Design and synthesis of novel non-peptidic KISS1R antagonists to restore drug sensitivity to triple-negative breast cancer patients

A dissertation submitted in partial fulfilment of the requirements for the SEC Research Chemistry program within the degree of
Masters by Research

at

Kingston University London
School of Life Sciences, Pharmacy and Chemistry
by

James J. Scanlon
supervised by

Dr. Stephen P. Wren \& Dr. Athina-Myrto Chioni

May 2022

Table of Contents

i. Acknowledgments 3
ii. Abbreviations 4
iii. Abstract 5

1. Introduction
1.1 Fundamentals of triple-negative breast cancer 6
1.2 KP/KISS1R signalling network in triple-negative breast cancer 6-8
1.3 Inhibition of KISS1R expression 8-9
2. Results and Discussion
2.1. Synthesis of 2-acylamino-3-cyano-4,6-diphenylpyridine derivatives 10-13
2.1.1. \quad Spectroscopic analyses of 2-acylamino-3-cyano-4,6-diphenylpyridine derivatives $\mathbf{8 f}$ and $\mathbf{8 k}$ 13-15
2.2. Synthesis of 2-acylamino-3-cyano-4,6-diphenylpyridine and their amido and sulfonamido 15-18 derivatives
2.2.1. Spectroscopic analyses of 2-acylamino-3-cyano-4,6-diphenylpyridine and their amido and 18-20sulfonamido derivatives
2.3. Proposed N-arylation methodologies for the instalment of cyclic amine moiety 20-21
2.4. Antagonist activity of compounds $\mathbf{1}$ and $\mathbf{2}$ at KISS1R 22
2.5. $\mathrm{P}-234$ cell proliferation assay data 22-23
3. Conclusion and Project Outlook 24
4. Experimental 25
4.1. Materials 25
4.1.1. $\quad N$-(4-(3-bromophenyl)-3-cyano-6-phenylpyridin-2-yl)furan-2-carboxamide (1) 26
4.1.2. $\quad N$-(4-(3-bromophenyl)-3-cyano-6-phenylpyridin-2-yl)benzenesulfonamide (2) 26
4.1.3. 1-(4-Chlorophenyl)-2-hydroxy-ethanone (3a) 26-27
4.1.4. 1-(2-(Benzyloxy)phenyl)ethan-1-one (3b) 27
4.1.5. \quad General procedure for the synthesis of $\mathbf{4 a}$ and $\mathbf{4 b}$ 27
4.1.6. \quad 2-Benzylidenemalononitrile (4a) 27
4.1.7. $\quad 2$-(3-Bromobenzylidene)malononitrile (4b) 27-28
4.1.8. 2-(1-Phenylethylidene)malononitrile (5a) 28
4.1.9. 1-(Cyanomethyl)pyridin-1-ium (6a) 28
4.1.10. 2-Amino-6-(2-(benzyloxy)phenyl)-4-(3-bromophenyl)nicotinonitrile (7a) 29
4.1.11. General procedure for the synthesis of 8a-j 29
4.1.12. 2-Amino-4,6-diphenylnicotinonitrile (8a) 29
4.1.13. 2-Amino-6-(3-nitrophenyl)-4-phenylnicotinonitrile (8b) 30
4.1.14. 2-Amino-6-(2-nitrophenyl)-4-phenylnicotinonitrile (8c) 30
4.1.15. 2-Amino-6-(4-hydroxyphenyl)-4-phenylnicotinonitrile (8d) 30
4.1.16. 2-Amino-6-(2-hydroxyphenyl)-4-phenylnicotinonitrile (8e) 30
4.1.17. 2-Amino-4-(3-bromophenyl)-6-phenylnicotinonitrile ($\mathbf{8 f}$) 31
4.1.18. 2-Amino-5-bromo-6-(4-nitrophenyl)-4-phenylnicotinonitrile ($\mathbf{8 g}$) 31
4.1.19. 2-Amino-4-(3-fluorophenyl)-6-phenylnicotinonitrile ($\mathbf{8 h}$) 31
4.1.20. 2-Amino-4-(3-fluorophenyl)-6-(2-hydroxyphenyl)nicotinonitrile ($\mathbf{8 i}$) 32
4.1.21. 2-Amino-6-(4-bromophenyl)-4-(4-(dimethylamino)phenyl)nicotinonitrile ($\mathbf{8 j}$) 32
4.1.22. 2-Amino-4-(3-bromophenyl)-6-(2-hydroxyphenyl)nicotinonitrile ($\mathbf{8 k}$) 32
4.1.23. 2-Amino-6-(4-chlorophenyl)-5-hydroxy-4-phenylnicotinonitrile (9a) 33
4.1.24. 2-Amino-3-cyano-4,6-diphenylpyridine 1-oxide (10a) 33
4.1.25. General procedure for the synthesis of 11a-b 33
4.1.26. 5 '-Amino-[1,1':3',1"-terphenyl]-4',6'-dicarbonitrile (11a) 34
4.1.27. $\quad 5$ '-Amino-3-bromo-[1, $1^{\prime}: 3$ ', 1 "-terphenyl]-4',6'-dicarbonitrile (11b) 34
4.1.28. $\quad N$-(3-cyano-4,6-diphenylpyridin-2-yl)furan-2-carboxamide (13a) 34-35
4.1.29. N-(4-(3-bromophenyl)-3-cyano-6-(2-hydroxyphenyl)pyridin-2-yl)furan-2-carboxamide 36
(13b)
4.1.30. $\quad N$-(3-cyano-4-(3-fluorophenyl)-6-phenylpyridin-2-yl)furan-2-carboxamide (13c) 36
4.1.31. $\quad N$-(3-cyano-4,6-diphenylpyridin-2-yl)benzamide (13d) 36-37
4.1.32. $\quad N$-(3-cyano-4-(3-fluorophenyl)-6-phenylpyridin-2-yl)benzamide (13e) 37
4.1.33. $\quad N$-(3-cyano-4,6-diphenylpyridin-2-yl)-2-mercaptoacetamide (13f) 37
4.1.34. 3-Cyano-2-(furan-2-carboxamido)-4,6-diphenylpyridine 1-oxide (14a) 37
4.1.35. 2-(Benzylamino)-4,6-diphenylnicotinonitrile (15a) 38
4.1.36. General procedure for the synthesis of 16a and 16b 38
4.1.37. $\quad N$-(4-(3-bromophenyl)-3-cyano-6-phenylpyridin-2-yl)- N-methylfuran-2-carboxamide 38
(16a)
4.1.38. $\quad N$-(4-(3-fluorophenyl)-3-cyano-6-phenylpyridin-2-yl)- N-methylfuran-2-carboxamide (16b) 39
4.1.39. $\quad N$-(3-cyano-6-phenyl-4-(3-(pyrrolidin-1-yl)phenyl)pyridin-2-yl)furan-2-carboxamide (18a) 39
4.1.40. $\quad N$-(4-(3-(azepan-1-yl)phenyl)-3-cyano-6-phenylpyridin-2-yl)furan-2-carboxamide (18b) 39
4.1.41. $\quad N$-(3-cyano-4-(3-(1,1-dioxidothiomorpholino)phenyl)-6-phenylpyridin-2-yl)furan-2- 40
carboxamide (18c)
4.1.42. $\quad N$-(3-cyano-6-phenyl-4-(3-(pyrrolidin-1-yl)phenyl)pyridin-2-yl)- N-methylfuran-2- 41 carboxamide (19a)
4.1.43. 2-Amino-6-phenyl-4-(3-(pyrrolidin-1-yl)phenyl)nicotinonitrile (20a) 41
4.1.44. 4,6-Diphenylpyridin-2-amine (21a) 41
4.2. KISS1R functional assay - antagonist effect 41-42
4.3. Tissue culture 42
4.3.1 Incucyte, P-234 Cell Proliferation Assay 42
4.3.2 Cell culture: WST-1, P-234 Cell Proliferation Assay 42
5. 2-Aminopyridine-3-carbonitrile fluorescent turn-off chemosensor 43
References 44-46

i. Acknowledgements

I would like to thank Prof. Georgios Giamas and Dr. Chiara Cilibrasi, from the University of Sussex, for their donation of cell lines. I would also like to thank Dr. Stephen P. Wren and Dr. Athina Myrto Chioni for their continued support and inspiration throughout this research project.

ii. Abbreviations

ABC	ATP binding cassatte	MT1	Metallothionein
ABCG2	ATP binding cassatte G2	mTOR	Mammalian target of rapamycin
AKT	Protein kinase B	MW	Microwave
ATP	Adenosine 5'-triphosphate	NMR	Nuclear magnetic resonance
BCa	Breast cancer	Nrf2	Nuclear factor-erythroid factor 2-related factor 2
BCRP	Breast cancer resistant protein	P13K	Phosphoinositide 3-kinases
BL1	Basal-like 1	P-234	Peptide-234
BL2	Basal-like 2	PLC- β	Phospholipase C- β
Bn	Benzyl	PR	Progestogen receptor
br	Broad	RBF	Round bottom flask
d	Doublet	rt	Room temperature
DCC	N, N-dicyclohexylmethanediimine	s	Singlet
DCM	Dichloromethane	t	Triplet
$d d$	Doublet of doublets	$t d$	Triplet of doublets
ddd	Doublet of doublet of doublets	THF	Tetrahydrofuran
DIPEA	Diisopropylethylamine	TLC	Thin-layered chromatography
DMF	N, N, dimethylformamide	TMSCI	Trimethylsilyl chloride
$d t$	Doublet of triplets	TMSI	trimethylsilyl iodide
ECM	Extracellular matrix	TNBC	Triple-negative breast cancer
EDC	1-Ethyl-3-(3dimethylaminopropyl)carbodiimide	$t t$	Triplet of triplets
EDG	Electron donating group		
ER	Oestrogen receptor		
ERK1/2	Extracellular signal-regulated kinases 1 and 2		
GPCR	G-protein coupled receptor		
HER1	Human epidermal growth factor receptor 1		
HER2	Human epidermal growth factor receptor 2		
HPG	Hypothalamic-pituitary-gonadal		
Hz	Hertz		
IC50	Half maximal inhibitory concentration		
IM	Immunomodulatory		
IMS	Industrial methylated spirits		
IR	Infra-red		
J	Coupling constant		
KISS1R	Kisspeptin 1 receptor		
KP	Kisspeptin		
M	Mesenchymal		
m-CPBA	3'-chloroperbenzoic acid		
MMP	Matrix metalloproteinase		
mp	Melting point		
MSL	Mesenchymal stem-like		

iii. Abstract

Breast cancer (BCa) is the most common neoplasm among women and the leading cause of cancer related mortalities. ${ }^{1}$ Globally, basal-like triple-negative breast cancer (TNBC) accounts for approximately 1 in 5 cases of all BCa malignancies but is disproportionally responsible for all BCa associated deaths. ${ }^{1}$ The ability of cancer cells to become resistant to chemotherapy continues to be a major obstacle in treating TNBC. ${ }^{2,3}$ KISS1R, a G-protein coupled receptor (GPCR), signals through a plethora of diverse molecular mechanisms that have the potential to regulate the processes navigating TNBC clinical outcomes. Heightened KISS1R signaling promotes chemotherapeutic desensitisation, due to the overexpression of the drug efflux transporter ABCG2 (BCRP). ${ }^{4}$ Hence, there is an intense interest for the development of novel, synthetic agents, which may synergise with current BCa therapeutic options. Herein, novel compounds designed as small antagonists of KISS1R, with the outlook of restoring drug sensitivity to patients suffering from TNBC are reported. Methodologies for the synthesis of novel pyridine derivatives have been described. The KISS1R antagonistic efficacy for compounds $\mathbf{1}$ and $\mathbf{2}$ were evaluated in an outsourced cellular functional assay. Compared to $\mathbf{1}$, compound $\mathbf{2}$ exhibited a greater antagonistic effect - thus, $\mathbf{2}$ presents a potential template for further analogue optimisation and development. Spectroscopic data including high-resolution mass spectra, IR, ${ }^{1} \mathrm{H}$ NMR, in addition to ${ }^{13} \mathrm{C}$ and 2 D NMR constitute evidence for the chemical structures for all synthesised compounds. This paper also reports on the preliminary in vitro proliferation assay profile of the peptidic KISS1R antagonists, P-234, in MCF-7 and MDA-MB-231 cell lines. As observed, peptidic antagonists of KISS1R promote cell proliferation in TNBC model cell lines, contrary to $\mathrm{PR}^{+} / \mathrm{ER}^{+} \mathrm{BCa}$ cell lines.

1. Introduction

1.1. Fundamentals of triple-negative breast cancer

The global cancer statistics, for 2020, showed that there were approximately 2.2 million new cases of female breast cancer (BCa) and 684,996 associated deaths. ${ }^{1} \mathrm{BCa}$ is the most common neoplasm among women and the leading cause of cancer related mortalities. ${ }^{1}$ The hypernym, BCa , describes a diverse heterogeneous tumour group with a highly variable treatment response. According to the St Gallen 2011 and 2013 guidelines, a proxy for molecular subtype classification, there are seven intrinsic molecular subgroups of BCa: 1) luminal A, 2) luminal B, 3) human epidermal growth factor receptor 2 (HER2) overexpressing, 4) basal-like (2 types - BL1 and BL2), 5) immunomodulatory (IM), 6) mesenchymal (M), 7) mesenchymal stem-like (MSL), and normal breast-like tumours. ${ }^{5.6}$ In addition, based on the expression profiles of the progesterone receptor (PR), oestrogen receptor (ER), and HER2, BCa can be divided into three clinical subtypes: hormone receptor positive (ER ${ }^{+}$, $\mathrm{PR}^{+}, \mathrm{PR}^{-}, \mathrm{HER} 2^{-}$), HER2-positive ($\mathrm{HER} 2^{+}$), and triple-negative ($\mathrm{ER}^{-}, \mathrm{PR}^{-}, \mathrm{HER}^{-}$). ${ }^{7}$ The triple-negative phenotype shows a significant overlap ($60-90 \%$) with the basal-like molecular subtype of breast cancer. ${ }^{3,8}$ As such, basal-like triple-negative breast cancer (TNBC) is a BCa subtype of particular interest. Clinically, basal-like TNBC is defined by its lack of expression of the ER, PR, and HER2 receptors which are used as essential indicators to determine the optimal therapeutic protocol. ${ }^{9}$ As reviewed by Yadav et al, patients with hormone dependent positive BCa benefit from chemo-targeted and hormone therapy, whereas treatment for TNBCs are currently limited to surgery and conventional cytotoxic agents. ${ }^{2}$ Basal-like TNBC is difficult to manage, with the disease characterised by poor prognosis due to limited treatment options and subsequent drug resistance. ${ }^{10}$ Despite promising initial response rates to chemotherapies, including anthracyclines and taxanes-based regimens, patients with TNBC often develop chemoresistance. ${ }^{8}$ In comparison to other BCa subtypes, TNBC tumours are frequently larger, less differentiated, and have a higher incidence of distant metastases, proliferation and recurrence. ${ }^{11,12}$ Basal-like TNBC accounts for approximately 1 in 5 cases of BCa but is disproportionately responsible for all BCa associated deaths. ${ }^{11}$ The ability of cancer cells to become resistant to chemotherapy continues to be a major obstacle in treating TNBC patients.

1.2. KP/KISS1R signaling network in triple-negative breast cancer

Kisspeptin receptor 1 (KISS1R; aka GPR54, OT7T175, AXOR12) is a G $\alpha_{q / 11}$-coupled G-protein coupled receptor (GPCR) and a key regulator of the hypothalamic-pituitary-gonadal (HPG) axis. KISS1R is highly expressed in the brain, including the hypothalamus and pituitary gland as well as peripheral regions. ${ }^{13}$ Kisspeptins (KPs), a product of the KISSI gene, are a group of peptide fragments that bind to and activate the KISS1R (Fig. 1). ${ }^{14}$ The KISSI gene encodes a polypeptide consisting of 145 amino acids, known as the precursor peptide (KP-145). ${ }^{13} \mathrm{KP}-145$ gives rise to a secretory protein of 126 amino acids that is proteolytically cleaved into smaller fragments: KP-54 (aka Metastin), KP-14, KP-13 and KP-10. ${ }^{13}$ All peptide fragments bind to and activate the KISS1R with equal potency. ${ }^{15}$ Each peptide fragment shares the same 10 terminal amino acid sequence, KP-10, the smallest fragment necessary for binding to and activating KISS1R. ${ }^{15}$ The identification of the KISS1 gene was initially championed for its anti-metastatic role. ${ }^{16}$ KISS1 activated KISS1R signaling has been shown to suppress cancer metastasis by inhibiting cancer cell migration and invasion. Downregulation of KISS1 was clinically established with a worse prognosis among those diagnosed with melanoma, ${ }^{16}$ colorectal, ${ }^{17}$ prostate, ${ }^{18}$ ovarian, ${ }^{19}$ lung, ${ }^{20}$ and bladder cancers. ${ }^{21}$ Paradoxically, elevated KISS1R signaling appears to play a pro-metastatic role in some cancers such as breast and liver cancer. ${ }^{22,23}$ Successive findings have likened the metastases of TNBC basal-like malignancies, and subsequent drug resistance, with the overexpression of KISSI. ${ }^{4}$ As such, KISSI expression might be a useful predictive biomarker in medical outcomes. ${ }^{16}$

Figure 1. Kisspeptins (KPs) formation. The KISS1 gene is located in the long-arm of chromosome 1 (1q32-q41) and encodes a 145 aminoacid sequence (KP-145), which is subsequently cleaved into smaller C-terminal fragments: KP-54, KP-14, KP-13 and KP-10. All KP fragments possess biological activity and are endogenous ligands to the KISS1R. Figure created using BioRender.com.

KISS1R signals through a plethora of diverse molecular mechanisms that have the potential to regulate the processes navigating TNBCs clinical diagnoses. The underlying mechanisms by which KP/KISS1R regulates tumourigenesis in TNBC has been reviewed (Fig. 2). Goertzen et al. showed that G-protein dependent KISS1R promotes TNBC cell invasion by stimulating the secretion of ERK1/2. ${ }^{44}$ It was demonstrated that β-arrestin2, not only desensitises G-protein signaling but also acts as a molecular scaffold and activates a series of signaling pathways such as ERK1/2. ${ }^{25}$ KISS1R activation in metastatic TNBC cell lines increases the activity of cortactin, cofilin and MT1-MMP to stimulate invadopodia formation and extracellular matrix degradation through ERK1/2. ${ }^{24}$ Conversely, depletion of KISS1R signaling inhibited metastatic TNBC cell migration, invasion, and malignant transformation. ${ }^{24}$ Cvetković et al. reported that KISS1R activation, in metastatic TNBC MDA-MB-231 cells, leads to human epidermal growth factor receptor (HER1, EGFR) transactivation via IQGAP1 and β arrestin2 mediated pathways. ${ }^{26}$ The multi-domain scaffold protein, IQGAP1, is implicated in the P13K-AKT- mTOR (PAM), and KEAP1-Nrf2 pathways. ${ }^{27}$ Thereafter, Nrf2 stimulates $B C R P$ transcription, thus, inducing the ATP-binding cassette (ABC) transporter family. ${ }^{28}$ Blake et al. demonstrated that KISS1R signaling promotes the expression of the drug efflux transporter, ABC-G member 2 (ABCG2, BCRP), in metastatic TNBC cell lines. ${ }^{4}$ It was reported that BCRPs were highly expressed in SKBR3FlAG-KISS1R cells, compared to control cells, thus reducing the cellular accumulation of the chemotherapeutic doxorubicin. ${ }^{4}$ The increased drug outflow proposes a role for KISS1R-dependent doxorubicin efflux as a mechanism for chemotherapeutic desensitisation. ${ }^{28}$ Thereby, there is an intense interest for novel, synthetic agents, which may synergise with current chemotherapeutic options and, consequently, attenuate the signaling potential of KISS1R.

Figure 2. Schematic diagram of KISS1R signaling pathways activated upon KP-10 stimulation. KISS1R couples to the β / γ subunit, post KP-10 stimulation of the $\mathrm{G} \alpha_{q / 11}$-coupled receptor. The α subunit activates the primary effector phospholipase C - β (PLC- β) and extracellular signal-regulated kinases 1 and 2 (ERK1/2). KISS1R can also signal via a G-protein independent pathway to activate IQGAP1, β-arrestin2 and HER1. KISS1R signaling, via β-arrestin2, regulates extracellular matrix (ECM) degradation, and the phosphorylation levels of invadopodia proteins cofilin and cortactin. The KISS1R signaling mechanism via IQGAP1 regulates the P13K-AKT-mTOR (PAM), and KEAP1-Nrf2 pathways. Subsequent transcription of target gene, $B C R P$, enhance the efflux of chemotherapeutics via ABC transporters, including BCRP. Figure created using BioRender.com.

1.3. Inhibition of KISS1R expression

KISS1R stimulation is reliant on its cognate KPs. KP analogues have been synthesised based on the structure of human KP-10, as this is the smallest fragment needed to bind to and activate KISS1R. ${ }^{14}$ The antagonistic efficacy of KP-10 analogues were tested in terms of their ability to inhibit KP-stimulated PLC- β mediated inositol phosphate and intracellular calcium release (Fig. 2). ${ }^{29,30}$ Roseweir et al. established peptide-234 (P-234), a KP-10 analogue, as a potent KISS1R antagonist, inhibiting KP-stimulated calcium release by 89%, with an IC_{50} of $1.0 \mathrm{nM} .^{30}$ Subsequently, P-234 has been used to block KP10 stimulation in various in vivo and in vitro systems. ${ }^{31}$ Blake et al. reported that $\mathrm{P}-234$ increased drug sensitivity in metastatic TNBC MDA-MB-231 cells which express endogenous KISS1R. ${ }^{4}$ Dissimilar to its peptide counterpart, which needs to be administered by injection, small molecule antagonists are more likely to be orally active and would therefore be more amendable to patient compliance in the clinic. ${ }^{30}$

Figure 3. Structure of hit compound A, as established by Kobayashi et al., and synthetic strategies. The 2-acylamino-4,6-diphenylpyridine template will be utilised for the development of novel synthetic methodologies and derivatives. This research project is aimed at expanding upon the family of existing 2-acylamino-4,6-diphenylpyridines to generate novel compounds.

