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KINGSTON UNIVERSITY LONDON

Abstract
Faculty of Science, Engineering and Computing

Doctor of Philosophy

Visual Memories

by Jiri FAJTL

Despite the rapid progress in the field of artificial intelligence, there are still im-
portant new areas to be explored and existing methods enhanced to make machines
think like humans. This thesis conducts research in four machine learning and com-
puter vision areas in this direction.

First, we study what makes some images more memorable than others and pro-
pose a new machine learning method to learn and predict image memorability,
closely matching human performance. A spatial attention function is learnt to lo-
calize image regions responsible for the image retention in memory.

To identify meaningful temporal segments in a video stream, we study episodic
segmentation in our memory and design a novel algorithm for video summariza-
tion to mimic human capabilities. A soft, self-attention method without a recurrent
network is used to learn frame importance scores for the video summarization. This
simple algorithm demonstrates a performance superior to the current state-of-the-
art methods.

Inspired by our brain’s ability to project high dimensional visual information
to computationally efficient, meaningful representations, we propose a method for
latent binary representations learning and methods for operations in this discrete la-
tent space such as interpolation, novel image generation, and attribute modification
outperforming more complex published methods.

To advance methods targeting catastrophic interference, one of the most funda-
mental problems of artificial neural networks, we study elementary neural mecha-
nisms mitigating this phenomenon in our brain’s memory. Building on our insights
on the function of pattern separation in the hippocampus, we propose a conceptu-
ally simple and resource-efficient method to learn high dimensional sparse binary
representations for continual learning. By performing elementary binary opera-
tions or and and over a continual stream of sparse representations of novel classes,
our method exhibits performance significantly exceeding the current state-of-the-art
meta-learning methods on identical benchmarks.
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Chapter 1

Introduction

The ability to remember our experiences, recall them later with cues, or revisit events
of the past in our thoughts and learn from them is the hallmark of our memory sys-
tem and the cornerstone of intelligence (Halford et al., 2007). All information to
process and retain in the memory travel via sensory stimuli. Out of all our senses,
vision provides the richest representation of our environment, which makes it a vital
sense for navigation and observational and interactive learning. Consequently, vi-
sion is also a critical sense for autonomous systems, particularly those collaborating
with humans due to their need to observe and recognize the same world features as
our vision system does.

However, processing visual information is a complex and resource demanding
task. The human retina has approximately 120 million cells (Schacter et al., 2011)
connected by over 1 million neural fibers (Jonas et al., 1992) to the visual cortex (area
17) with about 300 million neurons (Leuba and Kraftsik, 1994). This is compared to
30,000 fibers within the cochlear nerve of our ear and 100 million neurons in the au-
ditory cortex (A1) (MacGregor, 1993). Given the amount of information to process,
the visual system is very fast, able to identify known image patterns within 13 ms
(Potter et al., 2014).

To efficiently operate with such a vast stream of visual information our brain
projects visual data to high dimensional but low activity representations (Quiroga,
2016) and stores them in a short-term memory. To consolidate new experiences to the
long term memory without interference with already retained knowledge, our brain
sets the stage to many sophisticated pattern replays, transformations, and associa-
tions among several brain regions (Káli and Dayan, 2004). At the end of this process,
not all visual stimuli will experience the same memory retention (Isola et al., 2011a),
some images will consolidate in our memory while others will rapidly fade away.
Furthermore, we do not remember or recall arbitrarily long events. Our brain seg-
ments the continuous visual stream into coherent, shorter episodes characterized by
few keypoint events (Kurby and Zacks, 2008).

At first sight, the way our brain encodes visual information, segments important
sequences and stores them without interference may appear unremarkable. How-
ever, these functions are the bedrock of a vast majority of machine learning methods,
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particularly in computer vision such as methods for object detection, visual question
answering, video summarization, few shots and continual learning, autonomous
navigation, and path planning and many others.

The primary goal of this thesis is to advance the following machine learning
methods for computer vision by applying techniques inspired by the functions of
our brain. The objectives are:

• study how our memory retains images as a function of their content and ap-
ply the findings in the design of a machine learning method to mimic human
memory function. While this is not a new problem, the goal here is to design
novel methods with performance superior to the prior work. This work is dis-
cussed in Chapter 2 where a learned spatial soft attention function is used in
combination with a recurrent neural network to model image memorability,
setting new state-of-the-art results.

• explore mechanisms behind episodic memory segmentation in our brain and
attempt to apply them to a machine learning method for video summarization.
A novel method for video summarization is proposed in Chapter 3 where a
soft, self-attention network learns relations within the training video stream
as a function of given frame importance scores annotated by humans. The
learnt attention is then used to predict frame scores to summarize other video
streams leading to results superior to the current state-of-the-art.

• investigate neural coding schemas and attempt to learn similar encoding with
a neural network. A novel method for unsupervised binary representation
learning is proposed in Chapter 4. This work also includes novel methods for
random images generation, image interpolation, and attributes modification
that outperform current methods.

• study catastrophic interference in the brain and its mitigation, and apply the
insights to a machine learning method for continual learning of images for clas-
sification. A novel method to learn sparse binary distributed representations
along with a dynamic pattern memory is introduced in Chapter 5. This concep-
tually straightforward and resource-light method significantly outperforms
the current state-of-the-art methods, continually learning over 600 classes in
the challenging, task-free incremental class learning scenario.

The main inspirations behind the propositions in this work are drawn through
the lens of relevant functions of our brain, the only example of a working intelligent
system in existence. However, it is imperative to note that the goal of this thesis is
not to model any brain system or make conclusions on its functions but rather to
study the brain processes applicable to the computation methods.
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1.1 Model Complexity Overview

We focus on artificial neural networks (ANNs) as the core machine learning method
in our work. As one of the lesser objectives, we also try to prioritize low complexity
neural network methods.

In the context of this thesis, we define a low complexity method as a non-iterative,
homogeneous (all layers are assemblies of a limited subset of identical building
blocks such as the up/down convolution, basic activation, normalization, and scal-
ing functions), single, end-to-end trained ANN without explicit objective functions
in the neural pathways and non-hybrid architectures.

On the other side of this spectrum stand the high complexity methods, for exam-
ple, methods with explicit objective functions in the pathway (Jaderberg et al., 2015,
Liu et al., 2016), hybrid architectures (Zarezadeh et al., 2017, Wang et al., 2015) or
meta-learning methods (Finn et al., 2017, Nichol et al., 2018) or procedures requir-
ing to independently train multiple neural models (Kemker and Kanan, 2018, Hayes
et al., 2020). The complexity of these methods increases as more diverse algorithms
are utilized, and the more training or inference methods are required to be executed
to achieve the method’s objective.

Due to ANN homogeneity, low complexity methods can be implemented in soft-
ware and hardware by following a single and straightforward design pattern, for
example, a combination of a few fixed-kernel size 2D convolutions, multiply and ac-
cumulate, maximum and average operators. This homogeneous structure is akin to
a biological neural network, where the anatomical structures on the level of neurons
and their assemblies are also similarly homogeneous (cytoarchitectural homogene-
ity) despite their functional diversity (Haak and Beckmann, 2020).

According to the above definition, low complexity methods are also inherently
easy to optimize (e.g., optimization within a single building block, such as perform-
ing FFT convolution, extends to the entire model), with parallelization being perhaps
the most important (Upadhyaya, 2013, Seiffert, 2004).

Moreover, due to the absence of any explicit prior during the optimization and
the end-to-end training, low complexity methods are typically not subjected to any
algorithmic bias (in contrast to, for example, the pre-defined anchor boxes in the SSD
method (Liu et al., 2016)), only to biases expressed in the training data.
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1.2 Thesis Overview

There are four main chapters in this thesis. Each chapter commences with a brief
exploration of neurological processes in our brain underpinning the studied prob-
lem. Literature review of related machine learning (ML) research follows. Then,
building on the prior ML methods and insights gained from the functions of our
brain, a novel ML method is proposed, followed by evaluation and results. Each
chapter ends with a conclusion summarizing the achieved contributions. A Pictorial
overview of this thesis is presented in Figure 1.1.

Chapter 2 - Image Memorability 
- How our brain remembers some images and 

forgets others
- Proposed ML method for image memorability 

estimation with attention

Chapter 3 - Episodic Segmentation
- What are episodic memories and how are 

segmented by our brain
- Proposed ML method for video summarization 

with soft self-attention

Chapter 4 - Representation Learning
- Neural coding in the brain from spikes, spike 

trains to sparse distributed representations
- Proposed ML method for learning Bernoulli 

latent representations

r ∼ 𝓝(N+1)(0, I(N+1))

1 -1 1 -1 11

Matrix of 
Moments
H(N+1)x(N+1)

b

Decoder

Xʼ

Chapter 5 - Continual Learning
- How our brain continually learns by avoiding 

catastrophic forgetting
- Proposed ML method for continual learning 

with sparse binary representations

Memory

Futurama

Encoder

Incrementally 
learn

Infer

Encoder

FIGURE 1.1: An overview of this thesis.
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1.3 Publications

1.3.1 Published Work Included in this Thesis

• Amnet: Memorability Estimation with Attention
Jiri Fajtl, Vasileios Argyriou, Dorothy Monekosso, and Paolo Remagnino. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2018), pages
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• Summarizing Videos with Attention
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magnino. IEEE International Symposium on Communication Systems, Net-
works and Digital Signal Processing (CSNDSP 2020), pages 1–4, IEEE, 2020b
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Chapter 2

Image Memorability Estimation

Computational memory models for Artificial General Intelligence (AGI) agents typ-
ically draw inspiration from the brain, whether in the term of the storage capacity,
autoassociative recall or fast continual learning without catastrophic interference.
An essential part of memory is a circuitry responsible for regulating what informa-
tion to retain and for how long. It may seem tempting to believe that, in an ideal
case, our memory should retain all sensed information without distortion. Remem-
bering everything, however, has been shown (Gaigg et al., 2008) not optimal since
the information overload impairs the inter and intra-associations between new sen-
sory information and existing memories during memory replay. This has a detri-
mental effect on the higher-level cognitive processes. From the evolutionary per-
spective, our brain learned to extract and store only the most relevant information
to maximize our survival and minimize energy expenditure. If we understand what
experiences exhibit higher memory retention in our brain, we may be able to repli-
cate this process in an artificial memory. In particular, we would like to understand
which elementary features and their structures in the core of these experiences de-
fine memory retention. This may lay the path to the emergence of memory models
with more abstract, predictive and associative properties and reduce sudden per-
formance drop on old tasks after learning new, known as catastrophic interference,
significantly affecting current neural network architectures.

In this work, we study image memorability as a conduit to understanding visual
memory retention. Specifically, we focus on a method allowing us to replicate the
memorization behavior of our visual cortex with artificial neural networks. Further
on, we attempt not only to perform the estimate for the entire image content, but also
to learn a sequence of image regions whose memorability progression constitutes the
memorability.

Aside from being a valuable building block of machine learning models, image
memorability estimation can be utilized by many industrial applications. For exam-
ple, to curate images for advertisement, a tool to illustrate educational material or
presentations, as a memorability indicator of photographed scenes in a view-finder
of future cameras, organize and tag photos in albums, or to help improve the mem-
orability of critical elements of user interfaces. The image memorability estimation
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could also be used to monitor a decline in memory capacity of patients affected by
dementia, such as Alzheimer’s and later stages of Parkinson’s disease. Parkinson’s
disease affects the central nervous system responsible for planning and executing
motion (Underwood and Parr-Brownlie, 2021), leading to symptoms such as shaki-
ness, muscle stiffness, and lack of facial expression. The spread of the disease typi-
cally leads to a decline of mental functions and the development of dementia (Hely
et al., 2008).

This chapter opens up with a brief introduction to the image memorability in
Section 2.1, followed by a review of the current research on image properties cor-
responding to the memorability in Section 2.1.2. Section 2.1.3 shows how image
memorability is measured and introduces the latest image datasets annotated with
the memorability labels. The rest of the chapter centers on the image memorabil-
ity estimation with machine learning techniques, leading with literature review in
Section 2.2 and subsequently a proposal of our method for the memorability esti-
mation with an attention component in Section 2.3. Evaluation with results follows
in Sections 2.4 and 2.5 with an application to the image aesthetics estimation pre-
sented in Section 2.6. The specific role of attention on the memorability estimation
is presented in Section 2.7. Implementation details in Section 2.8 and conclusion in
Section 2.9 end this chapter.

2.1 Introduction to Image Memorability

Recalling images from our past is a ubiquitous, everyday experience, along with its
quirks such as quickly forgetting an important scene we want to remember while
on other occasions spontaneously picturing seemingly meaningless views from the
past. We can remember thousands of images but not equally well. Images with
close connections to our past experiences, particularly repeated ones, or experiences
evoking strong emotions, stick more in our memory.

Surprisingly, there are image properties that make some images more memorable
than others, regardless of subjective perception. Isola et al. (2014) revealed that the
image memorability is an intrinsic image property, stable over observers and time;
the general population tends to remember the same images equally well. Some im-
ages draw more attention than others, which creates an impression that these images
may be primed to exhibit higher memory retention than the rest. This, counter to our
intuition, has been shown not to be the case (Bainbridge, 2020). Moreover, memo-
rable images typically do not even raise higher attention. Another interesting aspect
of the image memorability is that it is not affected by a cognitive control of active
remembering or forgetting. In this case, people still retain the same images equally
well even though they were asked to remember or forget them. Perhaps the most
intriguing observation is that individuals are unable to judge on the memorability
level (Isola et al., 2014); there are no intuitive clues in the image content indicative
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of memory retention. While image memorability has distinct, underlying neurobio-
logical processes (Khaligh-Razavi et al., 2016), there is a known connection with the
active memory retention. The intrinsic image memorability constitutes about 50% of
the overall memory performance (Bainbridge et al., 2013).

Research on the image memorability has established an existence of a distinct,
low-level neurobiological mechanism that our brain uses to encode and store visual
memories. While there is no comprehensive account of the underlying processes,
Isola et al. (2011b) devised a method to measure and quantify the image memorabil-
ity and, in particular, to estimate it with machine learning methods.

In our work, we build on the current body of research and propose a new method
that improves on the memorability estimation accuracy and, with equal importance,
sets up a tool that assists with its interpretability.

2.1.1 Memory Retention in Visual Cortex

Understanding the information capacity of human memory is crucial in determin-
ing the computational constraints on visual tasks. If found, we may establish a maxi-
mum memory capacity required by the autonomous system to mimic the capabilities
of the human visual system. Already in the early days of the visual cortex research,
it has been found that our visual system has an enormous capacity to store and recall
a large number of images (Standing, 1973). Recently, Brady et al. (2008) conducted a
systematic examination of the long-term visual memory storage and concluded that
the memory capacity is even larger than originally believed, and that in the term
of memorization and recall of individual images as well as the image details. On a
number of experiments with a dataset of 2500 images, Brady et al. (2008) attempted
to establish bounds on the information capacity of human memory (Landauer, 1986)
by measuring recall of details in images presented to participants. The authors con-
cluded that despite the substantial increase in the memorized and recalled visual
information in their experiment, the maximum capacity of human memory was still
not reached.

To delineate between the general visual memorability and specific image memo-
rability, Khaligh-Razavi et al. (2016) used Magnetoencephalography (MEG) to ana-
lyze how neurological signatures and timing of the perception and memory encod-
ings correlate with the high and low memorabilities. Results have shown that the
neurological signature of visual memorability appears in the late stages of the per-
ception and before the memory encoding. Further on, they discovered that the neu-
rological signatures of images with high and low memorabilities are distinct even
for images subsequently not retained in the long-term memory. This signifies that
memorability is a high-level, intrinsic image property with a neurological dynamic
independent from other known memory stimuli.

In another work, Bainbridge (2020) studied the effects of the bottom-up and top-
down processes on the memorability function. Over a set of experiments, he docu-
mented that, contrary to general belief, cognitive control does not override the image
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memory imprint. Perhaps more surprisingly, memorable images are not associated
with automatic attention capture. Finally, the study reveals that priming by repe-
tition has little influence on the memorability function. The work concludes that
image memorability is, indeed, a separable aspect of the memory encoding process
with more a subconscious, bottom-up flow that is resilient to the top-down alter-
ations.

While perhaps obvious, it is good to remind that image memorability targets
Long Term Memory (LTM). On the other hand, Short Term Memory (STM) is known
to have a capacity of up to 4 self-contained visual items for up to 15 seconds without
active maintenance or rehearsal (Cowan, 2001). The STM is highly susceptible to
the recency effect, where the recall rapidly declines over time and exposure to new
information. The recency effect applies to all images equally. The STM encoding
happens in the hippocampal circuits, followed by gradual consolidation in the LTM
in the cortex. As discussed above, Bainbridge (2020) has shown that various cog-
nitive controls, active during the STM encoding, have little to no influence on the
memorability. This suggests that the memorability control occurs during the consol-
idation stage, but likely not during the long-term encoding (Khaligh-Razavi et al.,
2016).

Further on, current research indicates that for some images, the visual memory
encoding does carry a large amount of details, rapidly retained and available for
long-term recall (Brady et al., 2008) along a path resilient to the top-down influence
(Bainbridge, 2020). However, it still remains to be identified what particular image
features give rise to the image memorability, their neurological encoding, and the
memory traces they stimulate.

2.1.2 What Makes Images Memorable

As we learned, not all images exhibit the same memory imprint. The obvious ques-
tions to ask are; what possible image compositions, low-level visual features, and
other image attributes may correlate with the image memorability. Answers to these
questions could shed some light on image structures that are more biologically im-
portant, thus prone to memory retention. Consequently, we could use this knowl-
edge to devise a computational model exhibiting similar performance, hopefully,
with the memory retention closer to our visual cortex.

Early in the research on the memorability Isola et al. (2011a, 2014) and later
Dubey et al. (2015) discovered that perhaps not surprisingly, pictures of people,
central objects, and salient features are more memorable than landscapes and non-
distinct images. A study on the memorability correlation with other image attributes
was conducted by Isola et al. (2011b) and Khosla et al. (2015), investigating particu-
larly causal relationships with aesthetics, emotions, popularity, and saliency image
attributes.
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The results show that popularity scores of highly memorable images on social
media (Flickr1) are higher than the rest. Given that image memorability is an in-
trinsic property and that the memorability annotation procedure can detect images
recalled but not yet presented (false positives, where the annotator has already seen
the images somewhere else), the relation between memorability and popularity is
causal. Therefore, we can conclude that image memorability is a contributing factor
to the image popularity score. This, however, does not hold good for other attributes.

Contrary to our intuition, image aesthetics has low to no correlation with memo-
rability (Isola et al., 2014). This observation may appear more understandable under
the lens of other experiments relating emotions evoked by an image to its memo-
rability. In a recent study, Khosla et al. (2015) found that strong emotions, particu-
larly negative ones, have a close link with image memory retention. This is likely
controlled by the amygdala as a response to a fear from a perceived thread (LaBar,
2007). Figure 2.1 shows the correlation between memorability and four image at-
tributes analyzed by Khosla et al. (2015).

Saliency is a good predictor of image memorability, however, only for images
with a simple context of a single or few objects (Khosla et al., 2015, Dubey et al.,
2015, Mancas and Le Meur, 2013). In scenes with complex compositions, the link is
weaker. This indicates that the fewer fixation points in the image, the higher memory
retention is triggered.

Some images instantly pop-up, while others require a closer inspection. Given
this experience, we could be inclined to believe that images quickly capturing our
attention would be also easy to recall later. However, it has been shown that, in
general, such images do not exhibit higher memorability scores (Bainbridge, 2020).
On the other hand, regions of images with simple compositions (with one or few
objects), targeted by the first eye’s fixations, do show a contribution to the memora-
bility score. A relationship between visual attention and memorability was partially
addressed in the works of Mancas and Le Meur (2013), Khosla et al. (2012) and Isola
et al. (2011b), however not thoroughly investigated.

Ideally, we would like to identify low-level image features stimulating memory
retention since computational methods could learn these. However, this may not be
attainable because long-term memory does not capture low-level perceptual features
well (Konkle et al., 2010, Brady et al., 2013). The connection between global color
features was studied in Isola et al. (2014). The work reports a weak correlation with
memorability for mean hue in the red regions, with a decline in the memorability as
the hue shifts towards the blue.

2.1.3 Measuring and Quantifying Memorability

Image memorability is quantified as a probability of recalling an image that we have
seen in the past. To calculate this probability, each image is viewed and recalled by a

1www.flickr.com

www.flickr.com
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FIGURE 2.1: Correlation between image memorability and popularity, saliency,
emotions and image aesthetics. As the number of images for each plot is differ-
ent, the image index has been normalized to range between 0 and 1. Sourced with

permission from Khosla et al. (2015).

large number of annotators and labelled as True="I have seen this image" or False=
"I do not remember seeing the image." The memorability score of each image is then
given as an average over the memorabilities reported by all annotators and scaled
to the range between zero and one.

To measure image memorability, and subsequently assemble annotated datasets,
Isola et al. (2011b) proposed a memory game where the player is presented with a
sequence of images, some repeating over the game duration, and is asked to indi-
cate whether the current image has already been presented. Each image was shown
for 1 second with 1.4 seconds gaps. Each game included 120 images and took 4.8
minutes to perform. A total of 2222 target and 8220 filler images were sampled from
the SUN dataset (Xiao et al., 2010) and annotated by 665 participants on the Amazon
Mechanical Turk. Filler images where inserted between the repetition of the target
images. Each target image was presented exactly twice, with a gap 91-109 images,
while the fillers only once, or twice, with a gap 1-7 images, for the ’vigilance’ images.
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The ’vigilance’ images are known to participants, who must acknowledge them ev-
ery time they are presented. This is to keep the participant attentive to the task. The
game also detects false positives - images identified as repeats but never presented.

In follow-up work, Khosla et al. (2015) noticed a decline in the memorability
scores as the gap between the target repeats increased. This memorability decline
affected all images by a similar amount, thus preserving the memorability rank or-
dering. Based on this observation, Khosla et al. (2015) updated the memory game
protocol to compensate for the repeat delay, which allowed to dynamically change
the repeat gap from 30 images up to 100 and still produce accurate, absolute mem-
orability scores. The game flow is shown in Figure 2.2. Subsequently, the authors
collected a new dataset LaMem with close to 60000 memorability annotated images.
Figure 2.3 shows examples of images from this dataset with low, medium and high
memorability scores.

To study the visual memory retention over a much longer interval (Goetschal-
ckx et al., 2018), conducted a study with repeat delays reaching up to 20 minutes,
one day, and one week instead of the typical ∼5 minutes intervals. The authors re-
ported image memorability scores in line with the previous work, consistent across
observers and stable over time.

2.2 Prior Work on Image Memorability Estimation

In a pioneering work on image memorability, Isola et al. (2011b) and Isola et al.
(2011a) demonstrated that the ability of our cognition system to remember spe-
cific images and forget others is congruent among independent observers, despite
considerable variability in the image content. The authors reached a consensus
that memorability is a stable property intrinsic to images. Based on this premise,
Isola et al. (2011b) investigated factors giving rise to the image memorability effects
and subsequently applied them to memorability prediction with a machine learn-
ing method. The machine learning method was based on a mixture of global image
features GIST (Oliva and Torralba, 2001), Scale Invariant Feature Transform (SIFT)
(Lowe, 2004), Histogram of Oriented Gradients (HOG) (Dalal and Triggs, 2005),
Structural Similarity Index Measure (SSIM) (Shechtman and Irani, 2007), and pixel
histograms. To further improve the memorability prediction with computational

FIGURE 2.2: Memory game for the memorability annotation procedure. Sourced
with permissions from Khosla et al. (2015).
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High

0.90 0.95 0.96 0.97

Medium

0.59 0.60 0.62 0.66

Low

0.29 0.35 0.37 0.39

FIGURE 2.3: Example images from the LaMem dataset with different high, medium
and low memorability scores (shown bellow images).

methods, researchers analyzed the relationship between memorability and various
visual features (Khosla et al., 2012), image classes (Isola et al., 2014) and saliency
(Dubey et al., 2015). Bylinskii et al. (2015) conducted several experiments to bet-
ter understand the intrinsic and extrinsic effects on image memorability, concluding
that the primary memorability is grounded in the intrinsic properties of images and
all extrinsic effects contribute only marginally.

Deep learning was first applied to the memorability problem by Baveye et al.
(2016), who proposed a MemoNet model based on GoogLeNet (Szegedy et al., 2015)
trained on the ImageNet (Russakovsky et al., 2015) dataset. Zarezadeh et al. (2017)
used CNN features with Support Vector Regression (SVR) (Drucker et al., 1997) to
predict memorability with accuracy comparable to MemoNet (Baveye et al., 2016).

To achieve higher accuracy with deep learning techniques, Khosla et al. (2015)
annotated a large memorability dataset LaMem with 60k images and introduced
deep learning model MemNet. This model is based on the Hybrid-CNN, which
is the AlexNet CNN (Krizhevsky et al., 2012) pre-trained on the ImageNet (Rus-
sakovsky et al., 2015) and the Places (Zhou et al., 2014) datasets (∼3.6 million images
in total). The MemNet, trained on the LaMem dataset, established a new state of the
art for image memorability learning and inference and became a "de facto" standard
model for this task.

Researchers also tried to improve memorability prediction by other techniques,
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such as the adaptive transfer learning from external sources (Jing et al., 2017) or
predicting image memorability by multi-view adaptive regression (Peng et al., 2015),
none exceeding the performance of the MemNet (Khosla et al., 2015).

The relationship between the visual saliency, attention, and memorability was al-
ready suggested by Isola et al. (2011b) but was not further investigated. Mancas and
Le Meur (2013) studied this link and found that the most memorable images have
uniquely localized regions, while less memorable either do not have distinct regions
of interest or have several of them. Based on these findings, Mancas and Le Meur
(2013) devised new attention-related features that improved the memorability pre-
diction by 2% compared to the non-attention-based models reported on by Isola et al.
(2011b). In a similar work, Celikkale et al. (2013) applied an attention-driven spatial
pooling based on SIFT (Lowe, 2004) and HOG (Dalal and Triggs, 2005) features and
bottom-up and object-level saliency detectors. Their results, albeit only moderate,
still indicate a benefit of the attention-based approach. Importance of the memora-
bility regions was explored by Khosla et al. (2012) who introduced the concept of
attention maps that relate image regions to memorability. These maps are learned
directly as clusters of gradients, textures, and color features with the Support Vector
Machine (SVM) solver (Joachims, 2006), with results highlighting the benefits of the
attention function on memorability prediction.

2.2.1 Current State-of-the-Art, its Limitations and Promising Research Di-
rections

The current state-of-the-art method for image memorability learning and estima-
tion with machine learning is MemNet (Khosla et al., 2015). This method is based
on a CNN pre-trained on the ImageNet and Places datasets and fine-tuned on the
LaMem dataset. The high performance of this method can be attributed to a deep
neural model trained end-to-end on a large annotated dataset.

The primary limitation of all current approaches lies in their inherent lack of pro-
vision for interpretability of the underlying causes of the image memorability. Our
work partially addresses this limitation by visualizing learned attention weights,
which highlights the contrast between more and less memorable regions in the im-
ages.

An inability of the current methods to predict a confidence value for the esti-
mated memorability score could also be considered a limitation. We address this
problem in our Future Work in Section 2.9.1.

As highlighted by the work of Khosla et al. (2015), a promising research direction
appears to be a collection of even larger annotated image memorability datasets.
In addition to the seen/not seen per-image labels created during the manual data
collection, the annotation could be extended for other meta-data, for example, elec-
troencephalogram (EEG) data. The EEG has been shown to measure brain activity
highly correlated with the seen/not seen images (Stothart et al., 2021). Another inter-
esting research direction, which we follow in our work, is to investigate a correlation
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between the memorability score of an image and its spatial regions. Intuitively, not
all places in an image are equally memorable, therefore utilizing machine learning
to localize these regions and their sequence as a function of the image memorability
should improve the model performance.

2.3 Method

Prior art methods learn the image memorability score as a function of the entire
image area, that is, consider all places in the scene with equal importance. Our visual
system, on the other hand, perceives the environment as a sequence of eye fixations.
This work draws inspiration from the neuroscience underlying this mechanism and
proposes a machine learning method that learns a sequence of image regions whose
content maximizes the ground truth memorability score.

LSTM

Attention

∑

LSTM

Attention

LSTM

Attention

Memorability score0 1

hinit h0 h1 h2

[14x14x1024]

RestNet50

X

𝝰0 𝝰1 𝝰2

t0 t1 t2

FIGURE 2.4: AMNet architecture. Memorability is learned and estimated over
three recurrent steps t0, t1, t2, each focusing on different image region localized by

learned attention α0, α1, α2.

The idea behind the proposed AMNet (Attention for Memorability estimation
Network) method (Figure 2.4) is based on four main components: a deep CNN,
trained on a large-scale image classification task, a visual soft attention network and
a LSTM (Hochreiter and Schmidhuber, 1997) recurrent neural network, followed by
a fully connected neural network for memorability score regression.

2.3.1 Contributions to the Field of Neural Architectures

The key novel elements of the AMNet neural architecture are as follows:

• Attention layer over the spatial domain of CNN feature maps learned as a
function of CNN features and previous LSTM state.

• Training objective encouraging high attention to a tight image region at each
LSTM step and diverse among all LSTM steps.

• A regression layer over discrete memorabilities estimated at each LSTM step.
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To the best of our knowledge, the presented approach has not been attempted
before.

In the following sections we introduce the core principles behind the transfer
learning, soft attention and the LSTM network for memorability regression. Finally,
we outline the training procedure and finish with the data augmentation process
and the AMNet implementation details.

2.3.2 Transfer Learning for Memorability Estimation

It is common practice to use a pre-trained CNN as a fixed feature extractor or to fine
tune it for a similar application (Sharif Razavian et al., 2014), primarily to reduce
training time and overfitting on tasks with small datasets.

This technique is readily applied to computer vision problems centered around
semantic features, such as objects detection and segmentation. However, little is
known about the transfer learning without fine tuning for the image memorability
estimation since there is no clear understanding of what visual features trigger the
effects of remembering and forgetting.

Khosla et al. (2015) has already shown the benefits of fine tuning deep CNN
models for this domain. Rather than fine tuning the CNN, we propose to use a much
deeper model as a fixed feature extractor. In this setup the CNN is trained on image
classification datasets but not updated during the training on image memorability
datasets. Our results show that the features optimized for image classification are
also highly suitable for the memorability task. In our work we use ResNet50 (He
et al., 2016) CNN trained on the ImageNet dataset with top 1 error 24.7%.

2.3.3 Soft Attention Mechanism

The ability of a neural network to learn which discrete information elements to fo-
cus on within a given training sample was first applied to machine translation by
Bahdanau et al. (2014). This mechanism is called soft attention due to the fact that
it produces a probability weight for every information element rather than a hard,
binary decision boundary. The benefit of the soft attention method is that it is a fully
differentiable function and as such it can be learned end-to-end with gradient based
optimization methods.

The soft attention mechanism has two components, a network that learns proba-
bilities for each information element within the input data space and a gating func-
tion that uses these probabilities to weight the input data for further processing.

An alternative technique to the soft attention, not applied in this work, is called
hard attention which produces binary decisions over the input space. The hard at-
tention function is not smooth - it has zero gradients over its entire range. As such, it
cannot be directly trained with the backpropagation but rather with other methods
like genetic algorithms or reinforcement learning such as the REINFORCE method
(Williams, 1992).
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2.3.4 Long Short Term Memory Recurrent Network

The AMNet models the memorability regression as a sequence of, disjoint, condi-
tional predictions p(at|at−1), where at indicates an attention map over latent im-
age representation z. For this computation we employ the LSTM recurrent network
(Hochreiter and Schmidhuber, 1997). Experimentally we found that the LSTM per-
forms marginally better than the vanilla Recurrent Neural Network (RNN), partic-
ularly over longer (up to 6 steps) sequences. The best performance was, however,
observed at around 3 steps T = 3, where the LSTM still outperforms the vanilla
RNN.

