 CDA rounds). Fig. 4 compares the aggregate grid
demand for consumers and for EVs between the proposed
CDA and the two cases. It also shows the energy services
offered by the DER providers and the ones purchased by the
consumers. In the proposed CDA, consumers purchased 26%
of their baseline demand from CDA and 75% from the grid,

VOLUME 11, 2023 28363



K. Abedrabboh et al.: Combinatorial Double Auction for Community Shared Distributed Energy Resources

where losses inDER energy accounted for 1%. The difference
in EV grid demand between CDA and the baseline system is
due to two reasons; to offer V2G energy in CDA, and because
all generation from Type III DER provider’s PV was used
to charge its connected EVs in the baseline system, whereas
only half of that generation was used as charging power in
CDA with the other half being offered directly to consumers.
98% of the energy offered by the DER providers was sold in
CDA, while only 50% was sold in the k-double auction, with
the other half being fed to the grid at the FIT. The advantage
of the proposed CDA is that it allows consumers to bid for
each energy resource, and thus consumers with a non-zero
EI weight would value low-emission energy higher than the
grid’s. It should be noted that some of Type II’s RE generation
was used to charge its BESS and offered as stored energy in
CDA. However, this offered stored energy was not wanted
by consumers because it did not offer any cost or emission
savings when compared with RE. Therefore, the strategic
pricing of a provider’s DERs is an important factor in its
energy utilisation and thus its revenue maximisation. This is
discussed in Section IV-C.

Next, the performance of CDA is compared with that of
the two cases in terms of consumers’ energy costs and emis-
sions. Table 4 presents a comparison of the key performance
indicators (emissions, costs, and revenues) between the three
cases. This is also shown in Fig. 5 where the daily cumu-
lative emissions and costs of the three cases are compared.
Although the cost savings that result from participating in
CDA were found to be minimal (1%), the savings in energy
CO2 emissions were at 24%, amounting to 483 kg.CO2eq,
compared to the baseline system. This generated an aggregate
value of £39.5 for all consumers, which takes the social
welfare of CDA consumers to £46.5, where £7.5 were from
cost savings. In contrast, the k-double auction resulted in
a much lower social welfare (£19.3), where only £15 were
from emission savings. The reason behind this is that market
clearing in the k-double auction is only based on price and
volume, whereas CDA allocates the low-emission energy to
the consumers who value them the most. Fig. 5 also shows
the daily cumulative revenues of DER providers for the three
cases. The gain in revenue for Type I is almost the same
for both CDA and the k-double auction (above 300%) when
compared to the baseline system. This is because Type I’s RE
is priced the lowest, which always takes precedence in the
k-double auction. The superiority of the proposed CDA over
the two cases is demonstrated in the revenues of Type II and
Type III providers. For Type II, CDA revenues were higher
than cases 1 and 2 by 242% and 82%, respectively. These
were at 400% and 75% for Type III. It should be noted that
the revenues of Type III DER provider were offset in Fig. 5 by
the minimum EV charging cost that was used in the baseline
system.

C. STRATEGIC SIZING AND PRICING OF DER
Here, we study the effect of varying DER sizes and prices on
the revenue of DER providers. First, PV power capacity and

FIGURE 4. CDA simulation results compared with a baseline system and a
k-double auction. The top two plots show the effect of DER sharing on
grid demand and EV demand, while the bottom three compare the
purchased DER services to the ones offered by the three types of DER
providers.

BESS size are varied for DER provider Type I. The impact
of these different sizes on the provider’s daily revenue is
shown in Fig. 6. Evidently, the gain in revenue from each
kW of added PV power capacity is much higher than that
resulting from each added kWh of BESS capacity, which
is 0.61 £/kW on average for PV compared to 0.12 £/kWh
for BESS. Nonetheless, the gain in revenue from expanding
PV power starts decreasing when the size of PV is beyond
300 kW. This emphasises the importance of the optimal sizing
of DER on its return on investment.
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FIGURE 5. A comparison between the proposed CDA and the two
reference cases, showing the effect of DER sharing on the consumers’
energy emissions and cost. Also, showing the revenues of the three types
of DER providers when participating in CDA, the k-double auction, and
through a FIT scheme.

The following scenario investigates the impact of DER
pricing on revenue. Assuming that a subset of consumers
gain value by reducing their carbon footprint, low-emission
DERs can be offered at higher prices than the grid’s and still
be purchased in CDA. Here, the revenue of Type II DER
provider is calculated at various RE prices. Additionally,
we show the effect of these prices on revenue when the
consumers’ average weight for emission savings is varied
between 50 and 250 £/tonne.CO2eq. Fig. 7 demonstrates the
results of this scenario simulation. While lower prices almost
generate the same revenue across the different average EI

TABLE 4. Comparison of key performance indicators between the
proposed CDA and the two reference cases.