Kobayashi et al. adopted a combinatorial chemistry approach to identify compound \mathbf{A} as the most potent antagonist of KISS1R-Metastin signaling within the HPG axis. ${ }^{32,33}$ Although, compound A showed encouraging levels of KISS1R binding affinity (IC_{50} of $0.93 \mu \mathrm{M}$) in vitro, as well as some limited activity after dosing in vivo, compound \mathbf{A} did not antagonise calcium release to the same extent as P-234. ${ }^{32}$ These facts suggested that this class of compounds would be an appropriate source of leads for the discovery of a novel KISS1R antagonist, upon optimisation of the 2-acylamino-4,6-diphenylpyridine derivatives. The outlined synthetic strategies have been developed around the hit compound \mathbf{A} with the aim of working towards achieving this objective. This is with the outlook of restoring drug sensitivity to patients suffering from basal-like TNBC (Fig. 3). Currently, there are no small molecule KISS1R inhibitors reported against basal-like TNBC chemotherapeutic desensitisation.

1

2

Figure 4. The novel derivatives, $\mathbf{1}$ and $\mathbf{2}$ were evaluated for their antagonist effect in an outsourced KP-10 stimulated, GPCR cellular functional assay (Eurofins, Cerep). ${ }^{34}$

Herein the synthesis of pyridyl derivatives bearing appropriate modification to the 4-phenyl ring, 6-phenyl ring, 3-cyano group, 2-acylamino group and pyridine core, as shown in Figure 3, are reported. The afforded novel derivatives, 1 and 2 (Fig. 4), were evaluated for their antagonist efficacy via a, KP-10 stimulated, GPCR cellular functional assay (see section 2.4). This report also proposes that P-234 may be employed, as a control, when testing for in vitro dependent variables, and compared to the afforded synthesised substrates. As such, a preliminary in vitro proliferation assay analysis of P-234, in MCF-7 and MDA-MB-231 cell lines was recorded (see section 2.5).

2. Results and Discussion

2.1. Synthesis of 2-acylamino-3-cyano-4,6-diphenylpyridine derivatives

The enclosed methodologies for the procurement of 2-acylamino-3-cyano-4,6-diphenylpyridine derivatives, as presented in Scheme 1, proceeded via a facile 4-component condensation reaction. Bearing the appropriate moiety on the corresponding aldehydes and ketones, a catalogue of pyridinium intermediates was synthesised. Compounds $\mathbf{8 a}, \mathbf{8 d} \mathbf{- f}, \mathbf{8 h}-\mathbf{i}$, and $\mathbf{8 k}$ were prepared successfully through the treatment of ketone $\mathbf{2 a} \mathbf{- h}$ with the corresponding benzaldehyde, malononitrile, and ammonium acetate in toluene.

> 2a: $R^{2}=H, R^{3}=H$
> 2b: $R^{2}=H, R^{3}=3 '-\mathrm{NO}_{2}$
> 2c: $R^{2}=H, R^{3}=2^{\prime}-\mathrm{NO}_{2}$
> 8a: $R^{1}=H, R^{2}=H, R^{3}=H$,
> 2d: $\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=4^{\prime}-\mathrm{OH}$
> 8b: $R^{1}=H, R^{2}=H, R^{3}=3^{\prime}-N O_{2}$
> 8c: $R^{1}=H, R^{2}=H, R^{3}=2^{\prime}-\mathrm{NO}_{2}$
> 2e: $R^{2}=H, R^{3}=2^{\prime}-O H$
> 8d: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=4^{\prime}-\mathrm{OH}$
> 2f: $\mathrm{R}^{2}=\mathrm{Br}, \mathrm{R}^{3}=4^{\prime}-\mathrm{Cl}$
> 8e: $R^{1}=H, R^{2}=H, R^{3}=2^{\prime}-\mathrm{OH}$
> 8f: $R^{1}=3 '-B r, R^{2}=H, R^{3}=H$,
> 2g: $\mathrm{R}^{2}=\mathrm{Br}, \mathrm{R}^{3}=2^{\prime}-\mathrm{NO}_{2}$
> $\mathbf{8 g}: R^{1}=H, R^{2}=B r, R^{3}=4^{\prime}-\mathrm{NO}_{2}$
> 2h: $R^{2}=H, R^{3}=4-B r$
> 8h: $R^{1}=F, R^{2}=H, R^{3}=H$
> 8i: $R^{1}=F, R^{2}=H, R^{3}=2^{\prime}-O H$
> 8j: $R^{1}=4^{\prime}-N(M e)_{2}, R^{2}=H, R^{3}=3^{\prime}-\mathrm{Br}$,
> 8k: $\mathrm{R}^{1}=\mathrm{OH} . \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=3^{\prime}-\mathrm{Br}$

Scheme 1. Synthesis of 2-acylamino-4,6-diphenylpyridines derivatives. Reagents and conditions: Aromatic aldehyde (1a-d), aromatic ketone (2a-h), malononitrile, $\mathrm{NH}_{4} \mathrm{OAc}$, toluene, reflux.

Initially, benzaldehyde (1a) and acetophenone (2a) were used as model reactants for the optimisation of the condensation reaction. According to previous literature, ethanol was found to be the optimum solvent for the one-pot cyclo-condensation reaction. ${ }^{35,36}$ Conversely, upon using ethanol at their reflux temperatures, none of the desired product was observed. Employment of a protic, hygroscopic solvent, aka ethanol, in concurrence with water facilitates the ancillary hydrolysis of the imine intermediate (Fig. 5). The aforementioned mechanism is catalysed by the conjugate base of ammonium acetate, consequently returning the ketone starting reagent. In addition, no corresponding product was afforded when the reaction was carried out, thermally, in the absence of solvent or in the presence of MeCN. ${ }^{36}$ Screening of several solvents revealed that toluene (anhydrous) was the most suitable option, as per Kobayashi et al.'s methodologies, ${ }^{33}$ affording the desired product, $\mathbf{8 a}$, in 15 \% yield.

Figure 5. Possible mechanism of the one-pot formation of product 8a. (i) 2-benzylidenemalononitrile formation: Knoevenagel condensation of malononitrile and benzaldehyde (1a); (ii) Enamine formation: Leuckart reductive amination of acetophenone (2a) and ammonium acetate; (iii) tautomerisation; (iv, v) cycloaddition, isomerisation; (vi) aromatisation.

Having identified optimised conditions for the chemistry shown in Scheme 1, subsequent methodologies for the synthesis of pyridinium derivatives examined the scope and limitations of various aromatic aldehydes and ketones. Regarding modification of the 6-phenyl ring, the inclusion of electron withdrawing groups consisting of meta-nitro or para-nitro moieties $(\mathbf{8 b}$ and $\mathbf{8 c}$) did not yield any product. To optimise the proton donor ability of the pyridinium scaffold, introduction of parasubstituted or ortho-substituted hydroxy acetophenones gave trace amounts of product $\mathbf{8 d}$ and $\mathbf{8 e}$. Kobayashi et al. identified that a 2 '-postion hydroxy group on the 6-phenyl ring was essential for the affinity of KISS1R. ${ }^{33}$ Thus, optimisation in the procurement of such an intermediate bearing a hydroxyl moiety on the 6-phenyl ring, as shown in Scheme 2, was proposed. Protection of the hydroxy moiety on $\mathbf{2 e}$, via the instalment of a benzyl (Bn) group, followed by the 4 -component condensation reaction, incorporating 3b, 3-bromobenzaldehyde, malononitrile and ammonium acetate afforded $\mathbf{7 a}$ in 46% yield. Subsequent ether cleavage of the benzyl protecting group, via the in-situ formation of TMSI, returned the hydroxy moiety for $\mathbf{8 k}$ in 61 \% yield.

Scheme 2. Optimised synthesis of 2-acylamino-4,6-diphenylpyridine ($\mathbf{8 k}$) with a hydroxyl group on the 6-phenyl ring. Reagents and conditions: (a) benzyl bromide, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $60^{\circ} \mathrm{C}$; (b) 3-bromobenzaldehyde (1b), malononitrile, $\mathrm{NH}_{4} \mathrm{OAc}$, toluene, reflux; (c) TMSCl , $\mathrm{NaI}, \mathrm{MeCN}, 120^{\circ} \mathrm{C}$.

Modification of the 4 -phenyl ring, through the introduction of a halide substitute on the meta-position of an aromatic aldehyde afforded products $\mathbf{8 f}, \mathbf{8 h} \mathbf{- i}$ and $\mathbf{8 k}$ in moderate yields. Halo-substituted aromatic aldehydes (3-bromobenzaldehyde 1b and 3 -flurobenzaldehyde 1c) reacted readily with acetophenone, thus affording a de facto 'synthetic handle' on the pyridinium scaffold. The inclusion of a bromo or fluoro moiety on the meta position of the 4 -phenyl ring (see compounds $\mathbf{8 f}$ and $\mathbf{8 h}$) abetted subsequent coupling reactions, as shown in Scheme 7 (see section 2.2.). The synthetic potential of reacting 4'-dimethylaminobenzaldehyde (1d) with 4'-bromoacetopheonone (2h) was next examined, and in-situ analysis via ${ }^{1} \mathrm{H}$-NMR highlighted partial formation of $\mathbf{8 j}$. Nonetheless, minimal product formation and comparable analyte elution time did not warrant any following scale-up synthesis. Thus, this report did not proceed with the synthesis of compound $\mathbf{8 j}$. While electrondeficient aromatic aldehydes (i.e., 1b and 1c) can react with malononitrile to generate 2-benzylidenemalononitrile intermediates (Fig. 5), ${ }^{37}$ it was ascertained that electron-rich 1d would require harsher reaction conditions. The scope of the synthesis of 2-acylamino-3-cyano-4,6-diphenylpyridine derivatives can be seen in Table 1.

Table 1. Scope of one-pot, 4-component condensation reaction of 2-acylamino-3-cyano-4,6-diphenylpyridine derivatives (Scheme 1 and Scheme 2).

Compound	R^{1}	R^{2}	R^{3}	Scheme	Yield (\%) ${ }^{\text {a }}$
7a	3'-Br	H	2'-OBn	2	46
8a	H	H	H	1	15
8b	H	H	3'- NO_{2}	1	0
8c	H	H	$2{ }^{\prime}-\mathrm{NO}_{2}$	1	0
8d	H	H	4'-OH	1	6
8 e	H	H	2'-OH	1	0.4
8 f	3'-Br	H	H	1	10
8 g	H	Br	$4{ }^{\prime}-\mathrm{NO}_{2}$	1	0
8h	3 '-F	H	H	1	26
8 i	3'-F	H	2'-OH	1	4
8j	$4^{\prime}-\mathrm{N}(\mathrm{Me})$	H	4^{\prime} - Br	1	0
8k	3'-Br	H	2'-OH	1,2	$6,25^{\text {b }}$
9a	H	OH	4'-Cl	2	0

${ }^{\text {a }}$ Isolated yield and based on aromatic aldehyde (reagent 1a-d); Scheme 1.
${ }^{\mathrm{b}}$ Overall yield, from the multistep, linear synthesis of $\mathbf{8 k}$, as shown in Scheme 6.

The facile Knoevenagel condensation of aromatic aldehydes with malononitrile, as shown in Scheme 3, afforded 4a and 4b in 92% and 83% yields respectively. Compounds 11a-b were then obtained using a one-pot process, via a multicomponent domino coupling pathway, in combination with the appropriate benzylidenemalononitrile (Scheme 4).

Scheme 5 depicts the attempted utilision of a pyridinium ylide intermediate as a means to obtain compound 21a. Pyridinium salt 6a was, however, successfully synthesised from pyridine and chloroacetonitrile in 54% yield. ${ }^{38}$

2a: $R^{1}=H$
4a: $\mathrm{R}^{1}=\mathrm{H}$
2b: $\mathrm{R}^{2}=\mathrm{Br}$
4b: $\mathrm{R}^{2}=\mathrm{Br}$

Scheme 3. Preparation of 2-benzylidenemalononitrile derivatives. Reagents and conditions: (a) malononitrile, piperidine, IMS, rt.

Scheme 4. Preparation of compound 11a-b. Reagents and conditions: (a) malononitrile, glacial $\mathrm{AcOH}, \mathrm{NH}_{4} \mathrm{OAc}$, toluene, reflux; (b) 4a or 4b, 5a, piperidine, MeCN , reflux.

Scheme 5. Preparation of 4,6-diphenylpyridin-2-amine 21a. Reagents and conditions: (a) pyridine, MeCN, rt; (b) acetophenone, benzaldehyde, $\mathrm{NH}_{4} \mathrm{OAc}$, glacial AcOH , reflux.

2.1.1. Spectroscopic analyses of 2-acylamino-3-cyano-4,6-diphenylpyridine derivatives 8 f and $\mathbf{8 k}$

The ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{8 f}$ displayed a broad singlet at $\delta 5.43 \mathrm{ppm}$, in addition to an uncoupled singlet at $\delta 6.86 \mathrm{ppm}$. Both peaks are owed to the formation of the amino group and the lone hydrogen on the pyridine core. Formation of the nitrile group was underpinned by the presence of an IR absorbance peak at $2224 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR multiplets in the $\delta 7.60-7.58 \mathrm{ppm}$ and $\delta 7.53-7.52 \mathrm{ppm}$ regions, and a series of doublets at $\delta 7.57(J=1.9 \mathrm{~Hz}), \delta 7.51(J=2.0 \mathrm{~Hz})$, and $\delta 7.50(J=2.1 \mathrm{~Hz}) \mathrm{ppm}$ correspond to the five hydrogen environments on the 6 -phenyl ring of $\mathbf{8 f}$. Hydrogen atom ' c ' is split via meta positioned protons ' f ' and ' d ', affording the corresponding coupling constants: ${ }^{4} J_{\mathrm{cf}}=1.8 \mathrm{~Hz}^{4} J_{\mathrm{cd}}=1.8 \mathrm{~Hz}$. Hydrogen 'e' is split by two non-equivalent, ortho positioned hydrogen-environments ' f ' ${ }^{3} J_{\mathrm{cf}}=7.8 \mathrm{~Hz}$) and ' d ' (${ }^{3} J_{\mathrm{cd}}=8.0 \mathrm{~Hz}$). The inductive effect of the halide moiety de-shields hydrogen ' f ' and thus positions ' f ' further downfield, relative to the hydrogen environment of ' d '. Complete evaluation of compound $\mathbf{8 f}$, including 2D- ${ }^{1} \mathrm{H}$, DEPTQ-HSQC NMR, are shown in Table 2 and Table 3.

Table 2. Deconstructing the ${ }^{1} \mathrm{H}$ NMR for the pyridine core and 4-phenyl ring of intermediate $\mathbf{8 f}$ in $\mathrm{CDCl}_{3}-d$.

Compound	H atom	${ }^{1} \mathrm{H}(\delta) \mathrm{ppm}$	${ }^{\mathrm{x}} J_{(\mathrm{H}-\mathrm{H})}$	Multiplicity	Integration
	a	5.43	-	$b r$	2
	b	6.86	-	s	1
$\mathbf{8 f}$	c	7.69	${ }^{4} J_{\mathrm{cf}}=1.8 \mathrm{~Hz}{ }^{4} J_{\mathrm{cd}}=1.8 \mathrm{~Hz}$	t	1
	d	7.54	${ }^{3} J_{\mathrm{de}}=8.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{dc}}=2.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{df}}=1.0 \mathrm{~Hz}$	$d d d$	1
	e	7.38	${ }^{3} J_{\mathrm{cf}}=7.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{cd}}=8.0 \mathrm{~Hz}$	t	1
	f	7.62	${ }^{3} J_{\mathrm{fe}}=7.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{fc}}=1.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{fd}}=1.0 \mathrm{~Hz}$	$d d d$	1

Table 3. Deconstruction of the $2 \mathrm{D}-{ }^{1} \mathrm{H}$, DEPTQ-HSQC NMR data of $\mathbf{8 f}$ in $\mathrm{CDCl}_{3}-d$.

Compound	H atom	${ }^{1} \mathrm{H}(\delta) \mathrm{ppm}$	C atom	${ }^{13} \mathrm{C}(\delta) \mathrm{ppm}$
$\mathbf{8 f}$	b	6.86	1	120.0
	c	7.69	2	131.2
	d	7.54	5	127.1
	e	7.38	4	130.3
	7.62	3	132.7	

The IR spectrum of product $\mathbf{8 k}$ displayed absorption bands at $3400,3260,2214,1241$ and $757 \mathrm{~cm}^{-1}$ which are characteristic of $\mathrm{NH}_{2}, \mathrm{OH}, \mathrm{C} \equiv \mathrm{N}, \mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{Br}$ bonds respectively. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{8 k}$ presented two broad singlets: hydrogens ' a ' at $\delta 7.54 \mathrm{ppm}$ and hydrogen ' k ' at $\delta 13.37 \mathrm{ppm}$. Proton signal environments ' a ' and ' k ' were suppressed, upon the addition of $\mathrm{D}_{2} \mathrm{O}$, thereby displaying the triplet splitting pattern of hydrogen ' e ' at $\delta 7.51 \mathrm{ppm}$. Hydrogen ' c ' is split via protons ' d ' and ' f ', with coupling constants $J=1.7 \mathrm{~Hz}$ and $J=2.1 \mathrm{~Hz}$ respectively. The singlet at 7.45 ppm is indicative of the lone hydrogen environment ' d ' on the pyridine core. Hydrogen ' g ' is split via proton ' h ' (${ }^{3} J=7.0 \mathrm{~Hz}$) and ' i ' (${ }^{4} J=1.2 \mathrm{~Hz}$) affording a doublet of doublets. Likewise, hydrogen ' j ' gives a doublet of doublets as this proton is split via proton ' i ' (${ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}$) and $' h$ ' ${ }^{4} J=1.2 \mathrm{~Hz}$). Complete evaluation of compound $\mathbf{8 k}$, including $2 \mathrm{D}-{ }^{1} \mathrm{H}$, DEPTQ-HSQC NMR, are shown in Table 4 and Table 5.

Table 4. Deconstruction of the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{8 k}$ in DMSO- d_{6}.

Compound	H atom	${ }^{1} \mathrm{H}(\delta) \mathrm{ppm}$	${ }^{\mathrm{x}} \mathrm{J}_{\text {(H-H) }}$	Multiplicity	Integration
8k	a	7.54	-	$b r$	2
	b	7.45		s	1
	c	7.89	${ }^{4} J_{\text {cf }}=1.9 \mathrm{~Hz}^{4} J_{\mathrm{cd}}=1.9 \mathrm{~Hz}$	t	1
	d	7.69	${ }^{3} J_{\mathrm{de}}=7.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{dc}}=1.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{df}}=1.0 \mathrm{~Hz}$	ddd	1
	e	7.51	${ }^{3} J_{\mathrm{cf}}=7.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{cd}}=8.0 \mathrm{~Hz}$	t	1
	f	7.76	${ }^{3} J_{\text {fe }}=8.1 \mathrm{~Hz},{ }^{4} J_{\text {fc }}=2.1 \mathrm{~Hz},{ }^{4} J_{\mathrm{fd}}=1.1 \mathrm{~Hz}$	$d d d$	1
	g	6.88	${ }^{3} J_{\text {gh }}=7.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{gi}}=1.2 \mathrm{~Hz}$	$d d$	1
	h	7.35	${ }^{3} \mathrm{~J}=8.5{ }_{\mathrm{hi}} \mathrm{Hz},{ }^{3} J_{\mathrm{hg}}=7.1 \mathrm{~Hz},{ }^{4} J_{\mathrm{hj}}=1.6 \mathrm{~Hz}$	$d d d$	1
	i	8.10	${ }^{3} J_{\text {ij }}=8.3 \mathrm{~Hz},{ }^{4} J_{\text {ig }}=1.2 \mathrm{~Hz}$	$d d$	1
	j	6.91	${ }^{3} J_{\mathrm{ji}}=8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}^{\text {jh }}=1.6 \mathrm{~Hz}$	$d d$	1
	k	13.37	,	s	1

Table 5. Deconstruction of the 2 D $^{1} \mathrm{H}$, DEPTQ-HSQC NMR data of $\mathbf{8 k}$ in DMSO- d_{6}.