The vanilla RNN cell is defined as a typical neuron with added feedback connec-
tion. The feedback carries a hidden state information h from step t over to t + 1. The
RNN cell is defined as:

ht = σ(Wxt + Uht−1 + b), (2.1)

where W and U are weight matrices for the input xt and the hidden state from the
previous step ht−1 respectively. Unlike the simple RNN cell, the LSTM introduces
several gates to regulate data flow and memorization through the node. This is
important to avoid vanishing/exploding gradients (Hochreiter et al., 2001a) over
long range sequences, nevertheless, we found it to be beneficial even for very short
sequences.

There are three gates: Forget gate (Eq. 2.2), which interrupts propagation of the
cell state ct over to the next step. Input gate (Eq. 2.3) allows or blocks accumulation
of new inbound data xt in the cell state ct. Output gate (Eq. 2.4) then regulates the
value of the hidden state ht on the LSTM output. The internal structure of the LSTM
cell is shown in Figure 2.5.
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FIGURE 2.5: LSTM unit. Red color indicates the forget, input and output gate sig-
nals. The input x gets integrated with the cell state along the green path. The gate

switches are implemented as elementwise multiplications.
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ft = σ(W f xt + U f ht−1 + b f ), forget gate (2.2)

it = σ(Wixt + Uiht−1 + bi), input gate (2.3)

ot = σ(Woxt + Uoht−1 + bo), output gate (2.4)

c̃t = tanh(Wcxt + Ucht−1 + bc), memory state activation (2.5)

ct = ft ◦ ct−1 + it ◦ c̃t, memory state update (2.6)

ht = ot ◦ tanh(ct), hidden state update (2.7)

Each gate is controlled by its own single layer network with σ sigmoid activation
function. W and U are weight matrices for the input x and hidden state ht−1 of their
respective gates. The b are bias vectors, and ◦ denotes elementwise multiplication.
The LSTM unit, as commonly being referred to is in fact a layer. The input x, hidden
state h and cell state c are vectors. The switches, shown in Figure 2.5, are only
symbolic. Rather then taking the on/off states they modulate their output between
zero and full input value. The only path along which the input data x enter the cell
memory is via the input gate controlled by the it signal.

2.3.5 AMNet Model
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FIGURE 2.6: A pre-trained RestNet50 (a) is followed by the soft attention mech-
anism (b) with LSTM (c), which over a sequence of three steps T = 3 produces
attention maps, each conditioned on the previous LSTM state ht−1 and the entire
image feature vector x. Memorability y is then calculated as a sum of discrete mem-

orability scores in the regression network (d).

The AMNet model estimates the image memorability by taking a single image X
and generating a memorability score y.

y = f (X), y = [0, 1]. (2.8)

The process of memorability estimation is summarized in Algorithm 1.
Formally, the image features, extracted by the front-end CNN, from a tensor with

dimensions (W, H, D), where W and H represent the spatial resolution, while D a
length of feature vectors, one for each location within the (W, H) region. Specifically,
in the case of AMNet the feature tensor has dimensions 14× 14× 1024. The feature
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Algorithm 1 AMNet algorithm

1: procedure MEMORABILITY(X) . y = f (X)
2: x = get_cnn_features(X) . Output of the 43rd layer of the ResNet50 CNN.
3: h0 = finitc

(x) . Eq. 2.19
4: c0 = finith

(x) . Eq. 2.19
5: lstm_init(h0, c0)
6: y = 0
7: for t = 0 to T do . at t = 0→ ht = h0
8: e = fatt(x, ht) . Eq. 2.15
9: α = so f tmax(e) . Eq. 3.3

10: z = []
11: for i = 0 to L do . for all locations, Eq. 2.11
12: z = z + αixi . z ∈ RD

13: ht, ct = lstm_step(z, ht, ct) . Eq. 2.10
14: y = y + fm(ht) . Eq. 2.18
15: return y . Predicted memorability score y ∈ [0, 1]

maps are vectorized to L = W × H, D-dimensional feature vectors x:

x = {x1, ..., xL} , xi ∈ RD. (2.9)

All vectors are column vectors, unless stated otherwise. The memorability is esti-
mated with LSTM over a three steps long sequence T = 3. The LSTM updates the
hidden state given ht−1 and latent image representation zt. It is defined as:

ht = φ(ht−1, zt), t ∈ [0, T), t ∈ Z, ht ∈ RB, (2.10)

where ht is the LSTM state at time t with size B = 1024. The vector zt represents a
new image features produced at step t, after attention weights αt are applied to the
image features x, and it is calculated as a simple weighted sum such that:

zt =
L

∑
i=1

αt,ixi, zt ∈ RD, (2.11)

where α are the attention probabilities conditioned on the entire image feature vector
x and previous LSTM hidden state ht−1.

αt ∼ p(αt|x, ht−1), αt ∈ RL. (2.12)

The attention weights are parameterised with neural networks. The attention is then
represented as a vector of weights produced by the softmax function:

αt,i =
exp(et,i)

∑L
k=1 exp(et,k)

. (2.13)
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The attention weights vector et is a product of the image feature vector x and the
LSTM hidden state ht−1:

et,i = fatt(xi, ht−1), (2.14)

where fatt() is s simple sum of two affine transformations followed by logistic func-
tion

fatt(xi, ht−1) = M i tanh(Uht−1 + Kxi + b), (2.15)

where M ∈ RL×D, U ∈ RD×B, K ∈ RD×D and b ∈ RD×1 are network weights and
biases respectively, estimated together with other parameters of the network during
optimization. The hyperblolic tangent fucntion tanh() is applied elementwise.

In order to experiment with the effects of the attention we can conditionally dis-
able it by defining the fatt() as a constant function with unit output such that:

fatt(xi, ht−1) = 1. (2.16)

This results in all feature vectors in x being considered equally thus disabling the at-
tention mechanism. At each step t the network produces one discrete memorability
score mt calculated as:

mt = fm(ht). (2.17)

The function fm() maps the LSTM hidden state ht to the memorability score mt =

[0, 1]. It is implemented as a two-layer neural network for regression with a single
output neuron and linear activation function. Finally, the total image memorability
score y is calculated as a sum of the discrete memorabilities mt

y =
T

∑
t

mt, y = [0, 1], y ∈ R, (2.18)

In the first step, the LSTM hidden h0 and memory c0 states are initialized from the
image feature vector x as follows:

c0 = finitc

(
1
L

L

∑
i

xi

)
, h0 = finith

(
1
L

L

∑
i

xi

)
, (2.19)

where the finit() functions are single, fully connected neural networks with tanh()
activation.

Dimensions of the CNN features were given by the CNN front-end model (ResNet).
Dimensions and the number of hidden layers were selected empirically and verified
and refined on experiments with the training and validation datasets. All hyper-
parameters such as λ, the number of LSTM steps, training epochs, learning rate,
dropout and `2 weights regularization, were selected experimentally, also on the
training and validation datasets.
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2.3.6 Training Procedure

The AMNet model is trained by minimizing the following composite loss function:

L = (ŷ− y)2 + λLα. (2.20)

The first term represents a mean squared error between the ground truth ŷ and pre-
dicted image memorability score y. In order to encourage the attention model to
explore all image regions over all time steps, we add a second term λLα which per-
forms a joint `1,`2 penalty as a function of activations of all attention maps in the
LSTM sequence T. A similar method was introduced by Xu et al. (2015). The hyper-
parameter λ specifies the impact of the penalty

Lα =
L

∑
i

s2
i , (2.21)

where si denotes the `1 penalty and L the total number of all locations in the activa-
tion map. si is defined as:

si = 1−
T

∑
t

αt,i, (2.22)

which enforces sparsity along the sequence dimension T. In other words, it encour-
ages a strong activation for only one of the attention maps at location i. Finally, the
`2 penalty in the form of ∑i s2

i in Eq. 2.21 further promotes an even distribution
of activations over all locations. The value of the λ parameter was experimentally
determined on the validation dataset as 10−4 for which the network achieved the
highest performance.

The entire model is fully differentiable and trained end-to-end with the ADAM
(Kingma and Ba, 2015) optimizer with a fixed learning rate 10−3. The input image
feature vector x is extracted from the 43rd layer of the RestNet50 (He et al., 2016) with
dimensions [14× 14× 1024]. The ResNet50 is trained for image classification on the
ImageNet dataset and its weights are not updated during the AMNet training.

The AMNet network is heavily regularized with dropout and small `2 weights
penalty 10−6. We found that the dropout was critical to stop the network from over-
fitting. The training was carried out in minibatches of 256 images and terminated
by early stopping when the observed Spearman’s rank correlation on the validation
dataset reached its maximum, which was between epoch 30 and 50 depending on
the split and the training dataset (LaMem or SUN). Training and validation losses as
well as the memorability rank correlation on the validation dataset in the LaMem,
split 1 is showin in Figure 2.7.

2.3.7 Data Preprocessing and Augmentation

Common augmentation techniques were applied to the images during the training
stage to reduce overfitting and improve generalization. These augmentations were:
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FIGURE 2.7: Training and validation losses and memorability rank correlation on
the LaMem validation dataset split1.

a crop of random size between 0.08 and 1.0 of the original image, a random aspect
ratio between 3/4 and 4/3 of the original aspect ratio, resize to 224× 224, and ran-
dom horizontal flip. For the evaluation only a center crop 224× 224 was selected as
the input.

Memorability scores in the LaMem dataset are in the range [0, 1] with distribution
shown in Figure 2.8. For the training purpose the memorability scores were zero
mean centered and scaled to range [−1, 1].

2.4 Experimental Results

In this sections we evaluate the AMNet on the LaMem (Khosla et al., 2015) and SUN
Memorability (Isola et al., 2011b) datasets. First, we briefly describe the datasets
and the evaluation metrics, and then present our qualitative and quantitative results
with the comparison against the state of the art methods.

2.4.1 Datasets

Main focus of this research work is on the LaMem (Khosla et al., 2015) dataset
due to its large size, making it suitable for training deep neural networks. The
LaMem2 is the largest annotated image memorability dataset to this date with total

2http://memorability.csail.mit.edu/download.html

http://memorability.csail.mit.edu/download.html
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of 58741 images. The images cover a wide range of indoor and outdoor environ-
ments, objects and people that were obtained from other labeled datasets such as
MIR Flickr (Huiskes et al., 2010), AVA dataset (Murray et al., 2012), Affective Im-
ages dataset (Machajdik and Hanbury, 2010), image saliency datasets (Judd et al.,
2009, Ramanathan et al., 2010), SUN dataset (Xiao et al., 2010), Image popularity
dataset (Khosla et al., 2014), Abnormal Objects dataset (Saleh et al., 2013) and the
Pascal dataset (Farhadi et al., 2009). The memorability scores were collected man-
ually on the Amazon Mechanical Turk (AMT) by means of a memorability game
introduced by Isola et al. (2011b) and improved by Khosla et al. (2015). Approxi-
mately 80 measurements (memorable=yes/no) were collected per image. There are
5 random splits, each with 45000 images for training, 3741 for evaluation and 10000
for testing.

As a second dataset for evaluation we chose the SUN Memorability dataset pi-
oneered by Isola et al. (2011b). There are 2222 images in total, originating from the
SUN (Xiao et al., 2010) dataset with memorability scores collected by method simi-
lar to the LaMem. There are 25 random splits with equal number of 1111 images for
training and testing.

2.4.2 Evaluation Metrics

Following the previous work, we report on the performance in terms of rank cor-
relation, specifically the Spearman’s rank correlation coefficient (Pirie, 1988) ρ and
Mean Squared Error (MSE).
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FIGURE 2.8: Histogram of ground truth memorability scores in the LaMem (Khosla
et al., 2015) training dataset split 1.
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The Spearman’s rank correlation coefficient measures consistency between the
predicted and ground truth ranking, within the range [−1,+1], where zero repre-
sents no correlation. Higher ρ values indicate higher memorability prediction accu-
racy. The Spearman’s rank correlation is calculated as follows:

ρs(r̂, r) = 1− 6 ∑N
i (r̂i − ri)

2

N(N2 − 1)
, (2.23)

where N is a number of samples, r̂i is a rank of the ith ground truth memorability
score, and ri the ith predicted value.

MSE is used as a secondary metric, not always presented in prior publications.
The Spearman’s rank correlation shows a monotonic relationships between the ref-
erence and observation but does not reflect the absolute numerical errors between
them, which is then presented by the MSE according to:

MSE(ŷ, y) =
1
N

N

∑
i=1

(ŷi − yi)
2, (2.24)

where ŷi is the ground truth memorability score, while yi the memorability predic-
tion and N the number of tested samples.

2.4.3 Performance Evaluation

In order to obtain results that are fully comparable with the previous work, we used
the same training and evaluation protocol as in Khosla et al. (2015) for the LaMem
dataset and in Isola et al. (2011b) for the SUN memorability dataset.

Evaluation on the LaMem dataset was performed by training five models, one on
each of the five random splits. The models are then evaluated on the corresponding
five test datasets and the average memorability rank correlation and average MSE
are reported.

In Table 2.1 we show that the AMNet model with the active attention achieves
ρ = 0.677, or a 5.8% improvement over the best known method MemNet (Khosla
et al., 2015). Even without attention the AMNet outperforms the prior work by
3.6% which demonstrates that the pre-trained, deep CNN with our recurrent and

TABLE 2.1: Average Spearman’s rank correlation ρ and MSE over 5 test splits of the
LaMem dataset.

Method (on LaMem dataset) ρ ↑ MSE ↓
AMNet 0.677 0.0082
AMNet (no attention) 0.663 0.0085
MemNet (Khosla et al., 2015) 0.64 N/A
CNN-MTLES (Jing et al., 2017)
(different train/test (50/50) split)

0.5025 N/A
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TABLE 2.2: Evaluation on the SUN Memorability dataset. All models were trained
and tested on the 25 train/val splits.

Method (SUN Memorability dataset) ρ ↑ MSE ↓
GIST,SIFT,HOG2x2,SSIM + SVR (Isola et al., 2011b) 0.462 0.017
SIFT,HOG,SSIM,Pixel hist. + SVR (Mancas and Le Meur, 2013) 0.479 NA
AMNet 0.649 0.011
AMNet (no attention) 0.62 0.012
MemNet (Khosla et al., 2015) 0.63 NA
MemoNet 30k (Baveye et al., 2016) 0.636 0.012
Hybrid-CNN+SVR (Zarezadeh et al., 2017) 0.6202 0.013

regression network layers still achieves high accuracy. The comparatively low per-
formance of the CNN-MTLES (Jing et al., 2017) method can be attributed to the fact
that the model uses various, specifically engineered visual features in combination
with features extracted from CNN networks trained on ImageNet (Russakovsky
et al., 2015) and Places (Zhou et al., 2014) datasets. Thus, it does not leverage the
end-to-end deep learning procedure. The CNN-MTLES, however, uses the LaMem
dataset, which indicates that even a large dataset does not significantly improve the
performance of models based on engineered, visual features.

To train the deep AMNet model on the rather small SUN dataset we had to in-
crease regularization to avoid overfitting. We found that in this specific case `2 =

10−4 weights regularization performed better than a stronger dropout or the combi-
nation of both. Table 2.2 shows that the AMNet with attention performs 2% better
than the current best model. By disabling the attention the performance declined to
ρ = 0.62, demonstrating the advantage of the visual attention for this task.

We found that during training the MSE on the validation datasets followed a sim-
ilar trend with the rank correlation ρ, however the ρ peaked after the model started
overfitting as apparent in Figure 2.7. It is conceivable to assume that the slightly
higher variance at the maximum ρ improves generalization in terms of the predicted
and ground truth monotonic relationships, even though MSE starts increasing. For
example, during the training on the LaMem split 1, as shown in Figure 2.7, we at-
tained maximum ρ = 0.6721 and MSE = 0.00848 while ρ = 0.6676 for minimum
MSE = 0.00844.

Tables 2.1 and 2.2 show that the AMNet exhibits the best performance in terms
of the Spearman’s rank correlation as well as MSE on both, the LaMem and the SUN
datasets. The best performance attains ρ = 0.677 on the LaMem dataset, approach-
ing 99.6% of the human performance ρ = 0.68 as measured by Khosla et al. (2015).
Comparison against the state of the art can be seeing in Figure 2.9.

2.4.4 Ablation Study

To see the impact of the attention mechanism and the recurrent network on the mem-
orability estimation we conducted several ablation tests.
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FIGURE 2.9: Comparison against the state of the art methods. Red depicts deep
learning based methods. AMNet, MemNet and CNN-MTLES where trained on the

LaMem, the rest on the SUN Memorability dataset.

First, we disabled the recurrent network by allowing only a single LSTM step
and then trained and evaluated the network according to the protocol given above (5
models over 5 train/test splits). In Table 2.3, third row (Attention, no LSTM) we can
see that the rank correlation dropped only by ∆ρ = −0.008. In another experiment,
we used only the final output from the LSTM at the step t = T before regressing the
memorability score in the layer fm() as:

y = fm(hT). (2.25)

With this setup the rank correlation declined by ∆ρ = −0.002. While in both cases
the network still attains comparatively high performance, we can see that the recur-
rent network does bring a positive contribution.

In the last row of the Table 2.3 we report results for a configuration where, in ad-
dition to the disabled LSTM, we also turn off the attention mechanism. In this case
the image feature tensor x is passed through a single LSTM step to the regressor
fm(). As in the previous test, the LSTM is set to a singe iteration and the attention
is disabled by setting all attention weights to one as per Eq. 2.16. The drop in the
memorability rank correlation ∆ρ = −0.017, indicates that a considerable perfor-
mance gain can be attributed to the attention layer.



28 Chapter 2. Image Memorability Estimation

TABLE 2.3: Selected AMNet configurations evaluated on the LaMem training/test
dataset split 1.

AMNet configuration ρ ↑ MSE ↓
Attention, LSTM 0.681 0.0081
Attention, no LSTM 0.673 0.0082
Attention, LSTM, last step prediction 0.679 0.0081
No attention, no LSTM 0.664 0.0087

2.5 Impact of Feature Extractor Depth on Memorability Score

During an initial research on the transfer learning of deep models for the image
memorability estimation, we found that shallower models, such as the ResNet18 (He
et al., 2016), performed better than much deeper counterparts like the RestNet50. All
these models were trained on the large scale image classification dataset ImageNet
(Russakovsky et al., 2015) without fine tuning on the memorability datasets.

These results suggested that the feature hierarchies, learned within the very deep
models, were quite specific for the composition of semantic descriptors, necessary to
express the 1000 ImageNet classes. This made them less suitable to capture features
underlying the image memorability. The first AMNet model was regularized by
reduction of the network parameters in addition to the `2 weights and dropout reg-
ularizations. The number of trainable parameters, excluding the CNN for features
extraction, was 9.5M.

Subsequently, we found that using much deeper models, such as ResNet50, but
with stronger dropout regularization, resulted in a reversed effect, that is, the deeper
models began performing better than the shallow ones. The number of the AMNet
trainable parameters in this current model is 13M. This observation leads us to a
conclusion that deep features are indeed suitable for the memorability task, however
there is a need to combine them in a larger model to express the memorability effect.

Evaluation of the AMNet model with the VGG16 (Simonyan and Zisserman,
2015), ResNet18 and ResNet50 (He et al., 2016) front-ends is shown in Table 2.4.
All results were obtained with visual attention and three LSTM steps.

TABLE 2.4: Comparison of the AMNet performance with feature extractors of dif-
ferent depths. Note that the networks were truncated at the convolution layers with

feature maps with resolution 14× 14.

Feature extractor
Trainable
Params.

Spearman’s rank correlation ρ on
individual LaMem test splits

Avg.
ρ ↑

Avg.
MSE ↓

1 2 3 4 5
VGG16 (10 layers) 7.6M 0.657 0.644 0.664 0.658 0.649 0.654 0.009
ResNet18 (15 layers) 5.5M 0.663 0.650 0.667 0.666 0.653 0.660 0.009
ResNet50 (43 layers) 17M 0.681 0.668 0.687 0.680 0.668 0.677 0.008
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2.6 Application to Image Aesthetics Estimation

To investigate how well our method generalizes to problems concerned with learn-
ing and estimating other image qualities, we conducted an experiment on the image
aesthetics estimation.

As the image memorability, image aesthetics is an image property that can be
measured and estimated with machine learning methods. Typically, the aesthetic
quality is assigned to each image by number of human annotators and then trans-
lated to a single value range [0..1] corresponding to low aesthetic on one end and
high aesthetic quality on the other.

In our evaluation we focus on a challenging, large-scale Aesthetic Visual Anal-
ysis (AVA) dataset (Murray et al., 2012), commonly referenced by recent prior art
methods. This dataset contains over 250k images, each being rated by at least 200
voters. The average rating is then assigned to each image as the aesthetic score.
Examples of images with high, medium and low aesthetic scores are in Figure 2.10.

Beautiful

0.80 0.79 0.79 0.74

Ordinary

0.59 0.53 0.50 0.49

Least
appealing

0.34 0.33 0.27 0.24

FIGURE 2.10: Examples of images from the AVA dataset with high, medium and
low aesthetic scores.

To compare against the state of the art methods, we adapt a common evaluation
protocol applied by Jin et al. (2016) and Kao et al. (2015). We split the total 255k
images to 250k training and 5k test, randomly sampled images. This configuration
is referred to as RS-test in Jin et al. (2016). Similar to the image memorability esti-
mation, the model is trained with MSE loss with early stop to avoid overfitting. The
AMNet model configuration is identical to the one used for the image memorability
evaluation e.g. ResNet50, attention on, LSTM T = 3.

We compare against three state of the art methods. First method, proposed by
Kao et al. (2015), leverages GIST features (Oliva and Torralba, 2001) with linear SVR
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(Smola and Schölkopf, 2004). Second method, also by Kao et al. (2015), introduces a
multi-task convolutional neural network (MTCNN) which performs regression for
each AVA aesthetic group in a separate regression head. Finally, we compare against
a method due to Jin et al. (2016) that employs the deep VGG16 (Simonyan and Zisser-
man, 2015) CNN network adopted for regression by replacing the last classification
layer with a single output, regression layer. In Table 2.5 we compare the AMNet

TABLE 2.5: Comparison with the state of the art methods for image aesthetics
prediction on the AVA dataset. AMNet trained for 97 epochs on train/test split
250k/5k without any tuning. Almost identical results were obtained when trained

on 235k/20k split.

Method MSE ↓
GIST+SVR (Kao et al., 2015) 0.522
MTCNN (Kao et al., 2015) 0.451
VGG16 for regression (Jin et al., 2016) 0.337
AMNet 0.328

performance against the state of the art methods. Even without any AMNet archi-
tectural modifications or training/fine-tuning the front end CNN feature extractor
we obtained very high prediction scores.

2.7 The Role of Soft Attention Function on Memorability

The significant performance gain is achieved by the fact that the neural network
learns to focus its attention to specific regions most relevant to memorability. The
improvement is close to 2% on the LaMem and almost 5% on the SUN dataset. AM-
Net learns to explore the image content by producing three visual attention maps,
each conditioned on the image content obtained by exploiting the previous map.
We have experimented with 2,3,4,5 and 6 LSTM steps and found that three steps are
sufficient to achieve the reported performance.

In order to better interpret the relation between attention maps and correspond-
ing discrete memorability at each LSTM step, we present them as heat maps along
with memorability scores. In Figure 2.11 we show selected images from the LaMem,
test dataset, split 2. Images (a), (b) and (c) have low memorability, image (d) a
medium one and (e) and (f) high memorability. Images of the attention maps are
produced by taking the output of the softmax function Eq. 3.3, scaling it to range
[0, 255] and then resizing it from 14× 14 to 244× 244.

As we can see in images (a), (c) and (d) in Figure 2.11, most of the first atten-
tion weights gravitate towards the image center, which is most likely caused by the
Center Bias, studied in Judd et al. (2009) and Zhang et al. (2008). This is typically at-
tributed to the photographer bias (Tseng et al., 2009). In the subsequent LSTM steps,
however, the attention moves mostly to the regions expected to be responsible for
memorability.
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(a) (b) (c) (d) (e) (f)

0.453 (0.45) 0.453 (0.44) 0.78 (0.794) 0.881 (0.892) 0.9 (0.894) 0.887 (0.896)

t1
0.165 0.167 0.256 0.289 0.293 0.290

t2
0.148 0.148 0.262 0.295 0.302 0.297

t3
0.140 0.128 0.262 0.298 0.306 0.300

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

FIGURE 2.11: Examples of attention maps for low and high memorability images
from LaMem test dataset split 2. Tested images, their estimated and ground truth
memorabilities (in brackets) are shown in the top row. Bellow each image is a dis-
crete memorability score estimated at the steps t1, t2 and t3. Plots in the bottom row

show gradients over the three LSTM steps.

After a close inspection, we found that the attention maps for low memorabil-
ity images tend to be sparser with few small peaks, while for images with higher
memorability, the attention maps display sharper focus spreading over larger re-
gions around the activation peaks. The core image memorability usually originates
in regions with people and human faces as is evident in images (c) and (f) shown in
Figure 2.11.

Moreover, we found that the estimates of discrete memorability mt in Eq. 2.17
decrease with each LSTM step t for low memorability images, while for high mem-
orability images grow. This relation is shown in Figure 2.12. This effect is consistent
within the LaMem test datasets across all splits and can be seen in Figure 2.11.

Initially, we experimented with an additional penalty function that encouraged
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ascending or descending progression of the discrete memorabilities over the LSTM
sequence. Unfortunately, in most cases this regularization led to a drop in the perfor-
mance. This negative impact of the enforced memorability gradient over the regres-
sion sequence can be explained with an insight from the observed, learned gradients
shown in Figure 2.12. The memorability regions that are learned at the first LSTM
step appear to represent a mean image memorability. Over the following steps the
model localizes regions leading to the final memorability. That is, for low final mem-
orability, regions with lower residual memorabilities are identified while for final
high memorability, regions with the above average are picked up.
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FIGURE 2.12: Histogram of gradients of discrete memorabilities over the LSTM
steps. The gradient is directly proportional to the total image memorability.

To localize the memorability regions was already attempted in the prior work,
most recently in Khosla et al. (2015) in the form of memorability maps. These mem-
orability maps are produced as averaged activations of the last CNN feature maps
before the regression layer. In Figure 2.13 we compare the attention maps with the
MemNet memorability maps. The attention maps are sharper around the regions
that we would intuitively expect to support the memorable image content. For in-
stance, in image (b) attention localizes the man’s face in the ball pit, which is what
we would expect. The MemNet memorability map highlights only balls in the left
bottom corner. Similarly, in the image (e), the attention picks up a group of people on
the river bank and a man on a sinking car as the regions underlying memorability of
this image. The MemNet memorability map emphasises primarily regions around
the trees in the background. However, our intuition behind the memorability of im-
age regions is not entirely valid. As Isola et al. (2014) pointed out, the subjective
judgement of the image memorability has a low correlation with the true values.
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Source Image t1 t2 t3 Memorability Map

a) 0.847928 (0.93) 0.274845 0.285535 0.287548 0.795025

b) 0.896416 (0.95) 0.299001 0.299294 0.298121 0.851123

c) 0.851698 (0.97) 0.278245 0.285886 0.287567 0.859317

d) 0.877217 (0.99) 0.280297 0.296806 0.300114 0.827502

e) 0.72492 (0.91) 0.241944 0.241737 0.241239 0.743126

FIGURE 2.13: Qualitative comparison between the AMNet attention maps over
the regression sequence and the MemNet (Khosla et al., 2015) memorability maps.
Source images are shown in the left column with memorabilities estimated by AM-
Net, followed by ground truth in brackets. Attention maps for t1, t2 and t3 LSTM
steps with the corresponding discrete memorabilities are in the following columns.
The last column shows memorability maps and scores estimated by the MemNet.

2.8 Implementation

The entire AMNet network is implemented in PyTorch 0.2.0. Implementation of the
front-end CNNs as well as the models trained on the ImageNet are obtained from the
torchvision module. The full AMNet network diagram is shown in Figure 2.14 with
the LSTM sequence unrolled over the three steps. The AMNet uses visual features
extracted with the pre-trained CNN. In order to obtain the feature tensor with the
desired resolution 14× 14, we truncate the CNN before the final classification layers.
The number of preserved layers for each tested model is shown in Table 2.4.

The AMNet network with the ResNet50 (He et al., 2016) CNN has 30M parame-
ters compared to 57M of the original MemNet (Khosla et al., 2015). However, only
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FIGURE 2.14: AMNet network diagram with LSTM unrolled over a three steps se-
quence. Dropout level is specified as a number of neurons to drop. Output dimen-
sions are noted in square brackets. FC signifies a fully connected neural network.

the 13M AMNet parameters are trained during optimization. The number of param-
eters for all evaluated CNNs are shown in Table 2.4. Further on, we have tried to fine
tune the CNN feature extractor along with the AMNet, which in majority of cases
led to a drop in performance. This is very likely caused by relatively small number
of training images in the LaMem compared to the ImageNet.

The source images, typically with resolution close to 256 × 256, are scaled to
224× 224. In contrast, the MemNet estimates memorability as an average of mem-
orability scores measured over 10 image crops (original plus left-right mirrors of
four corners and center crops). It is conceivable to expected that the AMNet would
achieve even higher performance with the 10 crops evaluation. We leave this for the
future work.
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2.9 Conclusion

Our visual memory suffers from many weaknesses, especially when seen from the
perspective of silicon-based computer memory; lossy storage, slow read and write
operations, nondeterministic recall and forgetting to name a few. While these mem-
ory attributes represent clear challenges in deterministic computational systems such
as common computer architectures, they are unquestionably superior for applica-
tions in AGI agents. Our memory with the supporting circuits can perform complex
auto and hetero-association, long and short-term predictions given new data and
past knowledge, or combine the existing knowledge to form novel, artificial events,
which are retained in the memory for further recall. The latter is an example of a
possible source of creativity, particularly celebrated by the human race.

In our work, we focus only on visual memory. Our visual memory has a surpris-
ingly large capacity to remember images over long periods of time. Not all images
are, however, retained by our visual cortex equally well. Some, albeit not particu-
larly appealing or engaging images, instantly stick in our memory, while on other
occasions, we have a hard time memorizing images that are of high importance to
us even though we thoroughly focus on them. To understand the neurological pro-
cesses underpinning image retention is admittedly important to recreate similar hu-
man memory-like capabilities, hopefully also encompassing the creativity.

In this chapter, we studied image memorability learning and estimation with
computational methods. Based on the prior work indicating that memorability is
an intrinsic image property, we decided to implement a method relating the scene
composition to the memorability scores as predicted by humans. Consequently, we
proposed the AMNet method, a deep neural network with a visual attention com-
ponent for image memorability estimation. This network consists of a pre-trained,
deep CNN followed by a modified visual soft attention mechanism with a recurrent
network completed with a network for memorability regression. The learned spatial,
soft attention function localizes image regions responsible for the image retention in
our memory, therefore improving the memory estimation with the machine learning
method by filtering out less relevant information. By design, the AMNet is generic
and could be employed for other regression, computer vision tasks. We show its suc-
cessful application to image aesthetics estimation, a domain that deals with learning
another perceptual image property.

We show that features extracted by a deep CNN, trained on large-scale image
classification tasks, such as ImageNet, are beneficial for the memorability estimation
task. This indicates that the feature hierarchies extracted for the image classification
task are suitable also to express the composition underlying the memorability effect.
We demonstrate that our recurrent visual attention network significantly improves
performance of image memorability learning and inference. We show that the pro-
posed method outperforms the previous state-of-the-art by 5.8% (from ρ = 0.64 to
ρ = 0.677) on the Spearman’s rank correlation and closely approaches the human
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performance ρ = 0.68 with a 99.6% consistency.
Our work puts forward a novel SOTA method for image memorability estima-

tion that also localizes image regions correlated with memorability, laying out new
ground for interpretability of the memorability triggers with respect to the scene
composition. However, the AMNet method has several limitations, predominantly
consequential to the applied deep learning methods and the established protocol for
image memorability quantification and evaluation. First, the AMNet method cur-
rently does not provide a confidence factor for the estimated memorability score -
we left this functionality for future work. Next, the AMNet can process only im-
ages with fixed resolution due to the CNN architecture. This means that all images
must be first scaled to these dimensions that may not always be appropriate, e.g., for
images with different aspect ratios. We also leave this limitation as a subject of our
future work. An inability to continually learn memorability from a stream of new
images, prohibited by the catastrophic forgetting effect, is yet another CNN limita-
tion inherited by the AMNet. A low resolution of the AMNet’s memorability maps
could also be seen as a limitation, particularly in the domains concerned with the
model and image memorability explainability and interpretability.