FIGURE 6. Revenue of Type I DER provider obtained from different sizes
of BESS capacity and PV power.

weights, higher prices severely cut revenues at low average
EI weights but can also yield much greater revenues when
EI weights are high. DER providers who have some infor-
mation about the distribution of EI weights in their consumer
communities can use it to their advantage and formulate their
revenue maximisation problem as a stochastic optimisation
problem and set their prices in a way that maximises their
expected revenues. Moreover, a DER provider with multiple
resources should maintain reasonable competition between
their resources. This is to avoid having consumers bid for one
of the resources for its competitive advantage (i.e., when a
provider’s resource offers larger cost and emission savings
than the provider’s other resources) and discard the other
resources, thus diminishing their revenue. A rule of thumb
would be to price low-emission resources higher than the ones
with higher MEF. This ensures that cost-oriented consumers
bid for the lower price resource, while environmentally sus-
tainable consumers bid for the lower emission resource if it
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FIGURE 7. Effect of different RE prices on the revenue of Type II DER
provider when various averages of consumers’ EI weights are considered.

FIGURE 8. A comparison of DER energy losses between arbitrary
placement and optimal placement of DERs.

generates higher value than the cost savings resulting from
getting the lower priced resource.

D. DER PLACEMENT
One of the key advantages of DER utilisation is its ability to
lower energy losses when installed near load centres. Indeed,
the optimal placement of DERs is essential to fully exploit
their benefits. Several studies are dedicated to the placement
of DERs (See [47], [48] for example). In this paper, wemerely
study the effect of DER placement on the network losses in
DER energy. Note that the network losses that result from
normal load flow are not considered. In order to determine
the optimal placement of the three types of DER providers,
we first fixed the location of two providers at arbitrary buses
of the IEEE 37-bus network and observed the DER losses
that result from placing the third provider at the remaining
buses. The location of that provider was then fixed at the bus
that corresponded to the minimum losses. This was carried
out iteratively until no improvement in losses was witnessed.
Fig. 8 shows the daily cumulative DER losses for the case
shown in Fig. 3 and for the optimal placement case, which
located the three types of DER providers at buses 15, 3,
and 32 respectively. DER losses were reduced by 60%. This
highlights the importance of proper network planning and
policy development.

E. PERFORMANCE EVALUATION
The proposed DER sharing mechanism deals with the com-
binatorial nature of DER energy services and allows for the
environmentally sustainable behaviour of consumers. It can
also be implemented in real-time (hour-ahead), which lessens
the impact of uncertainty in RE and in demand. Additionally,
the proposed market allows for multiple sellers and buyers,
and it accounts for DER energy losses. Here, we evaluate the
proposed mechanism in terms of fairness, market efficiency,
strategy proofness, privacy preservation, and scalabilty.

1) FAIRNESS
The auction implements utilitarian division, which is defined
as the allocation of goods to the buyers that value them
the most, and is considered as one of the fairness crite-
ria for resource allocation [49]. Additionally, the pricing of
DER services is uniform to all consumers and is demand-
independent. Constant uniform pricing is considered as a fair
pricing approach [50]. Furthermore, the proposedmechanism
is budget balanced, i.e., all payments made by the buyers are
transferred to sellers, thus keeping the altruistic nature of the
DSO intact.

2) EFFICIENCY & STRATEGY PROOFNESS
The proposed allocation rule is based on SWO and therefore
is efficient. However, strategic consumers might bid their
utility untruthfully to manipulate allocation decisions, which
would compromise the efficiency of the market outcome.
Incentive compatible mechanisms such as Vickrey-Clarke-
Groves (VCG) and d’Aspremont-Gérard-Varet (AGV) can be
directly applied to the proposed CDA to ensure that truthful
bidding is the best strategy for rational consumers. Nonethe-
less, VCG is not a budget balanced mechanism and can
therefore compromise fairness. Also, bothVCG andAGVuse
nonlinear prices to incentivise truthfulness. Hence, a trade-off
between strategy proofness and fairness needs to be assessed
if consumers were to be strategic.