Compound	H atom	${ }^{1} \mathrm{H}(\delta) \mathrm{ppm}$	C atom	${ }^{13} \mathrm{C}(\delta) \mathrm{ppm}$
	b	7.45	1	108.6
	c	7.89	2	131.4
	d	7.69	3	128.1
$\mathbf{8 k}$	e	7.51	4	131.2
	f	7.76	5	133.0
	g	6.88	6	119.0
	h	7.35	7	133.0
	i	8.10	8	129.0
	j	6.91	9	118.6

2.2. Synthesis of 2-acylamino-3-cyano-4,6-diphenylpyridine and their amido and sulfonamido derivatives

In the initial attempt to obtain N-(3-cyano-4,6-diphenylpyridin-2-yl)furan-2-carboxamide 13a, an acylation between 2-amino-4,6-diphenylnicotinonitrile 8a, with 2-furoyl chloride (12a) was performed. Kobayashi et al., adopted a combinatorial approach to identify the 2 -furoyl moiety to be the most active antagonist of all tested 2-acylamino-3-cyano-4,6diphenylpyridine derivatives. ${ }^{32}$ The synthetic purpose of developing 2-furanylcarbonyl substituted 2-acylamino-3-cyano-4,6diphenylpyridines was to investigate any corresponding structural-activity relationships with the novel chemical series of KISS1R antagonists. Table 6 lists the representative data obtained for the synthesis of the 2 -acylamino pyridines, whereby different operatory conditions were selected and tested for the acylation reaction. The direct reaction of acyl chloride and amine is a common procedure for amide bond formation and, on first inspection, would appear to be a viable approach for the synthesis of 1, $\mathbf{2}$ and compounds 13a-f. As such, Kobayashi et al. facilitated their amide formation, through the modification of the 2-amino group (Fig. 3), ${ }^{32,33}$ employing 12a and pyridine. As observed, in Scheme 7, target amide 13a was not produced when the reaction conditions proceeded via the use of triethylamine, DIPEA or pyridine (Table 6, entries 1-3). Presumably due to the $3-\mathrm{CN}$ group and pyridine core, their close proximity and inductive effects upon the 2 -amino group impair the amines nucleophilicity. To overcome some of these problems associated with the aforesaid approach, the possibility of generating the amidation method starting from the carboxylic acid was explored (Table 6, entries 4-9). Basavaprabhu et al.
described a facile, FeCl_{3} catalysed, coupling of carboxylic acids and poorly nucleophilic anilines. ${ }^{39}$ Adoption of their methodology (Table 6, entry 4) involved 1.0 equiv. of $\mathbf{8 a}$, glacial $\mathrm{AcOH}, \mathrm{FeCl}_{3}(20 \mathrm{~mol} \%$), and 2 -furoic acid (1.2 equiv.) in toluene. However, as reported, employment of the catalyst, FeCl_{3}, did not abet the desired procedure, instead it returned the initial starting reagents. Moreover, the utilisation of carbodiimide coupling agents, EDC or DCC, were also ineffective. The difficulties observed with these couplings were linked to the electron deficient and sterically hindered 2-amino group, in combination with a weak electrophile. It was reasoned that a coupling reaction that minimised steric hinderance between the coupling partners would more likely succeed. As such, a one-pot HATU-mediated amide formation, as per Wren et al., ${ }^{40}$ was employed. The proposed aminium mediated formation of compound $\mathbf{1 3}$ proceeded as such: to a premixed solution of benzoic acid (12c, 1.1 equiv.) and HATU (1.1 equiv.) in DMF and pyridine, a solution of 8a in DMF was added dropwise. Nonetheless, upon TLC analysis, after a reaction time of 24 h , no novel spots were observed. Although not presented in Table 6, the proposed reductive amination of $\mathbf{8 a}$ (Scheme 6) further establishes the relatively inert nature of the 2-amino group.

Scheme 6. Unsuccessful syntheses of 2-amino-6-(4-chlorophenyl)-5-hydroxy-4-phenylnicotinonitrile 15a. Reagents and conditions: (a) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}$, rt; (b) benzaldehyde, NaBH_{4}, THF, rt.

8a: $R^{1}=H, R^{2}=H$
8f: $R^{1}=H, R^{2}=3^{\prime}-B r$
8h: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=3^{\prime}-\mathrm{F}$
8k: $\mathrm{R}^{1}=2^{\prime}-\mathrm{OH}, \mathrm{R}^{2}=3^{\prime}-\mathrm{Br}$

20a

18a: $\mathrm{R}^{1}=2$-furoyl, $\mathrm{R}^{2}=3 \mathrm{~J}-\mathrm{N}\left(\mathrm{CH}_{2}\right)_{4}$
18b: $R^{1}=2$-furoyl, $R^{2}=3 '-N\left(\mathrm{CH}_{2}\right)_{6}$
18c: $R^{1}=2$-furoyl, $R^{2}=3^{6}-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{O}_{2} \mathrm{~S}$
Scheme 7. Reagents and conditions for the synthesis of compounds 1-2 and compounds 13a-f : (a) 8a, 2-furoyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}, \mathrm{rt}$; (b) 8a, 2-furoyl chloride, DIPEA, DCM, rt; (c) 8a, 2-furoyl chloride, pyridine, rt; (d) 8a, furoic acid, FeCl_{3}, glacial AcOH , toluene, reflux; (e) 8a, furoic acid, EDC, pyridine, DMF, reflux; (f) 8a, furoic acid, DCC, pyridine, DMF, reflux; (g) 8a, thioglycolic acid, HATU, pyridine, DMF, reflux; (h) 8a or $\mathbf{8 h}$, benzoic acid, HATU, pyridine, DMF, reflux; (i) compound 8, 2-furoyl chloride or benzene sulfonyl chloride, pyridine, $120^{\circ} \mathrm{C}$, MW conditions. - Methylation of amide moiety, reagents and conditions: (j) MeI, KOtBu, THF, rt. Reagents and conditions for the proposed synthesis of compound $\mathbf{1 8}$ with a cyclic tertiary amine on its 4-phenyl side chain and their amide derivatives: (k) 1, pyrrolidine, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, S$-BINAP, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, toluene, reflux; (l) 1, hexamethyleneimine, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{KOtBu}$, toluene, reflux;
(m) 1, thiomorpholine-1,1-dioxide, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{KOtBu}, 1,4$-dioxane, reflux; (n) 1, $\mathrm{Pd}(\mathrm{OAc})_{2}, S$-BINAP, thiomorpholine-1,1-dioxide, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, toluene, reflux (o) 1, thiomorpholine-1,1-dioxide, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, toluene, reflux. \cdot Reagents and conditions for the proposed synthesis of $\mathbf{1 9 a}$ with a tertiary amine on its 4-phenyl side chain: (p) 16b, pyrrolidine, BuLi, THF, $0^{\circ} \mathrm{C}$. \cdot Reagents and conditions for the proposed synthesis of $\mathbf{2 0 a}$ with a tertiary amine on its 4-phenyl side chain: (q) $\mathbf{8 f}, \mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{CuI}$, pyrrolidine, ethylene glycol, propan-2-ol, rt.

On the basis of the earlier results, a reasoned strategy, for the construction C-N coupled products, involved the instalment of electron-donating groups (EDG) on the pyridine core, prior to amidation. Inclusion of an EDG would increase the electron density of the pyridine core and inhibit any inductive effects via the 3-CN group. Moreover, the attachment of a pi-donor would increase the basicity on the 2 -amino group, thus increasing its nucleophilicity (Fig. 6).

The displacement of the bromo moiety with an acetyl group on $\mathbf{2 f}$ proceeded via sodium acetate in a water-MeOH solution. Subsequent hydrolysis of the corresponding carboxylic ester gave product 3a. Next, acid catalysed hydrolysis of $\mathbf{2 f}$ (using $\mathbf{H C l})$ afforded 3a in 29% yield, as shown in Scheme 2. The unsuccessful, yet proposed, synthesis of 9a proceeded via a facile 4-component condensation reaction employing 1a, 3a, malononitrile and ammonium acetate.

Scheme 8. Introduction of hydroxyl moiety to afford 3a and, synthesis of 2-amino-6-(4-chlorophenyl)-5-hydroxy-4-phenylnicotinonitrile (9a). Reagents and conditions: (a) water- MeOH , sodium acetate, reflux; (b) $\mathrm{HCl}, \mathrm{MeOH}$, reflux; (c) benzaldehyde, malononitrile, $\mathrm{NH}_{4} \mathrm{OAc}$, toluene, reflux.

Figure 6. Increasing of electron density on the pyridine core via the resonance donating effect of the 5-hydroxy moiety.

By the introduction of m-CPBA, as shown in Scheme 9 , it was feasible to mediate the formation of the N-oxide, whereby the oxide group exerts a strong electron-donating effect on the pyridine core (Fig. 7). When $\mathbf{8 a}(0.42 \mathrm{mmol})$ was reacted with 0.84 mmol of m-CPBA the pyridinium oxide, 10a, was obtained in 94% yield. As shown in entry 10 (Table 6), the mild acylation of the 2 -amino group (using 1.0 equiv. of 2-furoyl chloride) gave product 14a in 10% yield. The results indicate that the N-oxide, 2-amino-3-cyano-4,6-diphenylpyridine-1-oxide 10a, could abet the mechanism for the instalment of the 2 furoyl moiety, consistent with Londregan et al.. ${ }^{46}$

Scheme 9. Synthesis of 2-amino-3-cyano-4,6-diphenylpyridine 1-oxide (10a) and its amide derivative 14a. Reagents and conditions: (a) m-CPBA, DCM, $-15^{\circ} \mathrm{C}$; (b) 2-furoyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$, rt.

Figure 7. Increasing of electron density on the pyridine core via the resonance donating effect of the N-oxide.

Microwave (MW) irradiation has also been widely used in amide formation, due to a reduction in reaction times and its good yields in an N-acylation application. ${ }^{47}$ In this work it has been demonstrated that MW irradiation upon compounds 8, in pyridine, mediated the coupling with 12a to give products 13a-c and proposed KISS1R antagonist $\mathbf{1}$ in moderate to excellent yields (Table 6, entries 11-14). Prompted by these results and having identified optimised MW mediated conditions, it was found that aryl-sulfonyl chlorides are suitable substrates for the corresponding coupling reaction. The MW irradiation of $\mathbf{8 f}$ and benzene-sulfonyl chloride (12e) proceeded efficiently and the proposed KISS1R antagonist, compound 2, was obtained in excellent yield (entry 15, 84%).

Table 6. Optimisation of reaction conditions for the acylation of compound $\mathbf{8}$ with compound $\mathbf{1 0}$. Reaction conditions for the coupling of compound 10a and 14a.

Entry	Reagent 1	Reagent 2	Coupling Agent	Solvent	Base	Product	Yield (\%)
1	8a	2-Furoyl chloride	-	DCM	$\mathrm{Et}_{3} \mathrm{~N}$	13a	0
2	8a	2-Furoyl chloride	-	DCM	DIPEA	13a	0
3	8a	2-Furoyl chloride	-	Pyridine	-	13a	$0{ }^{\text {b }}$
4	8a	2-Furoic acid	FeCl_{3}	Toluene/ AcOH	-	13a	0
5	8a	2-Furoic acid	EDC	DMF/ Pyridine	-	13a	0
6	8a	2-Furoic acid	DCC	DMF/ Pyridine	-	13a	0
7	8h	Benzoic acid	HATU	DMF/ Pyridine		13e	0
8	8a	Benzoic acid	HATU	DMF/ Pyridine	-	13d	0
9	8a	Thioglycolic acid	HATU	DMF/ Pyridine	-	13 f	0
10	10a	14a	-	DCM	$\mathrm{Et}_{3} \mathrm{~N}$	$14 a^{\text {a }}$	10
11	8a	2-Furoyl chloride	-	Pyridine	-	$13 a^{\text {a }}$	$71^{\text {c }}$
12	8 f	2-Furoyl chloride	-	Pyridine	-	$1{ }^{\text {a }}$	$46^{\text {c }}$
13	8h	2-Furoyl chloride	-	Pyridine	-	$13 c^{\text {a }}$	$69^{\text {c }}$
14	8k	2-Furoyl chloride	-	Pyridine	-	$13 b^{\text {a }}$	$27^{\text {c }}$
15	8 f	Benzene-sulfonyl chloride	-	Pyridine	-	$2{ }^{\text {a }}$	$84^{\text {c }}$

${ }^{\text {a }}$ Novel compounds: No reference to 13a-c, 1, 2, and 14a found in Scifinder-n (as of $28^{\text {th }}$ April 2022). ${ }^{45}$
${ }^{\mathrm{b}}$ Room temperature for 48 h .
${ }^{\mathrm{c}}$ MW mediated reaction, $120{ }^{\circ} \mathrm{C}$ for 12 h .

2.2.1 Spectroscopic analyses of 2-acylamino-3-cyano-4,6-diphenylpyridine and their amido and sulfonamido derivatives

The reaction of $\mathbf{8 f}$ and $\mathbf{1 2 a}$ led to the formation of compound $\mathbf{1}$. The IR spectrum of $\mathbf{1}$ displayed absorption bands at 3340 , 2220,1673 , and $690 \mathrm{~cm}^{-1}$ which are characteristic of $\mathrm{N}-\mathrm{H}, \mathrm{C} \equiv \mathrm{N}, \mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{Br}$ bonds. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ showed a singlet at $\delta 7.73 \mathrm{ppm}$ for hydrogen 'b' on the pyridine core (Table 7). In addition, there is a broad singlet at $\delta 8.86 \mathrm{ppm}$ which is associated with the $\mathrm{N}-\mathrm{H}$ functionality. The furoyl moiety bears three different nuclei (in terms of magnetic nuclei) coupling together- an ihg system. Within this system there are three different coupling constants: ${ }^{3} J_{\mathrm{hi}}=3.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{hg}}=1.8,{ }^{4} J_{\mathrm{ig}}$ $=0.9 \mathrm{~Hz}$, so that, for instance, the ' h ' resonance is split into a doublet of spacing J_{hi} and then each line of the doublet is further split into a doublet by J_{hg}. Thus, characteristically, there are three different chemical shifts (doublet of doublets) per nuclus environment: $\delta 6.65 \mathrm{ppm}$ ('h'), $\delta 7.38 \mathrm{ppm}$ ('i'), and $\delta 7.66 \mathrm{ppm}$ (' g '). The same splitting pattern is observed on the furoyl moiety of $\mathbf{1 6 a}$ (Table 9). Complete evaluation of compound $\mathbf{1}$, including $2 \mathrm{D}-{ }^{1} \mathrm{H}$, DEPTQ-HSQC NMR, are shown in Table 7
and Table 8. Moreover, evaluation of product $\mathbf{2}$ and $\mathbf{1 6 a}{ }^{1} \mathrm{H}$ NMR spectra for compounds $\mathbf{2}$ and 16a are shown in Tables 9 and 10 respectively.

Table 7. Deconstructing the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}-d_{2}$.

Compound	H atom	${ }^{1} \mathrm{H}(\delta) \mathrm{ppm}$	${ }^{\mathrm{x}} J_{(\mathrm{H}-\mathrm{H})}$	Multiplicity	Integration
	a	8.86	-	$b r$	1
	b	7.73	-	s	1
	c	7.83	${ }^{4} J_{\mathrm{cf}}=1.8 \mathrm{~Hz}{ }^{4} J_{\mathrm{cd}}=1.8 \mathrm{~Hz}$	t	1
	d	7.67		m	1
$\mathbf{1}$	e	7.47	${ }^{3} J_{\mathrm{cf}}=7.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{cd}}=7.9 \mathrm{~Hz}$	t	1
	f	7.71	${ }^{3} J_{\mathrm{fe}}=8.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{fc}}=1.9 \mathrm{~Hz},{ }^{4} J_{\mathrm{fd}}=0.9 \mathrm{~Hz}$	$d d d$	1
	g	7.66	${ }^{3} J_{\mathrm{gh}}=1.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{gi}}=0.8 \mathrm{~Hz}$	$d d$	1
	h	6.65	${ }^{3} J_{\mathrm{hi}}=3.6 \mathrm{~Hz},{ }^{4} \mathrm{Jgg}=1.8$	$d d$	1
	i	7.38	${ }^{3} J_{\mathrm{ih}}=3.6 \mathrm{~Hz},{ }^{4} J_{\mathrm{ig}}=0.9$	$d d$	1

Table 8. Deconstructing the $2 \mathrm{D}-{ }^{1} \mathrm{H}$, DEPTQ-HSQC NMR data for $\mathbf{1}$ in $\mathrm{CDCl}_{3}-d$.

Compound	H atom	${ }^{1} \mathrm{H}(\delta) \mathrm{ppm}$	C atom	${ }^{13} \mathrm{C}(\delta) \mathrm{ppm}$
	b	7.73	1	120.0
	c	7.83	2	131.2
	d	7.67	5	127.1
	e	7.47	4	130.3
$\mathbf{1}$	f	7.71	3	132.7
	g	7.66	6	145.5
	h	6.65	7	113.3
	i	7.38	8	116.9
	-	-	9	160.5

Table 9. Deconstructing the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in DMSO- d_{6}.

Compound	H atom	${ }^{1} \mathrm{H}(\delta) \mathrm{ppm}$	${ }^{\mathrm{x}} J_{(\mathrm{H}-\mathrm{H})}$	Multiplicity	Integration
	a	11.87	-	$b r$	1
	b	7.86	-	s	1
	c	7.93	${ }^{4} J_{\mathrm{cf}}=1.9 \mathrm{~Hz}{ }^{4} J_{\mathrm{cc}}=1.9 \mathrm{~Hz}$	t	1
$\mathbf{2}$	d	7.70	${ }^{3} J_{\mathrm{fd}}=7.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{dc}}=1.4 \mathrm{~Hz}$	dt	1
	e	7.55	${ }^{3} J_{\mathrm{cf}}=7.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{cd}}=7.9 \mathrm{~Hz}$	t	1
	f	7.78	${ }^{3} J_{\mathrm{fe}}=8.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{fc}}=1.8 \mathrm{~Hz},{ }^{4} J_{\mathrm{fd}}=0.9 \mathrm{~Hz}$	$d d d$	1
	g	7.84	${ }^{3} J_{\mathrm{gh}}=8.0 \mathrm{~Hz},{ }^{4} J_{\mathrm{gi}}=1.4 \mathrm{~Hz} \mathrm{~Hz}$	$d d$	2
	h	7.46	-	m	3
	i				

Table 10. Deconstructing the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6 b}$ in $\mathrm{CDCl}_{3}-d$.

Compound	H atom	${ }^{1} \mathrm{H}(\delta) \mathrm{ppm}$	${ }^{\mathrm{x}} J_{(\mathrm{H}-\mathrm{H})}$	Multiplicity	Integration
16b	a	3.70	-	s	3
	b	7.76	-	s	1
	c	7.74	${ }^{4} J_{\text {cf }}=1.9 \mathrm{~Hz}^{4} J_{\mathrm{cd}}=1.9 \mathrm{~Hz}$	t	1
	d	7.56	${ }^{3} J_{\mathrm{de}}=7.8 \mathrm{~Hz}$	d	1
	e	7.74	${ }^{3} J_{\text {cf }}=7.9 \mathrm{~Hz},{ }^{3} J_{\text {cd }}=7.9 \mathrm{~Hz}$	t	1
	f	7.68	${ }^{3} J_{\text {fe }}=7.9 \mathrm{~Hz},{ }^{4} J_{\text {fc }}=2.0 \mathrm{~Hz}$	$d d$	1
	g	7.24	${ }^{3} J_{\mathrm{gh}}=1.9 \mathrm{~Hz}$	d	1
	h	6.41	${ }^{3} J_{\text {hi }}=3.6 \mathrm{~Hz},{ }^{4} J_{\text {ig }}=1.7$	$d d$	1
	i	7.02	${ }^{3} J_{\text {ih }}=3.6 \mathrm{~Hz}$	d	1

2.3. Proposed N-arylation methodologies for the instalment of cyclic amine moiety

A wide variety of palladium-catalysed $\mathrm{C}-\mathrm{N}$ bond forming methodologies are available through catalysed reactions by $\operatorname{Pd}(0)$ compounds. ${ }^{43,44}$ The initially proposed catalytic reactions were conducted by heating a solution of $\mathbf{1}$, amine, $\operatorname{Pd}(0)$ catalyst, and base in either toluene or 1,4-dioxane, as shown in Table 11. In the initial attempt to obtain a cyclic amine on the 4-phenyl ring of $\mathbf{1}, 2 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ were employed for the arylation of the weakly acidic pyrrolidine ($\mathbf{1 7 a}$; entry 1). To further elucidate the generality of this practical approach, the use of a number of $\operatorname{Pd}(0)$ compounds and cyclic amines were investigated in the amination reaction (Scheme 7, Table 11). It was reasoned that the failure of reaction in entries 1,4 and 5 were due to the relatively low pK_{a} values of caesium and sodium carbonates, thus making it harder to deprotonate the Pd-coordinated amine during the catalytic cycle. As per Lin et al., ${ }^{48}$ it was proposed that the cross-coupling of a fluoroarene with 17a may be facilitated via an organolithium species. It was reasoned that due to base-labile functional groups being present on 13c, a stronger base would perform worse. As such, protection of the amide nitrogen via 1.5 equiv. of MeI gave both products, 16a and 16b, in 95% yield. Unfortunately, contrary to Lin's work, ${ }^{48}$ the direct substitution of pyrrolidine on compound 16 in the presence of a strong base, $n \mathrm{BuLi}$, did not afford 19 a - instead the reaction returned starting materials. Next, this study moved on to investigate the use of C-N coupling conditions previously described by Buchwald et al.. ${ }^{41,42}$ For
example, the proposed reaction of $\mathbf{1 7 a}$ with $\mathbf{8 f}$ was carried out in the presence of 0.19 mmol of CuI , ethylene glycol and 2.0 equiv. of $\mathrm{K}_{3} \mathrm{PO}_{4}$ in iso-propyl alcohol. However, such a reaction course did not prove compatible for the N-arylation of compound $\mathbf{8 f}$. It should be stressed amination of the 4-phenyl ring is important for the antagonistic efficacy of the pyridinebased scaffolds. ${ }^{32,33}$ On the basis of these results, further optimisation and substrate scope is required.

Table 11. Scheme 7: The proposed N-arylation methodologies for the instalment of a cyclic amine moiety $\left(\mathrm{R}^{1}\right)$ on the 4 -phenyl ring of compound 1.

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

2.4. Antagonist activity of compounds 1 and 2 at the KISS1R

Kobayashi et al. established small molecular non-peptide-based antagonists containing a 2-acylamino-3-cyano-4,6diphenylpyridine scaffold, identifying the 2-furoyl group to be the most active antagonist of all derivatives tested. ${ }^{32}$ Presented herein are the antagonistic activities of $\mathbf{2}$, bearing a sulfone substitution on the 2-amino position of the 2-acylamino-3-cyano-4,6-diphenylpyridine scaffold, evaluated side-by-side with the 2-furoyl pyridinium derivative $\mathbf{1}$. To evaluate the KISS1R antagonistic activities of $\mathbf{1}$ and $\mathbf{2}$, a cellular Ca^{2+} mobilisation assay was carried out at the human KiSS1/KISS1R receptor expressed in rat basophil leukemia cells. Compounds $\mathbf{1}$ and $\mathbf{2}$ were assessed at $1.0 \mu \mathrm{M}, 3.2 \mu \mathrm{M}$ and $10 \mu \mathrm{M}$, with their results expressed as a percent inhibition of the control response to Metastin (45-54) at 10 nM (Eurofins Cerep). ${ }^{34}$ The results of the antagonistic assay are shown in Figure 8. Introduction of the bulkier benzene sulfone moiety (2) on the 2-amino group of the pyridine scaffold enhanced calcium inhibition, relative to the 2 -furoyl moiety. At $10 \mu \mathrm{M}, 2$ displayed weak-moderate antagonist activity with an $11.2 \% \mathrm{Ca}^{2+}$ inhibition, whereas $\mathbf{1}$ did not adequately suppress Ca^{2+} influx - with an inhibition of 0.6% at $10 \mu \mathrm{M}$. The maximum level of Ca^{2+} inhibition for $\mathbf{1}$ was 2.2%, as shown at $3.2 \mu \mathrm{M}$. Interestingly, $\mathbf{1}$ induced Ca^{2} influx at $1.0 \mu \mathrm{M}$, whereby 2 subdued Ca^{2+} mobilisation by 7.5% at the same concentration.