In a broader sense, further limitations stem from the current, coarse memorabil-
ity quantification that excludes other data such as which objects in the scene were
recalled by the participants, the participants’ age, gender, physiological state(rested
or tired), and other parameters. Consequently, a model trained on such data can-
not be customized to different users; thus, it is limited to a general, average image
memorability estimation.

The main contributions of this work are:

• Proposed novel generic architecture for regression tasks with deep CNN, vi-
sual attention mechanism, and recurrent neural network.

• Application of the proposed method to image memorability estimation.

• Introduction of the incremental memorability estimation with the recurrent
network and demonstration of the achieved performance gain.

• Introduction of the visual attention technique for the memorability estimation
and presentation of the performance gain.

• Demonstration that transfer learning from deep models, trained for image clas-
sification, is particularly beneficial for memorability estimation.

The AMNet PyTorch implementation, including all trained models and datasets,
is publicly available on https://github.com/ok1zjf. An online demo application
that estimates memorability for a given image(s), including visualization of the at-
tention maps, is accessible on https://amnet.kingston.ac.uk/.

https://github.com/ok1zjf
https://amnet.kingston.ac.uk/
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2.9.1 Future Work

In the course of our research, we identified many avenues for future work.
For example, as a promising technique to further improve the prediction ac-

curacy, the memorability regression could be turned into a classification problem.
There is evidence presented in prior work in other domains that changing the re-
gression to classification simplifies training and improves the model performance.
This approach can be observed, for example, in work on object detection and seg-
mentation by Liu et al. (2016), Farhadi and Redmon (2018), and He et al. (2017).

The CNN front-end for feature extraction could be trained in an unsupervised
setting with methods such as Grill et al. (2020) or Chen and He (2020). It is likely that
the CNN features trained on very large image datasets without supervision may be
more generic (not skewed towards specific pre-training tasks, such as classification),
and thus more suitable to express the image memorability.

As another future work, we consider implementing the memorability confidence
predictor. Here, the AMNet model learns to predict how reliable is the current mem-
orability estimation based on the agreement on ground truth labels among the par-
ticipants annotating the data.

To enable the AMNet to process arbitrary image resolution, we propose to pro-
cess the CNN feature maps (already agnostic to the input image resolution) as a
sequence of W × H vectors, each with dimension 1× 1× C where W,H and C are
the width, high and number of channels in the feature map.

In other follow-up work, we intend to compare the sequence of memorability
maps to eye fixations predicted by other models. Eye fixations, either predicted
or collected within the memorability game and stored alongside the memorability
scores, could be used as additional input to the AMNet. It would either provide a
soft prior for the attention regions refined by the model during training or hard cen-
ters for the attention regions (the eye fixation prediction would substitute AMNet
attention).

Large datasets and ubiquitous computation have been critical ingredients in the
success of deep learning in most machine learning areas. However, there is a con-
siderable lack of large annotated datasets for image memorability estimation. To
assemble new datasets or improve existing annotations, we are considering to use
electroencephalogram (EEG) data. As recently reported by Stothart et al. (2021), EEG
data can be used to detect already seen or not seen images by the participants. EEG
data could also be used as direct labels during training and outputs during inference.
Therefore, rather than directly predicting the memorability score, the ML model
would estimate the EEG signals and then translate them to memorability in later
stages of the ML pipeline. As unquestionably more expensive and time-consuming
than the memorability game for data collection, this method would result in more
accurate labels and new meta-data to assist neural network training.
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Chapter 3

Episodic Memory Segmentation for
Video Summarization

This chapter studies episodic segmentation (Zacks et al., 2007) in human memory
applied to the machine learning method for video summarization. To logically split
a continuous video stream into a subset of episodes, each with a specific importance
level, is challenging but an equally important problem with ample applications. In
this work, we propose a machine learning method for video summarization, draw-
ing inspiration from the process of segmentation of episodic events in our brain.

The recall of past experiences is perhaps the most common cognitive process
in our brain. We replay our past memories that are similar to the situation we are
currently experiencing to help us improve our performance on that task (Wimmer
et al., 2020). In other cases, we revisit past memories to analyze them more deeply in
our thoughts, such as to create new connections with other memories, plan changes
in our behavior or expand our memories for novel hypothetical cases, rare or not
possible to experience in reality, but very important to us (Clewett et al., 2019). For
example, what would happen if I walk closer to the cliff edge? What would I do
when falling down? Would I survive? The experience replay occurs consciously at
our will or spontaneously when we sleep.

Memories of our experiences were studied by Tulving (1972, 2002) in his seminal
work, where he established the concept of episodic and semantic memory. Episodic
memory represents our personal experiences, also referred to as autobiographical
memory. In contrast, semantic memory is a memory of facts and logical relations. An
example of episodic memory would be a sequence of moments to set up a campfire.
A recall of a forest background, getting stones to frame the fire center, collecting
dead wood and organizing it to build a fire place and lighting them. An example of
semantic memory would be a recall that small deadwood burns well, that stopping
the fire from spreading can be done with a stone barrier, that fire can burn us, and
other facts. Episodic memories are the basis for semantic memories, or knowledge,
gained by experience.

A common aspect of episodic memories is that they appear as compact segments
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of real events. Each memory episode is centered around some unifying, typically
semantic feature. Each episode also appears to be compressed as a succession of
slices, or pictures, with considerable temporal gaps between (Jeunehomme et al.,
2018, Jeunehomme and D’Argembeau, 2020). Figure 3.1 portrays a possible episodic
segmentation.

Every memory episode is not retained with the same level of details and inten-
sity. Dunsmoor et al. (2015) show that fear-conditioned events resulted in stronger
memory retention compared to conceptually similar events experienced immedi-
ately afterward. It appears that such fear-conditioned episodes mask other, tem-
porarily close events. Interestingly, even fear events that, shortly after experiencing,
were portrayed as non-threatening, e.g., the snake actually was not poisonous, still
exhibit retention similar to the original fearful events.

The episodic segmentation is not yet well understood, particularly which episodes
are retained and how their boundaries are established. It has been shown that the
integration and separation of discrete events proceed over complex interaction be-
tween hippocampus and cortex (Clewett et al., 2019). This happens proactively as
experiences occur, or retroactively during the recall later on, in the wake or sleep
states. Ezzyat and Davachi (2011) studied the nature of the episodic boundaries and
showed that there is, indeed, a higher degree of associative memories within seg-
ments than across boundaries.

Complex events are generally summarized as key slices, likely to reduce their
memory footprint and to provide fast recall and fast navigation within the events.
Furthermore, the keyframes also appear to form the smallest event units that could
be predicted by the brain and acted upon (Kurby and Zacks, 2008, Zacks et al., 2007).
This appears to be related to information chunking in the working memory, which
is also the stage for episodic replay.

FIGURE 3.1: Illustration of episodic segmentation. Our brain segments continuous
video stream into contextually coherent episodes (green, blue and red on the top
strip). Each episode itself is represented by key frames (yellow). Images sourced

from the TvSum dataset (Song et al., 2015).

In a famous paper, The magical number seven plus or minus two, Miller (1956)
showed that the number of items, such as letters, digits, sentences, or images, that
we can hold in our working memory is limited to 7± 2. This limit was later revised
to about 4 in the work of Cowan (2001), who took into account more aspects such as
duration of the chunks, intellectual ability, and the participant age. What constitutes
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a chunk appears to be determined by our prior knowledge which, we can control to
some extent. For example, to remember a long phone number, we can split it into
groups of three or four digits. This is readily done when presenting phone numbers,
where digits are usually arranged in groups and divided by spaces or hyphens.

The findings that episodic segmentation is importance-conditioned and that the
episodes are internally represented by key events are important insights. Suppose
we know how to select the episodic boundaries and the keyframes within. In that
case, we could design a method for automatic video summarization that would re-
tain information indistinguishable from what we would personally recall after ex-
periencing that same event. To accomplish this with a machine learning method, we
propose an algorithm to learn frame importance scores from annotations performed
by humans that are subsequently used to select the episodic segments. To determine
the frame scores, we introduce a self-attention network that learns relations between
frames in the input sequence as a function of importance scores estimated by human
annotators.

First, in Section 3.1, we define the video summarization problem and outline
our approach. In the following Section 3.2, we review related literature and then in
Section 3.3 describe details of our method. Evaluation protocol, experimental setup,
and used datasets are discussed in Section 3.4. In Section 3.5, we present our results
and close with the conclusion in Section 3.6.

3.1 The Video Summarization Problem

Video summarization is typically defined as a task where a video sequence is re-
duced to a small number of still images called keyframes, sometimes also called sto-
ryboard or thumbnails extraction. Video can be also summarized as a shorter video
sequence composed of keyshots, also called video skim or dynamic summaries. The
keyframes or keyshots need to convey most of the vital information contained in the
original video. This task is similar to a lossy video compression, where the building
block is a video frame. In this work, we focus solely on the keyshots based video
summarization.

Video summarization is an inherently difficult task even for us. In order to iden-
tify the most important segments, one needs to view the entire video content and
then make the selection, subject to the desired summary length. Naturally, one could
define the keyshots as segments that carry mutually diverse information while also
being highly representative of the video source. Some methods formulate the sum-
marization task as clustering with cost functions based on exactly these criteria. Un-
fortunately, to define how well the chosen keyshots represent the video source, and
the diversity between them, is extremely difficult since this needs to reflect the infor-
mation level perceived by the user. Common techniques analyze motion features,
measure the distance between color histograms, image entropy, or 2D/3D CNN
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features (Novak and Shafer, 1992, Larkin, 2016, Athiwaratkun and Kang, 2015), re-
flecting semantic similarities. However, none of these approaches can truly capture
the information in the video context. Therefore, in this work, we set up the video
summarization as an imitation learning problem where a machine learning method
learns to mimic humans on the video summarization task.

Early video summarization methods were based on unsupervised methods, lever-
aging low-level spatio-temporal features and dimensionality reduction with cluster-
ing techniques. The success of these methods solely stands on the ability to define
distance/cost functions between keyshot frames with respect to the original video.
As discussed above, this is not easy to achieve. It also introduces a strong bias in
the summarization given by the type of used features such as semantic and pixel in-
tensities. In contrast, models trained with supervision learn the transformation that
produces summaries similar to those manually produced. Currently, there are two
datasets with such annotations, TvSum (Song et al., 2015) and SumMe (Gygli et al.,
2014), where each video is annotated by 15-20 users. The annotations vary between
users, with consistency expressed by a pairwise F-score ∼ 0.34. This fact reveals
that video annotation is a rather subjective task. We argue that under these circum-
stances, it may be very challenging to craft a metric that would accurately express
how to cluster video frames into keyshots, similar to human annotation. On this
premise, we decided to adopt the supervised video summarization for our work.
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FIGURE 3.2: For each output the self-attention network generates weights for all in-
put features. Average of the input features, weighted by this attention, is regressed

by a fully connected neural network to the frame importance score.

The current state-of-the-art methods for video summarization are based on re-
current encoder-decoder architectures, usually with bi-directional LSTM (Hochre-
iter and Schmidhuber, 1997) or gated recurrent unit (GRU) (Cho et al., 2014) and soft
attention (Bahdanau et al., 2014). While these models are remarkably powerful in
many domains, such as machine translation and image/video captioning, they are
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computationally demanding (see Section 3.3.4) , especially in the bi-directional con-
figuration. Recently, Vaswani et al. (2017) demonstrated that it is possible to perform
sequence to sequence transformation only with attention. Similarly, we propose at-
tention only, sequence to sequence network VASNet for video keyshots summariza-
tion, and demonstrate its performance on TvSum and SumMe benchmarks. The
architecture of this model does not employ recurrent or sequential processing and
can be implemented with conventional matrix/vector operations and run in a single
forward/backward pass during inference/training, even for sequences with vari-
able length. The architecture is centered around two critical operations, attention
weights calculation and frame-level score regression. An overview of this model
is shown in Figure 3.2. Frame score at every step t is estimated from a weighted
average of all input features. The weights are calculated with the self-attention al-
gorithm. Given the generic architecture of our model, we believe that it could be
successfully used in other domains requiring sequence to sequence transformation.

3.2 Related Work

Recent advancements in deep learning were adopted to implement video summa-
rization, in particular the encoder-decoder method with attention for sequence to
sequence transformation.

Zhang et al. (2016) pioneered the application of LSTM for supervised video sum-
marization to model the variable-range temporal dependency among video frames
to derive both representative and compact video summaries. They enhance the
strength of the LSTM with the determinantal point process which is a probabilistic
model for diverse subset selection. Another sequence to sequence method for super-
vised video summarization was introduced by Ji et al. (2017). Their deep attention-
based framework uses a bi-directional LSTM to encode the contextual information
among input video frames. Mahasseni et al. (2017) propose an adversarial network
to summarize the video by minimizing the distance between the video and its sum-
mary. They predict video keyframes distribution with a sequential generative adver-
sarial network. A deep summarization network in an encoder-decoder architecture
via an end-to-end reinforcement learning has been put forward by Zhou et al. (2018)
to achieve state of the art results in unsupervised video summarization. They design
a novel reward function that jointly takes diversity and representativeness of gen-
erated summaries into account. Zhao et al. (2017) constructed a novel hierarchical
LSTM to deal with the long temporal dependencies among video frames but this
method fails to capture the structure of the video information, where the shots are
generated by fixed length segmentation.

Some works use side semantic information associated with a video along with
visual features, like surrounding text such as titles, queries, descriptions, comments,
unpaired training data and similar. Rochan and Wang (2018) proposed deep learning
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video summaries from unpaired training data, which means they learn from avail-
able video summaries without their corresponding raw input videos. A deep side
semantic embedding model was introduced by Yuan et al. (2017) which uses both
side semantic information and visual content in the video. Similarly, Wei et al. (2018)
proposed a supervised, deep learning method trained with manually created text
descriptions as ground truth (GT). At the heart of this method is the LSTM encode-
decoder network. Wei et al. (2018) achieves competitive results with this approach,
however, more complex labels are required for the training. Fei et al. (2017) com-
plemented visual features with video frame memorability, predicted by a separate
model such as Khosla et al. (2015) or Fajtl et al. (2018).

Other approaches, like the one described in dos Santos Belo et al. (2016), use
an unsupervised method to cluster features extracted from the video, delete similar
frames, and then select the rest of the frames as the keyframes. In fact, they used a
hierarchical clustering method to generate a weight map from the frame similarity
graph in which the clusters can easily be inferred. Another clustering method is
proposed by Otani et al. (2016), in which they use deep video features to encode
various levels of content including objects, actions, and scenes. They extract the
deep features from each segment of the original video and apply a clustering-based
summarization technique on them.

3.2.1 Attention Techniques

Since the neural attention technique is a central piece of the proposed method, we
dedicated this subsection to the prior work in this field.

The fundamental concept of attention mechanism for neural networks was laid
by Bahdanau et al. (2014) for the task of machine translation. This attention is based
on an idea that the neural network can learn how important various samples in
a sequence, or image regions, are with respect to the desired output state. These
importance values are defined as attention weights and are commonly estimated
simultaneously with other model parameters trained for a specific objective. There
are two main distinct attention algorithms, hard and soft.

Hard attention produces a binary attention mask, thus making a ’hard’ decision
on which samples to consider. This technique was successfully used by Xu et al.
(2015) for image caption generation. Hard attention models use stochastic sampling
during the training; consequently, backpropagation cannot be employed due to the
non-differentiable nature of the stochastic processes. A reinforcement learning rule
REINFORCE (Williams, 1992) is regularly used to train such models. This task is
similar to learning an attention policy introduced by Mnih et al. (2014).

In this work we exclusively focus on soft attention. In contrast to the hard atten-
tion, soft attention generates weights as true probabilities. These weights are calcu-
lated in a deterministic fashion using a process that is differentiable. This means that
we can use backpropagation and train the entire model end-to-end. Along with the
LSTM, soft attention is currently employed in the majority of sequence to sequence
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models used in machine translation (Luong et al., 2015), image/video caption gen-
eration (Xu et al., 2015), (Yao et al., 2015), addressing neural memory (Graves et al.,
2016) and other. Soft attention weights are usually calculated as a function of the
input features and the current encoder or decoder state. The attention is global if at
each step t all input features are considered or local where the attention has access
to only limited number of local neighbours.

If the attention model does not consider the decoder state, the model is called
self-attention or intra-attention. In this case the attention reflects the relation of an
input sample t with respect to other input samples given the optimization objective.
Self-attention models were successfully used in tasks such as reading comprehen-
sion, summarization and in general for task-independent sequence representations
(Cheng et al., 2016, Parikh et al., 2016, Lin et al., 2017). The self-attention is easy and
fast to calculate with matrix multiplication in a single pass for entire sequence since
at each step we do not need the result of past state.

3.2.2 Current State-of-the-Art, its Limitations and Promising Research Di-
rections

In summary, in the field of supervised key-shot video summarization, the currently
best performing method is M-AVS Ji et al. (2017) utilizing the bi-directional LSTM
encoder-decoder architecture. This method is derived from the LSTM encoder-decoder
with attention for natural language processing (Luong et al., 2015). Rather than
translating word tokens from one language to another, in the video summarization
domain, the LSTM encoder-decoder translates video frame features to frame impor-
tance scores.

In general, the major limiting factor in video summarization is the lack of large
annotated datasets. Equally, the annotation quality in the current, established datasets
imposes severe constraints on the summary accuracy due to diverse labeling proto-
cols and annotation formats used. Moreover, these datasets are entirely missing
context-specific summary labels. The video summarization problem is a highly per-
ceptual and context-dependent task; people tend to produce and expect to receive
different summaries based on, for example, their domain interest (e.g., general pub-
lic vs. experts) or context focus (e.g., ethical, political, or domain-specific). Another
drawback of current methods is their high demand for memory and computational
resources for training as well as inference. However, this issue is not specific to video
summarization - it affects the entire field of methods for video processing.

Video summarization is inherently a sequence to sequence transformation that
would preferably digest the entire or a significant part of the video content and then
label contextually significant segments. Therefore, the most promising research di-
rection in this domain appears to be an application of high capacity encoder-decoder
models such as the recently proposed family of Transformer architectures (Khan
et al., 2021). The Transformer based methods GPT (Cohen and Gokaslan, 2020,
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Brown et al., 2020) noticeably pushed the boundaries in natural language process-
ing (NLP), which may be expected to happen in the video summarization, too, due
to the similar nature of these domains. However, the Transformer requires signif-
icantly larger datasets than are currently available for video summarization. This
holds good not only for the Transformers but also for deep network architectures
that can be currently considered only for the video frames extraction but not for
the summarization. Another approach likely to advance video summarization ap-
pears to be unsupervised features learning for temporal domain (Behrmann et al.,
2021) and video frames prediction (Villegas et al., 2019). These approaches have
not been well explored in this domain yet, however there are indicators about their
benefits. Video content prediction is yet another technique applicable to video sum-
marization. The ability to accurately predict other frames from a given video frame
indicates that this frame has a high importance score thus should be included in the
produced video summary. To that point, the high predictability or high associative
property of frames within the episodic memories produced by our brain has also
been reported (Ezzyat and Davachi, 2011). This approach could open up new direc-
tions for unsupervised video summarization, mitigating the lack of large annotated
datasets in this domain.

3.3 Model Architecture

Research of the neuroscientific literature has not brought a significant insight or in-
spiration directly applicable to the video summarization problem. Perhaps the most
insightful study was on the high intra-associative properties of frames within an
episodic segment described by Ezzyat and Davachi (2011). This study reinforced
our idea to propose a model that would learn relationships (relevance scores, or at-
tention weights) among local video frames and then, considering these relations,
learn the summarization importance score for each frame.

Common approach to supervised video summarization and other sequence to
sequence transformations, is an application of a LSTM or GRU encoder-decoder net-
work with attention. Forward LSTM is usually replaced with bi-directional BiLSTM
since keyshots in the summary have relation to future video frames in the sequence.
Unlike the RNN based networks, our method does not need to reach for special
techniques, such as BiLSTM, to achieve non-causal behaviour. The vanilla attention
model has equal access to all past and future inputs. This aperture can be, however,
easily modified and it can even be asymmetric, dilated, or exclude the current time
step t.

The hidden state passed from encoder to decoder has always fixed length, how-
ever, it needs to encode information representing sequences with variable lengths.
This means that there is a higher information loss for longer sequences. The pro-
posed attention mechanism does not suffer from such loss since it accesses the input
sequence directly without an intermediate embedding.
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Architecture proposed in this work replaces entirely the LSTM encoder-decoder
network with the soft, self-attention and a two layer, fully connected network for
regression of the frame importance score. Our model takes an input sequence X =

(x0, . . . , xN), x ∈ RD and produces an output sequence Y = (y0, . . . , yN), y =

[0, 1), both of length N. The input is a sequences of CNN feature vectors with di-
mensions D, extracted for each video frame. Figure 3.3 shows the entire network in
detail.
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FIGURE 3.3: Diagram of VASNet network attending sample xt.

Unnormalized self-attention weight et,i is calculated as an alignment between
input feature xt and the entire input sequence according to Luong et al. (2015).

et,i = s[(Uxi)
T(V xt)] t = [0, N), i = [0, N) (3.1)

Here, N is the number of video frames, U and V are network weight matrices es-
timated together with other parameters of the network during optimization and s
is a scale parameter that reduces values of the dot product between Uxi and V xt.
We set the scale s to value 0.06, determined experimentally. Impact of the scale on
the model performance was, however, minimal. Alternatively, the attention vector
could be also realized by an additive function as shown by Bahdanau et al. (2014).

et,i = M tanh(Uxi + V xt) (3.2)

where M are additional network weights learned during training. Both formulas
have shown similar performance, however, the multiplicative attention is easier to
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parallelise since it can be entirely implemented as a matrix multiplication which
can be highly optimized. The attention vector et is then converted to the attention
weights αt with softmax.

αt,i =
exp(et,i)

∑N
k=1 exp(et,k)

(3.3)

The attention weights αt are true probabilities representing the importance of input
features with respect to the desired frame level score at the time t. Linear transfor-
mation C is then applied to each input and the results then weighted with attention
vector αt and averaged. The output is a context vector ct which is used for the final
frame score regression.

bi = Cxi (3.4)

ct =
N

∑
i=1

αt,ibi ct ∈ RD (3.5)

The context vector ct is then projected by a single layer, fully connected network with
linear activation and residual sum followed by dropout and layer normalization.

kt = norm(dropout(Wct + xt)) (3.6)

The C and W are network weight matrices learned during the network training. To
regularize the network we also add a dropout for attention weights as shown in
Figure 3.3. We found it to be beneficial, especially for small training datasets such as
in the canonical setting for TvSum (40 videos) and SumMe (20 videos).

By design, the attention network discards the temporal order in the sequence.
This is due to the fact that the context vector ct is calculated as a weighted average
of input features without any order information. The order of the output sequence
is still preserved. The positional order for the frame score prediction is not impor-
tant in the video summarization task, as has been shown in the past work utilizing
clustering techniques that also discard the input frame order. For other tasks, such
as machine translation or captioning, the order is essential. In these cases every pre-
diction at time t, including attention weights, could be conditioned on state at t− 1.
Alternatively, a positional encoding could be injected to the input as proposed by
Vaswani et al. (2017) and Gehring et al. (2017).

Finally, a two layer neural network performs the frame score regression yt =

m(kt). First layer has a ReLU activation followed by dropout and layer normaliza-
tion (Ba et al., 2016), while the second layer has a single hidden unit with sigmoid
activation.

3.3.1 Contributions to the Field of Neural Architectures

In summary, our method builds on standard CNN methods for features extrac-
tion, on the recently proposed idea of self-attention in the Transformer architecture
Vaswani et al. (2017), and typical neural network methods such as dropout and `2
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weights regularization, batch normalization, tanh, sigmoid and rectified linear unit
(ReLU) activations and SGD optimization methods. Our key contributions to the
field of neural architectures are:

• Simplified soft self-attention network for sequences of CNN features. The key
difference from the Transformer model is that our network uses only a single
attention head combined with dropout regularization, with the attention being
applied between fixed input-output pairs; therefore, unlike the Transformer, it
does not require positional encoding.

• A regression neural network to generate the frame importance score trained in
an end-to-end fashion with the self-attention layer.

3.3.2 Frame Scores to Keyshot Summaries

The model outputs frame-level scores that are then converted to keyshots. Follow-
ing Zhang et al. (2016), this is done in two steps. First, we detect scene change points
where each represents a potential keyshot segment. Second, we select a subset of
these keyshots by maximizing the total frame score within these keyshots while con-
straining the total summary length to 15% of the original video length as per Gygli
et al. (2014). The scene change points are detected by Kernel Temporal Segmentation
(KTS) method (Potapov et al., 2014) as shown in Figure 3.4. For each detected shot
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FIGURE 3.4: Temporal segmentation with KTS.

i ∈ K we calculate score si.

si =
1
li

li

∑
a=1

yi,a (3.7)

where yi,a is score of a-th frame within shot i and li is the length of i-th shot. Keyshots
are then selected with the Knapsack algorithm Eq. 3.8 according to Song et al. (2015).

max
K

∑
i=1

uisi, s. t.
K

∑
i=1

uili ≤ L, ui ∈ 0, 1 (3.8)

Keyshots with ui = 1 are then concatenated to produce the final video summary. For
evaluation we create a binary summary vector where each frame in shot (ui = 1) is
set to one.
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TABLE 3.1: Overview of the TvSum and SumMe properties.

Video length (sec)

Dataset Videos
User
annotations

Annotation
type

Min Max Avg

SumMe 25 15-18 keyshots 32 324 146

TvSum 50 20
frame-level
importance scores

83 647 235

OVP 50 5 keyframes 46 209 98
YouTube 39 5 keyframes 9 572 196

3.3.3 Model Training

To train our model we use the ADAM optimizer (Kingma and Ba, 2015) with learn-
ing rate 5 · 10−5 This low learning rate is used as a result of having a batch with
single sample, where the sample is an entire video sequence. We use 50% dropout
and L2 = 10−5 regularization. Training is done over 200 epochs. Model with the
highest validation F-score is then selected.

All model hyperparameters, including the number of hidden layers, their sizes,
and regularization parameters, were selected experimentally during training and
evaluation on the training and evaluation datasets.

3.3.4 Computation Complexity

As reported by Vaswani et al. (2017) the self-attention requires a constant number
of operations at each step for all input features N, each of size D. The complexity
is thus O(N2D). The recurrent layer, on the other hand, requires O(N) sequential
operations, each of complexity O(ND2). Self-attention needs less computation when
the sequence length N is shorter than the feature size D. For longer videos, a local
attention would be used rather then the global one.

3.4 Evaluation

3.4.1 Datasets Overview

In order to directly compare our method with previous work we conducted all ex-
periments on four datasets, TvSum (Song et al., 2015), SumMe (Gygli et al., 2014),
OVP (De Avila et al., 2011) and YouTube (De Avila et al., 2011). OVP and YouTube
were used only to augment the training dataset. TvSum and SumMe are currently
the only datasets suitably labeled for keyshots video summarization, albeit still small
for training deep models. Table 3.1 provides an overview of the main datasets prop-
erties.

The TvSum dataset is annotated by frame-level importance scores, while the
SumMe with binary keyshot summaries. OVP and YouTube are annotated with
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keyframes and need to be converted to the frame-level scores and binary keyshot
summaries, following the protocol discussed in the following section 3.4.2.

3.4.2 Ground Truth Preparation

The proposed model is trained using frame-level scores, while the evaluation is per-
formed with the binary keyshot summaries. The SumMe dataset comes with keyshot
annotations, as well as frame-level scores calculated as an average of the keyshot
user summaries per frame. In the case of TvSum we convert the frame-level scores
to keyshots following the protocol described in section 3.3.2. Keyframe annotations
in OVP and YouTube are converted to frame-level scores by temporarily segmenting
the video into shots with KTS and then selecting shots that contain the keyframes.
Knapsack is then used to constrain the total summary length, however in this case
the keyshot score si (Eq. 3.8) is calculated as a ratio of number of keyframes within
the keyshot and the keyshot length.

For objective comparison, we adopt identical training and testing ground truth
data as used by Zhang et al. (2016), Zhou et al. (2018) and Mahasseni et al. (2017).
This represents CNN embeddings, scene change points, and generated frame-level
scores and keyshot labels for all datasets. The preprocessed data were made pub-
licly available by Zhou et al. (2018) 1 and Zhang et al. (2016) 2. CNN embeddings
used in this preprocessed dataset have 1024 dimensions and were extracted from the
pool5 layer of the GoogLeNet network (Szegedy et al., 2015) trained on ImageNet
(Russakovsky et al., 2015).

We use a 5-fold cross validation for both, canonical and augmented settings as
suggested by Zhang et al. (2016). In the canonical setting, we generate 5 random
train/test splits for the TvSum and SumMe datasets individually. 80% samples are
used for training and the rest for testing. In the augmented setting we also maintain
the 5-fold cross validation with the 80/20 train/test, but add the other datasets to the
training split. For example, to train the SumMe in the augmented setting we take all
samples from TvSum, OVP and YouTube and 80% of the SumMe as the training
dataset and the remaining 20% for evaluation.

3.4.3 Evaluation Protocol

For a fair comparison with the state of the art, we follow evaluation protocol from
Zhang et al. (2016), Zhou et al. (2018) and Mahasseni et al. (2017). To asses the sim-
ilarity between the machine and user summaries we use the harmonic mean of pre-
cision and recall expressed as the F-score in percentages.

F = 2× precision× recall
precision + recall

× 100 (3.9)

1http://www.eecs.qmul.ac.uk/~kz303/vsumm-reinforce/datasets.tar.gz
2https://www.dropbox.com/s/ynl4jsa2mxohs16/data.zip?dl=0

http://www.eecs.qmul.ac.uk/~kz303/vsumm-reinforce/datasets.tar.gz
https://www.dropbox.com/s/ynl4jsa2mxohs16/data.zip?dl=0
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True and false positives and false negatives for the F-score are calculated per-frame
as the overlap between the ground truth and machine summaries, as shown in Fig-
ure 3.5.

User Summary

Machine Summary

True positive
False negatives

False positiveFalse positive

FIGURE 3.5: True positives, False positives and False negatives are calculated per-
frame between the ground truth and machine binary keyshot summaries.

Following Gygli et al. (2014), the machine summary is limited to 15% of the orig-
inal video length and then evaluated against multiple user summaries according to
Zhang et al. (2016). Precisely, on the TvSum benchmark, for each video, the F-score
is calculated as an average between the machine summary and each of the user sum-
maries as suggested by Song et al. (2015). Average F-score over videos in the dataset
is then reported. On the SumMe benchmark, for each video, a user summary most
similar to the machine summary is selected. This approach is proposed by Gygli
et al. (2015) and also used in the work of Lin and Chin-Yew (Lin, 2004).

3.5 Experiments and Results

Results of the VASNet evaluation on TvSum and SumMe datasets, compared with
the most recent state of the art methods are presented in Table 3.3. To illustrate

TABLE 3.2: Average pairwise F-scores calculated among user summaries and be-
tween ground truth (GT) and users summaries.