3) PRIVACY
One of the important features of any DER sharing mech-
anism is to preserve the privacy of its consumers. In the
proposed CDA, consumers only bid their energy require-
ments from DERs and their utility gained from obtaining
this energy. They are not asked to reveal any information
about their baseline demand or their private utility function,
which includes their EI weight and their value for electric-
ity. Furthermore, DER providers do not have access to the
consumers’ bids in the proposed CDA, and therefore can-
not use historical consumers’ bid data to learn their private
information.

4) COMPUTATIONAL COMPLEXITY
Given the real-time format of the proposed CDA, its tractabil-
ity is paramount. One of the advantages of the proposed CDA
is that it is a non-iterative mechanism and its outcome can
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FIGURE 9. Computation time of the SWO problem for different numbers
of consumers.

be computed in one-shot. And although its real-time format
limits the time available for computation, it eliminates the
time aspect, and thus reduces the problem’s dimensional-
ity. Revenue maximisation problems of the DER providers
(Eq. 10, 11, and 13) are all linear programming problems,
which can be solved in polynomial time. Consumers’ utility
maximisation (Eq. 8) is a convex quadratic programming
problem, which can also be solved in polynomial time. Aver-
age run time of the consumer’s utility maximisation problem
was found to be 39 ms.

To assess the scalabilty of the SWO problem (Eq. 4),
computation time was observed when solving the problem
for different numbers of consumers. This is shown in Fig. 9.
As evident, even for extremely large numbers of participants,
the proposed CDA can be conveniently implemented in real-
time (hour-ahead).

All simulations were run in Python 3 environment, opti-
misation problems were solved using GUROBI interface in
CVXPY. The hardware used had an Intel Core i7, 2.6 GHz
processor and 8 GB RAM.

5) NETWORK CONSTRAINTS
An LEM consists of a physical layer where energy trans-
actions are implemented and a virtual layer where market
interactions and decisions take place. In this paper, we assume
that the physical layer (i.e., distribution network) that the
DSO operates has the capability to handle any DER sharing
scenario. Nonetheless, this is not necessarily a limitation of
the proposed CDA. Given that the developed market frame-
work is regulated centrally, the DSO can check if any of the
network constraints is violated after making an allocation
decision and then update the SWO problem if necessary by
implementing trading constraints on the consumers that are
causing network infeasibilities.

V. CONCLUSION
In this paper, a combinatorial double auction was proposed
for DER energy trading between multiple DER providers and
multiple energy consumers. The proposedmarket mechanism
addresses the complementarity of DER services and supports
the environmentally sustainable behaviour of consumers. The
proposed CDA does not only implement an efficient alloca-
tion rule that is based on social welfare optimisation, but it
also protects the privacy of DER consumers. Additionally, the
proposed CDA accounts for DER network losses and limits

the effect of uncertainty in RE generation and in demand on
market efficiency.

The strategies of disutility minimising consumers and
revenue maximising DER providers were investigated.
Three types of DER providers were considered, where
each had two energy resources; PV generation and BESS,
WT generation and BESS, and PV generation with V2G
services.

The proposed market was simulated on the IEEE 37-bus
network using real world energy generation and consump-
tion data from the UK. Comparisons between the pro-
posed CDA and two reference cases show that it optimises
social welfare and enhances DER revenues and trading vol-
umes. Moreover, strategic sizing, pricing, and placement of
DERs are investigated. Furthermore, the proposed CDA was
found to be scalable and fair in its allocation and payment
rules.

Possible future research directions include designing an
incentive compatible payment rule for the proposed CDA
to ensure that truthful bidding is a dominant strategy for
consumers. Investigating the strategic behaviour of DER
providers who have some information about the consumers’
private utility functions is another future research direction.
In this research, we have assumed that the auctioneer (i.e., the
DSO) is a non-profit agent whose objective is to maximise the
social welfare of market players. It would be interesting to
investigate the case where the auctioneer has financial objec-
tives and aims to achieve maximum payoff from matching
DER providers with consumers. With the recent development
of power system inertia markets, interested researchers can
investigate the concurrent participation of DER providers in
local energy markets and in virtual inertia markets. More-
over, a mechanism for incentivising EV owners to provide
V2G operating rights to the charging station manager can
be designed. This mechanism needs to take the effect of
V2G on battery life into consideration. Furthermore, sev-
eral components of the proposed market architecture (which
include bidding agents, auction algorithm, and messaging
space) rely on internet-of-things (IoT) and a communica-
tion infrastructure. These can be vulnerable to malicious or
adversarial attacks. A blockchain architecture can be pro-
posed for implementing the bidding, energy, and payment
transactions in the proposed market. This can enhance the
security and reliability of the market’s information and power
exchanges.
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