Figure 8. Outsourced study, Eurofins Cerep. ${ }^{34}$ Evaluation of the antagonistic activity of compound $\mathbf{1}$ and $\mathbf{2}$ at the human KiSS1/KISS1R receptor, determined by measuring their effect on agonist induced cytosolic Ca^{2+} ion mobilisation.

Although only modestly active, $\mathbf{2}$ bore a strong preference to KISS1R antagonism, relative to $\mathbf{1}$. While further studies are required, the data outlined in this paper purports that substrates bearing a sulfonamido functional group could feasibly be an alternative to existing amide bearing small pyridine-based antagonists.

2.5. P-234 cell proliferation assay

In this study the activity of P-234 on the proliferation of MCF-7 (Fig. 9) and MDA-MB-231 (Fig. 10) cell lines were examined via Incucyte and WST-1 cell-imagining assays. According to the Incucyte assay result, supernatants containing P234 in the MCF-7 cell lines markedly reduced proliferation in a dose and time dependent manner. In sharp contrast to MCF7 ($\mathrm{PR}^{+} / \mathrm{ER}^{+}$), anti-proliferation activity for P-234 was observed in MDA-MB-231 cell lines (TNBC, $\mathrm{PR}^{-/} \mathrm{ER}^{-/} \mathrm{HER}^{-}$, model). With reference to the mechanism outlined in Figure 2, it was reasoned that P-234 would inhibit cell-proliferation in MDA-MB-231 cell lines, by blocking endogenous KISS1/KISS1R expression and/or succumb to auxiliary cytotoxic effects. Data on the effect of P-234 on breast cancer cell proliferation are limited. However, Zarnani et al. evaluated the potential effects of placenta KPs (KISS1R agonists) on the proliferation of MCF-7 and MDA-MB-231 breast cancer cells. ${ }^{49}$ Interestingly, Zarnani’s results demonstrated that KPs reduced proliferation of breast cancer cells, ${ }^{49}$ hypothesising that KISS1R antagonist may promote proliferation. As observed, synthetic antagonists of KISS1R promote cell proliferation in TNBC model cell
lines, contrary to $\mathrm{PR}^{+} / \mathrm{ER}^{+} \mathrm{BCa}$ cell lines. Such reverse effects may be due, in part, by the differential responsiveness and relative stability of P-234 in MCF-7 and MDA-MB-231 cell lines.

Next, this study reported on the WST-1 proliferation study of MCF-7 and MDA-MB-231 cell lines over a period of 72 h at $0 \mathrm{nM}, 10 \mathrm{nM}, 100 \mathrm{nM}$ and 1000 nM . The data on the modulatory effect of P-234 on cell proliferation in MCF-7 showed no association between P-234 inhibition and cancer cell growth (Fig. 9). Figure 10 demonstrates the anti-proliferation effect of P-234, in MDA-MB-231, with the greatest rate of growth at 1000 nM after 24 h .

An outlook of this study would be to employ P-234, as a control, when testing for in vitro dependent variables, and compared to the afforded synthesised substrates. Going forward, due to the heterogeneity and the complexity of TNBC tumourigenesis, it is important to confirm and to validate results in other cell line systems and cultures (i.e. BT459, 3D culture systems) - this is with the outlook of reporting a comprehensive in vitro based analyses.

A
Incucyte Prolifiration Assay: MCF-7

B
WST-1 Proliferation Assay: MCF-7

Figure 9. The effect of P-234 on the proliferation of MCF-7 breast cancer cells. A) Incuctye, cell imagining proliferation assay for P-234 assessed at concentrations of $0 \mathrm{nM}, 10 \mathrm{nM}$ and 100 nM , over a 48 h period. B) WST-1 proliferation assay for P-234 assessed at concentrations of $0 \mathrm{nM}, 10 \mathrm{nM}, 100 \mathrm{nM}$ and 1000 nM , over a 72 h period. The additional 4 h accounts for the incubation period upon the addition of WST-1.

A
Incucyte Prolifiration Assay: MDA-MB-231

B
WST-1 Proliferation Assay: MDA-MB-231

Figure 10. The effect of P-234 on the proliferation of MDA-MB-231 breast cancer cells. A) Incuctye, cell imagining proliferation assay for P-234 assessed at concentrations of $0 \mathrm{nM}, 10 \mathrm{nM}$ and 100 nM , over a 48 h period. B) WST-1 proliferation assay for P-234 assessed at concentrations of $0 \mathrm{nM}, 10 \mathrm{nM}, 100 \mathrm{nM}$ and 1000 nM , over a 72 h period. The additional 4 h accounts for the incubation period upon the addition of WST-1.

3. Conclusion and Outlook

Characterised by poor survival rates, high instance of distance metastases, and limited therapeutic options, TNBC is the most aggressive form of $\mathrm{BCa} .{ }^{50}$ Thus, there is a particular medical interest to elucidate the molecular drivers behind TNBC chemoresistance. ${ }^{4}$ KISS1R signals through a plethora of diverse molecular mechanisms that have the potential to regulate the processes navigating TNBC clinical outcomes. ${ }^{4}$

In an attempt to find novel KISS1R antagonists, this paper has reported on the synthesis of novel 2-acylamino-4,6diphenylpyridine derivatives, whereby the antagonistic effects of both $\mathbf{1}$ and $\mathbf{2}$ were evaluated in vitro. The synthetic protocols outlined in the paper have the capacity to expand upon the existing chemical series of small pyridine KISS1R antagonists. Spectral and analytical data of the newly synthesised compounds were all in good agreement with the proposed chemical structures. Compounds $\mathbf{8}$ were accessed via a four-component condensation reaction. It is noteworthy that hydrogen donor functionality is necessary for KISS1R-substrate binding. Thus, Scheme 2 describes a methodology in procuring a hydroxy moiety on the 6-phenyl ring (Fig 11, region 2). In addition, a set of substrates were mediated via MW conditions to afford CN and CN-S coupled products (Scheme 7). However, the optimum specification for amination, on the 4-phenyl ring was not established. Interestingly, a benzene-sulfone group was found to be an appropriate substitute of the 2-furoyl moiety, when evaluated upon its capacity to inhibit Ca^{2+} mobilisation. The structural-activity optimisation, for compound $\mathbf{2}$, would see the instalment of a cyclic amine moiety (i.e., piperazine) on region ' 1 ' and a hydroxy group on region ' 2 ' (Fig. 11).

Figure 11. i) Compound 2 and structural regions for exploration. ii) Compound 3, adapted from compound \mathbf{A} (Fig. 3) could be a viable pyridine scaffold for future studies.

Following the appraisal of compound 2, which showed apparent antagonistic activity in a cellular functional assay, further proof-of-concept studies are warranted. Going forward, the principal objective should be to evaluate the viability of KISS1R antagonism, as a therapeutic option in TNBC. Initially, more highly selective and potent KISS1R inhibitors should be developed to obtain better tolerability and anticancer efficacy. Second, optimised combination regimens, with existing chemotherapeutics (i.e., doxorubicin), need to be investigated for the best synergic effect. Third, additional studies should be conducted to identify reliable biomarkers, to predict antagonistic response and to minimise any adverse effects. Moreover, KISS1R inhibitor resistance should also be investigated.

4. Experimental

The hotplate magnetic stirrer used was supplied by Camlab (MS-H280-Pro). TLC analyses were performed using aluminium backed silica gel coated plate $\left(60 \mathrm{~F}_{254}\right)$ and developed using a UVGL-58 Handheld UV Lamp (254-365 nm). Microwave mediated reactions were operated using a Biotage ${ }^{\circledR}$ Intiator 2.5. Column chromatography was performed using Davisil ${ }^{\circledR}$ chromatography grade silica (pore size 60 angstrom, particle size $35-70$ micron). Melting points were determined on a Gallenkamp (electronic) apparatus. IR spectra were recorded on a Nicolet iS5 spectrometer, with the Thermo ScientificTM iD7 ATR-diamond accessory included. The following abbreviations are used for IR absorbance bands: w (weak), m (medium), s (strong), br (broadened). Nuclear magnetic resonance (NMR) spectra were recorded on an Bruker NMR ADVANCE II instrument operating at 400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$. NMR spectra were obtained as $\mathrm{CDCl}_{3}-d, \mathrm{CD}_{2} \mathrm{Cl}_{2}-d_{2}$, DMSO$d_{6}$ or acetone- d_{6} solutions (reported in ppm), using $\mathrm{CDCl}_{3}-d\left({ }^{1} \mathrm{H}: 7.25 \mathrm{ppm} ;{ }^{13} \mathrm{C}: 77.16 \mathrm{ppm}\right), \mathrm{CD}_{2} \mathrm{Cl}_{2}-d_{2}\left({ }^{1} \mathrm{H}: 5.32 \mathrm{ppm} ;{ }^{13} \mathrm{C}\right.$: $54.00 \mathrm{ppm})$, DMSO- $d_{6}\left({ }^{1} \mathrm{H}: 2.50 \mathrm{ppm} ;{ }^{13} \mathrm{C}: 39.52 \mathrm{ppm}\right)$ or acetone $-d_{6}\left({ }^{1} \mathrm{H}: 2.05 \mathrm{ppm} ;{ }^{13} \mathrm{C}: 206.26 \mathrm{ppm}\right)$ as the corresponding reference standard. The following abbreviations are used for peak multiplicities: s (singlet), d (doublet), t (triplet), m (multiplet), $b r$ (broadened), $d d$ (doublet of doublets), $d d d$ (doublet of doublet of doublets), $d t$ (doublet of triplets), $t d$ (triplet of doublets) and $t t$ (triplet of triplets). Coupling constants (J) are reported in Hertz (Hz). Mass spectra were recorded on a Bruker Daltonics micrOTOF and measured in m / z. Calculated m / z data is founded on each element's monoisotopic mass.

4.1. Materials

2-Furoic acid, (98 \%), 2'-hydroxyacetophenone (99 \%), 3-bromobenzaldehyde (97\%), N,N, dimethylformamide (DMF, anhydrous), tetrahydrofuran (THF; 99.85\%, extra dry), and trimethylsilyl chloride (TMSCl) were purchased from Alfa Aesar (Heysham, UK). Acetonitrile (MeCN), benzenesulfonyl chloride (99 \%) , calcium chloride $\left(\mathrm{CaCl}_{2}\right)$, conc. hydrochloric acid (HCl), dichloromethane (99.8%, extra dry over molecular sieve, stabilized), ethyl acetate (EtOAc), ethylene glycol, glacial acetic acid (AcOH), hexane, industrial methylated spirit (IMS), magnesium sulfate $\left(\mathrm{MgSO}_{4}\right)$, methanol (MeOH), potassium carbonate $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, potassium hydroxide (KOH), propan-2-ol, sodium acetate, sodium borohydride $\left(\mathrm{NaBH}_{4}\right)$, sodium hydrogen carbonate $\left(\mathrm{NaHCO}_{3}\right)$ and toluene (anhydrous) were purchased from Fisher Scientific (Loughborough, UK). 1,4Dioxane, 2-furoyl chloride, acetone- $d_{6}(>99.8 \%)$, acetophenone, ammonium acetate, chloroform- $d\left(\mathrm{CDCl}_{3}-d ;>99.8 \%\right)$, diisopropylethylamine (DIPEA), dimethylsulphoxide- d_{6} (DMSO- $d_{6} ;>99.8 \%$), HATU, hexamethyleneimine, malononitrile, methylene dichloride $\left(\mathrm{CDCl}_{2}-d_{2} ;>99.8 \%\right), \mathrm{Pd}(\mathrm{OAc})_{2}$, potassium tert-butoxide (KOtBu), thiomorpholine 1,1-dioxide, triethylamine, tris(dibenzylideneacetone)dipalladium (0) $\quad\left(\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right)$, and tetrakis(triphenylphosphine)palladium(0) $\left(\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}\right)$ were purchased from Flurochem (Hadfield, UK). 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), 2-bromo-4'-chloroacetopheonone, 2-bromo-4'-nitroacetopheonone, 2'-hydroxyacetopheonone, 2'-nitroacetopheonone, 3chloroperbenzoic acid ($\leq 77 \%$), 3'-flurobenzaldehyde, 3'-nitroacetophenone, 4'-bromoacetopheonone, 4'hydroxyacetopheonone, benzaldehyde, benzoic acid, butyllithium (2.5 M in hexane), chloroacetonitrile (99%), copper (I) iodide (CuI), dimethylaminobenzaldehyde, iodomethane, iron (III) chloride $\left(\mathrm{FeCl}_{3}\right)$, N, N^{\prime}-dicyclohexylmethanediimine (DCC), piperidine, pyridine, pyrrolidine, S-BINAP, sodium iodide (NaI), thioglycolic acid, tripotassium phosphate were obtained from Merk (Gillingham (Dorset), UK).

4.1.1. N-(4-(3-bromophenyl)-3-cyano-6-phenylpyridin-2-yl)furan-2-carboxamide (1)

N-[3-cyano-4-(3-bromophenyl)-6-phenyl-2-pyridyl]furan-2-carboxamide $\mathbf{1}$ was prepared from 2-amino-4-(3-bromophenyl)-6-phenyl-pyridine-3-carbonitrile $\mathbf{8 f}$ ($100 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.0$ equiv.) and 2-furoyl chloride 12a ($74 \mathrm{mg}, 0.43$ mmol, 1.5 equiv.) in a manner similar to that described for 13a (Procedure E) as a white solid in $46 \%(58.6 \mathrm{mg})$ yield. mp. $214-215{ }^{\circ} \mathrm{C} . v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3340 m(\mathrm{~N}-\mathrm{H}), 2220 w(\mathrm{C} \equiv \mathrm{N}), 1673 s\left(2^{\circ}\right.$ amide, $\left.\mathrm{C}=\mathrm{O}\right), 1591 m(\mathrm{~N}-\mathrm{H}), 690 s(\mathrm{C}-\mathrm{Br}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}-d_{2}$): $\delta_{\mathrm{H}} 8.86(s, 1 \mathrm{H}, \mathrm{NH}), 8.15-8.08(m, 2 \operatorname{arom} . \mathrm{H}), 7.83(t, J=1.8 \mathrm{~Hz}, 1$ arom. H), 7.73 ($s, 1$ arom. H), $7.71(d d d, J=8.0,1.9,0.9 \mathrm{~Hz}, 1$ arom. H), $7.69-7.66(m, 1 \operatorname{arom~H}), 7.66(d d, J=1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.55-7.50(m, 3$ arom. H), $7.47\left(t, J=7.9 \mathrm{~Hz}, 1\right.$ arom. H), $7.38(d d, J=3.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.65(d d, J=3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13 \mathrm{C}} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}-d_{2}\right.$): $\delta_{\mathrm{C}} 160.5,155.37,153.8,153.0,146.7,145.5,138.3,137.2,133.5,131.5,130.8,130.5,129.0,128.1$, 127.4, 127.3, 122.0, 117.6, 116.9, 115.2, 113.3, 101.7. MS (ESI, MeOH): $\left(\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{O}_{2}\right)[\mathrm{M}+\mathrm{H}]^{+}$found: 444.0783, calcd.: 444.0269.

4.1.2. N-(4-(3-bromophenyl)-3-cyano-6-phenylpyridin-2-yl)benzenesulfonamide (2)

N-(4-(3-bromophenyl)-3-cyano-6-phenylpyridin-2-yl)benzenesulfonamide $\mathbf{2}$ was prepared from 2-amino-4-(3-bromophenyl)-6-phenyl-pyridine-3-carbonitrile $\mathbf{8 f}$ ($100 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.0$ equiv.) and benzene sulfonyl chloride $\mathbf{1 2 e}$ (74 $\mathrm{mg}, 0.43 \mathrm{mmol}, 1.5$ equiv.) in a manner similar to that described for 13a (Procedure E) as a white solid in 84.4% (119.7 mg) yield. mp. $279{ }^{\circ} \mathrm{C} . v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3407 \mathrm{br}, 2219 \mathrm{~m}(\mathrm{C} \equiv \mathrm{N}), 2158 m, 1584 m, 1538 \mathrm{~m}, 1452 \mathrm{~s}, 1328 s(\mathrm{~S}=\mathrm{O}), 1164 m, 1164 s$, $1023 s, 1001 s, 744 s(\mathrm{C}-\mathrm{Br}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta_{\mathrm{H}} 11.87(s, 1 \mathrm{H}, \mathrm{NH}), 8.09-8.06(m, 2 \operatorname{arom} . \mathrm{H}), 7.93(t, J=$ $1.9 \mathrm{~Hz}, 1$ arom. H), $7.86(s, 1$ arom. H), $7.84(d d, J=8.0,1.4 \mathrm{~Hz}, 2$ arom. H), $7.78(d d d, J=8.0,1.8,0.9 \mathrm{~Hz}, 1$ arom. H), 7.70 $\left(d t, J=7.7,1.4 \mathrm{~Hz}, 1\right.$ arom. H), $7.68-7.61\left(m, 3\right.$ arom. H), $7.55\left(t, J=7.9 \mathrm{~Hz}, 1\right.$ arom. H), $7.51-7.42(m, 3$ arom. H$) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta_{\mathrm{C}} 157.8,154.1,153.1,141.6,138.0,136.26,132.8,130.9,130.8,129.1,132.8,128.7,127.9$, 127.7, 126.9, 122.0, 116.0, 115.2, 95.9. MS (ESI, MeOH): $\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}\right)[\mathrm{M}+\mathrm{H}]^{+}$found: 489.0147, calcd.: 489.0128.

4.1.3. 1-(4-Chlorophenyl)-2-hydroxy-ethanone (3a)

Sodium acetate ($30.0 \mathrm{mmol}, 2.46 \mathrm{~g}, 3.0$ equiv.) was added to a solution of 2-bromo-4-chloroacetophenone $\mathbf{2 f}$ ($2.34 \mathrm{~g}, 10.0$ mmol, 1.0 equiv.) in a MeOH-water mixture ($1: 3,100 \mathrm{~mL}$) and magnetically stirred at room temperature for 24 h . After the solvent was evaporated, under reduced pressure, the crude residue was partitioned between water (100 mL) and EtOAc (100 mL). The solution was washed with $2 \times 50 \mathrm{~mL}$ of NaCl (aq.), dried over MgSO_{4} and concentrated under reduced pressure. $\mathrm{MeOH}(20 \mathrm{~mL})$ and $\mathrm{HCl}(5 \mathrm{M}, 20 \mathrm{~mL})$ were added to the crude residue and the mixture was heated at $60{ }^{\circ} \mathrm{C}$ for 18 h . The product was concentrated, diluted with water (200 mL) , and extracted with $3 \times 100 \mathrm{~mL}$ of EtOAc. The combined organic
extracts were dried over MgSO_{4} and concentrated under vacuum. The residue was purified by silica-gel column chromatography (gradient elution, $\mathrm{EtOAc} /$ hexane $=1: 9$ to $1: 1$) to give 1-(4-chlorophenyl)-2-hydroxy-ethanone 3a in 29% (487 mg) as a white solid. $\mathrm{mp} 141{ }^{\circ} \mathrm{C}$ (Lit.: $\left.125-127{ }^{\circ} \mathrm{C}\right) .{ }^{51} v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3375 \mathrm{br}(\mathrm{O}-\mathrm{H}), 1678 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1591 s, 1575 s$, $1492 m$ (alkane, C-H), 1410s, 1280m, 1230s, 1111s, 1091s, 1033m, $974 s, 824 s, 805 s(\mathrm{Ph}-\mathrm{Cl}), 605 s{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}-d\right): \delta_{\mathrm{H}} 7.87\left(d, J=8.8 \mathrm{~Hz}, 2\right.$ arom. H), $7.49(d, J=8.8 \mathrm{~Hz}, 2$ arom. H$), 4.85\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.44(s, 1 \mathrm{H}, \mathrm{OH})$.

4.1.4. 1-(2-(Benzyloxy)phenyl)ethan-1-one (3b)

Within an oven dried, nitrogen purged, 250 mL one-necked round bottom flask, benzyl bromide ($5.64 \mathrm{~g}, 33 \mathrm{mmol}, 1.1$ equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.56 \mathrm{~g}, 33 \mathrm{mmol}, 1.1$ equiv.) were added to a solution of 2-hydroxyacetopheone $\mathbf{2 e}(4.08 \mathrm{~g}, 30 \mathrm{mmol}, 1.0$ equiv.) in 45 mL of acetone. The reaction mixture was stirred vigorously and heated to $60{ }^{\circ} \mathrm{C}$ for 24 h . Upon completion of the reaction, as shown via TLC analysis, the solvent was removed under reduced pressure. The crude residue was diluted with EtOAc (250 mL), washed with brine ($4 \times 100 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography ($\mathrm{EtOAc} /$ hexane $=7: 3$) to give 1-(2-(benzyloxy)phenyl)ethan-1-one $\mathbf{3 b}$ as transparent, colourless crystals in $87 \%(5.94 \mathrm{~g})$ yield. mp $34{ }^{\circ} \mathrm{C}\left(\mathrm{Lit} .: ~ 40{ }^{\circ} \mathrm{C}\right) . .^{52} v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}: 2929 \mathrm{br}$, $1734 \mathrm{w}, 1670 \mathrm{~s}$ $(\mathrm{C}=\mathrm{O}), 1595 s, 1292 s(\mathrm{Ph}-\mathrm{O}), 1234 s, 753 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}): $\delta_{\mathrm{H}} 7.52$ ($d d, J=7.7,1.8 \mathrm{~Hz}, 1$ arom. H), $7.44-$ $7.40(m, 2$ arom. H), $7.37(d d d, J=8.4,7.3,1.8 \mathrm{~Hz}, 1$ arom. H), $7.32-7.27(m, 2$ arom. H), $7.24(d t, J=4.7,1.9 \mathrm{~Hz}, 1$ arom. H), $7.11\left(d, J=8.4 \mathrm{~Hz}, 1\right.$ arom. H), $6.89\left(t d, J=7.6,0.9 \mathrm{~Hz}, 1\right.$ arom. H), $5.14\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.39\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. MS (ESI, $\mathrm{MeOH}):\left(\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}\right)[\mathrm{M}+\mathrm{Na}]^{+}$found: 249.0835, calcd.: 249.0892.