Pairwise F score

Dataset
Among users
annotations

Training GT w.r.t.
users annotations
(human performance)

SumMe 31.1 64.2
TvSum 53.8 63.7

how well the methods learned from the user annotations we show a human per-
formance, which is calculated as pairwise F-scores between the ground truth and all
user summaries. In Table 3.2 we also compare the human performance with F-scores
calculated among the user summaries themselves.

We can see that the human performance is higher than the F-score among the
user summaries which is likely caused by the fact that the training ground truth is
calculated as an average of all user summaries and then converted to the keyshots,
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TABLE 3.3: Comparison of our method VASNet with the state of the art methods
for canonical and augmented settings. For a reference we add human performance
measured as pairwise F-score between training ground truth and user summaries.

SumMe TvSum
Method Canonical Augmented Canonical Augmented

dppLSTM (Zhang et al., 2016) 38.6 42.9 54.7 59.6
M-AVS (Ji et al., 2017) 44.4 46.1 61.0 61.8

DR-DSNsup (Zhou et al., 2018) 42.1 43.9 58.1 59.8
SUM-GANsup (Mahasseni et al., 2017) 41.7 43.6 56.3 61.2

SASUMsup (Wei et al., 2018) 45.3 - 58.2 -
Human 64.2 - 63.7 -

VASNet (ours) 49.71 51.09 61.42 62.37

which are aligned on the scene change-points. These keyshots are likely to be longer
than the discrete user summaries, thus having higher mutual overlap. The pair-
wise F-score 53.8 for TvSum dataset is higher than the F-score 36 as reported by the
TvSum authors (Song et al., 2015). This is because we convert each user summary
to keyshots with KTS and limit the duration to 15% of the video length and then
calculate the pairwise F-scores. The TvSum authors calculate the F-score from gold
standard labels, that is, from keyshots of length 2 seconds, a length used by users dur-
ing the frame-level score annotation. We chose to follow the former procedure which
is maintained in all evaluations in this work to make the results directly comparable.

In Table 3.3 we can see that our method outperforms all previous work in both
canonical and augmented settings. On the TvSum benchmark the improvement is
by 0.7% and 1% in the canonical and augmented settings respectively and 2% lower
than the human performance. On the SumMe this is 12% and 11% in the canonical
and augmented settings respectively and 21% below the human performance. In
Figure 3.6 we show this improvements visually.
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FIGURE 3.6: VASNet performance gain compared to the state-of-the-art and human
performance.

The higher performance gain on the SumMe dataset is very likely caused by the
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fact that our attention model can extract more information from the ground truth
compared to the TvSum, where most methods already closely approach the human
performance. It is conceivable to assume that the small gain on the TvSum is caused
by the negative effect of the global attention on long sequences. TvSum videos are
comparatively longer than the SumMe as seen in Table 3.1. At every prediction step
the global attention ’looks’ at all video frames. For long video sequences frames from
temporally distant scenes are likely less relevant than the local ones, but the global
attention still needs to explore them. We believe that this increases variance in the at-
tention weights, which negatively impacts the prediction accuracy. We hypothesize
that this could be mitigated by the introduction of local attention.

3.5.1 Correlation with Ground Truth

To show correlation between the machine summaries produced by our method and
the ground truth, we plot the ground truth and predicted scores for two videos
from TvSum in Figure 3.7. For a direct comparison with prior work we selected
videos 10 and 11 as they are used in Zhou et al. (2018). We can see a clear correla-
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FIGURE 3.7: Correlation between ground truth and machine summaries produced
by VASNet for test videos 10 and 11 from TvSum dataset, also evaluated in Zhou

et al. (2018).
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tion between the ground truth and machine summary, confirming the quality of our
method. Original videos and their summaries are available on YouTube. 3

We also compare the final, binary keyshot summary with the ground truth. In
Figure 3.8 we show machine generated keyshots in light blue color over the ground
truth importance scores shown in gray. We can see that the selected keyshots align
with most of the peaks in the ground truth and that they cover the entire length of
the video.

FIGURE 3.8: Ground truth frame scores (gray), machine summary (blue) and corre-
sponding keyframes for test video 7 from TvSum dataset. video was also evaluated

by Zhou et al. (2018).

The confusion matrix in Figure 3.9 shows attention weights produced during
evaluation of TvSum video 7. We can see that the attention strongly focuses on
frames either correlated with low frame scores (top and bottom image in Figure
3.9, attention weights for frames ∼80 and ∼190) or high scores (second and third
image, frames ∼95 and ∼150). It is conceivable to assume that the network learns to
associate every video frame with other frames of similar score levels.

Another interesting observation to make is that the transitions between the high
and low attention weights in the confusion matrix highly correlate with the scene
change points, shown as green and red horizontal and vertical lines. It is important
to note that the change points, detected with KTS algorithm, were not provided
to the model during learning or inference, nor were used to process the training
GT. Thus, we believe that this model could be also applied to scene segmentation,
removing the need for the KTS post-processing step. We will explore this possibility
in our future work.

3.6 Conclusion

This chapter proposed a novel deep neural network for keyshot video summariza-
tion based on standalone soft self-attention. This network performs a sequence to
sequence transformation without recurrent networks such as LSTM based encoder-
decoder models. The self-attention function learns mutual relations of frames in the

3https://www.youtube.com/playlist?list=PLEdpjt8KmmQMfQEat4HvuIxORwiO9q9DB

https://www.youtube.com/playlist?list=PLEdpjt8KmmQMfQEat4HvuIxORwiO9q9DB
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FIGURE 3.9: Confusion matrix of attention weights for TvSum video 7, test split
2. Green plot at the bottom shows the GT frame scores. Green and red horizontal
and vertical lines show scene change points. Values were normalized to range 0-1

across the matrix. Frames are sub-sampled to 2fps.

video sequence as a function of the importance score of each frame. We show that
on the supervised, keyshot video summarization task, our model outperforms the
existing state-of-the-art methods on the TvSum and SumMe benchmarks. Given the
simplicity of our model, it is easier to implement and less resource-demanding to
run than LSTM encoder-decoder based methods (see Section 3.3.4), making it suit-
able for applications on embedded or low-power platforms.

The proposed model is based on a single, global, self-attention layer followed
by two, fully connected network layers. We intentionally designed and tested the
simplest architecture with global attention without positional encoding to establish
a baseline method for this type of architecture. Limiting the aperture of the atten-
tion to a local region, introducing strictly causal attention (only past samples can
be considered), or adding the positional encoding are simple modifications likely to
further improve the performance.

Perhaps the biggest drawback of our method is the processing of all video frames
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in a single batch. As mentioned earlier, limiting the attention aperture to local frames
(either symmetric or process only already seen samples) would fully address this
limitation. Another limitation of the VASNet method is its dependency on the ex-
ternal kernel temporal segmentation (KTS) and knapsack algorithms. This is not
unique to our method but rather a common approach taken by most recent work,
including the state-of-the-art method M-AVS Ji et al. (2017). Our method, however,
appears to have the potential to mitigate this shortcoming, which we discuss in the
Future Work Section 3.6.1.

Our contributions are:

• Proposed novel method for a sequence to sequence transformation for video
summarization based on soft, self-attention mechanism. In contrast, the cur-
rent state-of-the-art algorithms rely on complex LSTM/GRU encoder-decoder
methods (as defined in Sections 1 and 3.3.4).

• Demonstration of the suitability of the proposed method to replace recurrent
networks on the video summarization tasks.

The complete PyTorch 0.4 source code to train and evaluate our model, as well
as trained weights to reproduce results in this paper, is publicly available on https:

//github.com/ok1zjf/VASNet.

3.6.1 Future Work

This work opened more research opportunities than expected. The VASNet method
processes all frames simultaneously in a single batch, limiting the source video length.
As follow-up work, we propose to add a limit for the number of past and future
video frames included in the attention matrix with respect to the current frame. The
attention would still be calculated for each video frame. We plan to evaluate two pri-
mary configurations: the limits admitting only past frames and the limits centered
around the current frame.

To eliminate the need for the Kernel Temporal Segmentation (KTS) algorithm,
we propose to leverage the sharp transitions in the attention matrix occurring be-
tween sets of frames with diverse internal content consistency. A comparison of
these changes with the scene change points produced by KTS (green color) can be
seen in Figure 3.9.

The VASNet evaluation presented in this chapter was conducted according to an
established protocol followed by the majority of recent work. This included adopt-
ing CNN features for the video frame of the used datasets. These features were
produced by the GoogLeNet network (Szegedy et al., 2015) trained on ImageNet
(Russakovsky et al., 2015). Many modern CNN architectures have since superseded
this model with higher performance in all ML domains (ResNet 152 top 1 accuracy
on ImageNet 81.6% vs. GoogLeNet 66.5%). In light of this advancement, it would
be valuable to evaluate the VASNet and the other benchmarked methods with CNN

https://github.com/ok1zjf/VASNet
https://github.com/ok1zjf/VASNet
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features produced by a high-performance CNN model.
Along similar lines, we are considering further improving the performance of

the CNN features by utilizing recent deep architectures for self-supervised repre-
sentation learning (Grill et al., 2020, Chen and He, 2020, Caron et al., 2020). trained
on very large datasets such as the Tencent ML-Images (Wu et al., 2019a) containing
17M images.

We believe that a good indicator of the importance score of the current video
frame is the level with which other frames can be predicted from its content. Meth-
ods for video frame prediction (Villegas et al., 2019) could be used to learn and then
measure the prediction error as an additional input to the frame importance score
regression model.

While significantly diverging from the presented VASNet method, we believe
that another promising future work direction would be an application of the Trans-
former method (Vaswani et al., 2017, Khan et al., 2021) to video summarization. The
transformer would be applied to CNN features rather than the pixel space in this
method. The summarization would then be conducted in two passes over the en-
tire video length. First, the transformer learns its internal attention states over the
full video sequence. Then, the model generates the key-frame summarization in the
second pass. This type of few-shots learning, referred to as "in-context learning",
has been recently proposed and successfully implemented and deployed in NLP by
Brown et al. (2020).
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Chapter 4

Learning Latent Discrete
Representations

In this chapter, we study the feasibility of modeling and learning discrete latent rep-
resentations with an unsupervised training method on datasets of images. Equally,
we investigate methods enabling operations in the discrete latent space, such as sam-
pling novel images, interpolating and modifying existing data sample attributes.

We mainly focus on learning binary latent representations since they appear to
be attractive for many applications, for example the realization of an encoder for
sparse distributed representations for methods such as the Hierarchical Temporal
Memory (HTM) (Hawkins and Ahmad, 2016), modeling neurobiological processes
(Bethge and Berens, 2008), data compression, memory addressing (Rae et al., 2016),
for gating (hard attention)(Xu et al., 2015) or general representation learning (Ben-
gio et al., 2012, 2013a). Binary features also have great potential in applications to
energy-based memory models such as Hopfield networks (Hopfield, 1982) or Sparse
Distributed Memory (SDM) (Kanerva, 1988).

In the search for better representation encoding for artificial neural network (ANN),
we first looked at the elementary activation mechanism performed by the biological
neuron and its encoding. Then, we explored encoding schemas for populations of
neurons that can be loosely equated to the layer activations in ANN.

This chapter is structured as follows: First, in Section 4.1, we outline basic neu-
rological data processing steps from neurons to the neural codes and then, in the
subsections, detail the elementary activation function of the biological neuron, rate
and temporal coding and also compare its computational power with the artificial
neuron. Review of the neuroscientific work closes with two subsections describing
the sparse and convolutional coding. In Section 4.2, we lay out the proposition be-
hind our method. Related work in Section 4.3 is followed by Section 4.4, where we
formalize our method for learning Bernoulli latent representations and describe the
operations in latent space. Conducted experiments and results are presented in Sec-
tion 4.5. In Sections 4.6 and 4.7, we explore similarities of our method with the Vector
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Quantised-Variational Autoencoder (VQ-VAE) and then extend our view on the la-
tent space as a space of discrete embeddings implicitly learned in a dictionary. The
network diagram of our model in Section 4.8, followed by a conclusion in Section
4.9, ends this chapter.

4.1 Neural Processing Pathway

Data processing, whether in humans or machines, undertakes several phases. In
a very simplistic view, for learning agents, it is the projection of sensory data to la-
tent representations, binding with other sensory data and auto or hetero associations
with already retained knowledge and consolidation in memory. For agents interact-
ing with their environment, then also a motor output. In this work, we focus exclu-
sively on the process of passive knowledge formation and accumulation for vision
tasks. That is, we use snapshots of the environment for training and performance
evaluation. We do not require the agent to interact with its environment.

Sensory input is first transformed from the raw sensory data, such as light inten-
sities or audio signal frequencies, into an internal representation. For vision tasks,
this would entail a transformation of the light intensities from the retina or a ma-
chine camera to representations expressing the presence and motion of edges and
simple textures (Hubel and Wiesel, 1962). The nature of these features is learned
during the early development stages in the primary visual cortex. These representa-
tions are believed to stabilize over the pruning period where the number of synaptic
connections dramatically drop (Blakemore and Cooper, 1970) and then stay mostly
fixed over the lifetime.

The neural coding in the primate visual cortex is distributed, sparse but highly
dimensional, with strong signatures of minimum entropy encoding (Barlow et al.,
1961, 1989, Olshausen and Field, 1996). This is not surprising, considering that
functions of the vast majority of biological forms gravitate towards energy mini-
mization, such as non-exercised muscles shrinking and synaptic connections with-
out reinforcements weakening. Similarly, a population of neurons activated upon
a perception of common events is reduced, leading to lower energy consumption.
In particular, empirically observed cases, the neural activity is reduced to just a few
active neurons known as concept neurons or grandmother neurons (Barlow, 1972,
Quiroga, 2012). The function of procedural memory could also be attributed to en-
ergy minimization, where the more demanding, cognitive tasks, initially solved in
the working memory, are transferred to the subconscious, implicit memory. Pro-
cedural memory does not require interaction with higher cognitive layers, which
leads to lower neural activity and, consequently, lower energy consumption and
faster response time. Finally, the data are associated with other sensory inputs, such
as vision with somatosensory data, and then with the prior knowledge recalled from
memory (Quiroga, 2016). The completed patterns of new experiences are retained in
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FIGURE 4.1: A simplified, bottom-up overview of the elementary neural codings.

short-term memory or trigger a behavioral response which can be an implicit action
recalled from the procedural memory.

Neural coding is a central pillar of brain function, as is the feature encoding in
the machine learning domain. There are many machine learning methods ranging
from basic such as K-means or Gaussian Mixture Models (GMM) to deep learning
methods that stay and fall with the encoding quality of the feature representations.

We will now review a number of neurological concepts relating to the Action
Potential (AP), Spike Train, and Population Coding, as shown in Figure 4.1.

4.1.1 Biological and Artificial Neurons

While artificial neurons were inspired by their biological counterparts, they funda-
mentally differ in a number of ways. The role of a neuron is to receive, process, and
transform information. Here, the most notable contrast between the artificial and
biological neurons is that the former operates with continuous input and output,
whereas the latter with trains of spikes. The spike, typically called Action Potential
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FIGURE 4.2: Action Potential (spike) travels down the axon to the axon terminals
where it signals to other neurons over synaptic connections. Based on data from

Toledo-Rodriguez et al. (2004).

(AP), is a narrow, approximately 1ms wide, uniform electrical pulse about 80mV,
generated by neuron on its axon when the membrane potential (electrical gradient
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between the interior and exterior of the biological cell) reaches a threshold value. An
example of the spike is pictured in Figure 4.2.

The AP propagates down the axon and via synaptic connections to dendrites of
postsynaptic neurons, where it triggers postsynaptic current. The current, carried
by the dendrites, boosts or inhibits the Excitatory Postsynaptic Potential (EPSP).
Contribution from all dendrites (spatial) and within a time window (temporal) is
integrated. When the EPSP is reached, the cell generates AP. The absence of the
postsynaptic current causes rapid decay of the EPSP.

The APs are combined into spike trains encoded either by rate coding (frequency
coding) or spike time coding (temporal) (Perkel and Bullock, 1968). Durations of the
stimulus and response are typically comparable, although some neurons generate a
sustained response to a short stimulus (Robinson, 2015). An example of spike trains
produced by the visual cortex as a response to visual stimuli is shown in Figure 4.3.
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FIGURE 4.3: 4 seconds long spike trains from 30 neurons from a macake monkey
cortex. These trains are responses to horizontal bars moving up and down in the
monkey’s visual field (shown at the bottom). Based on data from Kruger and Aiple

(1988).

Historically, it has been assumed that the rate codes are the primary information
carriers (Borst and Theunissen, 1999, Rolls and Treves, 2011). For example, it has
been shown that a muscle contraction is solely proportional to the neural firing rate.
This has been a convincing argument supporting the rate-coding-only hypothesis,
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however, it may be a specific case of communication in the motor system. It has been
argued recently that the rate coding may be too simplistic and that there is likely
information encoded in the precise spike timing (Stein et al., 2005, Brette, 2015).

With respect to our work, we are interested in whether the biological neurons op-
erate mainly in a continuous or discrete domain. Internally, the neuron is typically
characterized as a thresholded, analog integrate-and-fire model. The thresholded
EPSP indicates a discrete nature of the AP on the neuron’s output (Hodgkin and
Huxley, 1952). On its input, the postsynaptic neuron also receives binary APs; nev-
ertheless, a spike train on the input could still be interpreted as a continuous value
over a time window.

4.1.2 Sparse Distributed Representation

A sensory stimulus activates a number of neurons that, in the response, fire spike
trains (Figure 4.3). This activity is distributed across a wide population of neurons
that manifest considerable signs of sparsity in both the temporal activations (0.5% to
2%) and connectivity (1% to 10%) (Willmore and Tolhurst, 2001, Attwell and Laugh-
lin, 2001, Lennie, 2003). The Sparse Distributed Representation (SDR) appears to
be the primary encoding across the majority of brain regions, ranging from sensory
inputs (Olshausen and Field, 2004, Hromádka et al., 2008, Weliky et al., 2003) to the
neocortex (Barth and Poulet, 2012, Hulme et al., 2014, Foldiak, 2003), pre-motor areas
(Graziano et al., 2002), and the primary motor system (Graziano and Aflalo, 2007).
As expected, the encoding abstraction from the sensory input and the observed mo-
tor activity increases the deeper to the neocortex we move (Kiani et al., 2007).

SDR has been shown to be very robust to noise and also energy efficient, partic-
ularly with the minimum entropy coding (Olshausen and Field, 1996, Attwell and
Laughlin, 2001, Marr, 1969). From the computational standpoint, the SDR has been
a cornerstone of many methods (Kanerva, 1988, Golomb et al., 1990, Hawkins et al.,
2019) precisely due to its robustness to the noise and a solid mathematical frame-
work that validates these properties. In this work, we do not directly target the
sparsity, however, we do design our method as such it can be easily enabled. In
Section 4.4.4, we propose a regularization method to enforce it.

4.1.3 Correlation Coding

As information in the digital domain is expressed by bits, bytes, words, vectors of
words, tensors, and higher data structures, in the brain, this would correspond to
Action Potential (AP), spike trains, rate and temporal coding, and then population
coding. We look at the population coding as a form of latent neural representation.
There are several hypothesized neural coding schemas (Averbeck et al., 2006, Panzeri
et al., 2015). Our work draws main inspiration from the correlation coding due to its
resiliency to noise and computational efficiency The correlation coding also allows a
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relatively straightforward parametrization of the underlying data space distribution
by the maximum entropy model.

Substantial evidence of the correlation coding has been demonstrated by Schnei-
dman et al. (2006). Over many experiments, the researchers documented that even
weak, pairwise correlations of the retinal ganglion cells (RGC) in the vertebrate
retina could explain 90% of the network interactions. These results were achieved
with a pairwise (second-order) maximum entropy model, further indicating that
higher interaction orders, necessary to express problems of the XOR complexity and
higher, would perform better. The authors used the maximum entropy model to
verify that, indeed, the second-order model was sufficient to express the recorded
neural code. An example of correlated neural activations and comparison with their
simulation by the maximum entropy model is shown in Figure 4.4. Shlens et al.
(2006) improved on the Schneidman et al. (2006) experimental methodology, report-
ing a substantially higher proportion of the network interactions (98%-99%) that the
correlation coding could explain.

b

FIGURE 4.4: (a) A segment of the simultaneous responses of 40 retinal ganglion
cells in the salamander to a natural movie clip. Each dot represents the time of
an action potential. (b) Rate of occurrence of each firing pattern of cells from the
green box in a, predicted by the maximum entropy model P2 is plotted against the

measured rate. Sourced with permission from Schneidman et al. (2006).

Ruda et al. (2020), building on similar work by Franke et al. (2016), investigated
the impact of correlated noise on the population coding in RGC of rats under day
and moonlight conditions. This study revealed that ignoring the pairwise interac-
tions during the more noisy moonlight stimuli resulted in significantly less informa-
tion up to the point when a single RGC performed better than the entire population.

Due to the ease of experimental setup, most of the work on correlation coding is
typically conducted on the RGC population. Consequently, the results may not be
entirely applicable to other brain regions such as the cortical neurons, which may ex-
hibit specific interactions, depending on layer and cell type, as shown by Yoshimura
and Callaway (2005). Therefore, while the correlation codding served as important
inspiration in our work, we took it cautiously, merely as a hint rather than a solid
method for replication in ANN.



4.2. Unsupervised Discrete Representations Learning 65

4.2 Unsupervised Discrete Representations Learning

Our insights from the information encoding in the brain, spanning from an individ-
ual neuron to their population, solidified our initial intuition that the latent encoding
should take discrete form. Particularly influential was the work on information rep-
resentation in the brain by Tee and Taylor (2020) that provides theoretical support
for the discrete neural communication in the brain as the only feasible encoding.
Equally, our work on the latent binary representation learning and sampling was
motivated by the neural correlation coding due to its resiliency to noise and rela-
tively straightforward parametrization of the underlying data space distribution by
a pairwise (second-order) correlation model. Furthermore, we are going to lever-
age the unsupervised learning due to the ease of application of our method to any
unlabelled data, with a plethora of publicly available datasets readily available for
training and validation.

There are many machine learning algorithms with a potential to benefit from low
dimensional, highly expressive features, whether for object detection, classification,
reinforcement learning, or as generative models for compression, super-resolution,
or novel sample generation. This direction has been successfully pursued with au-
toencoder models and particularly the Variational Autoencoder (VAE) (Kingma and
Welling, 2014) and its derivatives. Recently, fully deterministic, regularized (Ghosh
et al., 2020) and discrete, VQ-VAE (van den Oord et al., 2017) have been proposed,
demonstrating performance comparable to theirs stochastic counterparts. In this
work, we focus on the deterministic class of autoencoders, learning a discrete la-
tent representation, specifically the multivariate Bernoulli distribution. Our model
is trained with a gradient-based method in end-to-end fashion without enforcing
any prior on the latent space.

Current neural network learning algorithms are almost exclusively based on
very successful gradient-based learning methods. However, the need for the dif-
ferentiability of each layer represents a challenge if one desires to train stochas-
tic neurons or other non-differentiable functions such as quantization. A number
of techniques have been proposed, allowing gradient propagation through such
neurons such as re-parametrization (Kingma and Welling, 2014), surrogate gradi-
ent functions (Bengio et al., 2013b), or continuous relaxation of non-differentiable
nodes (Jang et al., 2017). In our method, we follow the approach behind the straight-
through estimator (Bengio et al., 2013b, Hinton, 2012) due to its conceptually simple
setup.

Sampling from and interpolating in the discrete latent space is equally challeng-
ing. Unlike multimodal, Gaussian, and many other real-valued distributions, the
multivariate Bernoulli distribution concentrates most of the information on the sec-
ond and higher moments, since the marginals are strictly unimodal and entirely
described by the mean p = E[bi], directly giving rise to variance Var[bi] = p(1− p)
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for Bernoulli variable bi at dimension i. This also seems to play a vital role in bio-
logical neurons, where the binary, pairwise correlations provide strikingly accurate
encoding for neuronal firing patterns in the primate retina (Schneidman et al., 2006,
Shlens et al., 2006, Nirenberg and Victor, 2007).

Given that our model learns a distribution with unknown prior, and based on
the aforementioned premise, we propose to parametrize the learned distribution by
its first two moments, also motivated by the cross moment model by Mishra et al.
(2012). These parameters are learned from latents encoded on the training data. To
sample and interpolate in the multivariate Bernoulli latent space, we propose a novel
method based on a random hyperplane rounding technique derived from the MAX-
CUT algorithm (Goemans and Williamson, 1995). Within this work, we abbreviate
the Latent Bernoulli Autoencoder as LBAE.

We evaluate our method on the CelebA and CIFAR-10 datasets and, for com-
pleteness, the MNIST. We show that our method is competitive with the current
state-of-the-art variational and deterministic autoencoders. Our model shows high
performance, particularly on the interpolation task, which is remarkable, consider-
ing we are operating in the discrete latent space. To the best of our knowledge, none
of the existing discrete autoencoders can perform sensible interpolation in the latent
space. For example, a state-of-the-art method VQ-VAE (van den Oord et al., 2017),
does not suggest how to do so, and even explicit methods, as in Berthelot et al. (2019),
admit difficulties in accomplishing this task. Finally, we present a simple method for
attribute modification in the latent space, also showing competitive results.

4.3 Related Work

Unsupervised representation learning has been successfully pursued with autoen-
coder models, particularly the VAE model (Kingma and Welling, 2014) due to its
simplicity and well defined probabilistic framework. VAE unfortunately suffers
from number of issues, most notably producing blurred images (Dumoulin et al.,
2017) and posterior collapse (Razavi et al., 2019a). A number of methods have been
proposed to improve the image quality with reconstruction loss based on percep-
tual similarity in the feature space of an external CNN (Dosovitskiy and Brox, 2016,
Hou et al., 2017) or in its own latent space (Zhang et al., 2019). Success of the Gen-
erative Adversarial Networks (GAN) to learn image distribution motivated appli-
cation of the adversarial training to the latent space distribution in the Adversarial
Autoencoders (AAE) (Makhzani et al., 2016) and its generalization in Wasserstein
Autoencoders (WAE) (Tolstikhin et al., 2018). More recently Dai and Wipf (2019) in-
troduced a 2 stage VAE where the second stage learns the latent space distribution,
in principle, performs a density estimation. From the work of Ghosh et al. (2020)
it is apparent that deterministic autoencoders are competitive with the VAE and its
derivatives, only for the price of ex-post density estimation.
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Most of the methods learn real-valued latent space owning to the established
gradient-based optimizations. VQ-VAE (van den Oord et al., 2017) is perhaps the
first competitive deterministic, autoencoder that learns discrete representations. As
in Ghosh et al. (2020), this method does not impose any prior on the learned latent
distribution, thus it requires some form of external post density estimation. Authors
propose the PixelCNN (Van den Oord et al., 2016), an autoregressive density estima-
tor which learns a categorical prior over the stored latents encoded from the training
dataset.

Learning discrete representations with a gradient-based optimization is not
straightforward. Bengio et al. (2013b) proposed four methods, addressing the learn-
ing through stochastic neurons, most notably the straight-through gradient estima-
tor, originally described by Hinton (2012). The straight-through estimator is also
used in the VQ-VAE model to allow gradient flow over non differentiable, near-
est neighbour operation in the forward pass. Chung et al. (2017) then introduces
a straight-through estimator with the slope annealing extension. Over the training
period, this method gradually reduces the difference between the non-differentiable
function in the forward pass and the surrogate in the backward pass to converge
to the discrete distribution in the limit. This method is somewhat similar to the ST
Gumbel-Softmax (Jang et al., 2017). The Gumbel-Softmax was also applied to the
autoencoder model in JointVAE by Dupont (2018).

4.3.1 Current State-of-the-Art, its Limitations and Promising Research Di-
rections

The current state of the art in the domain of deterministic discrete representation
learning is the VQ-VAE model. To sample from its discrete latent distribution and
generate new samples, an additional autoregressive model, PixelCNN, needs to be
trained on the discrete latent space. This method is not an end-to-end trainable gen-
erative model but rather a composition of two methods: discrete latent space en-
coder and generator, both independently trained.

The core limitations manifested by the current representation learning methods
could be summarized as:

• Learned latent representations have lower utility across diverse domains (clas-
sification, segmentation, image captioning, visual question answering) com-
pared to latents learned with supervision on a specific task.

• Inability to produce disentangled representations. (values of the disentangled
representations are easily interpretable with respect to the content of corre-
sponding images).

• A prior distribution imposed on the latent space during learning, such as the
multivariate Gaussian in the case of VAE (Kingma and Welling, 2014), cannot
sufficiently express the underlying data distribution. Such approaches require
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a compromise between the divergence of the prior and learned distributions
and the reconstruction loss typically (Matthey et al., 2017) leading to high re-
construction error or high divergence from the prior distribution and conse-
quently high generative and interpolation error (high FID score).

• Difficulty to parametrize and sample from an unknown latent distribution
learned by models without a known prior distribution enforced on the latent
space, such as the vanilla autoencoder (AE). Moreover, such methods typically
restrict access to the latent space for operation, such as the attributes modifica-
tion and interpolation.

Recent advancements in non-autoencoding unsupervised learning methods are
likely to pave a path to the future of methods for discrete representation learning.
This is due to the fact that unsupervised methods such as Grill et al. (2020), Chen
and He (2020), Caron et al. (2020), Zbontar et al. (2021) learn representations that
encode semantic information while autoencoding methods tend to develop an inter-
nal encoding sufficient to reconstruct the source data points. These methods would
still need to be coupled to a quantization network to produce the discrete repre-
sentations. Also, an external generator would have to be trained to learn the latent
distribution for sampling. As with the VQ-VAE, these approaches still do not enable
direct operations in the latent space, such as attributes modification and interpola-
tion. This is due to the unknown latent space distribution.
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FIGURE 4.5: For N dimensional latent space the information bottleneck of a typ-
ical autoencoder is in LBAE replaced with tanh() followed by binarization fb() ∈

{−1, 1}N with unit gradient surrogate function fs() for backward pass.

4.4 Bernoulli Latent Space

4.4.1 Learning the Bernoulli Latent Space

The base of our method is a deterministic autoencoder with encoder z = gφ(X),
parametrized by φ, that produces typically real-valued latent representation z for
input X. Decoder X′ = fθ(z), parametrized by θ, attempts to reconstructs X from z.
Our model is trained with a single, common objective functionL(θ, φ) = E[L(X, X′)],
where L is the reconstruction loss function. To discretize an N dimensional latent
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z ∈ RN into the binary range b ∈ {−1, 1}N we threshold z at zero as follows:

bi = fb(zi) =

 1, if zi ≥ 0

−1, otherwise.
(4.1)

We choose to represent the binary values by states {−1, 1} rather than {0, 1} due to
its computational benefits such as zero being the threshold level and b2

i = 1 ∀i. The
latents can be easily converted between these two ranges without loss of informa-
tion.

Since fb() is not differentiable, we define a surrogate differentiable function fs(z) =
z with unit gradient∇z fs = 1 operating in the same domain as fb(); fs() is then used
in the backward pass. During the backpropagation this allows the gradient to flow
through the binarization operation and lets the encoder correct its output in the di-
rection of the binarized quantities read by the decoder. The rounding during the
binarization brings an additional error that is not corrected during the backpropaga-
tion and manifests as noise. This noise can be reduced by lowering the learning rate
but it slows down the training or hinders the convergence altogether. To alleviate
this weakness we add tanh() before the binarization, which limits the gradient flow
from the decoder and minimizes the optimization overshoot during the gradient
descent.

4.4.2 Sampling Correlated Multivariate Bernoulli Latents

Our goal is to implement a generative model of the form

b ∼ p(b), b ∈ {−1, 1}N (4.2)

X ∼ p(X | b; θ), (4.3)

where X is generated image, b an N-dimensional binary latent vector and θ param-
eters of the generator. Unlike VAE, we do not enforce any prior on the latent space
during the training, thus the learned distribution p(b) is unknown. Therefore, to ef-
ficiently sample novel latents we first learn p(b) from the distribution of the training
dataset in the latent space and parametrize it by its first two moments.