4.1.5. General procedure for the synthesis of $4 a$ and $4 b$

Aromatic aldehyde 1a or $\mathbf{1 b}$ ($18 \mathrm{mmol}, 1.2$ equiv.), malononitrile ($0.99 \mathrm{~g}, 15 \mathrm{mmol}, 1.0$ equiv.), piperidine ($15 \mu \mathrm{~L}, 0.15$ mmol, 0.01 equiv.) and 15 mL of IMS were magnetically stirred at room temperature for 10 mins . Aldehyde $\mathbf{1 a}$ and $\mathbf{1 b}$ was washed with sat. NaHCO_{3} (aq.) and distilled over CaCl_{2}, prior to use. Piperidine was distilled over KOH , prior to use. The white precipitate formed was filtered, washed with chilled IMS, and dried under vacuum.

4.1.6. 2-Benzylidenemalononitrile (4a)

2-Benzylidenemalononitrile 4a was prepared from benzaldehyde $\mathbf{1 a}(1.91 \mathrm{~g}, 18 \mathrm{mmol}, 1.2$ equiv.), in accordance with the general procedure, as a white solid in $93 \%(2.31 \mathrm{~g})$ yield. $\mathrm{mp} 102{ }^{\circ} \mathrm{C}\left(\mathrm{Lit} .: 101{ }^{\circ} \mathrm{C}\right) .{ }^{53} v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3033 \mathrm{~m}, 2223 \mathrm{~m}(\mathrm{C} \equiv \mathrm{N})$, $1589 m(\mathrm{C}=\mathrm{C}), 1568 m, 1492 m, 1450 s, 1317 w, 1298 w, 1217 w, 1055 w, 970 s{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta_{\mathrm{H}} 8.55(\mathrm{~s}, 1 \mathrm{H})$, $7.98-7.93(m, 2 \operatorname{arom} . \mathrm{H}), 7.73-7.67\left(m, 1\right.$ arom. H), $7.65-7.60(m, 2 \operatorname{arom} . \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta_{\mathrm{C}} 161.6$, 134.4, 131.3; 130.5, 129.5, 114.2, 113.2, 81.62.

4.1.7. 2-(3-Bromobenzylidene)malononitrile (4b)

2-(3-Bromobenzylidene)malononitrile $\mathbf{4 b}$ was prepared from 3-bromobenzaldehyde $\mathbf{1 b}$ ($3.33 \mathrm{~g}, 18 \mathrm{mmol}, 1.2$ equiv.), in accordance with the general procedure, as a white solid in $82 \%(2.84 \mathrm{~g})$ yield. $\mathrm{mp} .112{ }^{\circ} \mathrm{C}\left(\mathrm{Lit} .: 110{ }^{\circ} \mathrm{C}\right) .{ }^{54} v_{\text {max }}(\mathrm{ATR}) / \mathrm{cm}^{-1}$:
$3303 b r$, $2220 w(\mathrm{C}=\mathrm{N}), 1674 s, 1591 s, 1508 s, 1409 m, 1375 s$, $1286 s, 1012 b r, 872 s, 798 m(\mathrm{Ph}-\mathrm{Br}), 763 s(\mathrm{C}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}): $\delta_{\mathrm{H}} 8.35(s, 1 \mathrm{H}, \mathrm{CH}), 8.17(t, J=1.9 \mathrm{~Hz}, 1$ arom. H), 8.04 ($d d d, J=7.9,1.8,0.8 \mathrm{~Hz}, 1$ arom. H), 7.88 (ddd, $J=8.1,2.0,1.0 \mathrm{~Hz}, 1$ arom. H), $7.61\left(t, J=8.0 \mathrm{~Hz}, 1\right.$ arom. H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , Acetone $-d_{6}$): $\delta_{\mathrm{H}} 159.6,136.6,133.6$, 133.1, 131.4, 129.0, 122.7, 113.5, 112.6, 84.3.

4.1.8. 2-(1-Phenylethylidene)malononitrile (5a)

To a 100 mL round bottom flask was added acetophenone $\mathbf{2 a}$ ($3.61 \mathrm{~g}, 0.03 \mathrm{mmol}, 1.0$ equiv.), malononitrile ($3.30 \mathrm{~g}, 0.05$ mmol, 1.7 equiv.), ammonium acetate ($1.16 \mathrm{~g}, 0.09 \mathrm{mmol}, 0.5$ equiv.) and glacial $\mathrm{AcOH}(2.87 \mathrm{~mL})$ in 40 mL of toluene. The reaction solution was refluxed for 12 h . After cooling of the reaction mixture, the contents of the RBF were decanted onto an ice-bath and neutralised with saturated NaHCO_{3} (aq.). The solution was washed with $\mathrm{EtOAc}(3 \times 100 \mathrm{~mL}$) and the combined organic extracts were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude product was recrystalised from IMS, collected by vacuum filtration, and washed with chilled IMS to give 2-(1phenylethylidene)malononitrile $\mathbf{4 a}$ as a white solid in $28 \%(1.31 \mathrm{~g})$ yield. $\mathrm{mp} .106{ }^{\circ} \mathrm{C}\left(\mathrm{Lit} .: 9{ }^{\circ} \mathrm{C}\right) .{ }^{55} \mathrm{v}_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}: 2928 w$ (alkene, C-H), 2227s (C $=\mathrm{N}$), 1585s, 1565, 1492m, $1442 m$ (methyl, C-H), 1376m, 1306m, 1190m, 1051m, 769s, 709s. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}-d$): $\delta_{\mathrm{H}} 7.57-7.47$ ($m, 5$ arom. H), $2.63\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}-d$): $\delta_{\mathrm{C}} 175.6,135.9$, 132.3, 129.2, 127.4, 127.4, 112.9, 84.7, 24.3.

4.1.9. 1-(Cyanomethyl)pyridin-1-ium (6a)

To an oven dried, nitrogen purged, 100 mL two-necked round bottom flask, chloroacetonitrile ($453 \mathrm{mg}, 6.0 \mathrm{mmol}, 1.2$ equiv.) was added to a solution of pyridine ($396 \mathrm{mg}, 5.0 \mathrm{mmol}, 1.0$ equiv.) in acetonitrile (15 mL). The mixture was magnetically stirred at room temperature for 96 h . Acetonitrile was distilled over CaCl_{2} prior to use. The white precipitate formed was filtered, washed with acetone, and dried under vacuum to afford the pure 1-(cyanomethyl)pyridin-1-ium chloride salt $6 \mathbf{a}$ as a while solid in $54 \%(419 \mathrm{mg})$ yield. $\mathrm{mp} .174{ }^{\circ} \mathrm{C}\left(\mathrm{Lit} .: 178{ }^{\circ} \mathrm{C}\right) .{ }^{56} v_{\text {max }}(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3045 \mathrm{~s}, 3030 \mathrm{~s}, 2865 \mathrm{~s}, 2731 w$, $2622 w, 2255 w(\mathrm{C} \equiv \mathrm{N}), 1629 m$ (aromatic, C-H), 1498s, 1484s, 1411m, 1387m, $1314 m(\mathrm{C}-\mathrm{N}), 1214 s, 1186 s, 1053 m, 1025 m$, $946 m .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta_{\mathrm{H}} 9.35(d, J=5.9 \mathrm{~Hz}, 2$ arom. H), $8.75(t, J=7.8 \mathrm{~Hz}, 1$ arom. H), $8.31-8.24(\mathrm{~m}, 2$ arom. H), $6.30\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta_{\mathrm{C}} 145.6,128.7,114.4,47.5$.

4.1.10. 2-Amino-6-(2-(benzyloxy)phenyl)-4-(3-bromophenyl)nicotinonitrile (7a)

Within a 100 mL one-necked round bottom flask 1-(2-(benzyloxy)phenyl)ethan-1-one $\mathbf{3 b}$ ($1.13 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv.), malononitrile ($0.33 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv.), ammonium acetate ($0.52 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.5$ equiv.) were added to a solution of bromobenzaldehyde $\mathbf{1 b}$ ($0.93 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv.) in 25 mL of toluene. The reaction mixture was refluxed and stirred vigorously for 24 h .3 -Bromobenzaldehyde 1b was washed with saturated NaHCO_{3} (aq.) and distilled over CaCl_{2}, prior to use. The solvent was removed under reduced pressure and the afforded crude residue was dissolved in 75 mL of DCM. The solution was washed thrice with 25 mL of saturated NaHCO_{3} (aq.), dried over MgSO_{4}, and concentrated under reduced pressure. The obtained product was purified via silica gel column chromatography ($\mathrm{EtOAc} / \mathrm{hexane}=3: 7$) and recrystalised from EtOH to give 2-amino-6-(2-(benzyloxy)phenyl)-4-(3-bromophenyl)nicotinonitrile 7a as a white solid in 46% (0.47 g) yield. $\mathrm{mp} .200^{\circ} \mathrm{C} . v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3474 \mathrm{~s}, 3296 \mathrm{~m}\left(2^{\circ}\right.$ amine, $\left.\mathrm{N}-\mathrm{H}\right), 3162 \mathrm{br}, 2923 \mathrm{~m}, 2203 w(\mathrm{C} \equiv \mathrm{N}), 1636 s, 1600 w$ (aromatic, C-H), $1389 s, 1363 s, 1289 s, 1244 s(\mathrm{Ph}-\mathrm{O}), 724 s, 713 s, 690 s .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta_{\mathrm{H}} 7.88-7.81(m, 1$ arom. H), $7.71(d, J=9.1 \mathrm{~Hz}, 2$ arom. H), $7.49-7.38(m, 4$ arom. H), $7.35-7.24(m, 6$ arom. H), $7.10(t, J=7.5 \mathrm{~Hz}, 1$ arom. H), 7.00 $\left(s, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.16\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta_{\mathrm{C}} 160.7,157.9,156.5,151.8,139.3,136.6,132.2,131.2$, 130.9 , 130.6, 128.4, 128.0, 127.9, 127.2, 127.1, 121.9, 120.8, 116.8, 114.0, 113.3, 85.9, 70.1. MS (ESI, MeOH): $\left(\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}\right)[\mathrm{M}+\mathrm{H}]^{+}$found: 456.1045, calcd.: 456.0712.

4.1.11. General procedure for the synthesis of 8a-j

Within a 100 mL one-necked round bottom flask. Aromatic aldehyde $\mathbf{1}(10.0 \mathrm{mmol}, 1.0$ equiv.), aromatic ketone 2 (10.0 mmol, 1.0 equiv.), malononitrile ($0.66 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv.), ammonium acetate ($1.16 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.5$ equiv.) and 25 mL of toluene were refluxed and stirred for 24 h . Compound $\mathbf{1}$ was washed with saturated NaHCO_{3} (aq.) and distilled over CaCl_{2}, prior to use. The solvent was removed under reduced pressure and the afforded crude residue was dissolved in 200 mL of EtOAc. The solution was washed thrice with 75 mL of saturated NaHCO_{3} (aq.), dried over MgSO_{4} and concentrated under reduced pressure. The obtained product was purified via silica gel column chromatography (EtOAc/hexane $=3: 7$) and recrystallised from an equal part solution of DCM and MeOH .

4.1.12. 2-Amino-4,6-diphenylnicotinonitrile (8a)

2-Amino-4,6-diphenyl-pyridine-3-carbonitrile $\mathbf{8 a}$ was prepared from benzaldehyde $\mathbf{1 a}(1.06 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv.) and acetophenone $\mathbf{2 a}(1.20 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv.), in accordance with the general procedure, as a white solid in $15 \%(410 \mathrm{mg})$ yield. mp $175^{\circ} \mathrm{C}\left(\right.$ Lit.: $\left.178{ }^{\circ} \mathrm{C}\right) .{ }^{57} v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3463 m\left(1^{\circ}\right.$ amine, $\left.\mathrm{N}-\mathrm{H}\right), 3300 m, 3175 b r(\mathrm{O}-\mathrm{H}), 2205 m(\mathrm{C} \equiv \mathrm{N}), 1633 s(\mathrm{~N}-$ H), $1584 s, 1571 s, 1544 s, 1494 s, 1451 s, 1370 m, 1258 m(C-N) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta_{\mathrm{H}} 8.17-8.10(m, 2$ arom. H), $7.72-7.65(m, 2 \operatorname{arom} . \mathrm{H}), 7.60-7.53\left(m, 3\right.$ arom. H), $7.53-7.45\left(m, 3\right.$ arom. H), $7.28\left(s, 1\right.$ arom. H), $7.00\left(s, 2 H, \mathrm{NH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta_{\mathrm{C}} 160.9,158.7,154.9,137.0,130.1,129.6,128.8,128.7,128.4,127.3,117.1,109.3,86.7$. MS (ESI, MeOH): $\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3}\right)[\mathrm{M}+\mathrm{Na}]^{+}$found: 294.1128, calcd.: 294.1007.

4.1.13. 2-Amino-6-(3-nitrophenyl)-4-phenylnicotinonitrile (8b)

An attempt to prepare 2-amino-6-(3-nitrophenyl)-4-phenylnicotinonitrile $\mathbf{8 b}$ from benzaldehyde $\mathbf{1 a}$ and 3'nitroacetophenone $\mathbf{2 b}$, in accordance with the general procedure, was made. Starting materials returned.

4.1.14. 2-Amino-6-(2-nitrophenyl)-4-phenylnicotinonitrile (8c)

An attempt to prepare 2-amino-6-(2-nitrophenyl)-4-phenylnicotinonitrile $\mathbf{8 c}$ was prepared from benzaldehyde 1a and 2'nitroacetophenone $\mathbf{2 c}$, in accordance with the general procedure, was made. Starting materials returned.

4.1.15. 2-Amino-6-(4-hydroxyphenyl)-4-phenylnicotinonitrile (8d)

2-Amino-6-(4-hydroxyphenyl)-4-phenyl-pyridine-3-carbonitrile 8d was prepared from benzaldehyde $\mathbf{1 a}$ (1.06 g, 10.0 mmol, 1.0 equiv.) and 4^{\prime}-hydroxyacetophenone $\mathbf{2 d}(1.36 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv.), in accordance with the general procedure, as a yellow solid in $6 \%(185 \mathrm{mg})$ yield. $\mathrm{mp} .234{ }^{\circ} \mathrm{C}\left(\right.$ Lit.: $\left.233-235{ }^{\circ} \mathrm{C}\right) .{ }^{58} v_{\text {max }}(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3393 m\left(1^{\circ} \mathrm{amine}, \mathrm{N}-\mathrm{H}\right), 3316 m$, $3145 b r(\mathrm{O}-\mathrm{H}), 2211 m, 1648 m$ (aromatic, C-H) $1374 m, 1355 m(\mathrm{C}-\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$): $\delta_{\mathrm{H}} 9.95(s, 1 \mathrm{H}, \mathrm{OH}), 8.02$ $-7.97\left(m, 2\right.$ arom. H), $7.67-7.61\left(m, 2\right.$ arom. H), $7.57-7.51\left(m, 3\right.$ arom. H), $7.15\left(s, 1\right.$ arom. H), $6.87\left(s, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.86-$ 6.82 ($m, 2$ arom. H). ${ }^{13}$ C NMR (100 MHz , DMSO- d_{6}): $\delta_{\mathrm{C}} 160.9,159.6,158.7,154.6,137.3,129.6,129.0,128.8,128.4,128.39$, 128.35, 117.4, 115.5, 108.2, 85.3. MS (ESI, MeOH): $\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}\right)[\mathrm{M}+\mathrm{H}]^{+}$found: 288.1199, calcd.: 288.1059.

4.1.16. 2-Amino-6-(2-hydroxyphenyl)-4-phenylnicotinonitrile (8e)

2-Amino-6-(2-hydroxyphenyl)-4-phenylnicotinonitrile $\mathbf{8 e}$ was prepared from benzaldehyde $\mathbf{1 a}$ ($1.06 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv.) and 2^{\prime}-hydroxyacetophenone $2 \mathrm{e}(1.36 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv.), in accordance with the general procedure, as an orange solid in $0.4 \%(9.8 \mathrm{mg})$ yield. $\mathrm{mp} 239{ }^{\circ} \mathrm{C}\left(\mathrm{Lit} .: 240{ }^{\circ} \mathrm{C}\right) .{ }^{59} v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3372 \mathrm{~m}\left(1^{\circ}\right.$ amine, $\left.\mathrm{N}-\mathrm{H}\right), 3291 \mathrm{~m}, 3171 \mathrm{br}$ $(\mathrm{O}-\mathrm{H}), 2210 m(\mathrm{C} \equiv \mathrm{N}), 1593 s, 1568 s, 1386 m, 1356 m(\mathrm{C}-\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta_{\mathrm{H}} 8.13-8.12(d, J=4.0 \mathrm{~Hz}, 2$ arom. H), $7.69-7.67\left(d, J=8.0 \mathrm{~Hz}, 2\right.$ arom. H), $7.56-7.48(m, 6 \operatorname{arom} . \mathrm{H}), 7.28\left(s, 1\right.$ arom. H), $7.01\left(s, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$. MS (ESI, $\mathrm{MeOH}):\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}\right)[\mathrm{M}+\mathrm{H}]^{+}$found: 288.1199, calcd.: 288.1059.

4.1.17. 2-Amino-4-(3-bromophenyl)-6-phenylnicotinonitrile (8f)

2-Amino-4-(3-bromophenyl)-6-phenyl-pyridine-3-carbonitrile $\mathbf{8 f}$ was prepared from 3-bromobenzaldehyde $\mathbf{1 b}$ (1.85 g, $10.0 \mathrm{mmol}, 1.0$ equiv.) and acetophenone $\mathbf{2 a}(1.20 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv.), in accordance with the general procedure, as a yellow solid in 10% yield (359 mg). mp $220^{\circ} \mathrm{C}\left(\right.$ Lit.: $\left.184^{\circ} \mathrm{C}\right) .{ }^{60} v_{\text {max }}(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3330 \mathrm{~m}\left(1^{\circ}\right.$ amine, $\left.\mathrm{N}-\mathrm{H}\right)$, $2981 \mathrm{br}(\mathrm{N}-\mathrm{H})$, $2224 m(\mathrm{C} \equiv \mathrm{N}), 1268 s(\mathrm{C}-\mathrm{N}), 684 s(\mathrm{C}-\mathrm{Br}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.69(t, J=1.8 \mathrm{~Hz}, 1$ arom. H$), 7.62(d d d, J=8.0$, $2.0,1.0 \mathrm{~Hz}, 1$ arom. H), $7.60-7.58(m, 1$ arom. H$), 7.57(d, J=1.9 \mathrm{~Hz}, 1$ arom. H$), 7.54(d d d, J=7.7,1.8,1.0 \mathrm{~Hz}, 1$ arom. H), $7.53-7.52(m, 1$ arom. H), $7.51(d, J=2.0 \mathrm{~Hz}, 1$ arom. H$), 7.50(d, J=2.1 \mathrm{~Hz}, 1$ arom. H), $7.38(t, J=7.9 \mathrm{~Hz}, 1$ arom. $\mathrm{H}), 6.86\left(\mathrm{~s}, 1\right.$ arom. H), $5.43\left(s, 2 \mathrm{H}, \mathrm{NH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta_{\mathrm{C}} 153.3,150.5,148.4,139.4,137.3,132.8$, $131.4,130.5,130.0,129.1,128.5,127.2,123.1,120.0,115.9,115.7,95.6$, 94.9. MS (ESI, MeOH): $\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrN}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$ found: 350.0390 , calcd.: 350.0293

4.1.18. 2-Amino-5-bromo-6-(4-nitrophenyl)-4-phenylnicotinonitrile (8g)

An attempt to prepare 2-amino-5-bromo-6-(4-nitrophenyl)-4-phenylnicotinonitrile $\mathbf{8 g}$ was prepared from benzaldehyde 1a and 2-bromo-4'-nitroacetopheonone $\mathbf{2 g}$, in accordance with the general procedure, were made. Starting materials were returned.

4.1.19. 2-Amino-4-(3-fluorophenyl)-6-phenylnicotinonitrile (8h)

2-Amino-4-(3-fluorophenyl)-6-phenyl-pyridine-3-carbonitrile $\mathbf{8 h}$ was prepared from 3-fluorobenzaldehyde $\mathbf{1 c}$ (1.24 g , $10.0 \mathrm{mmol}, 1.0$ equiv.) and acetophenone $\mathbf{2 a}(1.20 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv.), in accordance with the general procedure, as an orange solid in $26 \%(740 \mathrm{mg})$ yield. $\mathrm{mp} 262-264{ }^{\circ} \mathrm{C}\left(\right.$ Lit.: $\left.261{ }^{\circ} \mathrm{C}\right) .{ }^{61} v_{\text {max }}(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3464 m\left(1^{\circ}\right.$ amine, $\left.\mathrm{N}-\mathrm{H}\right), 3301 \mathrm{~m}$, $3175 b r, 2204 s(\mathrm{C} \equiv \mathrm{N}), 1632 m$ (aromatic, $\mathrm{C}-\mathrm{H}$), $1585 s, 1574 s, 1370 m, 1248 s(\mathrm{C}-\mathrm{N}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta_{\mathrm{H}} 8.20$ $-8.09\left(m, 2\right.$ arom. H), $7.63-7.46(m, 6 \operatorname{arom} . \mathrm{H}), 7.40\left(d, J=7.3 \mathrm{~Hz}, 1\right.$ arom. H), $7.31(s, 1$ arom. H$), 7.07\left(s, 2 \mathrm{H}, \mathrm{NH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): 163.3, 160.8, 158.9, 153.44, 153.42, 139.23, 139.20, 137.5, 131.2, 130.2, 128.7, 127.7, 125.1, 116.82, 116.80, 115.9, 109.3, 86.5. MS (ESI, MeOH): $\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{FN}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$found: 290.1173, calcd.: 290.1094.

4.1.20. 2-Amino-4-(3-fluorophenyl)-6-(2-hydroxyphenyl)nicotinonitrile (8i)

2-Amino-4-(3-fluorophenyl)-6-(2-hydroxyphenyl)nictotinonitrile $\mathbf{8 i}$ was prepared from 3-fluorobenzaldehyde $\mathbf{1 c}$ (1.24 g , $10.0 \mathrm{mmol}, 1.0$ equiv.) and 2-hydroxyacetophenone $2 \mathrm{e}(1.36 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv.), in accordance with the general procedure, as an orange solid in $4 \%(11 \mathrm{mg})$ yield. $\mathrm{mp} 181{ }^{\circ} \mathrm{C}\left(\mathrm{Lit} .: 190-192{ }^{\circ} \mathrm{C}\right) .{ }^{59} v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3403 \mathrm{~m}\left(1^{\circ}\right.$ amine, NH), $3338 m, 3227 m, 2973 b r(\mathrm{O}-\mathrm{H}), 2219(\mathrm{C} \equiv \mathrm{N})$, $1656 m$ (aromatic, C-H), $1576 s, 1562 s, 1238 m(\mathrm{C}-\mathrm{N}), 1054 s(\mathrm{Ph}-\mathrm{F}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta_{\mathrm{H}} 13.31(s, 1 \mathrm{H}, \mathrm{OH}), 8.03(d d, J=8.1,1.7 \mathrm{~Hz}, 1$ arom. H), $7.62-7.57(m, 2$ arom. H), $7.55(s, 2 \mathrm{H}$, NH_{2}), $7.47-7.40(m, 3$ arom. H), $7.38-7.31(m, 1 \operatorname{arom} . \mathrm{H}), 6.93(d d, J=8.3,1.2 \mathrm{~Hz}, 1$ arom. H), $6.88(t, J=7.4 \mathrm{~Hz}, 1$ arom. H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): 159.6, 159.3, 158.4, 150.1, 132.6, 131.9, 131.0, 128.3, 125.5, 124.9, 119.0, 118.14, 118.13, 118.1, 116.2, 115.9, 116.0, 109.1, 87.6. MS (ESI, MeOH): $\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{O}\right)[\mathrm{M}+\mathrm{H}]^{+}$found: 306.1199, calcd.: 306.1043.

4.1.21. 2-Amino-6-(4-bromophenyl)-4-(4-(dimethylamino)phenyl)nicotinonitrile (8j)

2-Amino-6-(4-bromophenyl)-4-(4-(dimethylamino)phenyl)nicotinonitrile $\mathbf{8 j}$ was prepared from dimethylaminobenzaldehyde $\mathbf{1 d}$ and 4'-bromoacetopheonone $\mathbf{2 h}$, in accordance with the general procedure., as a dark-purple solid. Crude product returned.

4.1.22. 2-Amino-4-(3-bromophenyl)-6-(2-hydroxyphenyl)nicotinonitrile ($8 \mathbf{k}$)

Procedure A: 2-Amino-4-(3-bromophenyl)-6-(2-hydroxyphenyl)nicotinonitrile $\mathbf{8 k}$ was prepared from 3bromobenzaldehyde $\mathbf{1 b}(1.85 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv.) and 2-hydroxyacetopheone $\mathbf{2 e}(1.36 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv.), in accordance with the general procedure, as a yellow-orange solid in $5.6 \%(17 \mathrm{mg})$ yield. Analytical data for Procedure A (8k) is in accordance with the data presented in Procedure B.

Procedure B: To an oven dried, nitrogen purged, 100 mL two-necked round bottom flask, trimethylsilyl chloride was added dropwise to a solution of 2-amino-6-(2-(benzyloxy)phenyl)-4-(3-bromophenyl)nicotinonitrile 7a ($411 \mathrm{mg}, 0.90 \mathrm{mmol}$, 1.0 equiv.) and NaI ($338 \mathrm{mg}, 2.25 \mathrm{mmol}, 2.5$ equiv.) in 20 mL of acetonitrile. Acetonitrile was distilled over CaCl_{2} prior to use. The mixture was heated to $120^{\circ} \mathrm{C}$ and stirred until the reaction was complete (72 h). The reaction mixture was quenched with distilled water and washed with EtOAc. The combined organic extracts were dried over MgSO_{4} and concentrated under reduced pressure. The product was recrystalised from IMS to afford 2-amino-4-(3-bromophenyl)-6-(2hydroxyphenyl)nicotinonitrile $\mathbf{8 k}$, as a white solid, in $61 \%(201 \mathrm{mg})$ yield. $\mathrm{mp} .250{ }^{\circ} \mathrm{C} . v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3400 \mathrm{~m}\left(1^{\circ}\right.$ amine, $\mathrm{N}-\mathrm{H})$, $3336 m$, $3260 b r(\mathrm{O}-\mathrm{H}), 2214 s(\mathrm{C} \equiv \mathrm{N})$, $1653 m$ (aromatic, $\mathrm{C}-\mathrm{H}), 1576 s, 1545 s, 1274 m, 1241 m(\mathrm{C}-\mathrm{N}), 757 s(\mathrm{Ph}-\mathrm{Br}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta_{\mathrm{H}} 13.37(s, 1 \mathrm{H}, \mathrm{OH}), 8.10(d d, J=8.2,1.6 \mathrm{~Hz}, 1$ arom. H), $7.89(t, J=1.9 \mathrm{~Hz}, 1$ arom. H), 7.76
$(d d d, J=8.0,2.1,1.0 \mathrm{~Hz}, 1 \operatorname{arom} . \mathrm{H}), 7.69(d d d, J=7.8,1.7,1.0 \mathrm{~Hz}, 1 \operatorname{arom} . \mathrm{H}), 7.54\left(s, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.51(t, J=8.0,7.8 \mathrm{~Hz}$, 2 arom. H), $7.45(s, 1$ arom. H), $7.35(d d d, J=8.5,7.1,1.6 \mathrm{~Hz}, 1$ arom. H), $6.91(d d, J=8.3,1.2 \mathrm{~Hz}, 1$ arom. H), $6.88(d d, J$ $=7.0,1.2 \mathrm{~Hz}, 1$ arom. H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta_{\mathrm{C}} 159.7,159.3,158.9,153.7,139.4,132.6,132.5,131.1,130.8$, 128.5, 127.6, 121.9, 118.9, 118.2, 118.1, 116.8, 108.2, 86.1. MS (ESI, MeOH): $\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{O}\right)[\mathrm{M}+\mathrm{H}]^{+}$found: 366.0417, calcd.: 366.0164.

4.1.23. 2-Amino-6-(4-chlorophenyl)-5-hydroxy-4-phenylnicotinonitrile (9a)

An attempt to prepare 2-amino-6-(4-chlorophenyl)-5-hydroxy-4-phenylnicotinonitrile 9a proceeded in accordance with the following methodology: to a 25 mL one-necked round bottom flask, 1-(4-chlorophenyl)-2-hydroxy-ethanone $\mathbf{3 a}(74 \mathrm{mg}$, 0.44 mmol , 1.0 equiv.), benzaldehyde $\mathbf{1 a}$ ($46 \mathrm{mg}, 0.44 \mathrm{mmol}, 1.0$ equiv.), malononitrile ($28.7 \mathrm{mg}, 0.44 \mathrm{mg}, 1.0$ equiv.), and ammonium acetate ($50.3 \mathrm{mg}, 0.65 \mathrm{mmol}, 1.5$ equiv.) were added to a 10 mL solution of toluene. The reaction mixture was refluxed and stirred for 24 h . Starting materials were returned.

4.1.24. 2-Amino-3-cyano-4,6-diphenylpyridine 1 -oxide (10a)

2-Amino-4,6-diphenyl-pyridine-3-carbonitrile $\mathbf{8 a}(113 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.0$ equiv.) was dissolved in $\mathrm{DCM}(4 \mathrm{~mL})$ and cooled ($1: 4$ mass ratio of sodium chloride to ice) to $-15^{\circ} \mathrm{C}$. A solution of m-CPBA ($144 \mathrm{mg}, 0.84 \mathrm{mmol}, 2.0$ equiv.) in 6 mL of DCM was added dropwise. The mixture was magnetically stirred for 3 h , with the temperature maintained at $-15^{\circ} \mathrm{C}$, before being allowed to warm to room temperature for an additional reaction time of 24 h . The reaction mixture was diluted via 25 mL of DCM , washed with saturated NaHCO_{3} (aq.; $6 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography ($\mathrm{EtOAc} / \mathrm{hexane}=3: 7$) to give 2-amino-3-cyano-4,6diphenylpyridine 1-oxide 10 a as a white solid in $94 \%(54 \mathrm{mg})$ yield. $\mathrm{mp} .230^{\circ} \mathrm{C}$. $v_{\text {max }}(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3681 \mathrm{w}, 2981 \mathrm{br}, 2844 \mathrm{br}$, $2221 w(\mathrm{C} \equiv \mathrm{N}), 1683 s, 1615 m, 1574 s(\mathrm{~N}-\mathrm{O}), 1497 w, 1416 s, 1301 s, 1261 s, 1206 s, 1056 s, 1033 s, 1014 s .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) : $\delta_{\mathrm{H}} 8.02-7.98$ ($m, 2$ arom. H), 7.97 ($\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}$), $7.63-7.49$ ($m, 7$ arom. H), $7.40-7.34$ ($m, 1$ arom. H), 7.02 ($s, 1$ arom. H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta_{\mathrm{C}} 166.5,153.9,149.2,141.6,136.3,133.8,133.4,133.2,131.1,129.9$, 129.3, 129.2, 128.9, 128.4, 128.4. MS (ESI, MeOH): $\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}\right)[\mathrm{M}+\mathrm{H}]^{+}$found: 288.1202, calcd.: 288.1059.

4.1.25. General procedure for the synthesis of 11a-b

To a 50 mL one-necked round bottom flask, compound 5 (1.0 equiv.) was added to a solution of compound 4 (1.0 equiv.) and piperidine (1.0 equiv.) in 5 mL of acetonitrile. Piperidine was distilled over KOH , prior to use. The reaction mixture was refluxed and stirred for 24 h . The reaction mixture was concentrated under reduced pressure and the crude residue was partitioned between distilled water (25 mL) and EtOAc (25 mL). The organic layer was washed with brine (25 mL), dried over MgSO_{4} and concentrated under reduced pressure. The crude product was recrystalised from IMS, collected by vacuum filtration, and washed with chilled IMS.

4.1.26. 5'-Amino-[1,1':3',1''-terphenyl]-4',6'-dicarbonitrile (11a)

5'-Amino-[1, 1':3',1"-terphenyl]-4',6'-dicarbonitrile 11a was prepared from 2-benzylidenemalononitrile 4a ($68 \mathrm{mg}, 0.44$ mmol, 1.0 equiv), 2-(1 -phenylethylidene)malononitrile $\mathbf{5 a}$ ($74 \mathrm{mg}, 0.44 \mathrm{mmol}, 1.0$ equiv.) and piperidine ($44 \mu \mathrm{~L}, 0.44 \mathrm{mmol}$, 1.0 equiv.), in accordance with the general procedure, as a white solid in $42 \%(54.5 \mathrm{mg})$ yield. $\mathrm{mp} 243{ }^{\circ} \mathrm{C}\left(\mathrm{Lit} .: ~ 225{ }^{\circ} \mathrm{C}\right) . .^{62}$ $v_{\text {max }}(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3477 m, 3372 b r(\mathrm{~N}-\mathrm{H}), 2214 s(\mathrm{C} \equiv \mathrm{N}), 1630 s, 1583 s, 1570 s, 1572 s, 1284 s, 763 s, 693 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}-d\right): \delta_{\mathrm{H}} 7.66-7.63\left(m, 4\right.$ arom. H), $7.55-7.51\left(m, 6\right.$ arom. H), $6.81\left(b r, 2 H, \mathrm{NH}_{2}\right), 6.80\left(s, 1\right.$ arom. H). ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}-d\right): \delta_{\mathrm{C}} 153.2,150.1,137.4,129.7$, 128.9, 128.4, 120.10, 116.0, 94.9. MS (ESI, MeOH): $\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$ found: 272.1249 , calcd.: 272.1188

4.1.27. 5'-Amino-3-bromo-[1,1':3',1''-terphenyl]-4',6'-dicarbonitrile (11b)

5'-Amino-3-bromo-[1, $1^{\prime}: 3^{\prime}, 1^{\prime \prime}$ '-terphenyl]-4',6'-dicarbonitrile 11b was prepared from 2-(3bromobenzylidene)malononitrile $\mathbf{4 b}$ ($204 \mathrm{mg}, 0.88 \mathrm{mmol}, 1.0$ equiv.), 2-(1-phenylethylidene)malononitrile $\mathbf{5 a}$ ($148 \mathrm{mg}, 0.88$ mmol, 1.0 equiv.) and piperidine ($86 \mu \mathrm{~L}, 0.88 \mathrm{mmol}, 1.0$ equiv.), in accordance with the general procedure, as a white solid in $55 \%(180 \mathrm{mg})$ yield. $\mathrm{mp} 207^{\circ} \mathrm{C} . v_{\text {max }}(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3460 s, 3342 \mathrm{br}(\mathrm{N}-\mathrm{H}), 3237 s, 2213 \mathrm{~s}(\mathrm{C} \equiv \mathrm{N}), 1637 s, 1576 s, 1541 s, 790 s$, $771 s(\mathrm{Ph}-\mathrm{Br}), 660 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.69(d, J=2.2 \mathrm{~Hz}, 1$ arom. H), $7.66-7.45(m, 7$ arom. H), $7.38(t, J=$ $7.9 \mathrm{~Hz}, 1$ arom. H), $6.86\left(s, 1\right.$ arom. H), $5.45\left(s, 2 \mathrm{H}, \mathrm{NH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}-d\right): \delta_{\mathrm{C}} 153.3,150.5,148.4,139.4$, $137.3,132.8,131.4,130.5,130.0,129.1,128.5,127.2,123.1,120.0,115.9,115.7,95.6,94.9$. MS (ESI, MeOH): $\left(\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{BrN}_{3}\right)$ $[\mathrm{M}+\mathrm{H}]^{+}$found: 374.0455, calcd.: 374.0215.

4.1.28. N -(3-cyano-4,6-diphenylpyridin-2-yl)furan-2-carboxamide (13a)

Procedure A: Within a 25 mL , oven-dried, nitrogen purged, one-necked round bottom flask 2-amino-4,6-diphenyl-pyridine-3-carbonitrile $\mathbf{8 a}(135 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.) was added to an ice-cooled solution of triethylamine (102 mg , 1.10 mmol , 2.2 equiv.) in 10 mL of dry DCM. Triethylamine was distilled over KOH , prior to use. To the reaction mixture, 2-furoyl chloride 12a ($130 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv.) was added dropwise. The reaction solution was stirred at room temperature for 6 h and its progress monitored via TLC (EtOAc/ hexane =3:7). Upon TLC diagnosis, it was observed that no further spots had emerged. A further 0.5 equiv. of triethylamine and 2 -furoyl chloride were added at the 6 h point. The mixture was stirred at room temperature for a further 24 h . Starting materials were returned

Procedure B: Within a 25 mL , oven-dried, nitrogen purged, one-necked round bottom flask 2-amino-4,6-diphenyl-pyridine-3-carbonitrile $8 \mathbf{~ a ~ (~} 65 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.0$ equiv.) was added to an ice-cooled solution of N, N-diisopropylethylamine ($83 \mathrm{mg}, 0.64 \mathrm{mmol}, 2.5$ equiv.) in 4 mL of dry DCM. To the reaction, a solution of 2-furoyl chloride $\mathbf{1 2 a}$ ($34 \mathrm{mg}, 0.26 \mathrm{mmol}$,
1.1 equiv.) in 2 mL of DCM , was added dropwise. The reaction mixture was stirred at room temperature for 48 h . The reaction was monitored via TLC $(\mathrm{EtOAc} /$ hexane $=3: 7)$ and, upon diagnosis, it was noted that no further spots had emerged. Starting materials were returned.

Procedure C: Within a 25 mL , oven-dried, nitrogen purged, one-necked round bottom flask 2-amino-4,6-diphenyl-pyridine-3-carbonitrile $\mathbf{8 a}(65 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.0$ equiv.) was added to a solution of 2 -furoyl chloride $\mathbf{1 2 a}$ ($34 \mathrm{mg}, 0.26 \mathrm{mmol}$, 1.1 equiv.) in 4 mL of pyridine. The reaction mixture was stirred at room temperature for 48 h . The reaction was monitored via TLC (EtOAc/ hexane = 3:7) and, upon diagnosis, it was observed that no further spots had emerged. Starting materials were returned.

Procedure D: Within a 50 mL , oven-dried, nitrogen purged, two-necked round bottom flask, a solution of 2-amino-4,6-diphenyl-pyridine-3-carbonitrile $\mathbf{8 a}$ ($109 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv.) in 5 mL of toluene, was added to a $50{ }^{\circ} \mathrm{C}$ pre-heated mixture of $15 \mu \mathrm{~L}$ of glacial $\mathrm{AcOH}, \mathrm{FeCl}_{3}$ ($20 \mathrm{~mol} \%$), and 2-furoic acid ($56 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.2$ equiv.) in 10 mL of toluene. The reaction mixture was heated to $90^{\circ} \mathrm{C}$ and stirred for 48 h . The reaction was monitored via $\mathrm{TLC}(\mathrm{EtOAc} /$ hexane $=3: 7)$ and, upon diagnosis, it was observed that no further spots had emerged. Starting materials were returned.

Procedure E: Within a 25 mL , nitrogen purged, one-necked round bottom flask, 2-amino-4,6-diphenylnicotinonitrile 8a ($85 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.0$ equiv.), furoic acid 12a ($39 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.1$ equiv.), EDC ($54 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.1$ equiv.), and pyridine ($125 \mathrm{mg}, 1.55 \mathrm{mmol}, 5.0$ equiv.) were dissolved in DMF and stirred for 24 h . Starting materials were returned.

Procedure F: Within a 25 mL , nitrogen purged, one-necked round bottom flask, 2-amino-4,6-diphenylnicotinonitrile 8a ($85 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.0$ equiv.), furoic acid 12a ($39 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.1$ equiv.), DCC ($72.2 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.1$ equiv.), and pyridine ($125 \mathrm{mg}, 1.55 \mathrm{mmol}$, 5.0 equiv.) were dissolved in DMF and stirred for 24 h . Starting materials were returned.

Procedure G: To a 5 mL microwave pressure vial, 2-amino-4,6-diphenyl-pyridine-3-carbonitrile $\mathbf{8 a}$ ($35 \mathrm{mg}, 0.13 \mathrm{mmol}$, 1 equiv.) was added to a solution of 2 -furoyl chloride $\mathbf{1 2 a}(25 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.5$ equiv.) 1.5 mL of pyridine. The reaction vial was capped before being subjected to microwave mediated conditions ($12 \mathrm{~h}, 110{ }^{\circ} \mathrm{C}$). After cooling, the solvent was removed under high vacuum. The crude residue was partitioned between saturated NaHCO_{3} (aq.; 30 mL) and $\mathrm{DCM}(50 \mathrm{~mL}$), washed with distilled water, dried over MgSO_{4}, and concentrated under reduced pressure. The afforded product was purified by silica gel column chromatography (gradient elution $\mathrm{EtOAc} /$ hexane $=1: 9$ to $1: 1$) before being recrystallised from MeOH , collected by vacuum filtration, and washed with chilled MeOH to afford N-(3-cyano-4,6-diphenylpyridin-2-yl)furan-2carboxamide 13a, as a white solid in $71 \%(35.4 \mathrm{mg})$ yield. $\mathrm{mp} 220^{\circ} \mathrm{C}$. $v_{\text {max }}$ (ATR)/ $\mathrm{cm}^{-1}: 3290 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 2921 \mathrm{br}(\mathrm{N}-\mathrm{H}), 2223 \mathrm{~m}$ $(\mathrm{C} \equiv \mathrm{N}), 1670 s\left(2^{\circ}\right.$ amide, $\left.\mathrm{C}=\mathrm{O}\right), 1590 s(\mathrm{~N}-\mathrm{H}), 1489 s, 1452 s, 1170 s, 1135 s(\mathrm{C}-\mathrm{O}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}-d_{2}\right): 8.88(s$, $1 \mathrm{H}, \mathrm{NH}), 8.16-8.08(m, 2$ arom. H$), 7.76(s, 1$ arom. H$), 7.74-7.71(m, 1$ arom. H$), 7.71(d, J=2.1 \mathrm{~Hz}, 1$ arom. H$), 7.67-$ $7.63(m, 1 \mathrm{H}, \mathrm{CH}), 7.59(d, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(d, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(d, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(d, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ $(d d, J=3.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.65(d d, J=3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}-d_{2}\right): \delta_{\mathrm{C}} 159.8,156.4,156.0$, $152.8,147.4,146.0,137.5,136.9,131.4,131.2,130.7,129.6,129.5,129.3,129.2,128.0,120.7,119.5,117.9,117.4,116.2$, 113.4, 100.8. MS (ESI, MeOH): $\left(\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}\right)[\mathrm{M}+\mathrm{H}]^{+}$found: 366.1519, calcd.: 366.1164.