The direct way to learn and sample from the correlated Bernoulli distribution
would be to approximate it as a Gaussian distribution with the binarization step. Let
us consider a matrix Y ∈ {−1, 1}(N×K) of K N-dimensional latent vectors encoded
on training data. Given expected value E[Y] ∈ RN and covariance Σ we can sample
latent b from the distribution as:

Σ = E[YYT]−E[Y]E[Y]T (4.4)

z ∼ NN(0, IN) (4.5)

b = fb(Lz+E[Y]), b ∈ {−1, 1}N , (4.6)
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where Σ = LLT is a lower triangular Cholesky decomposition. This approach,
however, does not produce Bernoulli samples with the correct distribution. To mit-
igate this issue, we propose a method inspired by the cross moment model method
(Mishra et al., 2012) and random hyperplane rounding technique for MAX-CUT
(Goemans and Williamson, 1995). In Figure 4.6 we can see that a distribution gener-
ated by the direct binarization (Eq. 4.6) (green) exhibits noticeable error compared
to the ground truth (blue). The red plot shows distribution generated with the pro-
posed random hyperplane method.
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FIGURE 4.6: Ground truth (200bits latents, MNIST train data) and the distribution
sampled with the random hyperplane method appear identical while the direct
rounding method exhibits a clear error. Note the ground truth (blue) is mostly

hidden behind the red.

Our method can be summarized in the following three steps: (1) parametrize dis-
tribution of the training dataset in latent space by first two moments, (2) relax each
latent dimension to an unit vector on a hypersphere with a position corresponding
to its correlation with other dimensions, (3) sample latent b by randomly splitting
the sphere through the centre with a hyperplane normal r and assigning binary state
1 to dimensions corresponding to vectors on one side of the plane and−1 to the rest.

The distribution of Y is parametrized by first moments and second non-central
moments, similar to Mishra et al. 2012, in matrix M as:

M =

[
E[YYT] E[Y]
E[Y]T 1

]
, M ∈ [−1, 1](N+1)×(N+1). (4.7)

For N dimensional latent space we generate N + 1 unit length vectors on sphere
S(N+1). These vectors are organized as rows in matrix

V ∈ R(N+1)×(N+1), ∀i ∈ [1, .., N + 1], ‖Vi‖ = 1, (4.8)

where Vi is an ith row of V. Each vector Vi represents one dimension in the la-
tent space. This is graphically shown in Figure 4.7. We express the covariances M
as probabilities of vectors Vi, Vj pointing in the same or opposite direction. For
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1 -1 -1-1-1 1 …...1 1 1-1 b

FIGURE 4.7: Each dimension in the latent space is represented by an unit vector
on a hypersphere. Pairwise correlations are given by angle between vectors; the

smaller angle the higher correlation between corresponding dimensions.

positive, high covariance between dimensions i and j the angle αi,j between corre-
sponding vectors Vi and Vj will be small and P(Vi, Vj) −→ 1, while for negative
covariance αi,j −→ π with P(Vi, Vj) −→ 0. For non correlated dimensions Vi⊥Vj with
P(Vi, Vj) ≈ 1

2 . Bits of positively correlated dimensions share the same state (-1 or 1)
while negatively correlated take opposite states. We set the probabilities as:

P(Vi, Vj) =
Mi,j + 1

2
, ∀(i, j), P(Vi, Vj) ∈ [0, 1] (4.9)

and express them as a function of the angle αi,j or dot product 〈Vi, Vj〉.

P(Vi, Vj) = 1−
αi,j

π
, ∀(i, j), αi,j ∈ [0, π], (4.10)

= 1−
cos−1(〈Vi, Vj〉)

π
. (4.11)

We define the dot products as Gram matrix

Hi,j = 〈Vi, Vj〉, H ∈ R(N+1)×(N+1) (4.12)

which, as a function of M is

Hi,j = cos
((

1− 1
2
(Mi,j + 1)

)
π

)
(4.13)

= cos
(π

2
(1−Mi,j)

)
. (4.14)

To obtain V we perform a square root of H by lower triangular Cholesky decompo-
sition

H = VVT s.t. H < 0, (4.15)

where V is a row-normal lower triangular matrix with rows being the desired unit
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vectors on S(N+1). The V(N+1) represents the boundary conditions for the first mo-
ments E[Y]. Concretely, it defines the positive hemisphere in S where all vectors
receive positive binary state. In other words, this boundary vector orientates the
hypersphere space according to the marginals E[Y]. Finally, to generate a novel la-
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FIGURE 4.8: New samples are generated by splitting the sphere with a random
plane (green) and assigning positive states to dimensions (red) on the side of the

plane shared by the boundary vector (yellow) and negative to the rest (blue).

tent b we split the sphere S with a random plane through the center and then assign
positive binary states to latent dimensions represented by vectors Vi in one hemi-
sphere and negative to the rest. Vectors sharing hemisphere with V(N+1) (yellow in
Figure 4.8) will receive positive values. For a random hyperplane given by normal
r ∼ N(N+1)(0, I(N+1)) (green in Figure 4.8) we generate the latent b with bits at each
dimension as:

bi =

 1, if fb(〈Vi, r〉) = fb(〈V(N+1), r〉)

−1, otherwise
,

∀i ∈ [1, .., N], r ∈ R(N+1)×1.

(4.16)

In vector form the Eq. 4.16 is then:

b = fr(r) = fb(Vr)−(N+1) fb(V(N+1) r),

b ∈ {−1, 1}N ,
(4.17)

where subscript −(N+1) denotes all but (N + 1) dimension. The expression
fb(〈V(N+1), r〉), and its vectorized form fb(V(N+1) r), returns the boundary decision
bit. If positive, the hyperplane normal r is located in the same hemisphere as the
boundary vector V(N+1). Finally, an image X′ is decoded from the binary latent b as
X′ = fθ(b). The generative process flow is illustrated in Figure 4.9.
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r ∼ 𝓝(N+1)(0, I(N+1))
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FIGURE 4.9: The latent space is parametrized by matrix H. where each dimension
is represented by an unit vector on a hypersphere.

4.4.3 Interpolation in the Bernoulli Latent Space

To interpolate between two images we first generate their latent representations with
the encoder. For each latent we lookup a hyperplane normal responsible for gener-
ating that latent vector according to Section 4.4.2. Intermediate latents are then inter-
polated between endpoints on the S(N+1) sphere with spherical linear interpolation
(SLERP) (Shoemake, 1985). Interpolation from image with latent s and hyperplane
vector rs to image with latent t and hyperplane rt is shown in Figure 4.10.

  Enc.   Latent -> Hyperplane 

  Enc.  Latent -> Hyperplane 
 Dec.

source

target

  Latent <- Hyperplane 

FIGURE 4.10: Spherical interpolation on sphere between source and target images
represented by hyperplane vectors rs and rt.

Let us consider s ∈ {−1, 1}N to be our latent vector for which we desire to find a
hyperplane normal r ∈ R(N+1) that would generate back the latent s as per Eq. 4.16.
Intuitively, one could attempt to find the solution as r = V−1[s, 1] which, indeed,
recovers s back as: s = fr(r)−(N+1), where [s, 1] denotes s concatenated with 1. By
setting the boundary decision bit to positive state [s, 1] we will get a hyperplane
normal in the same hemisphere as the boundary vector V(N+1), consequently this
hemisphere represents positive binary states.

The hyperplane found this way is, however, not suitable for interpolation. In-
terpolating between such hyperplanes produces exact copies of the source latent
until the midpoint where the latent vector instantly flips to the target latent and
stays there until the end of interpolation. In our experiments we found that the



74 Chapter 4. Learning Latent Discrete Representations

source/target flip happens over less than 1/106 degrees step. It appears that the hy-
perplanes found this way are degenerate in some sense. They produce latents very
far from the main distribution manifold. To find the nature of this behaviour is a
subject of ongoing research.

Instead, we found that the most suitable latent-hyperplane inversion can be car-
ried out by placing the hyperplane normal close to the centroids of the positive and
negative vectors in V. First, we get the centroid for all positive vectors in s.

rp = ∑N
i (u(si)Vi)

T , rp ∈ R(N+1)×1, (4.18)

where u(si) = 1
2 (1 + si) changes the range of its argument from {−1, 1} to {0, 1}.

rp is a prototype of the hyperplane normal but it typically does not reproduce s ac-
curately, causing reconstruction error in the pixel space when decoded. To mitigate
this, we propose an iterative process that tilts the normal rp towards the vectors
incorrectly placed behind the hyperplane. The process stops when the Hamming
distance between s and fr(rp) does not decrease, typically within < 4 steps. Simi-
larly, we create a normal for the negative vectors rn = ∑N

i (u(−si)Vi)
T. The target

normal is then:
r =

rp

‖ rp ‖
− rn

‖ rn ‖
. (4.19)

A vector of error bits between s and its reconstruction with hyperplane normal r is
calculated as:

Eb(s, r) = u(− fr(r)� s), (4.20)

where � is the Hadamard product. The Hamming distance d is then:

d =
N

∑
i=0

Eb(s, r)i, d ∈ {0, ..., N}. (4.21)

Algorithm 2 summarizes the process of looking up a hyperplane normal for a given
Bernoulli latent vector and V.
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Algorithm 2 Latent s to hyperplane normal r inversion

1: procedure LATENT_TO_HYPERPLANE(s, V)
2: r = ∑N

i (u(si)Vi)
T . r is a mean vector of rows in V at si = 1 (Eq. 4.18)

3: dbest = N . Start with the maximum Hamming distance for N dimensional vector.)
4: repeat
5: e = Eb(s, r) . Error between s and its reconstruction with hyperplane r (Eq. 4.20)
6: d = ∑N

i ei . Hamming distance
7: if d ≥ dbest then
8: return r . If the distance does not improve, return the hyperplane normal r

9: r = r+∑N
i (ei Vi)

T . Add vectors at the error bits positions
10: r = r / ‖ r ‖
11: dbest = d
12: until True

We then interpolate T normals between source rs and target rt on the hyper-
sphere, and for each generate a latent vector according to Eq. 4.17 and decode it as
an image X′i = fθ(ri).

4.4.4 Enforcing Sparsity by Regularization

Sparsity reaches 50% across the latent dimensions without any regularization as ap-
parent in the Figure 4.6. This is expected since the encoder and decoder try to use
full channel capacity. Enforcing sparsity with the proposed method is accomplished
by adding a loss term that restricts the channel capacity by penalizing activations of
a given number of bits in the latent space.

The final training loss L is a composition of the image reconstruction loss LR and
a sparsity loss LS defined as:

L = LR + λLS, (4.22)

where λ weighs the importance of the sparsity loss with respect to the reconstruction
loss. The image reconstruction loss LR is a mean square error between the original
X and reconstructed images X’ over set of K images in the training batch.

LR =
1
K

K

∑
i=0

(Xi−X′i)2 (4.23)

The sparsity loss LS across the training batch is a mean square loss of sparsity losses
Li of all K latents in the batch. This `2 penalty ensures similar sparsity in each latent
vector. The loss is defined as:

LS =
1
K

K

∑
i=0

L2
i . (4.24)
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Sparsity loss of each latent Li is setup as a modified sigmoid function with parametrized
range shift and the transition slope

Li =
1

1 + eg(p
√

2−ai)
(4.25)

where g defines a loss gradient between the number of active and inactive bits, spec-
ified as a ratio p. The

√
2 term shifts the exponential elbow to the position of desired

sparsity ratio. The ai term is a number of active bits in the latent i calculated as

ai =
1

2N

N

∑
j=0

Bi,j +1, (4.26)

where B ∈ {−1, 1}(K,N) is a training batch of K latents, each of dimension N. Here,
the sum over the active bits servers as a `1 regularization, contributing to the sparsity
promotion. In our experiments on CIFAR-10 we set the batch size K = 512, gradient
g = 100 and sparsity limit p = 0.1, that is 10% of the latent dimensions. Figure 4.11
shows the sparsity loss function Li for a latent space with dimension N = 1000 and
parameters g = 100 and p = 0.1. We have conducted several cursory experiments

FIGURE 4.11: Loss function with transition gradient g = 100 enforcing sparsity
bellow 10% in latent space with 1000 dimensions

with this loss on the CIFAR-10 dataset where we enforced 10% sparsity while main-
taining the original number of dimensions N = 600. As expected, the reconstruction
quality deteriorated by about 10 Fréchet Inception Distance (FID) compared to the
dense latents. Increasing the latent dimensionality to N = 3000 improved the per-
formance comparable to the dense latent representations.

4.4.5 Contributions to the Field of Neural Architectures

LBAE leverages a typical vanilla convolutional autoencoder with a novel binariza-
tion layer trained end-to-end with stochastic gradient descent. A second key con-
tribution, albeit not directly utilizing neural architecture, is a novel algorithm for



4.5. Evaluation 77

parametrizing and sampling from the latent binary distribution. This method en-
ables elementary operations in the latent space such as novel samples generation,
interpolation, and attributes modification.

4.5 Evaluation

In this section we evaluate how well our method reconstructs images from latents,
generates new images, interpolates between existing images and modifies image
attributes in latent space. We finish with a brief look at the compression capabilities.

TABLE 4.1: Image resolutions, latent sizes and training epochs.

LATENT SIZE
IMAGE

RESOLUTION
LBAE
(bits)

VAE(ours)
(float32) EPOCHS

MNIST 32X32X1, zero
padded from 28x28 200 16 2000

CIFAR-10 32X32X3 600 128 2000

CELEBA 64X64X3, cropped
to 1:1 and scaled 1500 64 500

We trained and tested our model on the CelebA (Liu et al., 2015), CIFAR-10
(Krizhevsky and Hinton, 2009) and MNIST (LeCun et al., 2010) datasets with the
default train/test splits and image resolutions shown in Table 4.1. To evaluate LBAE
against VAE with the LBAE identical architecture, we modified the LBAE encoder
to output (µ, σ) and trained it in the VAE setup. We call this model VAE(ours).

The architectures of the encoder and decoder networks were adapted from typi-
cal autoencoder models for images with resolutions 64x64 and 32x32.

Dimensions of the binary latent space were devised experimentally over several
tries on each dataset (the datasets differ in number of samples, image resolutions
and data distributions). The latent dimensions are not sensitive within the given
dataset and image resolution. For example, changing the CelebA latent dimensions
to 1500± 500 resulted in an identical training profile and final performance.

All other hyperparameters were determined experimentally on a few trial epochs
on training datasets. Grid search over the hyperparameters would likely improve
the model performance. We leave this for future work.

For all datasets we use almost identical models, varying in the latent dimensions.
Encoder and decoder are CNN networks with residual connections, where the de-
coder mirrors the encoder with transposed convolutions. The model was trained us-
ing ADAM (Kingma and Ba, 2015) with learning rate 10−3, no weight decay and 512
batch size. Mean squared error is used as the reconstruction loss except for MNIST
where we use the binary cross entropy. The model architecture is shown in more
details in Section 4.8. The training is slower compared to VAE due to the gradient
propagation through the tanh() and binarization, nevertheless comparable to other
methods such as the 2 stage VAE (Dai and Wipf, 2019) which requires 420 epochs on
CelebA, 3000 on CIFAR-10 and 1200 on MNIST.
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We use the FID (Lucic et al., 2018), Kernel Inception Distance (KID) (Bińkowski
et al., 2018) and Precision/recall (Sajjadi et al., 2018) as evaluation metrics. For con-
sistency, we use reference implementations for all metrics 123. To compute FID and
KID we use 10k reference and evaluation images.

4.5.1 Reconstruction and Random Samples Generation

In Tables 4.2,4.3 and 4.4 we show that our model achieves the lowest reconstruction
FID and KID scores.

TABLE 4.2: FID scores for reconstruction and interpolation tests. Results are taken
from the corresponding publications for VAE, WAE-MMD, RAE-L2 and RAE-SN
(Ghosh et al., 2020). VAE(ours) architecture is identical to LBAE. Lower FID values

indicate better-quality images.

MNIST CIFAR-10 CELEBA
RECO. INTERP. RECO. INTERP. RECO. INTERP.

VAE 18.26 18.21 57.94 88.62 39.12 44.49
VAE (OURS) 8.77 15.01 37.94 82.34 34.96 42.03
WAE-MMD 10.03 14.34 35.97 76.89 34.81 40.93
RAE-L2 10.53 14.54 32.24 62.54 43.52 45.98
RAE-SN 15.65 15.15 27.61 63.62 36.01 39.53
LBAE (OURS) 8.11 9.80 19.37 34.41 7.71 14.87

TABLE 4.3: FID scores for random image generation. Results are taken from the cor-
responding publications for VPGA,LPGA (Zhang et al., 2019), VAE, WAE-MMD,
RAE-L2, RAE-SN (Ghosh et al., 2020) and Best GAN, 2 Stage VAE (Dai and Wipf,
2019). For fair comparison, VAE, WAE-MMD, RAE-L2 and RAE-SN results are split
into N (0, 1) and N (µ, Σ) columns. VAE(ours) architecture is identical to LBAE.

Lower FID values indicate better-quality images.

MNIST CIFAR-10 CELEBA
N (0, 1) N (µ, Σ) N (0, 1) N (µ, Σ) N (0, 1) N (µ, Σ)

BEST GAN 10 70 49
VAE 19.21 106.37 48.12
VAE (OURS) 18.52 68.43 56.08
2 STAGE VAE 12.6 72.9 44.4
WAE-MMD 20.42 117.44 53.67
RAE-L2 22.22 80.8 51.13
RAE-SN 19.67 84.25 44.74
LPGA 12.06 55.87 14.53
VPGA 11.67 51.51 24.73
LBAE (OURS) 88.13 11.36 71.48 53.55 64.65 34.95

This can be attributed to the prior-free training, where the model is not con-
strained to approximate any prior, which is believed to produce blurry images in the
case of VAE. From Figure 4.12 it is apparent that LBAE reconstructions are sharper
than typical VAE outputs. We can also see that, on the generative task, LBAE

1https://github.com/bioinf-jku/TTUR
2https://github.com/mbinkowski/MMD-GAN
3https://github.com/msmsajjadi/precision-recall-distributions

https://github.com/bioinf-jku/TTUR
https://github.com/mbinkowski/MMD-GAN
https://github.com/msmsajjadi/precision-recall-distributions
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TABLE 4.4: KID scores scaled by 103 as in Dai and Wipf 2019.Lower KID values
indicate better-quality images.

MNIST CIFAR-10 CELEBA
RECO. N (0, 1) N (µ, Σ) RECO. N (0, 1) N (µ, Σ) RECO. N (0, 1) N (µ, Σ)

VAE (OURS) 6.43 12.41 30.87 74.1 30.49 58.83
2 STAGE VAE 6.7 59.3 40.9
WAE-MMD 137.8 58.7 59.7
LBAE (OURS) 5.39 84.48 6.34 13.01 74.4 51.9 6.15 75.29 30.33

FIGURE 4.12: Reconstruction on the MNIST, CIFAR-10 and CelebA test datasets
with the LBAE method. The ground truth image on the left is followed by the

reconstruction on right.

outperforms all except the VPGA method, when sampled with the proposed hyper-
plane rounding method. Examples of novel images generate with our LBAE method
are shown in Figure 4.13. When sampled from the binarized normal distribution

FIGURE 4.13: Novel samples generated with the LBAE method.

fb(∼ NN(0, IN)), our scores are worse. This can be also seen perceptually in Figure
4.14 where the generated images are sharp but composed of features with wrong
consistency.

FIGURE 4.14: MNIST and CelebA images generated by LBAE from latents b =
fb(∼ NN(0, IN))

Note that the very high performance of the 2 Stage VAE (Dai and Wipf, 2019) and
the VPGA, LPGA (Zhang et al., 2019) on the CelebA can be, in large part, attributed
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FIGURE 4.15: Precision / recall curves.

to the image preprocessing. For example, the Dai and Wipf 2019 authors center-crop
108 × 108 patch and resize it to 64 × 64. This augmentation removes most of the
background which simplifies the generative task.

While FID and KID metrics indicate a similarity between the quality of generated
and reference images, they do not explain other important attributes such as the cov-
erage of the generated distribution. To disentangle the FID/KID 1D quality measure
we evaluate our method by the precision/recall metric (Sajjadi et al., 2018). Precision
measures qualitative distance between the generated and reference images, and re-
call how well the entire reference distribution (e.g. all classes) is represented by the
randomly generated images. We set the entire test datasets of respective benchmarks
as the reference distributions. In Figure 4.15 we show the Precision/recall curves for
random images generated by sampling from normal, binarized distributionN (0, I),
the LBAE method, noted as N (µ, Σ), and VAE(ours) - VAE model with the LBAE
architecture. We can see that our method shows consistently higher, balanced pre-
cision and recall with the exception of sampling from N (0, I). In Table 4.5 we then
compare our method with Ghosh et al. 2020. Here, again, the LBAE achieves rela-
tively high precision as well as recall. This signifies that the generated images rep-
resent the entire distribution equally well and that the image quality is close to the
reference distribution.

TABLE 4.5: Precision / Recall evaluation between LBAE and methods VAE, WAE-
MMD, RAE-L2, RAE-SN from Ghosh et al. 2020.

MNIST CIFAR-10 CELEBA
N (0, 1) N (µ, Σ) N (0, 1) N (µ, Σ) N (0, 1) N (µ, Σ)

VAE 0.96 / 0.92 0.25 / 0.55 0.54 / 0.66
VAE (OURS) 0.88 / 0.93 0.55 / 0.74 0.62 / 0.64
WAE-MMD 0.93 / 0.88 0.38 / 0.68 0.59 / 0.68
RAE-L2 0.92 / 0.87 0.41 / 0.77 0.36 / 0.64
RAE-SN 0.89 / 0.95 0.36 / 0.73 0.54 / 0.68
LBAE (OURS) 0.37 / 0.44 0.92 / 0.97 0.48 / 0.76 0.66 / 0.87 0.50 / 0.57 0.73 / 0.82

In Table 4.6 we compare our model with results from Ghosh et al. 2020, obtained
by sampling from a GMM (10 Gaussians) trained on latents encoded on the training



4.5. Evaluation 81

TABLE 4.6: Precision/recall and FID scores for sampling from GMM, except our
method LBAE where we sample from the matrix of moments with the random

hyperplane method.

MNIST CIFAR-10 CELEBA

FID ↓ PRECISION
/RECALL

↑ FID ↓ PRECISION
/RECALL

↑ FID ↓ PRECISION
/RECALL

↑

VAE 17.66 0.95 / 0.96 103.78 0.37 / 0.56 45.52 0.50 / 0.66
WAE-MMD 9.39 0.98 / 0.95 93.53 0.51 / 0.81 42.73 0.69 / 0.77
RAE-L2 8.69 0.98 / 0.98 74.16 0.57 / 0.81 47.97 0.44 / 0.65
RAE-SN 11.74 0.98 / 0.97 75.3 0.52 / 0.81 40.95 0.55 / 0.74
LBAE (OURS) 11.36 0.92 / 0.97 53.55 0.66 / 0.87 34.95 0.73 / 0.82

data. With the exception of MNIST, our model outperforms the GMM sampling
on both FID and Precision/recall scales. Note that the RAE-L2 method with GMM
sampling shows lower FID score than on the reconstruction on the test dataset. It is
conceivable that latents sampled from GMM, fitted to the training data, are decoded
by the RAE-L2 model that overfits on the training data.

4.5.2 Interpolation in Latent Space

In Figure 4.17, we show interpolation between two images over T = 10 steps. We can
see the interpolation is smooth between the endpoints; there are no abrupt changes
in the context nor the image intensities. The composition of the intermediate samples
also seems to lie on the path between the endpoints as we intuitively expect. The FID
and KID scores for interpolation in Tables 4.2 and 4.4 support this observation.
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FIGURE 4.16: µ and σ of Hamming distance between interpolated latent at step k
and source and target latents.

SLERP interpolation given by two endpoints follows the shortest path on the
sphere. To understand what path the latents follow in the binary space, we measure
Hamming distance between the interpolated latent bk, k ∈ [1, .., T] at step k and the
source and target latents. Plot of these distances over 1k interpolations is shown in
Figure 4.16. The Hamming distance is normalized between the source and target
latents. We can see that the interpolation in the binary space is almost linear which
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indicates that the feature manifolds in this space are continuous between the end-
points and that our interpolation method provides a suitable mapping between the
binary latent space and the continual space on the sphere.

FIGURE 4.17: Interpolations between test images from MNIST, CIFAR-10 and
CelebA.
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4.5.3 Attribute Manipulation in Latent Space

Attributes of the generated samples can be directly modified in the latent space with
very simple method. We demonstrate this on two examples where we add eyeglasses
or goatee CelebA attributes to random test images. This operation does not require
the model to be conditionally trained with the attribute labels.

For example, we want to add attribute a = eyeglasses to a random target image.
First, we collect K images with the attribute a from an image dataset (training dataset
in our experiment, but it can be any set of images). Second, we locate bits in the
latent space that encode the attribute a. We do this by encoding the K images to
latents Ya ∈ {−1, 1}(N×K) and obtaining the expected value p = E[Ya], p ∈ RN . To
change the attribute a in an image represented by latent b we set its bits bi whose
expected value pi is outside a threshold D as:

bi =


1, if pi > D

−1, if pi < −D

bi, otherwise.

(4.27)

The modified latent b is then decoded to a new image. This is graphically depicted
in Figure 4.18.

1-11 -1

-1 -11 1-11 1 1-1 -1 11 -1-11 -1 1-1

Set eyeglasses attribute bits

Enc. Dec.
b

FIGURE 4.18: To modify an image attribute in the binary latent space we first iden-
tify bits with the highest activation in other images with the targeted attribute and

then set these bits in the latent b of the image to be modified.

The threshold D determines how many bits will be modified, consequently how
strongly the source image will be altered. Experimentally we found that D = 0.1
provides satisfactory results and used this value for all our experiments. Interpo-
lation is then performed by the method described in the Section 4.4.3. Examples of
two attribute alterations are shown in Figure 4.19.

4.5.4 Compression

While not a comprehensive evaluation, Table 4.7 shows the compression perfor-
mance of our method LBAE compared with VAE and, only on the CIFAR-10 dataset,
to the VQ-VAE (van den Oord et al., 2017). The paper introducing VQ-VAE presents
the compression ratio on ImageNet images with resolution 128 × 128 × 3, not yet
explored with our method.
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Setting the CelebA eyeglasses attribute.

Setting the CelebA goatee attribute.

FIGURE 4.19: Interpolation between test images (left) and the same images (right)
with modified attributes.

The compression is reported as the input sample (image) size over the com-
pressed latent representation both in bits, similar to what is used the in the VQ-
VAE publication. Additionally, we relate the compression ratio to the reconstruction
quality reported as FID. On the CIFAR-10, the VQ-VAE discrete latent code indices
8× 8× 10 embeddings in a dictionary with 512 items. Therefore, each index requires
9 bits and together the code consumes 8× 8× 10× 9 = 5760 bits. Size of the real-
valued VAE latents is estimated in bits for 32bits floats per dimension. Arguably, the
latents do not saturate all 32 bits at each dimension, thus the reported values are just
informative.

In Table 4.7, we can observe that LBAE shows significantly higher compression
compared to VAE as well as higher quality in FID. LBAE offers also higher compres-
sion than the VQ-VAE, although we could not compare the reconstruction quality,
thus this result can not be considered conclusive.

4.6 Relation to VQ-VAE

VQ-VAE was introduced by van den Oord et al. 2017 as a discrete, deterministic au-
toencoder. In a multi-scale, hierarchical organization (Razavi et al., 2019b) it achieves
generative performance comparable to GANs.
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TABLE 4.7: Comparion of input/latent size compression ration and corresponding
FIDs. VQ-VAE compression is based on data from the publication van den Oord

et al. (2017), available only for, CIFAR-10.

MNIST CIFAR-10 CelebA
Image size: (32x32x1)
1024 bits

Image size: (32x32x3x8)
24576 bits

Image size: (64x64x3x8)
98304 bits

Method Latent
size(bits)

Comp.
ratio

FID
(reco)

Latent
size(bits)

Comp.
ratio

FID
(reco)

Latent
size(bits)

Comp.
ratio

FID
(reco)

LBAE (OURS) 200 5.12 8.112 600 40.96 19.37 1500 65.54 7.71
VAE (OURS) 512 2 8.767 4096 6 37.9 2048 48 34.96

VQ-VAE 5760
(8x8x10x9) 4.27

VQ-VAE learns the discrete representations indirectly, as indices to a codebook
with continual-value embeddings that are then passed to the decoder for reconstruc-
tion. The indices are looked up as nearest codebook neighbours of the encoder out-
put. During training the indexed embeddings in the codebook are moved closer to
the encoder output. The non differentiable nearest neighbour operation is replaced
with the straight-through gradient estimator in the backward pass. To sample new
images authors propose to learn a categorical prior over latents encoded on the train-
ing data with PixelCNN (Oord et al., 2016).

LBAE learns the latent codes directly, although we could think of the first fully
connected layer in the decoder as a dictionary of embeddings that is implicitly learned.
The binary latents, in fact, work as row selectors of the weight matrix, where each
row can be considered an embedding vector. Row vectors corresponding to ones
in the input are summed together and sent down to the following layers in the de-
coder. The possibility of training an autoregressive model on this dictionary, in the
VQ-VAE fashion, is left for future research.

Unlike LBAE, the VQ-VAE cannot be easily used for interpolation and other op-
erations in the latent space as shown by Berthelot et al. 2019. While VQ-VAE needs
to train an external autoregressive model, LBAE can perform the generative tasks in
the discrete latent space with its decoder.

4.7 Implicitly Learned Dictionary of Embeddings

In this section we propose an alternative view of the LBAE as an autoencder learning
a dictionary of embeddings in a similar fashion as in the VQ-VAE (van den Oord
et al., 2017).

The binary latent is decoded by a transposed CNN with the first layer being fully
connected. We can view the binary latent as a set of indices to to the weight matrix
of this fully connected layer. In this section we call the weight matrix a dictionary
W ∈ R(NxL) and its rows the embeddings Wi ∈ R(1xL). Embeddings at the posi-
tions of bits that are set in the latent are added together and then decoded by the
following transposed CNN. In our implementation, the latent vector is encoded as
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b ∈ {−1, 1}N which is then converted to the range b̂ ∈ {0, 1}N by passing through
the ReLU. The zero bits mask out the undesired embeddings. The transformation
takes a form of a simple matrix-vector multiplication z = relu(b)W. A diagram of
this method is shown in Figure 4.20.

The sum of embeddings from the dictionary z ∈ R(1xL) is not averaged which
results in a non stationary distribution shift. The ill effects of this internal covariate
shift is then removed by batch normalization that whitens the combined embed-
dings, therefore stabilizes the distribution on the input of the CNN decoder.

  1  0  1  0  0  1  1  0    
1

-1
0

ReLU

  1 -1  1 -1 -1  1  1 -1

Dictionary

b ∈ {-1,1}N b̂ ∈ {0,1}N

D ∈ ℝNxL

z ∈ ℝL

FIGURE 4.20: Weight matrix of the input, fully connected layer of the LBAE decoder
can be treated as a dictionary of embeddings. The latent vector b̂ functions as
a selector of the embeddings. Embeddings (row vectors in the dictionary) at the
positions of bits that are set in the latent b̂ are added together to be decoded by the

transposed CNN.

4.8 Implementation

The LBAE decoder and encoder (Figure 4.21 and 4.22) are common CNN networks
with residual blocks with batch normalization. Decoder uses transposed convolu-
tions to increase spatial resolution and sigmoid() function on the output.

4.9 Conclusion

In this chapter, we set to propose a method for learning discrete latent representa-
tions. We reviewed some basic findings from neurobiology, framing the landscape
that we searched for inspirations.

Motivated by a multitude of applications and supported by insights from biol-
ogy, we formed a proposition for a novel, closed-form method for sampling from the
Bernoulli latent space and performing a smooth interpolation and attribute modifi-
cation in this space. To our knowledge, this is the first successful method that di-
rectly learns binary representations of images and allows for smooth interpolation
in the discrete latent space.