4.1.29. N-(4-(3-bromophenyl)-3-cyano-6-(2-hydroxyphenyl)pyridin-2-yl)furan-2-carboxamide (13b)

N-(4-(3-bromophenyl)-3-cyano-6-(2-hydroxyphenyl)pyridin-2-yl)furan-2-carboxamide 13b was prepared from 2-amino-4-(3-bromophenyl)-6-(2-hydroxyphenyl)nicotinonitrile $\mathbf{8 k}$ ($64 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.0$ equiv.) and 2-furoyl chloride $\mathbf{1 2 a}$ (45 mg , 0.35 mmol , 2.0 equiv.) in a manner similar to that described for 13a (Procedure E) as a white solid in 27% (21.0 mg) yield. $\mathrm{mp} .218{ }^{\circ} \mathrm{C} . v_{\max }(\mathrm{ATR}) / \mathrm{cm}^{-1}: 3288 \mathrm{br}, 2924 \mathrm{~m}, 2220 \mathrm{~m}(\mathrm{C} \equiv \mathrm{N}), 1674 \mathrm{~s}\left(2^{\circ}\right.$ amide, $\left.\mathrm{C}=\mathrm{O}\right), 1589,1566,1510,1284,1171,1074$ (amine, C-N), 1012, $762 s(\mathrm{Ph}-\mathrm{Br}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}-d_{2}$): $\delta_{\mathrm{H}} 7.91$ ($d d, J=7.7,1.8 \mathrm{~Hz}, 1$ arom. H), $7.77-7.72$ (m, 1 arom. H), $7.67(d t, J=7.9,1.6 \mathrm{~Hz}, 1$ arom. H), $7.60(d, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.58(d d, J=7.8,1.8 \mathrm{~Hz}, 1$ arom. H), $7.49(d d$, $J=7.6,1.3 \mathrm{~Hz}, 1$ arom. H), $7.46(d t, J=7.7,1.6 \mathrm{~Hz}, 1 \operatorname{arom} . \mathrm{H}), 7.41(d, J=7.7 \mathrm{~Hz}, 1$ arom. H), $7.39(d d, J=3.5,0.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 7.34(d d, J=8.0,1.3 \mathrm{~Hz}, 1$ arom. H$), 7.17(s, 1 \operatorname{arom} . \mathrm{H}), 6.67(d d, J=3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.37(s, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}-d_{2}$): $\delta_{\mathrm{C}} 161.1,158.8,154.1,148.9,144.9,139.9,133.8,132.9,132.0,131.96,131.92,131.5,128.0$, 127.8, 124.7, 123.7, 120.9, 117.4, 115.3, 113.5. MS (ESI, MeOH): $\left(\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{O}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$found: 460.0774, calcd.: 460.0219 .

4.1.30. N-(3-cyano-4-(3-fluorophenyl)-6-phenylpyridin-2-yl)furan-2-carboxamide (13c)

N-(3-cyano-4-(3-fluorophenyl)-6-phenylpyridin-2-yl)furan-2-carboxamide 13c was prepared from 2-amino-4-(3-fluorophenyl)-6-phenylnicotinonitrile $\mathbf{8 h}(50 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.0$ equiv.) and 2-furoyl chloride $\mathbf{1 2 a}$ ($34 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.5$ equiv.) in a manner similar to that described for 13a (Procedure E) as a white solid in $69 \%(45.6 \mathrm{mg})$ yield. $\mathrm{mp} .215{ }^{\circ} \mathrm{C} . v_{\max }$ (ATR)/ $\mathrm{cm}^{-1}: 3335 m(\mathrm{~N}-\mathrm{H}), 2221 w(\mathrm{C} \equiv \mathrm{N}), 1674 s\left(2^{\circ}\right.$ amide, $\mathrm{C}=\mathrm{O}$), $1589 m(\mathrm{~N}-\mathrm{H}), 1170 m(\mathrm{Ph}-\mathrm{F}), 1074 m($ amine, $\mathrm{C}-\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}-d_{2}$): $\delta_{\mathrm{H}} 8.86(s, 1 \mathrm{H}, \mathrm{NH}), 8.23-8.03(m, 2 \operatorname{arom} . \mathrm{H}), 7.75(s, 1$ arom. H$), 7.66(d, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 7.61-7.56(m, 1$ arom. H), $7.53(m, J=6.2,4.0 \mathrm{~Hz}, 4$ arom. H), $7.42(d t, J=9.4,2.1 \mathrm{~Hz}, 1$ arom. H), $7.38(d, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.29(t d d, J=8.3,2.6,1.2 \mathrm{~Hz}, 1$ arom. H$), 6.66(d d, J=3.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}-\right.$ d_{2}): $\delta_{\mathrm{C}} 160.0,155.9,154.7,152.8,147.3,146.1,138.8 ; 137.3,133.6,132.1,131.4,131.1,129.6,128.1,128.0,123.4,117.7$, 117.5, 115.8, 113.4, 100.7. MS (ESI, MeOH): $\left(\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{FN}_{3} \mathrm{O}_{2}\right)[\mathrm{M}+\mathrm{H}]^{+}$found: 384.1496, calcd.: 384.1070.

4.1.31. N-(3-cyano-4,6-diphenylpyridin-2-yl)benzamide (13d)

An attempt to prepare N-(3-cyano-4,6-diphenylpyridin-2-yl)benzamide 13d proceeded in accordance with the following methodology: within a 25 mL , nitrogen purged, one-necked round bottom flask, 2-amino-4,6-diphenylnicotinonitrile 8a (150
$\mathrm{mg}, 0.55 \mathrm{mmol}$, 1.0 equiv.), benzoic acid $\mathbf{1 2 b}$ ($0.61 \mathrm{mmol}, 74 \mathrm{mg}$, 1.1 equiv.), HATU ($0.61 \mathrm{mmol}, 231 \mathrm{mg}, 1.1$ equiv.), and pyridine ($218 \mathrm{mg}, 2.77 \mathrm{mmol}, 5.0$ equiv.) were dissolved in DMF and stirred for 24 h . Starting materials were returned.

4.1.32. N-(3-cyano-4-(3-fluorophenyl)-6-phenylpyridin-2-yl)benzamide (13e)

An attempt to prepare N-(3-cyano-4-(3-fluorophenyl)-6-phenylpyridin-2-yl)benzamide 13e proceeded in accordance with the following methodology: within a 25 mL , nitrogen purged, one-necked round bottom flask, 2-amino-4-(3-fluorophenyl)-6-phenylnicotinonitrile $\mathbf{8 h}(159 \mathrm{mg}, 0.55 \mathrm{mmol}, 1.0$ equiv.), benzoic acid $\mathbf{1 2 b}(0.61 \mathrm{mmol}, 74 \mathrm{mg}, 1.1$ equiv.), HATU (0.61 mmol, 231 mg , 1.1 equiv.), and pyridine ($218 \mathrm{mg}, 2.77 \mathrm{mmol}, 5.0$ equiv.) were dissolved in DMF and stirred for 24 h . Starting materials were returned.

4.1.33. N-(3-cyano-4,6-diphenylpyridin-2-yl)-2-mercaptoacetamide (13f)

An attempt to prepare N-(3-cyano-4,6-diphenylpyridin-2-yl)-2-mercaptoacetamide $\mathbf{1 3 f}$ proceeded in accordance with the following methodology: within a 25 mL , nitrogen purged, one-necked round bottom flask, 2-amino-4,6diphenylnicotinonitrile $\mathbf{8 a}(85 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.0$ equiv.), thioglycolic acid $\mathbf{1 2 c}(0.35 \mathrm{mmol}, 33 \mathrm{mg}, 1.1$ equiv.), HATU (0.35 mmol, $131 \mathrm{mg}, 1.1$ equiv.), and pyridine ($125 \mathrm{mg}, 1.57 \mathrm{mmol}, 5.0$ equiv.) were dissolved in DMF and stirred for 24 h . Starting materials returned.

4.1.34. 3-Cyano-2-(furan-2-carboxamido)-4,6-diphenylpyridine 1-oxide (14a)

To an oven dried, nitrogen purged, ice-cooled 25 mL one-necked round bottom flask, 2-furoyl chloride 12a ($55 \mathrm{mg}, 0.42$ mmol, 1.0 equiv.) and triethylamine ($63 \mathrm{mg}, 0.63 \mathrm{mmol}, 1.5$ equiv.) were added to a solution of 2 -amino-3-cyano-4,6-diphenylpyridine-1-oxide $\mathbf{1 0 a}$ ($120 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.0$ equiv.) in 5 mL of DCM . The solution was warmed to room temperature and magnetically stirred for 48 h . After the solvent had been evaporated, under reduced pressure, the crude residue was diluted with EtOAc , washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by silica gel chromatography (gradient elution, EtOAc/hexane $=1: 9$ to $1: 1$) to afford crude 3-cyano-2-(furan-2-carboxamido)-4,6-diphenylpyridine 1-oxide 14a, as a white solid, in $10 \%(16 \mathrm{mg})$ yield. $\mathrm{mp} .215-220{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}-d\right) \delta_{\mathrm{H}} 8.08(t, J=1.8,2 \mathrm{H}), 7.99(d t, J=7.8,1.3,2 \mathrm{H}), 7.89-7.85(m, 1 \mathrm{H}), 7.74-7.70(m, 1 \mathrm{H}), 7.64-7.56(m$, $3 \mathrm{H}), 7.54(t t, J=4.3,2.6,3 \mathrm{H}), 7.44(d, J=0.6,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}-d$): $\delta_{\mathrm{C}} 170.4,155.1,150.9,144.1,134.7$, $133.8,131.0,131.0,130.4,130.2,129.8,129.4,129.2,128.8,128.6,128.3,121.9,118.4,113.0$. MS (ESI, MeOH): $\left(\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}\right)[\mathrm{M}+\mathrm{H}]^{+}$found: 382.1447, calcd.: 382.1192.

4.1.35. 2-(Benzylamino)-4,6-diphenylnicotinonitrile (15a)

An attempt to prepare 2-(benzylamino)-4,6-diphenylnicotinonitrile 18c proceeded in accordance with the following methodologies:

Procedure A: Within a 25 mL oven-dried, nitrogen purged, one-necked round bottom flask, benzyl bromide ($32 \mathrm{mg}, 0.18$, 1.0 equiv.) was added to a solution of 2-amino-4,6-diphenyl-pyridine-3-carbonitrile 13a ($50 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.0$ equiv.) and triethylamine ($28 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.5$ equiv.) in 4 mL of dry DCM. The reaction was stirred at room temperature for 24 h . The reaction was monitored via $\mathrm{TLC}(\mathrm{EtOAc} /$ hexane $=3: 7)$ and, upon diagnosis, it was observed that no further spots had emerged. Starting materials were returned.

Procedure B: Within a 25 mL oven-dried, nitrogen purged, one-necked round bottom flask, benzaldehyde ($106 \mathrm{mg}, 0.18$ mmol, 1.0 equiv.) was added to a solution of 2-amino-4,6-diphenyl-pyridine-3-carbonitrile $\mathbf{1 3 a}$ ($50 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.0$ equiv.) and NaBH_{4} ($11 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.5$ equiv.) in 10 mL of dry THF. The reaction was stirred at room temperature for 48 h . The reaction was monitored via $\mathrm{TLC}(\mathrm{EtOAc} /$ hexane $=3: 7$) and, upon diagnosis, it was observed that no further spots had emerged. Starting materials were returned.

4.1.36. General procedure for the synthesis of 16a and 16b

Within an oven dried, nitrogen purged, 25 mL one-necked round bottom flask KOtBu was added to an ice-cooled solution of compound 13a or $\mathbf{1}$ in 5 mL of dry THF. Iodomethane was added to the reaction solution and the whole was vigorously stirred at room temperature until the reaction as complete (24 h). The solvent was removed, under reduced pressure, and the crude residue was partitioned between distilled water (25 mL) and DCM (25 mL). The organic layer was washed with brine (25 mL), dried over MgSO_{4} and concentrated under reduced pressure.

4.1.37. N-(4-(3-bromophenyl)-3-cyano-6-phenylpyridin-2-yl)- N-methylfuran-2-carboxamide (16a)

N-(3-cyano-4-(3-bromophenyl)-6-phenylpyridin-2-yl)- N-methylfuran-2-carboxamide 16a was prepared from N-[3-cyano-4-(3-bromophenyl)-6-phenyl-2-pyridyl]furan-2-carboxamide 1 ($50 \mathrm{mg}, 0.12 \mathrm{mmol}, 1$ equiv.), KOtBu ($40 \mathrm{mg}, 0.35$ mmol, 1.5 equiv) and iodomethane ($25 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.5$ equiv.), in accordance with the general procedure, as a white solid in $95 \%(50.0 \mathrm{mg})$ yield. $\mathrm{mp} .122^{\circ} \mathrm{C}$. IR (KBr, $\left.v_{\text {max }}, \mathrm{cm}^{-1}\right): 2926 m(\mathrm{~N}-\mathrm{H}), 2223 w(\mathrm{C} \equiv \mathrm{N}), 1653 \mathrm{~s}\left(3^{\circ}\right.$ amide, $\left.\mathrm{C}=\mathrm{O}\right)$, 1373 s (arom. C-N), $1329 s(\operatorname{arom} . \mathrm{C}-\mathrm{N}), 1230 m(\mathrm{C}-\mathrm{N}), 1179 m(\mathrm{C}-\mathrm{N}), 690 s(\mathrm{Ph}-\mathrm{Br}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.97(d d, J=6.6,2.8$ $\mathrm{Hz}, 2 \operatorname{arom} . \mathrm{H}), 7.74(d, J=10.4 \mathrm{~Hz}, 2 \operatorname{arom} . \mathrm{H}), 7.68(d, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(d, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(d, J=3.2 \mathrm{~Hz}, 3 \mathrm{H})$, $7.42(t, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(d, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(d, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.41(d d, J=3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 3.69(s$, $3 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}-d$): $\delta_{\mathrm{C}} 160.2,159.9,159.7,154.6,148.0,144.5,138.0,136.7,133.6,131.6,131.4$, 130.9, 129.4, 127.7, 127.5, 123.5, 118.5, 117.9, 115.1, 112.0, 103.8, 36.7. MS (ESI, MeCN): $\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{2}\right)[\mathrm{M}+\mathrm{H}]^{+}$found: 458.0631, calcd: 458.0426.

N-(4-(3-fluorophenyl)-3-cyano-6-phenylpyridin-2-yl)- N-methylfuran-2-carboxamide 16b was prepared from N-[3-cyano-4-(3-fluorophenyl)-6-phenyl-2-pyridyl]furan-2-carboxamide $\mathbf{1 3 c}$ and ($25 \mathrm{mg}, 0.17 \mathrm{mmol}, 2.0$ equiv.) in accordance with the general procedure, as a white solid in $95 \%(52.2 \mathrm{mg})$ yield. mp. $120^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, \mathrm{v}_{\max }, \mathrm{cm}^{-1}$): $2926 \mathrm{~m}(\mathrm{~N}-\mathrm{H}), 2223 w(\mathrm{C} \equiv \mathrm{N})$, $1653 s\left(3^{\circ}\right.$ amide, $\mathrm{C}=\mathrm{O}$), $1230 m(\mathrm{C}-\mathrm{N}), 1179 m(\mathrm{C}-\mathrm{N}), 1373 s(\operatorname{arom} . \mathrm{C}-\mathrm{N}), 1329 s(\operatorname{arom} . \mathrm{C}-\mathrm{N}), 763 s .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 8.00(d d, J=6.8,3.0 \mathrm{~Hz}, 2$ arom. H), $7.80(s, 1$ arom. H), $7.60-7.47(m, 4 \operatorname{arom} . \mathrm{H}), 7.42(d t, J=7.7,1.3 \mathrm{~Hz}, 1$ $\operatorname{arom} . \mathrm{H}), 7.33(d t, J=9.2,2.1 \mathrm{~Hz}, 1 \operatorname{arom} . \mathrm{H}), 7.29-7.20(m, 2 \mathrm{H}), 7.01(d, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.42(d d, J=3.6,1.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}-d\right): \delta_{\mathrm{C}} 164.1,161.6,159.9,159.7,159.5,154.6,147.8,144.7,137.8$, 136.5, 131.1, 129.1, 127.5, 124.4, 118.6, 118.4, 117.7, 117.5, 115.8, 115.6, 115.0, 111.7, 103.6, 36.5. MS (ESI, MeCN): $\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}_{2}\right)[\mathrm{M}+\mathrm{H}]^{+}$found: 398.1701, calcd.: 398.1227.

4.1.39. N-(3-cyano-6-phenyl-4-(3-(pyrrolidin-1-yl)phenyl)pyridin-2-yl)furan-2-carboxamide (18a)

An attempt to prepare N-(3-cyano-6-phenyl-4-(3-(pyrrolidin-1-yl)phenyl)pyridin-2-yl)furan-2-carboxamide proceeded in accordance with the following methodologies:

To an oven dried, nitrogen purged, 10 mL one-necked round bottom flask, $3 \mathrm{~mol} \%$ of S-BINAP and $2 \mathrm{~mol} \% \mathrm{of}^{\mathrm{Pd}}\left(\mathrm{dba}_{3}\right.$ were pre-heated at $80^{\circ} \mathrm{C}$ and stirred in 4 mL of toluene for 1 h . Pyrrolidine ($20 \mathrm{mg}, 0.28 \mathrm{mmol}, 2.5$ equiv.) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (56 $\mathrm{mg}, 0.16 \mathrm{mmol}, 1.4$ equiv.) were added and the reaction solution was heated at $80^{\circ} \mathrm{C}$ for a further 15 mins . Pyrrolidine was distilled over KOH, prior to use. Lastly, N-(4-(3-bromophenyl)-3-cyano-6-phenylpyridin-2-yl)furan-2-carboxamide 1 (50 mg , 0.11 , 1.0 equiv.), was added and the whole was refluxed and stirred for 48 h . Upon TLC analysis (EtOAc/ hexane $=3: 7$), it was noted that no further spots had emerged. Starting materials were returned.

4.1.40. N-(4-(3-(azepan-1-yl)phenyl)-3-cyano-6-phenylpyridin-2-yl)furan-2-carboxamide (18b)

An attempt to prepare N-(4-(3-(azepan-1-yl)phenyl)-3-cyano-6-phenylpyridin-2-yl)furan-2-carboxamide 18b proceeded in accordance with the following methodology: to an oven dried, nitrogen purged, 10 mL one-necked round bottom flask, 2 $\mathrm{mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was pre-heated at $80^{\circ} \mathrm{C}$ and stirred in 5 mL of toluene for 0.5 h . Hexamethyleneimine ($16 \mathrm{mg}, 0.11 \mathrm{mmol}$, 1.2 equiv.), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($15 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.6$ equiv.) and $\mathrm{KOtBu}(16 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.6$ equiv.) were added and the reaction solution was heated at $80^{\circ} \mathrm{C}$ for a further 15 mins. Lastly, N-(4-(3-bromophenyl)-3-cyano-6-phenylpyridin-2-yl)furan-2-
carboxamide 1 ($40 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.0$ equiv.) was added and the reaction mixture was refluxed and stirred for 24 h . Upon TLC analysis (EtOAc/ hexane $=3: 7$), it was noted that no further spots had emerged. Starting materials were returned.
4.1.41. N-(3-cyano-4-(3-(1,1-dioxidothiomorpholino)phenyl)-6-phenylpyridin-2-yl)furan-2-carboxamide (18c)

An attempt to prepare N-(3-cyano-4-(3-(1,1-dioxidothiomorpholino)phenyl)-6-phenylpyridin-2-yl)furan-2-carboxamide 18c proceeded in accordance with the following methodologies:

Procedure A: To a 5 mL microwave pressure vial, thiomorpholine 1,1-dioxide, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(47 \mathrm{mg}, 0.14,2.0$ equiv.) and $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$ were added to a solution of N -(4-(3-bromophenyl)-3-cyano-6-phenylpyridin-2-yl)furan-2-carboxamide $\mathbf{1}$ ($53 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0$ equiv.) in 2.0 mL of pyridine. The reaction vial was capped before being subjected to microwave mediated conditions ($5 \mathrm{~h}, 160{ }^{\circ} \mathrm{C}$). After cooling, the solvent was removed under high vacuum. The crude residue was partitioned between distilled water and DCM , dried over MgSO_{4}, and concentrated under reduced pressure. Upon TLC analysis (EtOAc/ hexane $=3: 7$), it was noted that no further spots had emerged. Starting materials were returned.

Procedure B: To an oven dried, nitrogen purged, 10 mL one-necked round bottom flask, $5 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ thiomorpholine-1,1-dioxide ($16 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.2$ equiv.) and $\mathrm{KOtBu}(16 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.6$ equiv.), were added to a solution of N -(4-(3-bromophenyl)-3-cyano-6-phenylpyridin-2-yl)furan-2-carboxamide $\mathbf{1}(40 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.0$ equiv.) in 4 mL of toluene. The reaction mixture was refluxed and stirred for 24 h . Upon TLC analysis (EtOAc/ hexane =3:7), it was noted that no further spots had emerged. Starting materials were returned.

Procedure C: To an oven dried, nitrogen purged, 10 mL one-necked round bottom flask, $5 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ was preheated at $80^{\circ} \mathrm{C}$ and stirred in 4 mL of 1,4-dioxane for 0.5 h . Subsequently, thiomorpholine 1,1 -dioxide ($16 \mathrm{mg}, 0.11 \mathrm{mmol}$, 1.2 equiv.), and $\mathrm{KOtBu}\left(16 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.5\right.$ equiv.) were added and the reaction solution was heated at $80^{\circ} \mathrm{C}$ for a further 15 mins. Lastly, N-(4-(3-bromophenyl)-3-cyano-6-phenylpyridin-2-yl)furan-2-carboxamide 1 ($40 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.0$ equiv.) was added and the whole was refluxed and stirred for 24 h . Upon TLC analysis ($\mathrm{EtOAc} /$ hexane $=3: 7$), it was noted that no further spots had emerged. Starting materials were returned.