We show that a simple deterministic, discrete latent autoencoder, trained with
the straight-through gradient estimator performs on a par with the VAE model, its
derivatives and the latest regularized, deterministic autoencoders, on all common
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FIGURE 4.21: LBAE Decoder

tasks such as reconstruction, novel samples generation, interpolation and attribute
modification on the CelebA, CIFAR-10 and MNIST benchmarks.

Our model achieves higher reconstruction as well as generative image quality
compared to VAE. Furthermore, our method for random sampling from the latent
space covers the entire distribution without over or under-representation of any
classes, indicating resilience to mode collapse.

Equally, on a simple experiment of modifying image attributes, we show the
potential of the representation power of the Bernoulli latent space.

Finally, we related our method to the VQ-VAE, a high-performance discrete au-
toencoder with a dictionary of latent embeddings. We proposed to view the weight
matrix of the first fully connected layer in the decoder as an implicitly learned dic-
tionary of embeddings with the binary latent serving as their selector. It is plausible
that such a dictionary would display a similar characteristic as the one learned by the
VQ-VAE method. Furthermore, it would be insightful to conduct a detailed analysis
of the embeddings. For instance, to learn relations between the embeddings and the
class labels or their compositionality, e.g. which embeddings correlate with vertical,
horizontal, or curved features of the MNIST digits.

The perceptual quality of novel images generated with our method, including in-
terpolation, are still far from the state-of-the-art GAN models (Karras et al., 2018) or
Diffusion models (Song et al., 2020), however better than that of AE, VAE, and even
VQ-VAE without the autoregressive generator. Another limitation of our method is
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FIGURE 4.22: LBAE Encoder

the need to use the external algorithm (described in Section 4.4.2) to enable opera-
tions in the latent space. This increases the method complexity (as defined in Section
1.1).

Our work brings the following main contributions:

• Demonstration that a tanh function followed by a straight-through estimator
with a unity surrogate function in the backward pass can be used to efficiently
train an autoencoder with state-of-the-art performance.

• Proposed a novel method to generate correlated Bernoulli samples, perform
smooth interpolation, and modify sample attributes in the discrete latent space.

• Showed that, albeit its simplicity, our method performs equally well or better
than the state-of-the-art using the FID, KID, and Precision/recall metrics.

The LBAE PyTorch implementation, including trained models, is publicly avail-
able on https://github.com/ok1zjf/lbae.

https://github.com/ok1zjf/lbae
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4.9.1 Future Work

To evaluate the LBAE performance in a setting similar to the VQ-VAE, we consider
applying the PixelCNN (Van den Oord et al., 2016) to the implicitly learned dictio-
nary (see Section 4.7).

Another promising avenue for future work is integrating the hyperplane round-
ing method with the encoder. In this configuration, the encoder would not learn
binary values directly but rather as unit vectors on an n-sphere one for each latent
bit (dimension). Binary values would then be generated by the random hyperplane
method and enter the decoder as binary vectors. During the backpropagation, a
covariance matrix of the errors on the binary input of the decoder would be calcu-
lated and used to update unit vectors on the n-sphere learned by the encoder. This
method would not be deterministic since the input to the decoder would be stochas-
tic, similar to the VAE.

There are many additional evaluations to conduct. For example, to map the acti-
vations of the latent bits with respect to a set of input features such as lines, corners,
curves, and circles of the MNIST model. In another evaluation, we plan to visualize
activations of discrete bits by the decoder. Here, a list of binary latent representa-
tions would be built with bits sets in descending order of their expected value. That
is, the first representation would include only a few bits with the highest expected
value followed by representations with more bits set but lower expected value and
so on. Each latent would be subjected to a distribution alignment, similar to the pro-
cedure for random sampling from the latent space described in Section 4.4.2.

An experiment of high practical utility is to test the performance of the binary
latents in established computer vision domains such as image classification, object
detection, image captioning, and others.

Autoencoders with an information bottleneck, trained with mini-batch gradient
descent, learn low entropy codes; a small number of bits encode the most common
features across the training data while a large number of bits encode less frequent
features. This is a desirable encoding for compression schemas, however not neces-
sarily appropriate to produce semantically meaningful and interpretable latent rep-
resentations; the entropy coding does not encourage learning semantic features. As
demonstrated in recent work on self-supervised representation learning (Grill et al.,
2020, Chen and He, 2020, Caron et al., 2020, Zbontar et al., 2021) it is beneficial to
encourage the ANN to learn the latent space by minimizing variance within rep-
resentations of augmented images and maximizing between different images. We
propose to add the data augmentation coupled with the contrastive loss on the la-
tent space binarized by our method. This new loss would also help reduce over-
fitting, thus enabling expansion of the latent space and increasing its sparsity. It is
conceivable that this method may learn more semantically focused latent represen-
tations that would further improve sampling from this space. It is also likely that
such a latent space may also be transferable to other ML domains, e.g., for image
classification.
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Chapter 5

Continual Learning and
Memorization with Sparse
Representations

An essential aspect of human intelligence is the ability to continually learn from a
non-stationary environment, incrementally building upon past knowledge. More
formally, Continual Learning (CL) is the ability to extract knowledge from the en-
vironment, combine it with past knowledge and retain it for future applications.
Knowledge can originate from entirely new domains or extend or refine existing
ones. The main property of a continual learning system is to minimize forgetting of
already stored information while acquiring a new one. Other important properties
are the forward and backward transfers allowing the CL system to progress rapidly
through learning more and more complex tasks. During the forward transfer, we
leverage old knowledge to learn new, more complex tasks. For example, for us, hu-
mans it is easier and faster to learn how to ride a bicycle if we already know how
to ride a two-wheel scooter. This is due to a robust forward transfer in our learning
system. Backward transfer, on the other hand, affects already retained knowledge
in positive or negative ways. Positive backward transfer helps to improve the old
knowledge upon acquisition of a new one. For instance, learning tightrope walking
improves ones existing ability to ride a bicycle despite the seemingly different nature
of these tasks. On the other hand, negative backward transfer causes a decrease in
performance on old tasks, more commonly known as catastrophic forgetting, catas-
trophic interference, or retroactive interference.

Catastrophic Forgetting (CF) does not appear significant to us, as we do not for-
get old knowledge when learning a new one. It is, however, the main challenge for
artificial neural networks that suffer from significant catastrophic forgetting, that is,
the performance of an ANN on past tasks rapidly declines upon updating the same
network on new tasks without including the old samples. To avoid CF, all current
deep neural models need to be retrained with interleaved all past and new data, an
energy, time, and resource demanding process. It also poses a security risks since all
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past data, such as medical images or legal documents, need to be stored for future
model updates.

In this work, we address the continual learning problem in machine learning
through the lens of the memory circuits of our brain. We study the systems enabling
continual learning in the primate brain as a source of inspiration applicable to the
computational methods. We then review the CF problem in more detail, particularly
its causes and mitigations in typical ANN for CL applications.

Building on the latest CL research in machine learning and our insights from
the neural processing in our brain, we propose a novel, biologically inspired com-
putational method for continual learning based on high dimensional, sparse binary
representations and growing neural memory. We show that, in large part, the sparse
binary representations stay behind a significant CL performance boost while also re-
ducing computational load. Our method addresses the most challenging task-free,
class-incremental learning scenario with a replay-free strategy, utilizing fixed repre-
sentations learned in a supervised fashion.

This chapter has the following structure. In Section 5.1 we detail the CL in the
brain and the neurological mechanisms avoiding the CF. In Section 5.2 we review
literature related to the CL in ANN along with common CL scenarios, methodolog-
ical strategies, and benchmarks. Our new CL method is proposed in Sections 5.2.4
and 5.3. Section 5.4 then presents conducted experiments and results. Finally, the
chapter closes with a conclusion in Section 5.10.

5.1 Continual Learning in the Brain

5.1.1 Complementary Learning Systems

The ability of our brain to continually learn without forgetting is attributed to the
Complementary Learning Systems (CLS), a dual memory framework pioneered by
McClelland et al. (1995) and recently reviewed by O’Reilly and Norman (2002) and
O’Reilly et al. (2014a).

In the CLS theory, new experiences are rapidly accumulated in the hippocam-
pus’s short-term memory and later, slowly over several sleep cycles, transferred
to the neocortex for long-term storage. This transfer happens during a hippocam-
pal replay (Ji and Wilson, 2007). A study by Richards et al. (2014) points out that
the episodic memories in the hippocampus are encoded as instance-based, non-
parametric representations while the neocortex operates with parametric represen-
tations. Integration of new information in such a parametric system cannot be done
directly by updating the synaptic connections since each encodes a number of dif-
ferent distributed representations. Doing so would result in catastrophic forgetting,
as observed in ANN (McCloskey and Cohen, 1989, Ratcliff, 1990, French, 1999).

The integration of the new experiences in the neocortex, also called memory
consolidation, is performed by the hippocampal replay, which is believed to be the
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core mechanism mitigating the catastrophic forgetting in the CLS theory. The hip-
pocampus accumulates a larger number of episodic events to extract the underlying
statistic and then integrates them with old experiences during the replay. It has
been observed that the replay is time-compressed by about factor of 20, allowing
each experience to be replayed multiple times (Káli and Dayan, 2004, Wilson and
McNaughton, 1994, Buzsáki, 1989). In fact, new memories are retained in the hip-
pocampus for up to one week. During this time they are periodically replayed into
the neocortex, integrating increasingly new information and establishing more as-
sociations. This is called a hippocampal-dependent stage (Frankland and Bontempi,
2005, Dudai, 2004). After this period, the new experiences become hippocampus
independent. The replay is believed to also enhance generalization, establish inter-
experience links and generate novel representations from their recombinations (Wu
and Foster, 2014, Gupta et al., 2010).

The CLS, particularly its replay mechanism, inspired a number of machine learn-
ing methods targeting catastrophic forgetting. Retraining ANN on batches of new
data interleaved with old data samples, either stored in a replay buffer (Rebuffi et al.,
2017) (sometimes also called episodic memory or rehearsal) or generated by sam-
pling from the trained model (pseudo-rehearsal) (Robins, 1995), has shown remark-
able resilience to forgetting. While the replay mechanism is a good stepping stone
towards the CL, the underlying representation encoding may be equally important
for this task. Therefore, in this work, we study how the representation encoding
impacts catastrophic forgetting.

5.1.2 Pattern Separation and Sparsity in the Hippocampus

The encoding of new and old memories in the hippocampus proceeds via a num-
ber of transformations from sensory data acquisition to memory consolidation in
the neocortex. The most notable transformations are pattern separation and pattern
completion with characteristic variability in the representation sparsity. Hippocam-
pal regions participating in the memory retrieval, completion, and consolidation,
along with the information flow directions, are shown in Figure 5.1.

Dentate
Gyrus (DG) CA3 CA1

Entorhinal
Cortex (EC)

Subiculum 
(Sub)

Parahippocampal 
gyrus 

Perirhinal cortex

Neocortex

FIGURE 5.1: Schematic diagram of the main regions of the hippocampus. The red
path signifies the main feedforward path of the autoassociative circuitry. Adopted

from O’Reilly and McClelland (1994).

According to O’Reilly and McClelland (1994) and O’Reilly and Rudy (2001) the
memory encoding in the hippocampus is formed by a projection of representations



94 Chapter 5. Continual Learning and Memorization with Sparse Representations

from number of regions in the neocortex to the Entorhinal Cortex (EC). Dense, over-
lapping patterns are then separated in the DG with the help of the Cornu Ammonis
(CA)3 region. These representations are characteristic by high dimensionality and
sparsity. CA3 is considered to be the center where the separated representations are
stored. In order to perform the pattern completion, the EC needs to receive patterns
from the CA3 with similar encoding. CA1 serves as a translation between the CA3
separated patterns and the denser EC representations. The subiculum with the EC
then binds together the completed patterns and projects them back to neocortical re-
gions. Most of the connections shown in Figure 5.1 are partially bidirectional except
the projection from EC to DG and CA3, which are strictly feedforward (McNaughton
and Nadel, 1990).

The pattern separation reduces or eliminates the overlap of similar representa-
tions stored by the neocortex (Knierim and Neunuebel, 2016)(Figure 5.2). This is

A
B

EC

DG

FIGURE 5.2: Illustration of pattern separation of the neocortical representations
by sparsification between the Entorhinal (EC) and the Dentate Gyrus (DG) in hip-
pocampus. A small difference in similar patterns results in a large difference in the

projected, sparse representations.

important for one’s ability to relate a specific new experience, such as an encounter
with an unusual bicycle type, to the representation of a bicycle encoded in the cor-
tex. Studies by Neunuebel and Knierim (2014), Leutgeb et al. (2007) and Lee et al.
(2015) show that representations in DG are highly sensitive to even small changes in
the experienced environment but not the representations encoded by EC, support-
ing the pattern separation theory. The impact of reduced pattern separation in DG
was documented in the work of McHugh et al. (2007) where DG lesions reduced an
animal’s ability to react differently in similar environments but left intact the ability
to react differently in distinct environments. In a similar study Gilbert et al. (2001)
compared impact of damaged DG and CA1 regions on performance in spatial and
temporal tasks. They found that the damage to the DG reduced the rat’s ability
to differentiate between similar spatial patterns, but it did not impact the temporal
tasks. The damaged CA1 region, on the other hand, reduced the temporal pattern
separation but not spatial. A study on humans (Brock Kirwan et al., 2012) showed
that patients with damaged hippocampal regions performing the pattern separation,
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including the downstream (CA3/CA1) regions, were less likely to identify presented
patterns as similar compared to the control group.
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FIGURE 5.3: Illustration of the pattern separation transfer function in Dentate
Gyrus (DG), CA3 and CA1 regions. Similar patterns are pushed apart by the DG
while distinct patterns are left intact. Plotted according to Yassa and Stark (2011).

The pattern separation can be seen as a process where a dense representation of
a scene gets split into a high dimensional sparse representation where each object
in the scene is encoded by a single or few bits. Yassa and Stark (2011) shows that
the intensity of the separation in DG is a function of the similarities within the pat-
terns. Representations of highly similar objects will be separated more in the DG
than distinct objects, as illustrated in Figure 5.3.

During the pattern completion, the representations of similar features are com-
pressed into denser representations where similar features overlap. In Figure 5.3 we
can see how the CA3 region completes (reduces separation and increases overlap)
similar features but separates or leaves intact more distinct features.

The highest sparsity was observed in the DG region, although other hippocam-
pal regions also exhibit higher sparsity than the neocortex. In Figure 5.4 (left) we
show how the sparsity progresses from the neocortical input from the bottom up to
the CA3 region. Sparsity in each region is quantified in the graph in Figure 5.4.

Sparsity appears to be characteristic to a number of other neural regions, particu-
larly in the primary vision cortex (Olshausen and Field, 1996, 1997, Serre et al., 2006)
and in other sensory inputs (Olshausen and Field, 2004, Babadi and Sompolinsky,
2014), reaching the neocortex (Quiroga et al., 2008).

The sparsity has been observed in all animals, most notably in the Drosophila
fruit fly olfactory system (Turner et al., 2008). Approximately 50 projection neurons
send their activities to about 2500 Kenyon cells (neurons in higher brain regions of
insects called mushroom bodies responsible for olfactory learning and memory (Aso
et al., 2014)). An input stimulus activates approximately 50% of projection neurons
and less than 10% Kenyon cells. In our model for the CIFAR-100 dataset, we adopt
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FIGURE 5.4: The diagram on the left shows both cortical and hippocampal com-
ponents. The activation sparsity progresses from the cortex to the Dentate Gyrus
(DG). The hippocampus can reinstate a pattern of activity over the cortex via the
entorhinal cortex (EC). The graph on the right shows activation sparsity per region

in percent. Based on data from O’Reilly and Rudy (2001).

similar architecture. We first reduce the dimensionality of dense features from 1028
down to 256 and then expand to sparse binary representation with 8192 bits.

Sparse representations are metabolically efficient, statistically less prone to inter-
ference, and more resilient to noise. Extreme sparsity, however, results in complete
pattern separation and consequently reducing generalization and any forward or
backward transfer since each experience then becomes unique (Sharkey and Sharkey,
1995, French, 1994).

In our work, we adopt sparsity as the primary tool to alleviate the catastrophic
forgetting while still maintaining sufficient pattern overlap allowing generalization
within-class categories.

5.1.3 Early Development of the Primary Visual Cortex

In addition to the CLS dual memory with replay and pattern separation, catastrophic
forgetting highly depends on the level of plasticity in neural regions that are up-
dated. Plastic regions exhibit fast learning abilities but high levels of catastrophic
forgetting. Conversely, rigid regions retain new information slowly but with low
interference with the already encoded patterns. In the context of continual learning
we would like to identify brain regions susceptible to catastrophic forgetting, more
specifically, the level of plasticity in regions responsible for learning elementary vi-
sion features.

Early research by Wiesel and Hubel (1965) on the effect of visual deprivation
in kittens suggests that the neural wiring supporting vision in the primary visual
cortex (V1) develops very early in life with minimal changes later on. Kittens de-
prived of visual stimuli during the first few months of life showed no changes in the
physiology of retinal cells up to the lateral geniculate nucleus (LGN). The sight de-
privation mainly affected the visual cortex with irreversible changes even after the
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sight recovery. Timney et al. (1978) and Mitchell (1988) showed that only minimal
visual recovery was observed in animals deprived of vision beyond one year of age.

In humans, the early visual cortex development stages are similar. Synaptic den-
sity in the visual cortex increases to a maximum during the first year of life. Ten years
after that, about 40% of synaptic connections are gradually pruned to the adult level.
The first 2 to 4 months is the most critical period of the visual cortex development,
where the synaptogenesis is the most rapid (Huttenlocher and De Courten, 1987).
This is also the period where the majority of stereo perception develops (Sacks, 2006).
The importance of the critical period on the visual cortex development is supported
by a body of research on patients undergoing treatment of cataracts. Surgery on
children older than eight years born with cataracts often results in permanent vision
deficit throughout the life, but infants fully recover (Taylor et al., 1979).

A very insightful study on the primary visual cortex development was recently
conducted by Jiang et al. (2009). This work shows that the visual cortices of an early
blind remain significantly thicker compared to individuals with healthy sight. It
is conceivable to assume that the reduced pruning due to the lack of visual stim-
uli is caused by the inability of the visual cortex to develop feature filters, typi-
cally sparsely populated. In the context of modern CNN, we could relate this phe-
nomenon to a network of fully connected layers able to learn the convolutional filters
from exposure to natural visual stimuli by pruning connections. In the case of the
missing visual input, such a network would not learn the filters and remain dense.

5.2 Continual Learning in Artificial Neural Networks

The difficulty to continually learn in artificial neural networks was already studies
three decades ago by McCloskey and Cohen (1989) and more notably later by French
(1999, 1992). The problem was identified to stem from Catastrophic Forgetting (CF),
where ANN performance on old tasks rapidly declines after being trained exclu-
sively on new tasks. A number of methods followed, trying to solve the CF problem
(Hinton and Plaut, 1987, Goodrich and Arel, 2014, Kirkpatrick et al., 2017) and more,
which we discuss below.

5.2.1 Continual Learning Scenarios

The most concise and practical CL scenarios were proposed by van de Ven and Tolias
(2018) and, since its introduction, applied in several studies such as Hsu et al. (2018),
Rao et al. (2019), von Oswald et al. (2019) and others. The scenarios are:

• Task-incremental Learning (TIL)
In this scenario, the method learns sequentially new tasks with their identities
known during training and inference. This is the simplest setup.

• Domain-incremental Learning (DIL)
The method learns several different representations (domains) of a single task
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e.g., different appearances of numbers 1,2, and 3 in a single task. The domain
identity during the inference is not known, and the algorithm needs to classify
only the digits without inferring the distribution. This scenario, in large part,
amounts to learning new instances of the same classes.

• Class-incremental Learning (CIL)
Here the method continually learns individual classes, which then need to be
identified during the inference. If the classes come grouped in tasks, the task
identity also needs to be inferred. This is the most complex scenario.

In this context, the domain is a set of patterns with similar underlying statistics. The
task is typically a group of patterns. For example, task A can be a group of digits 1,2,
and 3, task B digits 4,5, and 6, and so on. What precisely constitutes the task is usu-
ally established by the evaluation procedure. The class is then a unique identifier of a
pattern with a specific characteristic. While the TIL and DIL scenarios are very com-
mon, however, from the standpoint of practical applications are of little use. The CIL
scenario is the closest to the natural learning desirable for an intelligent agent. There
are many modifications of these scenarios, typically targeting the performance boost
of the proposed methods. For example, it is common to split large number of classes
into a substantially smaller number of tasks and then train the method with all task
samples interleaved in batches. Consequently, the task-independent and identically
distributed (IID) batches considerably reduce forgetting within each task. It is also
common to set up a multi-head classifier for each task. In this configuration, classes
within each task are learned and inferred in isolation sharing only the front-end
part of the network. This approach also reduces forgetting. Splitting the given class
group into tasks or providing the task or domain information during the training
or inference time boosts the performance, but it is not representative of the ultimate
goal, that is, continually learn new knowledge as it becomes available.

Our work focuses on the most challenging subset of the CIL scenario: a replay-
free, task-free, class-incremental learning over a large number of classes without
revisiting prior samples. Update of already presented classes in the future is allowed
but not required. This scenario is somewhat similar to the proposition from Maltoni
and Lomonaco (2019) but with strict adherence to a single class CL.

5.2.2 Continual Learning Strategies

The most common methods targeting CL were categorized by Maltoni and Lomonaco
(2019) along with Kemker and Kanan (2018), Kemker et al. (2018), and Zenke et al.
(2017) as Regularization, Replay and Rehearsal, and Architectural based methods. We
also add Sparsity based strategy, also discussed by Kemker et al. (2018), which is of
our particular interest. We will now summarize the main work within these cate-
gories.
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Regularization Strategies

The most popular regularization approach to CL method was proposed by Kirk-
patrick et al. (2017) as the Elastic Weight Consolidation (EWC) technique. EWC
uses Fisher’s information matrix to identify parameters encoding high information
content of the previously learned tasks and applies structural regularization to dis-
courage new tasks from using these parameters. Similarly, Synaptic Intelligence (SI)
method by Zenke et al. (2017) regulates the synaptic strength to minimize changes in
parameters encoding past tasks. Unlike EWC, the SI computes the synaptic impor-
tance online and considers the entire learning trajectory, not only the final weight
values. Chaudhry et al. (2018a) relate the EWC and SI weight importance metrics
as distances in the Riemannian manifold and proposes a better performing method
called Riemannian Walk (RWalk), which is based on the modified EWC and SI. A
knowledge distillation method by Hinton et al. (2015) is leveraged to slow down
weight changes in the Learning without Forgetting (LwF) method (Li and Hoiem,
2017). The LwF method uses distillation to approximate outputs of a network learn-
ing new tasks with a network trained on old tasks. Unfortunately, regularization
methods do not work well in the class-incremental learning scenarios (Hsu et al.,
2018, Farquhar and Gal, 2018).

Replay and Rehearsal

Catastrophic forgetting can be successfully reduced by interleaving already learned
and new samples during the network training. In an extreme case, this reduces to
mini-batch learning where IID samples of the entire distribution are interleaved. The
replay (also referred to as episodic replay, rehearsal, or recall) is a very successful
method to combat catastrophic forgetting and is believed to be the central mecha-
nism of learning in our brain in the CLS theory. Many machine learning methods
use the replay by keeping a subset of old samples in a replay buffer, sometimes called
episodic memories, and mixing them with new data for the model updates.

A typical representative of a replay method is the Incremental Classifier and Rep-
resentation Learning (iCaRL) Rebuffi et al. (2017) method. Furthermore, the iCaRL
also introduces a Nearest Mean Exemplars (NME) method for inference. The NME
creates a class prototype from training samples that is then used by the nearest
neighbour classifier to predict the class category. The NME method has been fre-
quently used in recent methods such as Douillard et al. (2020) and Hou et al. (2019).

Gradient Episodic Memory (GEM) method (Lopez-Paz and Ranzato, 2017) stores
parameter gradients of past tasks for the replay. GEM uses the replay to stabilize
gradients of model parameters over old samples while allowing gradient progres-
sion for new samples. A refined GEM method called Averaged Gradient Episodic
Memory (A-GEM) was put forward by Chaudhry et al. (2018b), focusing on learning
by a single pass through all the training data. A mathematically similar method to
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the GEM, leveraging episodic replay with a meta-learning update, was proposed in
Meta-Experience Replay (MER) method (Riemer et al., 2018).

To avoid storing a potentially infinite number of past samples, a pseudo rehearsal
technique was proposed by Robins (1995). The pseudo rehearsal, frequently called
generative replay, generates samples representative of the knowledge already stored
in the model. These samples then can be interleaved with new samples to retrain
the model. A dual-memory network with a recurrent network and pseudo rehearsal
for transfer between short and long-term memory was already proposed by French
(1997). Thanks to the relative simplicity of the pseudo rehearsal, many methods re-
cently emerged, utilizing various generative algorithms such as AE (Kramer, 1991),
VAE (Kingma and Welling, 2014) and GAN(Goodfellow et al., 2014a).

In Shin et al. (2017), a GAN model is used to produce samples of old data points,
which are then interleaved in batches with samples of new classes to train a new
generative model. Similarly, Ostapenko et al. (2019) apply a conditional GAN for
the generative replay with added, learned synaptic plasticity expressed by means of
binary masks. An innovative method by van de Ven et al. (2020) performs an internal
replay in a Conditional Variational Autoencoder (CVAE) where the old tasks are rep-
resented by intermediate latent vectors in the model rather than images. The van de
Ven et al. (2020) method also adds a conditional gating of neurons in the network for
specific tasks. Another example of VAE based generative replay is studied by Kang
and Zhang (2018). The authors modify the CVAE variational objective to follow the
posterior distributions of already stored knowledge while updating the model with
new data. The Meta-Consolidation for Continual Learning method (MERLIN) (KJ
and Nallure Balasubramanian, 2020) uses meta-learning to consolidate model pa-
rameters of old and new tasks through parameters replay with VAE. This method
then generates an ensemble of models for each task for the inference.

Architectural Strategies

An early successful attempt to reduce catastrophic forgetting with a specific neural
network architecture is the Progressive Neural Networks method (Rusu et al., 2016).
This method learns to freeze subsets of network parameters that encode old tasks
and expand to learn new tasks. This approach has shown remarkable resilience to
CF but at the cost of extensive memory consumption, especially for long sequences.

Another example of a similar approach is the PathNet (Fernando et al., 2017)
which learns a path through the network for each task that is then frozen for sub-
sequent learning updates. This reduces catastrophic forgetting but leads to network
capacity exhaustion. A biologically inspired method in this category is the context-
dependent gating (XdG) by Masse et al. (2018). The interference between tasks is
avoided by gating randomly selected subsets of neurons assigned to each task. This
method uses the identity of the tasks during learning and inference, thus it is not
directly applicable in the class-incremental learning scenario. Another biologically
inspired method is the FearNet by Kemker and Kanan (2018), which follows the
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CLS dual memory concept. The FearNet is based on short and long-term mem-
ory with generative replay for consolidation. In contrast to other dual memory
methods, FearNet introduces a memory commit circuit, loosely based on the fear
response of the amygdala, that reinforces the consolidation of strong experiences to
the long-term memory. In neuroscience-inspired research, Parisi et al. (2018) argue
for dynamic memory expansion through neurogenesis as a mechanism to reduce
catastrophic forgetting.

The Bias Correction (BiC) method (Wu et al., 2019b) targets CL for large datasets.
This method measures and corrects bias differences between old and new tasks with
distillation (Hinton et al., 2015) in a small linear layer following the classification
layer. The BiC method stores two sets of old samples, one for model update and
the second for the bias correction. Another recent, CL-specific architecture is the
UCIR (Learning a Unified Classifier Incrementally via Rebalancing) method (Hou
et al., 2019). Using episodic replay, this method operates as a metric-learning model
with cosine similarity and NME classification (Rebuffi et al., 2017). A combination
of episodic replay, bias compensation, and distillation in a specific CNN architec-
ture was also proposed by Douillard et al. (2020) under the name PODNet (Pooled
Outputs Distillation for Small-Tasks Incremental Learning). This method uses re-
play of a limited number of old samples with distillation applied across CNN layers
combined with a cosine loss function for bias minimization and NME for class cate-
gory inference. The PODNet stores 20 images per every learned class. The authors
evaluated this method in the task-free class-incremental learning scenario over 50
CIFAR-100 classes with state-of-the-art results. Despite the PODNet being a rela-
tively complex method requiring episodic memory and an elaborate training regime,
we compare its performance with our, substantially simpler method.

Sparse Coding and Sparse Representation Learning

Sparsity as a tool to reduce catastrophic forgetting has not received nearly as much
attention over recent years as other strategies. Particularly binary sparse representa-
tions, frequently studied in the past (Hopfield, 1982, Kanerva, 1988, Willshaw et al.,
1969), stand in the shadow of deep learning methods, arguably due to the complex-
ity associated with learning the non-differentiable binary functions with gradient-
based optimizers.

In early research on catastrophic forgetting in connectionist networks, Kruschke
(1992) proposed the ALCOVE method, which uses orthogonality of sparse represen-
tations to reduce changes in weights of old tasks when learning new. The benefits
of the sparse representations to minimize forgetting in recurrent networks for im-
age classification was studied by Coop and Arel (2013) on Elman recurrent network
(Elman, 1990) enhanced by sparse coding and expansion layers. Method CALM,
proposed by Murre (2014), develops sparsity by competition among neural nodes
not occupied by other representations.
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It has been recently argued that ideal continual learning performance is achiev-
able only with perfect memory of past experiences (Knoblauch et al., 2020). Under
the lens of this study, a large body of research on memory models become immedi-
ately applicable as another powerful CL strategy.

Significant, biologically-inspired research on the topic of continual learning with
SDRs is carried out in the work on HTM (Hawkins and Ahmad, 2016, Hawkins et al.,
2019, Cui et al., 2017, Lewis et al., 2019, Ahmad and Hawkins, 2016). The HTM work
has shown remarkable properties of the SDR, which we apply in our work.

Binary, and frequently sparse, representations lie in the center of many classical
methods such as the Willshaw associative memory (Golomb et al., 1990, Willshaw
et al., 1969) and Hopfield network (Hopfield, 1982) with recent updates to contin-
uous representations by Krotov and Hopfield (2016) and even more recent work
(Krotov and Hopfield, 2021) aligning the basic principles behind the Hopfield mem-
ory with the latest state-of-the-art deep learning methods on transformers (Vaswani
et al., 2017). Notably, the sparse binary representations are the cornerstone of the
SDM (Kanerva, 1988). The SDM was recently rephrased under the deep learning
methodology in the works of Wu et al. (2018a), Wu et al. (2018b), Marblestone et al.
(2020), and Ramapuram et al. (2021), all leaving the SDR concept and adopting
Bayesian or deep learning methods with continuous representations and gradient-
based learning.

The most compelling recent work on the utility of sparse representations in the
CL domain was introduced by Javed and White (2019). With a modified meta-
learning algorithm, Javed and White (2019) propose the OML method (Online aware
Meta-learning) to learn representations that reduce interference among tasks over
subsequent continual learning steps. To learn the representations, OML uses a mod-
ified MAML (Model-agnostic meta-learning) method (Finn et al., 2017) and a specific
training regime where the meta-learning inner loop incrementally learns new tasks,
while the outer loop performs a recall of past tasks. In follow-up work, Beaulieu
et al. (2020) put forward a method ANML (A Neuromodulated Meta-Learning Algo-
rithm) that extends the OML method for a neuromodulatory network with synaptic
gating. The ANML method holds the latest state-of-the-art performance on learn-
ing 600 classes in the task-free class-incremental learning scenario on the Omniglot
dataset.