Procedure D: To an oven dried, nitrogen purged, 10 mL one-necked round bottom flask, $3 \mathrm{~mol} \%$ of S-BINAP and $2 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ was pre-heated at $80^{\circ} \mathrm{C}$ and stirred in 4 mL of toluene for 1 h . Thiomorpholine 1,1 -dioxide $(16 \mathrm{mg}, 0.11 \mathrm{mmol}$, 1.2 equiv.), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($15 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.6$ equiv.) and $\mathrm{KOtBu}(16 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.6$ equiv.) were added and the reaction solution was heated at $80{ }^{\circ} \mathrm{C}$ for a further 15 mins . Lastly, N-(4-(3-bromophenyl)-3-cyano-6-phenylpyridin-2-yl)furan-2carboxamide 1 ($40 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.0$ equiv.) was added and the whole was refluxed and stirred for 24 h . Upon TLC analysis $(E t O A c /$ hexane $=3: 7)$, it was noted that no further spots had emerged. Starting materials were returned.

4.1.42. N-(3-cyano-6-phenyl-4-(3-(pyrrolidin-1-yl)phenyl)pyridin-2-yl)- N-methylfuran-2-carboxamide (19a)

An attempt to prepare N-(3-cyano-6-phenyl-4-(3-(pyrrolidin-1-yl)phenyl)pyridin-2-yl)- N-methylfuran-2-carboxamide proceeded in accordance with the following methodology: within a 25 mL oven dried, nitrogen purged, ice-cooled, onenecked round bottom flask, a 2.5 M solution of butyllithium in hexane (1.2 equiv.) was added dropwise to a mixture of N-(4-(3-fluorophenyl)-3-cyano-6-phenylpyridin-2-yl)- N-methylfuran-2-carboxamide $\mathbf{1 6 b}$ ($50 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0$ equiv.) and pyrrolidine (1.2 equiv.) in 10 mL of THF. Pyrrolidine was distilled over KOH , prior to use. The reaction mixture was allowed to warm to room temperature before being stirred vigorously and subsequently quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.) after 48 h . Upon TLC analysis ($\mathrm{EtOAc} /$ hexane $=3: 7$), it was noted that no further spots had emerged. Starting materials were returned.

4.1.43. 2-Amino-6-phenyl-4-(3-(pyrrolidin-1-yl)phenyl)nicotinonitrile (20a)

An attempt to prepare 2-amino-6-phenyl-4-(3-(pyrrolidin-1-yl)phenyl)nicotinonitrile 20a proceeded in accordance with the following methodology: to an oven dried, nitrogen purged, 25 mL one-necked round bottom flask, 2-amino-4-(3-bromophenyl)-6-phenylnicotinonitrile $\mathbf{8 f}\left(100 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.0\right.$ equiv.), $\mathrm{CuI}\left(37 \mathrm{mg}, 0.19 \mathrm{mmol}, 0.7\right.$ equiv.), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (121 $\mathrm{mg}, 0.57 \mathrm{mmol}, ~ 2.0$ equiv.) , and pyrrolidine ($22 \mathrm{mg}, 0.31 \mathrm{mmol}, 1.1$ equiv.) were added to a solution of ethylene glycol (35 $\mathrm{mg}, 0.57 \mathrm{mmol}, 2.0$ equiv.) in 10 mL of propan- $2-\mathrm{ol}$. The reaction mixture was stirred at room temperature for 24 h . Upon TLC analysis (EtOAc/ hexane $=3: 7$), it was noted that no further spots had emerged. Starting materials were returned.

4.1.44. 4,6-Diphenylpyridin-2-amine (21a)

An attempt to prepare 4,6-diphenylpyridin-2-amine 21a proceeded in accordance with the following methodology: to an oven dried, nitrogen purged, 50 mL one-necked round rottom flask, a solution of 1-(cyanomethyl)pyridin-1-ium $\mathbf{6 a}$ (100 mg , 0.65 mmol , 1.2 equiv.), acetophenone ($65 \mathrm{mg}, 0.54 \mathrm{mmol}, 1.0$ equiv.), benzaldehyde ($57 \mathrm{mg}, 0.54 \mathrm{mmol}, 1.0$ equiv.), ammonium acetate ($33 \mathrm{mg}, 0.43 \mathrm{mmol}, 0.8$ equiv.) and 1.7 mL of AcOH were refluxed for 48 h . Upon TLC analysis ($\mathrm{EtOAc} /$ hexane $=3: 7$), it was noted that no further spots had emerged. Starting materials were returned.

4.2. KISS1R functional assay - antagonist effect

Eurofins, Cerep: GPCR functional assay (Catalogue ref. G275-4271). ${ }^{34}$ Rat basophil leukemia cells were suspended in HBSS buffer (Invitrogen) complemented with 20 mM Hepes, then distributed in microplates at a density of 1×10^{6} cells/well. The fluorescent probe (Fluo8 Direct, AAT Bioquest) mixed with probenicid in HBSS buffer (Invitrogen) complemented with 20 mM Hepes (Invitrogen; pH 7.4) was then added into each well and equilibrated with the cells for 60 min at $30^{\circ} \mathrm{C}$. Thereafter,
the assay plates were positioned within a microplate reader (FlipR Tetra, Molecular Device) which was used for the addition of test compounds $\mathbf{1}, \mathbf{2}$ or HBSS buffer (basal control), then 5 min later 10 nM Metastin (45-54), and the measurements of changes in fluorescence intensity which varies proportionally to the free cytosolic Ca^{2+} ion concentration. The results are expressed as a percent inhibition of the control response to Metastin (45-54) at 10 nM . Test compounds were dissolved in DMSO (concentration: 10 mM) with a testing top concentration of $10 \mu \mathrm{M}$ ($\log 1 / 2$ dilution).

4.3. Tissue culture

Human breast carcinoma cells, MDA-MB-231 and MCF-7 cells lines were supplied by Prof. Giamas, Giamas Lab, University of Sussex and cultured in high glucose, DMEM (Sigma-Aldrich) supplemented with 10% FBS (Sigma-Aldrich), 2 mM L-glutamine, and 5% penicillin-streptomycin (Sigma-Aldrich). Cells were grown under sterile conditions in a humidified incubator at at $37^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$. Cells were maintained in culture for no more than 24 passages.

4.3.1. Incucyte, P-234 Cell Proliferation Assay

For WST-1 cell proliferation assays 2.5×10^{3} MCF-7 and MDA-MB- 231 cells were seeded in 96-well culture plates (Sigma-Aldrich) overnight (12 h) prior to the addition of P-234 (Tocris) in $200 \mu \mathrm{~L} /$ well volume: $0 \mathrm{nM}, 10 \mathrm{nM}, 100 \mathrm{nM}$. of P-234 (Tocris). Plates were incubated in an Incucyte ZOOM (Essen Bioscience) for 48 h with images captured ever 4 h . By quantitative kinetic processing, from time-lapse image acquisition, the confluency (\%) of the cell cultures were obtained and measured against time.

4.3.2. WST-1, P-234 Cell Proliferation Assay

For WST-1 cell proliferation assays 2.5×10^{3} MCF-7 and MDA-MB- 231 cells were seeded in 96-well culture plates (Sigma-Aldrich) overnight (12 h) prior to the addition of P-234 (Tocris) in $200 \mu \mathrm{~L} /$ well volume: $0 \mathrm{nM}, 10 \mathrm{nM}, 100 \mathrm{nM}$, and 1000 nM . After $24 \mathrm{~h}, 48 \mathrm{~h}$ and $72 \mathrm{~h}, 10 \mu \mathrm{~L} /$ well of cell proliferation reagent WST-1 (RocheDiagnostics GmbH) was added and the cells were incubated for 1 h , according to manufacturer's instructions. The absorbance of each sample was then determined using an infinite plate reader (Tecan) at 440 nm . The absorbance of the samples against a background control were recorded.

5. 2-Aminopyridine-3-carbonitrile Fluorescent Turn-Off Chemosensor

Compounds $\mathbf{8 h}, \mathbf{8 i}$, and $\mathbf{8 k}$, bearing a 2 '-hydroxy moiety on their 4 -phenyl ring presented an intense fluorescence when subjected with UV (365 nm), as shown in Figure 12. The design and synthesis of small pyridine-based molecules, that exhibit fluorescence, are a prime focus of current research in the field of chemosensors aimed at metal iron coordination. ${ }^{63,64}$ It was reasoned that the intense yellow fluorescence, of $\mathbf{8 k}$, was due to the electron-donating properties of the hydroxy and amino groups, in synergy with a large conjugated system.

Figure 12. i) Picture taken of compound $\mathbf{8 k}$ when illuminated under UV lamp (365 nm). ii) Structure of compound $\mathbf{8 k}$
Spectrofluorimetric quenching of compound $\mathbf{8}$ with an analyte (i.e., Fe^{3+} or Fe^{2+}) could afford a new generation of iron coordinating chemosensors. Compound $\mathbf{8 i}$ was dissolved in MeOH and preliminary studies indicated that its fluorescence was quenched with either Fe^{3+} or Fe^{2+} ions; data not showed. An absorbance spectrum of aforesaid ion solution established $\mathbf{8 i}$ and $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ coordination. The 2 'hydroxy functionalised substrates constitute interesting building blocks for further work towards a potent chemosensor. Further work towards developing a fluorescent turn-off chemosensor is underway and will be reported on in due course.

References

1. H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, A Cancer Journal for Clinicians, 2021, 71, 209-249.
2. B. S. Yadav, S. C. Sharma, P. Chanana and S. Jhamb, World Journal of Clinical Oncology, 2014, 5, 125-133.
3. L. Yin, J. Duan, X. Bian and S. Yu, Breast Cancer Research, 2020, 22, 1-61.
4. A. Blake, M. Dragan, R. G. Tirona, D. B. Hardy, M. Brackstone, A. B. Tuck, A. V. Babwah and M. Bhattacharya, Scientific Reports, 2017, 7, DOI: 10.1038/srep46525.
5. M. Gnant, N. Harbeck and C. Thomssen, Breast Care, 2011, 6, 136-141.
6. A. Goldhirsch, E. P. Winer, A. S. Coates, R. D. Gelber, M. Piccart-Gebhart, B. Thürlimann, H. Senn, K. S. Albain, F. André, J. Bergh, H. Bonnefoi, D. Bretel-Morales, H. Burstein, F. Cardoso, M. Castiglione-Gertsch, A. S. Coates, M. Colleoni, A. Costa, G. Curigliano, N. E. Davidson, A. Di Leo, B. Ejlertsen, J. F. Forbes, R. D. Gelber, M. Gnant, A. Goldhirsch, P. Goodwin, P. E. Goss, J. R. Harris, D. F. Hayes, C. A. Hudis, J. N. Ingle, J. Jassem, Z. Jiang, P. Karlsson, S. Loibl, M. Morrow, M. Namer, C. Kent Osborne, A. H. Partridge, F. Penault-Llorca, C. M. Perou, M. J. Piccart-Gebhart, K. I. Pritchard, E. J. T. Rutgers, F. Sedlmayer, V. Semiglazov, Z. Shao, I. Smith, B. Thürlimann, M. Toi, A. Tutt, M. Untch, G. Viale, T. Watanabe, N. Wilcken, E. P. Winer and W. C. Wood, Annals of Oncology, 2013, 24, 2206-2223.
7. D. Wang, Z. Jiang, Y. Ben-David, J. R. Woodgett and E. Zacksenhaus, Scientific Reports, 2019, 9, DOI: 10.1038/s41598-019-55710-w.
8. F. Rastelli, S. Biancanelli, A. Falzetta, A. Martignetti, C. Casi, R. Bascioni, L. Giustini and S. Crispino, Tumori, 2010, 96, 875-888.
9. R. Dent, M. Trudeau, K. I. Pritchard, W. M. Hanna, H. K. Kahn, C. A. Sawka, L. A. Lickley, E. Rawlinson, P. Sun and S. A. Narod, Clinical Cancer Research, 2007, 13, 4429-4434.
10. C. Dong, J. Wu, Y. Chen, J. Nie and C. Chen, Frontiers in Pharmacology, 2021, DOI: 10.3389/fphar.2021.628690
11. G. J. Morris, S. Naidu, A. K. Topham, F. Guiles, Y. Xu, P. McCue, G. F. Schwartz, P. K. Park, A. L. Rosenberg, K. Brill and E. P. Mitchell, Cancer, 2007, 110, 876-884.
12. G. M. Freedman, P. R. Anderson, T. Li and N. Nicolaou, Cancer, 2009, 115, 946-951.
13. M. L. Gottsch, M. J. Cunningham, J. T. Smith, S. M. Popa, B. V. Acohido, W. F. Crowley, S. Seminara, D. K. Clifton and R. A. Steiner, Endocrinology (Philadelphia), 2004, 145, 4073-4077.
14. J. P. Castaño, A. J. Martínez-Fuentes, E. Gutiérrez-Pascual, H. Vaudry, M. Tena-Sempere and M. M. Malagón, Peptides, 2009, 30, 10-15.
15. M. Kotani, M. Detheux, A. Vandenbogaerde, D. Communi, J. Vanderwinden, E. Le Poul, S. Brézillon, R. Tyldesley, N. Suarez-Huerta, F. Vandeput, C. Blanpain, S. N. Schiffmann, G. Vassart and M. Parmentier, The Journal of Biological Chemistry, 2001, 276, 34631-34636.
16. J. Lee, M. E. Miele, D. J. Hicks, K. K. Phillips, J. M. Trent, B. E. Weissman and D. R. Welch, Journal of the National Cancer Institute, 1996, 88, 1731-1737.
17. Y. Okugawa, Y. Inoue, K. Tanaka, Y. Toiyama, T. Shimura, M. Okigami, A. Kawamoto, J. Hiro, S. Saigusa, Y. Mohri, K. Uchida and M. Kusunoki, Oncology Reports, 2013, 30, 1449-1454.
18. H. Wang, J. Jones, Q. P. He, W. E. Grizzle, D. Welch, T. Turner and C. Yates, The American Journal of Pathology, 2012, 180, 1170-1178.
19.F. Cao, L. Chen, M. Liu, W. Lin, J. Ji, J. You, F. Qiao and H. Liu, Medicine (Baltimore), 2016, DOI: 10.1097/MD. 0000000000005296.
19. S. Zheng, Y. Chang, K. B. Hodges, Y. Sun, X. Ma, X. Yi, S. R. Williamson, A. Lopez-Beltran, R. Montironi and L. Cheng, Anticancer Research, 2010, 30, 713-718.
20. T. Takeda, E. Kikuchi, S. Mikami, E. Suzuki, K. Matsumoto, A. Miyajima, Y. Okada and M. Oya, Molecular Cancer Therapeutics, 2012, 11, 853-863.
21. M. Ikeguchi, Y. Hirooka and N. Kaibara, Journal of Cancer Research and Clinical Oncology, 2003, 129, 531-535.
22. T. Martin, G. Watkins and W. Jiang, Clinical \& Experimental Metastasis, 2005, 22, 503-511.
23. C. G. Goertzen, M. Dragan, E. Turley, A. V. Babwah and M. Bhattacharya, Cellular Signalling, 2016, 28, 165-176.
24. M. Pampillo, N. Camuso, J. E. Taylor, J. M. Szereszewski, M. R. Ahow, M. Zajac, R. P. Millar, M. Bhattacharya and A. V. Babwah, Molecular. Endocrinology, 2009, 23, 2060-2074.
25. D. Cvetković, M. Dragan, S. J. Leith, Z. M. Mir, H. S. Leong, M. Pampillo, J. D. Lewis, A. V. Babwah and M. Bhattacharya, Endocrinology (Philadelphia), 2013, 154, 1999-2014.
26. L. Zhang, Y. Li, Q. Wang, Z. Chen, X. Li, Z. Wu, C. Hu, D. Liao, W. Zhang and Z. Chen, Molecular Cancer, 2020, DOI: 10.1186/s12943-019-1112-1.
27. R. J. Kathawala, P. Gupta, C. R. Ashby and Z. Chen, Drug Resistance Updates, 2014, 18, 1-17.
28. I. S. Melvin, P. S. Michael and G. Narasimhan, Science, 1991, 252, 802-808.
29. A. K. Roseweir and R. P. Millar, in Kisspeptin Signaling in Reproductive Biology, ed. A. Kauffman and J. Smith, Springer, New York, 2013, vol. 784, ch. 8, pp. 159-186.
30. C. H. J. Albers-Wolthers, J. de Gier, M. Walen, P. J. S. van Kooten, C. B. Lambalk, P. A. J. Leegwater, B. A. J. Roelen, A. C. Schaefers-Okkens, V. P. M. G. Rutten, R. P. M. Millar and H. S. Kooistra, 2017, DOI: 10.1371/journal.pone. 0179156.
31. T. Kobayashi, S. Sasaki, N. Tomita, S. Fukui, M. Nakayama, A. Kiba, M. Kusaka, S. Matsumoto, M. Yamaguchi, F. Itoh and A. Baba, Bioorganic \& Medicinal Chemistry, 2010, 18, 5157-5171.
32. T. Kobayashi, S. Sasaki, N. Tomita, S. Fukui, N. Kuroda, M. Nakayama, A. Kiba, Y. Takatsu, T. Ohtaki, F. Itoh and A. Baba, Bioorganic \& Medicinal Chemistry, 2010, 18, 3841-3859.
33. W. H. Colledge, Trends in Endocrinology and Metabolism, 2004, 15, 448-453.
34. J. Tang, L. Wang, Y. Yao, L. Zhang and W. Wang, Tetrahedron Letters., 2011, 52, 509-511.
35. R. Khalifeh and M. Ghamari, Journal of the Brazilian Chemical Society, 2015, 27, 759-768.
36. M. B. Deshmukh, S. S. Patil, S. D. Jadhav and P. B. Pawar, Synthetic Communications, 2012, 42, 1177-1183.
37. A. R. Katritzky, A. Chermprapai, R. C. Patel and A. Tarraga-Tomas, Journal of Organic Chemistry., 1982, 47, 492-497.
38. B. Basavaprabhu, K. Muniyappa, N. R. Panguluri, P. Veladi and V. V. Sureshbabu, New Journal of Chemistry, 2015, 39, 7746-7749.
39. D. R. Chancellor, K. E. Davies, O. De Moor, C. R. Dorgan, P. D. Johnson, A. G. Lambert, D. Lawrence, C. Lecci, C. Maillol, P. J. Middleton, G. Nugent, S. D. Poignant, A. C. Potter, P. D. Price, R. J. Pye, R. Storer, J. M. Tinsley, R. van Well, R. Vickers, J. Vile, F. J. Wilkes, F. X. Wilson, S. P. Wren and G. M. Wynne, Journal of Medicinal Chemistry, 2011, 54, 3241-3250.
40. F. Y. Kwong, A. Klapars and S. L. Buchwald, Organic Letters, 2002, 4, 581-584.
41. A. Sharifi, M. Moazami, N. Ghonouei, M. S. Abaee and M. Mirzaei, Scientia Iranica, 2016, 23, 2742-2749.
42. A. S. Guram, R. A. Rennels and S. L. Buchwald, Angewandte Chemie International. Edition English., 1995, 34, 13481350.
43. J. Louie and J. F. Hartwig, Tetrahedron Letters, 1995, 36, 3609-3612.
44. Scifinder n-CAS. Scifinder-n.cas.org (accessed $28^{\text {th }}$ of April).
45. A. T. Londregan, G. Storer, C. Wooten, X. Yang and J. Warmus, Tetrahedron Letters, 2009, 50, 1986-1988.
46. A. Ojeda-Porras, A. Hernandez-Santana and D. Gamba-Sanchez, Green Chemistry: An International Journal and Green Chemistry Resource, 2015, 17, 3157-3163.
47. Y. Lin, M. Li, X. Ji, J. Wu and S. Cao, Tetrahedron, 2017, 73, 1466-1472.
48. Z. Rasoulzadeh, R. Ghods, T. Kazemi, E. Mirzadegan, N. Ghaffari-Tabrizi-Wizsy, S. Rezania, S. Kazemnejad, S. Arefi,
J. Ghasemi, S. Vafaei, A. Mahmoudi and A. Zarnani, PLOS, 2016, 11, 1-23.
49. F. Penault-Llorca and G. Viale, Annals of Oncology, 2012, 23, 619-622.
50. A. K. Ghorpade and K. G. Akamanchi, ChemistrySelect (Weinheim), 2017, 2, 2457-2461.
51. C. Lin, J. Yang, C. Chang, S. Kuo, M. Lee and L. Huang, Bioorganic \& Medicinal Chemistry, 2005, 13, 1537-1544.
52. M. Vijender, P. Kishore and B. Satyanarayana, ARKIVOC, 2008, 2008, 122-128.
53. J. Lv, Z. He, J. Zhang, Y. Guo, Z. Han and X. Bao, Tetrahedron, 2018, 74, 3996-4004.
54. M. Cordier, A. Dos Santos, L. El Kaïm and N. Narboni, Chemical Communications, 2015, 51, 6411-6414.
55. A. H. Cook, J. Downer and B. Hornung, Journal of the Chemical Society, 1941,0, 502-506.
56. M. H. Sayahi, S. J. Saghanezhad and M. Mahdavi, Chemistry of Heterocyclic Compounds, 2019, 55, 725-728.
57. M. A. Zolfigol, M. Kiafar, M. Yarie, A. Taherpour and M. Saeidi-Rad, RSC Advances, 2016, 6, 50100-50111.
58. S. B. Goud, S. Guin, M. Prakash and S. Samanta, Organic \& Biomolecular Chemistry, 2022, 20, 352-357.
59. S. Wang, Z. Xie, M. Li and C. Wang, Chemistry Select (Weinheim), 2020, 5, 6011-6015.
60. M. Rawat and D. S. Rawat, Tetrahedron letters, 2019, 60, 1153-1157.
61. W. Chen and X. Lu, Chemical Papers, 2017, 69, 1016-1020.
62. J. Chen, W. Liu, J. Ma, H. Xu, J. Wu, X. Tang, Z. Fan and P. Wang, Journal of Organic Chemistry, 2012, 77, 3475-3482. 64. S. Santharam Roja, A. Shylaja and R. Kumar, Chemistry Select (Weinheim), 2020, 5, 2279-2283.