5.2.3 Common Datasets for Continual Learning

The majority of CL experiments are conducted on modified datasets for image clas-
sification. The most common Split MNIST (Zenke et al., 2017) and permuted MNIST
(Goodfellow et al., 2014b) datasets are modifications of the original MNIST (LeCun
et al., 2010). The split MNIST introduces tasks where each is typically made of two-
digit classes. Permuted MNIST creates several tasks or domains where each is a ran-
dom pixel-wise permutation of the MNIST images. Despite its unrealistic nature,
this dataset is still commonly used.
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Initially proposed for few shots learning, the Omniglot (Lake et al., 2015) dataset
is also used in the CL domain. Few shots learning is similar to the CL in that the few
shots methods need to rapidly learn new classes with minimal forgetting. However,
the few shots learners typically learn only a limited number of classes with an em-
phasis on the learning of a low number of train instances, in extreme cases a single
class instance. The Omniglot consists of training and test images of disjoint class
categories with high number of test classes (600). Omniglot is considered to be one
of the most challenging, low resolution, grayscale datasets due to its high statistical
variations among the image instances, large number of classes, and small number
of train and test instances. We use this dataset for our experiments. We discuss this
dataset in more detail in Section 5.4.1.

Split CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton, 2009) are other image
classification datasets commonly used in CL domain. These datasets are more diffi-
cult in that they feature the natural world, color images in relatively low resolution
32x32. This resolution is higher than that of MNIST but small for discrimination of
natural images. Unfortunately, the vast majority of the experiments with CL targets
the Split CIFAR-10/100 with a small number, typically 10, tasks. Another CIFAR
variation for CL is the iCIFAR-100 (Rebuffi et al., 2017). Here the authors split the 100
classes into tasks with 2,5,10,20 and 50 classes each. We evaluate our method on the
CIFAR-100, where we learn half (50) classes in the true task-free, class-incremental
scenario. More details on this dataset are in Section 5.4.1.

Other less common datasets for CL are the SVHN (Sermanet et al., 2012), Fashion-
MNIST (Xiao et al., 2017), almost exclusively in the task split settings. Datasets Split
CUB200 (Caltech-UCSD Birds-200) (Welinder et al., 2010) and Split MiniImageNet
(Vinyals et al., 2016) (a 100 classes subset of the ImageNet (Russakovsky et al., 2015),
are typically split into 20 tasks, each with 5 classes) and used for higher image reso-
lution CL. The original 1000 classes ImageNet is also sometimes used but mainly in
the task split setup.

Recently, new datasets Core50 (Lomonaco and Maltoni, 2017) and Stream51 (Roady
et al., 2020) were assembled. These datasets target perhaps the most natural CL sce-
narios where each class is presented as a short video sequence. This allows the CL
method to leverage temporarily correlated class instances.

5.2.4 Mitigating Catastrophic Forgetting with Meta-learning

Deep learning has shown remarkable performance in a vast majority of machine
learning domains. This success can, in large part, be attributed to countless archi-
tectural modifications, extensive hyperparameters turning, and careful training and
evaluation setups. Equally, applying a trained model to a different task requires re-
training or fine-tuning on the target problem and often hyperparameters adaptation.
Meta-learning methods address this problem by learning how to learn. Historically,
meta-learning methods, typically under different names, can be traced decades back
(Schmidhuber, 1987, Thrun and Pratt, 1998, Hochreiter et al., 2001b, Schmidhuber,
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1993). A vast number of meta-learning methods is generally categorized (Vinyals,
2017) as Model-Based (Santoro et al., 2016, Munkhdalai and Yu, 2017), Metric-Based
(Vinyals et al., 2017, Snell et al., 2017), and Optimization-Based (Finn et al., 2017, Li
and Malik, 2017) methods.

The recent state-of-the-art (SOTA) in CL has been achieved with models OML
(Javed and White, 2019) and ANML (Beaulieu et al., 2020) based on the meta-learning
optimization method MAML (Model-Agnostic Meta-Learning) (Finn et al., 2017).
We will now review the MAML method, followed by a review of its application to
the CL domain.

Model-Agnostic Meta-Learning

The core of the MAML (Finn et al., 2017) method is a two-cycle training procedure
with an outer loop performing typical iteration over batches of training samples
and an inner loop that, over a small number of cycles, updates the main model pa-
rameters on task-specific training samples. The inner loop starts by copying the
main model θ0 parameters, which are then updated at each inner cycle, typically by
stochastic gradient descent (SGD). All inner parameter updates are recorded as a se-
quence and presented to the outer loop as a single differentiable operation. All inner
iterations, precisely all weight update operations, are then backpropagated through
the outer loop and all weights updated. The objective within each inner iteration
is to maximize performance on each task, while the objective of the outer loop is
to maximize performance across all tasks, thus learning how to learn the individ-
ual tasks. We can also view this method as learning model weights for fast transfer
learning to other tasks.

During the inference, the model parameters θ0 are fine-tuned to a new task, not
necessarily originating from the training dataset. This meta-learning method en-
ables fast learning of new classes and is commonly applied in the few-shots learning
domain. Figure 5.5 illustrates the model loss space across all tasks with a trajectory
depicting the meta-learned model parameters θ0. In the inner loop and then during
the inference, the model parameters θ0 are rapidly updated to improve performance
on the specific tasks. In the example in Figure 5.5, it would be task 1 or 2 with final
model parameters θ1 and θ2, respectively. In summary, the main goal of the MAML
method is to learn the model parameters θ0 to be closest to all target tasks.

While conceptually simple, the MAML method is rather difficult to configure
and resource-demanding at training and inference due the need to compute higher-
order derivatives to backpropagate through all inner loop updates. During the in-
ference, then, to perform gradient descent steps. The MAML authors addressed the
speed shortcomings in a model called First-Order MAML (FOMAML) (Finn et al.,
2017), which avoids the higher derivatives by backpropagating only through the last
update of the inner loop. This improved the training speed and memory utilization
for a price of slightly lower accuracy compared to MAML. In another work, Nichol
et al. (2018) proposed a first-order meta-learning algorithm called Reptile with the
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FIGURE 5.5: Illustration of the meta-learned main model parameters θ0 which can
be rapidly adapted to θ1 or θ2 for best performance on tasks 1 and 2 respectively.

FOMAML simplicity and accuracy comparable to MAML and even better on some
specific tasks.

Meta-Learning Representations for Continual Learning

It is only very recently that the meta-learning methods have been applied to the
CL problem in an OML (Meta-Learning Representations for Continual Learning)
method (Javed and White, 2019) and later extended with neuromodulation in an
ANML (A Neuromodulated Meta-Learning Algorithm) method (Beaulieu et al., 2020),
setting a new state of the art performance on a large number of continually learned
tasks on the Omniglot benchmark (Lake et al., 2015).

The OML model is a conventional CNN network split into a Representation
Learning Layer (RLN) followed by few fully connected layers terminated by a clas-
sification layer called Prediction Learning Layer (PLN) (Figure 5.6). In each outer
loop iteration, the OML method learns a new class in the inner loop over 20 itera-
tions, each updating the model with SGD on a unique instance of the learned class.
Upon exit of the inner loop, a loss is calculated over a number of recall samples. A
batch of the recall samples includes 20 instances of the currently trained class but
different from the training samples plus 64 other classes, one instance each. The loss
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is then backpropagated through the chain of all inner updates. Unlike MAML, the
OML updates only the PLN network. The CL evaluation is then conducted over two
stages:

• test-training, where the model continually learns instances of new classes not
seen during the main training stage.

• test-testing, where the model, trained over the test-training stage, is evaluated
on the classification of the same classes used for the test-training but different
instances.

During the evaluation, the PLN network is updated on classes from a disjoint
meta-test-train dataset. Each new class is trained by a single SGD step on each of
the 15 meta-test-train instances. The meta-test-test is then conducted on the same
meta-test-train classes but different instances.

PLNRLN

Learnt 
representation

y

Prediction 
learning network

Representation 
learning network

RLN is updated only 
in the outer loop

during meta-training

PLN is updated in the 
inner loop AND

at meta-test-training

X 

FIGURE 5.6: Network diagram of the OML model (Javed and White, 2019).

The ANML method (Beaulieu et al., 2020) introduces a neuromodulatory net-
work (Figure 5.7) that individually gates each dimension of the learned representa-
tion via a sigmoid function. The ANML preserves the OML training regime. Only
the final classification layer is updated in the inner loop during the meta-training
and meta-test-train stages. The Prediction and Neuromodulatory networks are up-
dated in the outer loop and never during the inference - the meta-test-training stage.

Over numerous experiments with the OML and ANML, we reached several ob-
servations leading to several intuitive modifications resulting in a performance gain.

First, updating only the last classification layer during the meta update in the
OML, as done in the ANML, improved the performance, matching the ANML. This
is quite obvious since learning a new class during the meta-training and meta-test-
training steps updates primarily only weights connected to the specific target class
in the classification layer, therefore minimizing interference with other classes.

Second, the cross-entropy loss function, used in the meta-test-train update in
OML and ANML, updates weights of all classes in the classification layer with ev-
ery new class learned. This is the correct and desirable behavior of the cross-entropy
loss function for mini-batch gradient learning with IID data. It pushes the correct
target class weights in the classifier towards the classifier’s input and away weights
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FIGURE 5.7: Network diagram of the ANML model (Beaulieu et al., 2020).

of all other classes. During the continual learning, this meta-test-training updated
causes interference with classes learned in the past. Therefore, we modified the
meta-test-train loss function to update only weights of the currently learned class,
which further improved the performance. These modifications were implemented
in our OML-S, OML-W, and OML-WB models discussed in Sections 5.5 and 5.6.

Finally, we modified the meta-training and meta-test-training procedures to dy-
namically expand the classification layer as new classes are being learned. This mod-
ification enables these methods to learn a potentially unlimited number of classes
bounded only by the available computational resources.

Our experiments with the ANML showed that the neuromodulation does not
improve the performance over the OML with a single adaptive layer and modified
loss function, and thus in our further experiments we focus on the OML architecture.
In summary, the meta-learning is capable of learning representations highly suitable
for CL irrespective of the final classification method, whether with multiple layers
as in the original OML, neuromodulation in ANML, or a single classification layer
with class-isolated meta-test-training updates.

5.2.5 Current State-of-the-Art, its Limitations and Promising Research Di-
rections

The current state-of-the-art method in the task-free, class-incremental continual learn-
ing scenario (as discussed in Section 5.2.1) is the ANML (reviewed in Section 5.2.4).
This method addresses the catastrophic forgetting with the sparse coding strategy
(see Section 5.2.2) by meta-learning sparse representations.

The major drawbacks of most CL methods could be summarized as lack of per-
formance compared to the training of similar models with IID batches, still suffers
from a high level of Catastrophic Forgetting (CF), and lastly, memory and computa-
tional demanding training and inference. The high memory load is due to their need
to either maintain very large models (typically not optimally utilized by dedicating
the network sub-paths to specific tasks only - isolating tasks by not sharing weights,
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Section 5.2.2) or to maintain a replay buffer (rehearsal buffer or episodic memory) for
a large number of past training samples (Section 5.2.2). The high computational load
is mainly caused by the need to retrain the entire model on the new data interleaved
with all past training data or some subset from the replay buffer or to generate sam-
ples representative of the already stored knowledge. Additionally, some methods
use memory and computationally intensive algorithms such as meta-learning.

Following the evidence from neuroscience and current machine learning meth-
ods for CL, it appears that a large part of the CL problem will likely be solved by
learning high-dimensional, discrete sparse representations. We follow this approach
in our work. Sparse representations alleviate catastrophic forgetting among learned
tasks but do not implicitly improve forward and positive backward transfers as-
sociated with the short to long-term memory consolidation and long-term memory
storage. Therefore, a combination of sparse representations with memory replay (re-
hearsal), akin to the CLS (see Sections 5.1.1, 5.2.2), appears as a promising approach
to address both the continual learning in short-term memory and the subsequent
consolidation in long-term memory that promotes the forward and positive back-
ward transfers.

5.3 Continual Learning with Sparse Binary Representations

As discussed in the previous Section 5.2.4 the meta-learning can produce representa-
tions with good performance on CL tasks. The meta-learning models are, however,
difficult to configure and train and resource-demanding. There are many sensitive
hyperparameters to tune. For example, the OML requires to configure the number
of samples in the training trajectory structure, that is, the number of instances neces-
sary to learn a new class, instances to recall the learned class, and the number of past
classes to recall. There are the outer and inner learning rates to set and also the meta
test-train learning rate. The meta-test-train learning rate significantly affects the fi-
nal meta-test-test results and in both OML and ANML studies, the authors perform
a computationally demanding grid search to find settings for best results.

Exploration of neural coding in the brain and the hippocampal mechanisms, be-
lieved to be consequential to our ability to form new memories without forgetting
the past, inspired two aspects of our method. First, we followed the fast, early, and
permanent stabilization of the primary visual cortex and proposed a representation
learning CNN that is trained only once on the target visual domain (in the ideal case,
the visual domain of the entire world), and then fixed for the lifetime of the model.
The stable visual features considerably reduce the plasticity stability dilemma ris-
ing during the incremental learning updates. The center of the continual learning
problem then shifts to the latter layers. Second, for the continual learning stage,
we leveraged the high dimensional, sparse binary representations, identified as the
dominant neural coding format in our brain (Khaligh-Razavi et al., 2016, Tee and
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Taylor, 2020, DiCarlo et al., 2012, Rigotti et al., 2013, Chung et al., 2018). We partic-
ularly drew inspiration from the pattern separation observed in the Dentate Gyrus
(DG) in the hippocampus that was experimentally shown to avoid interference be-
tween similar patterns (Neunuebel and Knierim, 2014, Leutgeb et al., 2007, Lee et al.,
2015). To simplify referencing, we call our method SBRCL, which stands for Sparse
Binary Representations for Continual Learning.

The core idea behind our method rests on the function of pattern separation ob-
served in the hippocampus (Section 5.1.2). Rather than using meta-learning to learn
model weights close to the targets tasks, that still need to be refined during the meta-
test-training steps, our model learns a high dimensional sparse binary latent space
that already encapsulates all target tasks.

5.3.1 Properties of High Dimensional Spare Representations

Sensory data are typically high dimensional and continuous; however, they lie on
low dimensional structures. Elhamifar and Vidal (2013) reported that these struc-
tures do not occupy a single continuous subspace but rather the union of many
small, discrete subspaces. These low dimensional subspaces are likely disconnected.
For example, image or audio features cannot be expected to continuously interpolate
and still lie in a domain of natural data. Continuous, low dimensional representa-
tions can be learned by clustering common data features by enforcing some prior
on the latent space, for example, the Gaussian distribution as is the case of VAE
(Kingma and Welling, 2014) models. However, sampling new images, interpolation,
or classification with these features is far from optimal. Discrete autoencoders such
as VQ-VAE (van den Oord et al., 2017) or LBAE (Fajtl et al., 2020) exhibit higher per-
formance, which indicates that the discrete and sparse features may be a better way
to represent the image data structure.

Benefits of high dimensional sparse representations have been extensively dis-
cussed and applied in many seminal studies, most notably by Willshaw et al. (1969),
Hopfield (1982), and Kanerva (1988) and applied in the computer vision domain
(Wright et al., 2008, 2010). Our work primarily concentrates on the orthogonality,
union, and overlap properties, as discussed in Ahmad and Hawkins (2016).

Despite the small number of active bits, sparse binary representations can still
reference a vast number of patterns. The number of patterns for n dimensions with
w active bits is given by the binomial coefficient:(

n
w

)
=

n!
w!(n− w)!

(5.1)

In the case of the SBRCL latent space with n = 4096 and sparsity 5%(w = 200 active
bits), the number of patterns is more than 10345.

The most crucial property of sparse, high dimensional spaces is the tendency
towards orthogonality of random vectors, which becomes more pronounced as the
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dimensionality grows. The orthogonality underpins operations such as the union
set and overlap similarity.

The union of binary vectors is a result of binary OR operation between bits at
corresponding dimensions. The probability of exact match of two random vectors
is:

p f p =

(
n
w

)−1

(5.2)

In our example p f p ≈ 0 for n = 4096, w = 200. For w = 100, p f p ≈ 10−200 and for
w = 10, p f p ≈ 10−30. The match probability increases with the increase in sparsity
but is still near zero. Consequently, a union of random vectors always expands the
number of active bits. With more patterns in the union, the bits will saturate, which
results in a large number of false positives. This behavior is similar to the Bloom
filter (Bloom, 1970), where the false-positive rate grows with the number of stored
patterns, but it never results in false negatives.

Union of M random Sparse Binary Representation (SBR) patterns with exactly w
active bits leads to probability of false positives p f pu defined as:

p0 =
(

1− w
n

)M
(5.3)

p f pu = (1− p0)
w , (5.4)

where p0 is the probability of any bit being zero in the union. The p f pu is the prob-
ability that a random vector overlaps by w bits with the union set of M random
patterns. In our example, p f pu = 0.991 for n = 4096, w = 200 and M = 200 patterns.
For M = 100, p f pu = 0.26 and for M = 50, p f pu = 4× 10−8. We can see that the more
random patterns we add the faster the union space gets exhausted.

Since we do not store random but rather correlated patterns, the sparsity of the
union will decay much slower, depending on the SBR encoder. We can calculate the
probability of false positives as a probability of random vector y, with sparsity (n

w),
overlapping by exactly b bits with union U of M correlated patterns with sparsity
( n

wu
) (Ahmad and Hawkins, 2016, O’reilly and McClelland, 1994). The union U may,

for example, represent patterns constituting a single image class. Assuming, subject
to the SBR encoding, that representations of single image class are highly correlated,
the sparsity of the corresponding union would be substantially lower than the union
of random vectors. To calculate the probability of a random vector y overlapping
with the union U, we first calculate the total number of all overlapping vectors as:

Ωu(n, w, b) =
(

wu

b

)(
n− wu

w− b

)
, (5.5)

where Ωu is the number of all possible vectors with sparsity (n
w) that have exactly b

bits overlap with union U with sparsity ( n
wu
). Here, we assume the number of active

bits in the union U is wu. The probability of the y random vector overlapping with
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the union is
p f po =

Ωu(n, w, b)
(n

w)
. (5.6)

For sparsity of the overlapping set that equals to the desired number of matching
bits b = w, the equation reduces to

p f po =
(wu

w )

(n
w)

. (5.7)

For example, for n = 4096, w = 200, wu = 400 probability of false positives is p f po =

4× 10−227. We can observe that if the union is an assembly of vectors with correlated
dimensions, the probability of a false positive match is extremely low.

There is an apparent trade-off between the sparsity and generalization. In the
case of extreme sparsity, the representations of class instances are orthogonal to each
other. There is either an exact match between identical instances or no match be-
tween similar but not exact instances; thus, the generalization property is lost. We
can only check the presence of the exact training samples in the union. Extreme
sparsity, leading to the lack of generalization, was already studied by Sharkey and
Sharkey (1995) and French (1994). On the other hand, low sparsity reduces the dis-
criminative property of the SBRs between tasks due to the considerable overlap.
Therefore, the performance of the union set as a pattern attractor for classification as
well as the overlap similarity rests on the quality of the SBR, particularly the level of
sparsity and the within and between-class correlations.

In our method, we propose to learn the sparse binary representation with `0

regularization over activations and only in the last Layer. The motivation to learn
the sparsity in the latter layers originates from the work of Hoefler et al. (2021),
who showed in a number of experiments that sparsity, learned by pruning, naturally
occurs mostly in the last layers of deep neural networks. This also coincides with the
progression of catastrophic interference through the ANN layers (Ramasesh et al.,
2021), where the latter, higher layers, exhibit the highest forgetting.

Finally, despite the high dimensionality, the SBR representations are memory
efficient. The SBR can be encoded on common computer architectures, without a loss
of information, by storing indices of active bits or directly mapping bits to machine
variable types such as int32. To encode the SBR by the active bits indexing, the
number of bytes b required to store n dimensional representation with sparsity s in
percentage can be calculated as follows:

w =
⌈ s

100

⌉
(5.8)

b =

⌈
log2(n)

8

⌉
w, (5.9)

where b is the number of bytes needed and w is the number of active bits in the
SBR. For possible compression of the SBRCL representations, see Section 5.9. Sparse
representation is also known to be an energy-efficient neural coding in the brain with
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low metabolic cost (Graham and Field, 2006).
In addition to the SBRCL that directly learns the binary representation, we also

propose a meta-learned SBRCL, referred to as MLSBRCL. This model uses the meta-
learning method only to learn the binary representations, but the continual learning
and inference are performed by the union set and the overlap similarity.

5.3.2 SBRCL Method

The core of the SBRCL model is a common multilayer CNN network split into three
logical modules. A front-end feature extractor CNN is followed by a single or a few
layers network learning the sparse binary representations. During the representa-
tions learning, the binary representations enter a common linear classification layer
(Figure 5.8). During the continual test-training stage, the binary representations are
combined by the binary OR operation and added to the memory matrix M. We will
discuss details of the continual learning and inference processes in Section 5.3.2.
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FIGURE 5.8: SBRCL is a conventional CNN with binarization before the final classi-
fication layer, used only during the representations learning. During the continual
learning the classification layer is replaced with a matrix M of binary pattern at-

tractors.

Learning Binary Latent Space with Backpropagation

The binary vectors b ∈ {−1, 1}N are produced by rounding the continuous N di-
mensional latent z ∈ RN with the sign() function followed by the max operation.

bi = fb(zi) =

1, if zi ≥ 0

0, otherwise.
(5.10)

A diagram of this operation is shown in Figure 5.9. The binarization function fb() is
a non differentiable operation, which cannot be directly backpropagated. To avoid
this issue, we substitute the otherwise zero gradient function fb() with a surrogate,
unit function fs(), which lets the gradient flow unchanged through the binarization.
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We accomplish this but implementing the binarization function as follows:

b = max(0, sign(z)) + z−sg(z) (5.11)

where the sg() is a stop gradient operation that zeroes gradient for every input. Dur-
ing the forward pass, the z−sg(z) cancels out. During the backward pass, the gra-
dient through max(0, sign(z)) and sg(z) stops, but it will flow unchanged directly
through z.
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FIGURE 5.9: Binarization layer

Enforcing Sparsity

Sparsity in the representations learned by the OML and ANML networks naturally
arises during the meta-learning process. Our experiments showed that this phe-
nomenon is not unique to these methods. This is, in part, caused by the competitive
process established by the cross-entropy loss function in the outer loop. In fact, the
sparsity in the OML and ANML methods can be controlled by introducing a tem-
perature T to the softmax in the cross-entropy loss in the outer loop as follows:

pi =
e

hi
T

∑C
k=1 e

hk
T

(5.12)

L = −∑
i

yilog(pi), (5.13)

where h are the logits of the classification layer, C number of classes, y ground truth
labels and L the cross entropy loss scalar.

In addition to the sparsity induced by the learning process with the cross-entropy
loss, we introduce a `0,`2 regularization on the activations of the binary latent vector
b as follows:

Sj =
1
N

N

∑
i=1

bj
i (5.14)

Ls =
1
B

B

∑
j=1

(Sj)2, (5.15)
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where Sj is the `0 sparsity penalty of the jth sample in the batch, calculated as a
number of non zero elements in bj. Ls equalizes the `0 losses across the training
batch of B samples. The final loss is then calculated as the cross-entropy loss Lc plus
sparsity penalty Ls weighted by ws.

L = Lc + wsLs (5.16)

We set the ws = 1 for the duration of the main training stage and ws = 10 for few fi-
nal training epochs. We found this weight experimentally, however, its exact value
is not critical; values up 50 resulted in the same training profile and final perfor-
mance. Higher values then resulted in a performance decline.

Continual Learning and Inference

As with the meta-learning methods, the continual learning and inference in SBRCL
are split into the test-training and test-testing stages. During the test-training stage,
instances of novel classes, not used during the representation learning, are incre-
mentally learned by the model. During the test-testing stage, new instances of the
test-train classes are classified.

We follow a simple, intuitive model to form a template characterizing a single
learned task (class). Let us consider an instance of a given class as a pattern repre-
sented by the SBR whose small subset of bits encodes all features of this pattern. To
ensure that these known patterns are always correctly detected during the inference,
we set all active SBR bits of all training instances in the template. We create a union
of single class training instances by performing a binary OR operation along each
SBR dimension. We call this union vector a pattern attractor. Pattern attractors of
all learned classes are stacked in a memory matrix M for inference. This process is
illustrated in Figure 5.10.

Formally, the union ac over representations bj, j ∀ ∈ [1, ..., Ic] of all instances Ic of
class c is calculated as

ac = fb

(
Ic

∑
j=1

bj

)
. (5.17)

The function fb() (Eq. 5.10) binarizes the vector sum into range bj
i ∈ {0, 1}.

The inference during the test-test stage is carried out by performing binary AND
operation between binary latent of the test sample and all attractors in the memory
matrix M. It is calculated as a dot product between binary vectors.

yc = Mc b (5.18)

The results is a number of matching active bits between Mc and b. The overlap
operation over the memory matrix M is shown in Figure 5.11. The test sample is
categorized by a class whose attractor shows the highest overlap wit the sample’s
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class c is learned by calculating union set ac of all training instances of the new
class (binary OR operation over the representations) and adding it into the pattern
attractor memory matrix M. A class of an unknown image is inferred by overlap-
ping (binary AND) its binary representation with all attractor patterns in M and

selecting the one with the highest overlap.

binary representation.

c = argmax
c

(yc) (5.19)

The union set and overlap metric may not appear as the best candidates for the
learning and inference. However, by computing the overlap of the test representa-
tion with a pattern attractor (a row in the memory M), we are checking how many
discrete semantic features in the test sample agree with the specific pattern attractor
while ignoring all other semantic features. We assume here that the bits in the binary
representation have semantic meaning. The Euclidean or Hamming distance, on the
other hand, tell us how many semantic components differ between the template and
the test sample, which is not a valid measure to categorize the pattern. Intuitively, a
class category of a pattern is given by the number of semantic features it shares with
the template rather than the number of features it is missing. The difference between
the overlap set and the Hamming distance calculations is illustrated in Figure 5.11.
As pointed out in the work on the sparse distributed representations by Hawkins
and Ahmad (2016), Ahmad and Hawkins (2016), and Cui et al. (2017), the overlap
metric is also a biologically plausible method since it does not require full connec-
tivity among all neurons in the layer. The full connectivity would be necessary to
calculate the Euclidean, Hamming, and other p-norm similarities.

Finally, the union and overlap operations are extremely fast to execute and sim-
ple to implement on most computational platforms.
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FIGURE 5.11: Overlap similarity calculation between test representation b and the
memory of pattern attractors M (left). Hamming distances for the identical setup

are shown on the right.

5.3.3 Meta-Learned Sparse Binary Representations

To compare the binary and the meta-learned representations, we introduced a num-
ber of modifications to the OML. First, we replaced the last layer of the representa-
tion learning network (RLN) with the binary layer of the exact dimensions (4096) as
in the SBRCL. The prediction network (PLN) was set up with only a single classifi-
cation layer updated only during the inner meta-training loop and the test-training
stage. We call this OML-WB model as the OML Wide Binary. Second, we modified
the OML-WB by replacing the entire meta-test-training and meta-test-testing process
with the union set and overlap similarity methods, identical to SBRCL. We call this
MLSBRCL method as the Meta-Learned SBRCL.

5.3.4 Contributions to the Field of Neural Architectures

The SBRCL model builds on existing neural network methods, particularly CNN
and the meta-learning method. Additionally, we leverage established activation,
regularization and optimization methods, namely: ReLU and tanh() activations,
`0, `1, `2 and dropout regularizations and ADAM (Kingma and Ba, 2015) optimiza-
tion. Our method introduces a novel, binarization layer, end-to-end trainable with
gradient-based methods and a single layer architecture for continual learning of bi-
nary representations centered around binary OR and AND operations. Further on,
for very high dimensional latent space, necessary to express a sufficient amount of
information in complex data such as natural images of the CIFAR-100 dataset, we
propose a binarization layer with information bottleneck as discussed in Section 5.6.

5.4 Evaluation Protocol

We adopt the evaluation protocol from Javed and White (2019) and Beaulieu et al.
(2020). The model is first trained on a dataset of training classes disjoint with the test
dataset. The trained model is then evaluated on the continual learning tasks on the
test dataset.

The SBRCL and MLSBRCL methods for Omniglot utilize an exact copy of the
representation learning network introduced by the OML (Javed and White, 2019)
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method. Since the original OML study, no other follow-up work has evaluated the
OML on the CIFAR or other datasets of natural images; we adopt ResNet (He et al.,
2016) architecture for the representation learning network. The dimensions of the
binary latent representations and the information bottleneck for the CIFAR model
have been devised empirically. In particular, the latent representation for the Om-
niglot model has been chosen to have twice the dimensionality of the OML, continuous-
valued representation, and for the CIFAR model twice the dimensionality of the
Omniglot SBRCL model. This was to increase the latent dimensionality compared
to the continuous-valued representations that would still maintain a reasonable in-
formation bottleneck. Moreover, the higher dimensionality of the CIFAR-100 SBR,
compared to the Omniglot, reflects higher CIFAR data complexity. The `0 regular-
ization controlling the SBR sparsity and the ws weight balancing the classification
accuracy with the sparsity were set to produce in average ≈ 5% of active latent bits
during training. Other hyperparameters were chosen experimentally in line with
the prior work OML and ANML to maximize classification accuracy and reduce the
overfitting of the representation learning network. There are no hyperparameters in
the SBRCL and MLSBRCL continual learning networks.

The test is conducted in two stages; test-training and test-testing. During the
test-training stage, the model learns a sequence of test class instances, where each is
presented to the model only once and then discarded. Only after all instances of one
class have been presented, next class can be learned. When the entire sequence of all
classes is learned, the model is evaluated on the test-test instances.

The performance is reported as an average accuracy over all tasks learned up to
a checkpoint. For example, after learning 100 Omniglot test classes, we report an
average accuracy over all test instances of the learned 100 classes. We also report the
average incremental accuracy metric introduced by Rebuffi et al. (2017) and adopted in
a number of recent studies (Douillard et al., 2020, Hou et al., 2019). This metric was
proposed to be used in cases where a single value is preferable.

5.4.1 Datasets

We conduct all experiments on the Omniglot (Lake et al., 2015) and CIFAR-100
(Krizhevsky and Hinton, 2009) datasets. A CL test on an out-of-distribution data
is carried out on the MNIST (LeCun et al., 2010) dataset.

The Omniglot dataset contains 1623 images of handwritten characters originat-
ing from 50 diverse alphabets. Each character was drawn by 20 different people,
thus there are 20 instances of each character. The dataset is further split into 963
training and 660 test images with disjoint classes. Examples of three Omniglot al-
phabets are shown in Figure 5.12. In all our experiments, the Omniglot images were
scaled down to a grayscale 28x28 resolution.

MNIST is an image classification dataset with 10 classes, each with 6000 training
and 1000 test images of handwritten digits. MNIST images are grayscale with white
digits on black background with 28x28 pixels resolution. For our experiments, we
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Bengali Braille Futurama Digits

Omniglot MNIST

FIGURE 5.12: Examples of three Omniglot alphabets and the MNIST digits.

inverted the images to black foreground and white background as are the Omniglot
images. Examples of some MNIST digits are shown on the right in Figure 5.12.

CIFAR-100 dataset contains 100 classes, each with 500 training and 100 test, RGB
images with resolution 32x32 pixels. Some examples are shown in Figure 5.14. We
conducted all experiments with original 32x32 RGB images. For the continual learn-
ing scenario, the datasets were split into the training and test datasets with disjoint
classes and then further into test-train and test-test datasets of the same classes but
disjoint instances. The split is illustrated in Figure 5.13.

Classes

Class
instances Training data

Continual training data

Continual test data

FIGURE 5.13: Illustration of the train, test-train and test-test dataset splits.

5.5 Experiments on Omniglot Dataset

The SBRCL model for the Omniglot dataset learns 4096 dimensional binary repre-
sentations. The model is trained on batches of 64 unique classes, identical in size
to the OML remember sequence. In addition to the remember sequence, the OML
training sequence also includes 20 instances of the learned class plus another 20 in-
stances of the same class concatenated to the remember sequence. Before each batch
update, we reset weights in the classification layer belonging to a randomly selected
class from the 64 classes in the training batch. We found that this technique signifi-
cantly helps with the model regularization. The value of ws = 10 was established
experimentally over several trial runs, however, the exact value is not critical (see
Section 5.3.2). We train the model for 42 epochs where it appears to reach the best
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FIGURE 5.14: Examples from the CIFAR-100 dataset.

performance. We have not carried out any extensive optimization or hyperparam-
eters tuning. It is likely that such tuning may further improve the performance.

For the evaluation, we use test-train and test-test split, identical to the OML and
ANML. That is, for the test-training, we use 15 random instances of the 660 test
classes. For the test-testing, then the remaining 5 instances of the same classes. All
reported results are averaged over results on 5 random splits of the test dataset.

The OML-W model is the OML model with a wider, 4096 dimensional repre-
sentation with float32 values. The OML-WB is identical to OML-W, but it adds the
binarization layer identical to the SBRCL, thus learning 4096 dimensional binary
representations. Finally, the MLSBRCL model is the OML-WB with the union and
overlap continual learning and inference method.

TABLE 5.1: Test-test accuracy on the Omniglot dataset. Each column shows av-
erage accuracy over all learnt classes up to that point. Last column shows mean
incremental accuracy in percent as proposed by Rebuffi et al. (2017). All results are
averaged over five models trained on five random test dataset splits. Our methods

are higlighted in bold.

Sequence lengths. Mean accuracy over all classes
learnt in each sequence are bellow in %

Method 10 100 200 300 400 500 600 Inc. Acc.
ANML 96.00 83.00 79.00 75.00 71.00 66.00 63.80 76.26
OML 92.00 69.00 55.00 41.00 32.00 23.00 18.20 47.17
OML-W 98.00 92.72 89.42 86.88 85.71 83.50 81.59 88.26
OML-WB 98.00 92.32 88.34 86.23 85.17 82.53 80.68 87.61
MLSBRCL 98.40 95.12 92.88 90.41 90.05 88.14 87.15 91.74
SBRCL 99.20 94.40 92.44 90.67 88.14 86.42 85.00 90.89

All models were evaluated on sequences of continually learned 10, 100, 200, 300,
400, 500, and 600 tasks where each task is one class. Each sequence was evaluated
individually over five test dataset splits. Accuracy averaged over all tasks learned in
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the sequence over the five splits is reported in Table 5.1. Our methods are compared
to the ANML (Beaulieu et al., 2020) and OML (Javed and White, 2019) methods as
the current SOTA in this domain. In Figure 5.15, we show the results on the test-test
data.
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FIGURE 5.15: Continual learning performance on the Omniglot test-test dataset.

The MLSBRCL method performs marginally better than the SBRCL, which in-
dicates that the meta-learning produces semantically more meaningful binary rep-
resentations but only in combination with the union/overlap CL learning and in-
ference method. The OMNI-WB method, identical to MLSBRCL but with the meta-
training and meta-testing for inference, shows a decline in performance.

The OMNI-W and OMN-WB show very similar performance on the Omniglot,
which indicates that our binarization method performs well even in the setup where
the features are evaluated in the meta test region as continuous-valued features. In
fact, the binary features significantly reduce the information flow through the rep-
resentation layer compared to continuous features of identical dimensions. Con-
sequently, bits in the binary features must correlate more with specific semantic
features, unlike the continuous values that can encode many representations into
a single dimension.

The performance of our methods is substantially better than that of the OML
and ANML. We can attribute this gain to the higher dimensionality of the learned
representations (2304 vs. 4096) for the meta-learned methods, but more importantly
to the sparse binary representations and the union/overlap technique in the simple
SBRCL method.
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FIGURE 5.16: Continual learning performance on the Omniglot test-train dataset.

In Figure 5.16, we report accuracy on the test-training samples; we classify the
same images used during the CL training. Both models MLSBRCL and SBRCL, show
100% accuracy for all CL sequences. Representations of the training samples are
combined with the binary OR operation and compared to the overlap with the bi-
nary AND operation. Therefore, as with the Bloom filter (Bloom, 1970), the inserted
patterns never result in false negatives in the test. Equally, our method always de-
tects the training samples in the memory M, but if the patterns are not well separated
among the classes, false positives can be generated.

A correlation between binary representations across 30 random classes from the
test dataset is shown in Figure 5.17. The figure was produced by correlating the
binary features of ordered 15 instances of each class. That is, 15 instances of class A
are followed by 15 instances of class B and so. We can see a strong correlation within
the classes instances but weak between different classes. More detailed analysis with
quantification follows in Section 5.8.

5.6 Experiments on CIFAR-100 Dataset

The SBRCL model for the CIFAR-100 model is composed of a CNN feature extractor
front-end followed by two layers network for binary representation learning. The
CNN network is trained on the first half of the 100 CIFAR-100 classes and stays
fixed over the duration of the CL learning and inference.

The reason for this architecture is twofold. First, the CIFAR-100 dataset is con-
siderably more challenging due to its color, natural 32x32 images, thus it requires
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FIGURE 5.17: Correlation matrix between the SBRCL binary representations of ran-
dom 30 Omniglot test classes with 15 instances each.

a deeper network to learn good features compared to the Omniglot. Training the
entire network together with the binary part is a time and resource-demanding task.
Second, we wanted to demonstrate that even fixed features can be used to train a
high-performance CL model. From the neuroscience perspective, the fixed feature
extractor could be contextualized with the primary cortex (V1) of an adult individ-
ual, which has been observed to exhibit very low plasticity.

The CNN front-end for feature extraction is a conventional ResNet152 (He et al.,
2016) model with a modified last layer to output 50 classes. This model is trained
from scratch on the first 50 CIFAR-100 classes. We refer to this model as CF50. For the
CL training, the ResNet classification layer is discarded, and its input, a 1028 dimen-
sional vector, is used as input to the binary representation learning network (BRLN).
Unlike the Omniglot model, the BRLN has an additional information bottleneck be-
fore the binarization layer. To express more complex datasets than the Omniglot,
such as the CIFAR-100, we need to increase the SBR dimensionality further. How-
ever, learning high-dimensional codes is problematic due to their tendency to over-
fit. One way to alleviate this problem is to reduce the amount of information flow
through the network by reducing the dimensionality of one or several hidden layers.
This approach is readily applied in ANN for classification; however, we hypothesize
a distinction between the information capacity required for a typical one-hot ANN
classifier and learning the SBR binarization layer.
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Learning the binary representation can be seen as learning a multi-class clas-
sifier where each class is a low-level data feature. In this configuration, a class is
not represented by a single continuous-valued vector, a typical input to a common
classification layer, but rather by a set of several continuous-valued vectors, each
activating one bit in the binary SBR. In the case of the typical one-hot classification,
the latent representation must be able to express all intra-class variations (for good
generalization) as well as to discriminate between classes. The generalization prop-
erty (the space of intra-class variations) of the SBR is given by combining the active
SBR bits. Each bit represents a low-level data feature with low intra-class variations,
e.g., a specific feature is present in the input or not. Therefore, for the typical one-hot
classification task, the latent representation needs to generalize as well as to discrim-
inate, while for the SBR, it needs only to discriminate.

From another perspective, during a typical one-hot classification, a latent rep-
resentation is matched (by dot product) with a template vector (of the same di-
mensionality) of each class stored in the classifier’s matrix. This similarity needs
to capture the intra-class variations. In the case of the SBR binarization (akin to
the multi-class classification of low-level features), the latent representation needs
to only discriminate between features encoded by SBR bits. Consequently, we hy-
pothesise that the information carried by the template vector of each SBR bit in the
matrix of the binarization layer needs to carry less information (can have lower di-
mensionality) than the template vector of the typical one-hot classifier. However, it
is important to note that the latent representation, regardless of its format, entering
both the one-hot classifier and the binarization layer must carry the same amount of
information for its upper bound performance considering an ideal classifier model.

The inspiration behind this architecture originates from the configuration ob-
served in the olfactory circuits of Drosophila Fly (Turner et al., 2008), which per-
forms dimensionality reduction followed by expansion to sparse representations.
Empirically we found this architecture to considerably reduce overfitting and boost
the CL performance while reducing the number of learned parameters.

The bottleneck is implemented as a neural network with two fully connected
layers with ReLU activations. The first layer reduces the 1028 dimensional CNN
features to 256 dimensions, and the second layer then expands this compressed rep-
resentation to 8192 dimensions, followed by binarization. This architecture is illus-
trated in Figure 5.18.

The ResNet152 was trained on the first 50 CIFAR-100 classes with images aug-
mented by random horizontal flip followed by 4 pixels padding on each side and
random crop to 32x32. The performance of the pre-trained CNN is reported in Table
5.2.

We call the modified ResNet152 as CF100 or CF50 according to how many classes
it was trained on. The CF100 was trained only to establish the upper bound of the
highest possible accuracy over all 100 classes trained with the mini-batch gradient
descent.
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FIGURE 5.18: SBRCL CIFAR-100 model.

TABLE 5.2: Performance of the pre-trained CIFAR-100 ResNet152 models. TC
stands for trained classifier and TBC for trained binary classifier.

Model Model Architecture Training Dataset
Test

Accuracy

CF100
ResNet152, last layer set
to output 100 logits.

All 100 classes 72%

CF50
ResNet152, last layer set
to output 50 logits.

First 50 classes 75.70%

CF50+TC

Last CF50 conv layer followed by
a single linear layer 1028->50.
CF50 trained on first 50 classes.
Only last new layer trained.

Second 50 classes 64.26%

CF50+TBC

Last CF50 conv layer followed by
layers 1028->4096->tanh->bin->50
CF50 trained on first 50 classes.
Only added two layers trained.

Second 50 classes 69.55%

The BRLN part of the SBRCL model was again trained on the first 50 classes in
batches of 512 images while keeping the CF50 network fixed. The first 10 epochs
were trained with ws = 1 and then with ws = 10 until convergence, approximately
for the next 150 epochs. All reported results were averaged over 5 test splits. For
the continual learning evaluation, we use the remaining 50 classes. 300 instances of
these classes were used for the test-training and the remaining 200 for test-testing.

The task-free, class-incremental continual learning that we consider in our work
is the most challenging scenario. Consequently, there is a substantial lack of pub-
lished work, notably on the more challenging benchmarks such as the CIFAR-100.
To our knowledge, there is no work on the CIFAR-100 targeting the task-free, class-
incremental CL scenario with a comparable method that we could use for a fair
evaluation. Therefore, we compare against considerably more complex methods
utilizing extra memory to store past samples for replay and perform various regu-
larization techniques. The OML and ANML studies do not include tests on large
datasets with natural images, nor are reported in other literature. We compare our
methods with the following recent methods: BiC (Wu et al., 2019b), UCIR (Hou et al.,
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2019), PODNet (Douillard et al., 2020), and iCaRL (Rebuffi et al., 2017).

TABLE 5.3: Test-test accuracy on the CIFAR-100 dataset. Each collumn shows aver-
age accuracy over all learnt classes up to that point. Last column shows mean incre-
mental accuracy as proposed by Rebuffi et al. (2017). All results are averaged over
five models trained on five random test dataset splits. Our models are higlighted

in bold.

Sequence lengths. Mean accuracy over all classes
learnt in each sequence are bellow in %

Method 2 5 10 20 30 40 50 Inc. Acc.
PODNet (NME) 76.00 71.00 67.00 61.00 55.00 52.00 48.00 61.43
UCIR (CNN) 74.00 56.00 53.00 46.00 42.00 39.00 34.00 49.14
iCaRL 72.00 47.00 47.00 42.00 37.00 33.00 29.00 43.86
BiC 74.00 53.00 48.00 43.00 41.00 36.00 35.00 47.14
OML-S 87.80 64.40 59.82 47.27 40.64 33.58 30.63 52.02
OML-WB 89.30 71.72 63.00 45.38 34.79 31.11 27.16 51.78
MLSBRCL 88.90 78.00 70.02 56.07 47.70 41.81 39.48 60.28
SBRCL 95.10 81.32 67.78 67.58 57.86 54.30 51.05 67.86

In addition to the SBRCL model, we also train MLSBRCL in the meta-learning
setting with the union and overlap inference. Furthermore, we compare against an
OML-S model, which is our implementation of the OML with 2038 dimensional rep-
resentations but with the same CNN front-end as the SBRCL - the CF50 trained on
the first 50 CIFAR-100 classes. We attempted to train the original OML implemen-
tations on CIFAR-100 but failed to achieve meaningful results. The OML-S provides
more objective results for comparison against other methods. Other our models
OML-W and OML-WB follow the same design as the Omniglot models. That is, the
OML-W is the OML-S but with a wider representation with 8192 dimensions. The
OML-WB then extends the OML-W by the binarization layer.

In Table 5.3 and Figure 5.19, we compare our results with the recently published
work. We can see that our method SBRCL performs statistically on a par with the
PODNet despite the PODNet being a complex method (as defined in Section 1.1),
utilizing a replay memory buffer with distillation across ResNet layers and bias bal-
ancing.

Surprisingly, the OML-S performs better than the OML-WB and OML-W. We
attribute this difference to the regularization effect of the smaller representation size.
Along the same line, we explain the performance gap between OML-WB and OML-
W. It is conceivable that the higher performance of the OML-WB over the OML-W
could be explained by the information bottleneck introduced by the binarization
function.

In Figure 5.20, we show the correlation of the binary representations of 10 ran-
dom classes with 40 grouped instances each. The within-class correlations are notice-
ably lower compared to the Omniglot (Figure 5.17) experiments, nevertheless clearly
observable. This lower correlation can be explained by the higher diversity of fea-
tures constituting the CIFAR-100 classes. While the Omniglot images are composed
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FIGURE 5.19: Continual learning performance on the CIFAR-100 test-test dataset.

FIGURE 5.20: Correlation matrix between the SBRCL binary representations of ran-
dom 10 CIFAR-100 test classes with 40 instances each.

of a limited number of binary line and curve feature primitives, the natural CIFAR-
100 images require a much richer feature set, likely also having a higher intra-class
variance.
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5.7 Out-of-Distribution Continual Learning

The ability to continually learn and then recognize new tasks with distribution far
from the distribution of the training dataset is a fundamental requirement for ma-
chine learning models deployed in real-world applications.

The out-of-distribution (ood) experiment is conducted with the SBRCL model
trained on Omniglot, which we then use to continually learn all 10 MNIST (LeCun
et al., 2010) classes. The MNIST digits or similar symbols do not appear in the Om-
niglot, thus the MNIST is a suitable dataset for the ood test.

The ood performance of the SBRCL model was compared against state-of-the-
art methods evaluated in the class-incremental learning scenario: MERLIN (KJ and
Nallure Balasubramanian, 2020), iCaRL (Rebuffi et al., 2017), GSS (Aljundi et al.,
2019), and FRCL and BASELINE from Titsias et al. (2019). Results for the GSS, iCaRL
and MERLIN methods originate from the KJ and Nallure Balasubramanian (2020)
publication while FRCL and BASELINE from Titsias et al. (2019). Experiments in
these publications were carried out in simpler CL settings (noted in Table 5.4) on the
Split MNIST dataset and not in the ood test.

The results are reported in Table 5.4, along with notes highlighting the differ-
ences in the evaluation protocol. While not reaching the state-of-the-art results, our
method still shows comparable CL performance despite its simple architecture and
the evaluation in the ood setting.

In Figure 5.21, we present a correlation between 40 sorted instances of all 10
MNIST classes. As in the Omniglot and CIFAR-100 cases, we can see a clear within-
classes correlation and between-classes separation.

TABLE 5.4: Out-of-distribution continual learning of 10 MNIST classes with SBRCL
model trained on Omniglot. Average accuracy over all classes is reported. Other

methods are trained and evaluated on Split MNIST with 5 two-digits tasks.

Method Accuracy (%) Note
GSS 88.30 Replay buffer 200 samples/task
iCaRL 89.90 Replay buffer 200 samples/task

MERLIN 90.70
Generative replay in parameter space, inference
over ensemble of 30 models per task

BASELINE 95.80 Replay buffer 40 samples/task

FRCL (TRACE) 97.80
Approx. Bayesian inference with Gaussian
Processes. Replay buffer 40 samples/task.
Sample is a latent and dist. (µ, σ) per task.

SBRCL 95.78



128 Chapter 5. Continual Learning and Memorization with Sparse Representations

FIGURE 5.21: Correlation matrix between the SBRCL binary representations of ran-
dom 10 MNIST test classes with 40 instances each.

5.8 Clustering Performance

To gain some insights into the high performance of SBRCL method, we analyzed the
clustering performance of the binary features. We calculate the within and between-
cluster Hamming distances and the overlap similarities. The results are presented
in Table 5.5. We do not use the union sets as the cluster centers here but instead
randomly sampled several thousand pairs of within and between-classes represen-
tations, calculated their distances, and averaged them. We can observe that the ratio

TABLE 5.5: Clustering performance of the CIFAR-100 and Omniglot binary rep-
resentations calculated over all instances of 50 CIFAR-100 test classes, and all in-
stances of the 600 Omniglot classes. The cluster distances are Hamming distances.
The overlap refers to the similarity by binary AND operation (number of matching

active dimensions). The arrows show the direction of the desired performance.

CIFAR-100 Omniglot
SBRCL MLSBRCL SBRCL MLSBRCL

Latent dimensions 8192 8192 4069 4069
Accuracy ↑ 51.05% 39.48% 85% 87.15%
Sparsity 2.70% 2.60% 6.50% 6.30%
Between clusters distance ↑ 422.54 414.86 482.24 478.69
Within clusters distance ↓ 387.13 345.63 297.16 327.73
Between clusters overlap ↓ 6.68 12.56 12.74 9.59
Within clusters overlap ↑ 15.62 28.55 55.11 44.21

of the within-classes and between-classes overlap similarities is significantly higher
compared to the ratio of Hamming distances. On the Omniglot, the within-classes
overlap similarity is more than four times higher than the between-classes overlap
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FIGURE 5.22: Sorted activation probabilities of the latent dimensions calculated on
the training and test Omniglot data.

on both SBRCL and MSBRLC methods. This ratio directly correlates with the ob-
served method performance (accuracy). The CIFAR models follow the same trend.
The Hamming distances also do correlate with the observed classification accuracy,
although the between/within distance ratios are smaller.

In Figure 5.22 we plot the probability of each bit in the binary representation be-
ing active, calculated over all instances of test and train classes. We can notice that
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FIGURE 5.23: Activation sparsity on the training and test Omniglot samples. Train-
ing and test representations are sorted by the sparsity and their normalized indices

shown along the x axis.
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the test data shows lower sparsity (higher activation probabilities) than the training
one. This is even more apparent in Figure 5.23 that shows the sparsity per train-
ing and test samples. The difference between the train and test sparsity is caused
by the model overfitting on the training data. Without regularization, the sparsity
decreases over the training period until the activations in the binary representation
start to correlate significantly with the class categories. These representations be-
come degenerate since now the bits do not encode semantic attributes of the image
but rather its entire category. Such defective representations lose the ability to gener-
alize. A decline in the generalization due to the high sparsity was already reported
by Sharkey and Sharkey (1995) and French (1994).

In Figures 5.24 and 5.25, we visualize activations of the binary representations
along with few cases of the union set and overlap similarity. For the visualization
purpose, the 4096 bits vectors are padded with zeros are reshaped to images with
57x73 resolution. Figure 5.24 shows binary activations of five instances of three ran-
dom Omniglot test classes and their union sets. Each column in Figure 5.24 shows

Test classes
        1                           2                          3

Test-train 
instances

1

2

3

4

5

Unions 
(binary OR) 
over above 
instances

FIGURE 5.24: Examples of union sets of binary representations of five class in-
stances. These unions form the pattern attractors in the memory M. The repre-
sentations were produced by the SBRCL model on Omniglot test-train data. For
visualization the 4096 bits vectors are zero-padded and reshaped to 57x73 images.
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SBRCL binary representations of five test instances of the same Omniglot class. The
bottom image in each column shows the union set (binary OR operation) of the
above representations. The number of active bits in the union set is higher than
in each representation. This activity increases with added instances but quickly sta-
bilizes with the density shown in Figure 5.24. Adding representations of different
classes results in the rapid exhaustion of all bits in the union set. This highlights that
each class category is a composition of specific features expressed by a subset of bits
in the binary representation. Then all bits in the binary representation make up all
possible compositional features of the training dataset distribution.

Figure 5.25 illustrates two cases of the overlap similarities: between the union
set (center image) and a binary representation of the same class (class in the top left),
and a union set (center image) and binary representations of different classes (class
2 and 3). Note that the representation of class 1 originates from a different image
instance that is not part of the union set. Images in the bottom row show results
of the overlap (binary AND operation). The number below or next to each image
shows a sum of active bits in each representation. We can observe that the overlap

1                                 2                                 3

Union set of class 1 
test-train samples

Test classes,
test instances

Overlaps

584

231

192

285 265

45 21

⨉⨉ ⨉

FIGURE 5.25: Visualization of the overlap (binary AND or dot product) of the
sparse binary representations with a union set of class 1 (in the center). The union
set is produced from test-train instances of class 1. The representation of class 1 in
the top left comes from a disjoint group of test-test instances not used to assemble

the class 1 union set. Numbers next to images indicate number of active bits.
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between a union set and a representation of the same class exhibits a higher overlap
than those of different classes.

5.9 Compression

A high-dimensional binary representation can be efficiently encoded by an integer
vector of indices of active bits. Similarly, sparse continuous-valued representation
can be encoded by an integer vector of indices of active bits and their values. How-
ever, for binary representations with lower sparsity (higher number of active bits), it
is more efficient to map the binary sequence directly to fixed or floating-point vari-
ables, such as common int32 or float32 types.

For the direct bit-mapping of n-dimensional SBR, we need n
8 fractional bytes. To

encode the same SBR with sparsity s with bit-indexing, we need 2ns
100 bytes, assuming

two bytes per index (since the bit-width of the index variable must be > log2(n),
which is 12 bits for n = 4096). These encoding schemas produce identical compres-
sion for sparsity se given by:

n
8
=

2nse

100
(5.20)

se =
100
16

= 6.25% (5.21)

As evident from Eq. 5.20, the higher the sparsity (fewer active bits), the more effi-
cient it is to use the bit-indexing compression. For the SBRCL 4096 bit binary vectors,
it becomes more efficient to directly map the bits for sparsity above 6.2%. For exam-
ple, for sparsity 6.2%, the bit indexing compression results in 508 bytes long vector
while the direct bit mapping produces 4096/8 = 512 bytes vector. This method is
only applicable to binary representations, not the sparse continuous-valued repre-
sentation.

Table 5.6 shows the size and sparsity of the OML,ANML, and SBRCL represen-
tations along with the indices-based compression. It is apparent that even high, 4096
dimensional sparse representations occupy less memory than the sparse continuous-
valued representations of lower dimensionality.

5.10 Conclusion

This work studied selected neurological processes in the primate’s brain related to
our ability to continually learn and their application to computational methods.

With these insights, we proposed a novel machine learning method SBRCL for
continual learning of image classes with low catastrophic interference. SBRCL is a
conceptually very simple method that requires very low computational resources
compared to the latest state-of-the-art methods. SBRCL is a non-iterative method
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TABLE 5.6: Comparison of representation dimensionality and sparsity produced
by methods evaluated on Omniglot and their possible compression. The OML and
ANML sparsity was taken from the corresponding publications Javed and White

(2019) and Beaulieu et al. (2020).

Method Sparsity %
Representation

Size
Compressed
Size (bytes)

Compression
Method

OML 3.8 2304 (float32) 701
Indices of active dimensions
and their values.

ANML 5.9 2304 (float32) 1088
2 bytes per index plus
4 bytes for the value.

SBRCL 6.5 4096 (binary) 533
Indices of active bits.
2 bytes per index.

SBRCL 6.5 4096 (binary) 512 Direct mapping to bytes.

that requires only a single forward pass through the feature extraction CNN fol-
lowed by binary OR operation for learning or binary AND and max operations for
inference. The recent SOTA methods, on the other hand, require either iterative CL
learning and inference (Javed and White, 2019, Beaulieu et al., 2020), maintaining
a replay buffer in combination with the model fine-tuning for CL training (Rebuffi
et al., 2017, Douillard et al., 2020, Riemer et al., 2018), generative models with pseudo
rehearsal (Shin et al., 2017, Ostapenko et al., 2019, van de Ven et al., 2020) or inter-
nally partitioned ANN (Rusu et al., 2016, Fernando et al., 2017).

We evaluated our method on Omniglot and CIFAR-100. It significantly outper-
forms the current state-of-the-art methods on Omniglot and stays on a par with
other much more complex and resource-demanding methods on CIFAR-100. We
also tested SBRCL on the out-of-distribution CL task with comparatively high per-
formance.

Our meta-learning adaptation of the SBRCL method (MLSBRCL) showed marginally
better performance than the SBRCL but for the cost of a more complex and resource-
intensive training regime of the meta-learning. The meta-learning requires more
training iterations due to the extra inner loop updates and backpropagation through
the unrolled iterations of the inner loop. The continual learning and inference algo-
rithms of the MLSBRCL are identical to the SBRCL method, thus equally fast.

While our method shows significant progress on the CL benchmark for continual
learning of a large number of classes, we do not claim it to be a general solution to
the CL problem. Our method’s main limitations are that it does not allow forward
and positive backward transfers across tasks due to the separation of the tasks dur-
ing the CL learning, and it requires supervision to train the CNN feature extractor.

In our future work, we propose training the CNN front-end with a self-supervised
method that addresses the latter drawback; however, enabling the forward and
backward transfer is more challenging. Forward transfer happens when perfor-
mance on newly learned tasks is enhanced by tasks learned in the past. Positive
backward transfer indicates a performance boost of old tasks upon learning new
ones. Both transfers require representation sharing during learning. This is believed
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to occur in the CLS (O’Reilly et al., 2014b) of our brain during autoassociation of
new experiences with past ones in the hippocampus, then a projection of short-term
memories to the long-term memory in the neocortex. Along a similar direction, in
our future work, we propose a replay-based method that may enable the forward
and backward transfers with the sparse binary representations.

Our model can be very loosely contextualized to the memorization of the visual
stimuli up to the CA3 region in the hippocampus, potentially also with the CA1 for
pattern completion. The CNN front-end could be positioned as the primary visual
cortex, the SBRN as the entorhinal region, along with the Dentate Gyrus as the pat-
tern separator. The binary representations are then memories residing in the CA3
region. The CA1 region could be seen as associating the memories to the class cat-
egories represented by pattern attractors in the memory M (Figure 5.1). Output of
the CA1 would provide reduced representations (class categories) as also observed
in the hippocampus.

This work resulted in the following contributions:

• Proposed novel SBRCL method for continual learning with sparse binary rep-
resentations with state-of-the-art results, learning 600 classes in the challeng-
ing task-free class-incremental CL scenario. This method learns directly binary
representations and uses fast union set and overlap similarity operations to
continually learn and infer new class categories.

• Proposed novel MLSBRCL method for continual learning with meta-learned
binary representations combined with the union set and overlap similarity,
showing equally high performance.

• Demonstrated the SBRCL capability to perform well in the out-of-distribution
setting.

The SBRCL PyTorch implementation, including trained models, is publicly avail-
able on https://github.com/ok1zjf/SBRCL.

5.10.1 Future Work

This work barely opened the door to the possibilities of high dimensional, binary,
sparse representations on the path to the continual learning solution. In our up-
coming research, we will conduct more experiments on large datasets with more
classes starting with the ImageNet with 1000 classes learned in the true task-free
class-incremental regime.

Equally, we will conduct more extensive, objective out-of-distribution (ood) eval-
uation by training all competitive methods in the identical CL scenarios and dataset
configurations. The biggest challenge in this evaluation, that we have already en-
countered, is training other models to perform continual learning even on the same
data distribution in the target task-free, class-incremental learning scenario on the
Omniglot dataset.

https://github.com/ok1zjf/SBRCL
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The SBRCL and most CL methods rely on splitting the target dataset into a dis-
joint set, with one being utilized for the CL model pre-training which is sometimes
called bootstrapping. Alternatively, this can be accomplished by leveraging other
datasets, where particular care is taken not to include the same or similar classes in
the dataset for the CL model pre-training. We plan to address this issue by taking
advantage of recent developments in self-supervised training, specifically by con-
trastive or momentum-based methods such as BYOL, SimSiam, SwAV or Barlow
Twins (Grill et al., 2020, Chen and He, 2020, Caron et al., 2020, Zbontar et al., 2021).
Within the currently conducted follow up work, we are implementing the Barlow
Twins (Zbontar et al., 2021) method modified to directly learn the SBR with the self-
supervision on generic large image datasets ImageNet (Russakovsky et al., 2015) and
Tencent ML-Images (Wu et al., 2019a) with 17M images.

In other future work, we are considering to extend our model for Sparse Dis-
tributed Memory (SDM) (Kanerva, 1988), working as an autoassociative memory.
Before forming new or updating existing pattern attractors, the SBR of the input in-
stance is first autoassociated with all known patterns in the SDM and then subjected
to the union or overlap operations. Alternatively, the SDM could be replaced with
an energy-based ANN model of an autoassociative memory, similar to Muezzinoglu
et al. (2005). Since the SDM and the energy-based neural network model store over-
lapping representations, it is likely to enable the forward and positive backward
transfers. Evaluation of these transfers is a part of this upcoming research.

A large part of our future work focuses on interpreting the learned SBRs and
understanding how the sparsity level and SBR dimensionality impact the model
performance. For example we would like to understand what type of features in
the pixel space is encoded by each SBR bit. We are considering visualizing the func-
tion of the SBR bits by setting the desired SBR bits and backpropagating them to
the pixel space. Alternatively, we can generate images with patterns of elementary
shapes (e.g., shapes common in the Omniglot images) and map their appearance
with the SBR bits activations.
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Chapter 6

Conclusions

In this thesis, we conducted research in four machine learning areas: image memo-
rability, episodic segmentation, representation learning, and continual learning.

Our primary goal was to propose novel, low complexity (as defined in Sec-
tion 1.1), and computationally efficient methods competitive with the latest research
work. To ascertain the performance of our methods, we evaluated our work on es-
tablished benchmarks in each area.

In the search for inspiration, we focused on our brain’s functions, the only known
example of an intelligent system. Our goal was not to replicate the neurological
processes underlying the functions of interest or mimic the exact brain behavior. To
do so would arguably require fundamental changes in the computation architecture,
such as a transition to the neuromorphic processors or to simulate the spiking neural
network, which is outside the scope of our work. Instead, we explored the brain
functions to gain insights applicable in the context of artificial neural networks. In
the following sections, we summarize our accomplishments in each domain and
present our contributions.

In Chapter 2, we analyzed what makes us remember some images more than
others. Based on prior research work, indicating that image memorability is an in-
trinsic property of an image, we proposed a learned, spatial attention module that is
capable of learning and predicting image regions correlated with the retention level
of a given image in our memory. We evaluated our method on the latest image mem-
orability datasets and compared it against the current state-of-the-art methods that
our algorithm outperformed by 5.8%, closely approaching the human performance
with 99.6% consistency. We also successfully evaluated our method on the image
aesthetics estimation task. We showed that our model could also learn and predict
other perceptual image attributes with high performance.

In work on episodic segmentation in Chapter 3, we explored how our brain
forms episodic memories and their characteristics in an attempt to apply our find-
ings in the design of a less complex (as defined in Section 1.1) and more accurate
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method for video summarization, compared to the latest research work. Our re-
search converged towards an elementary yet powerful method based on the obser-
vation that boundaries of the memory episodes are likely determined over a longer
sequence of events or retroactively during recall. Therefore, we proposed a novel
method with a soft, self-attention function to learn relations among frames in the
input sequence as a function of the frame importance scores as estimated by man-
ual annotation. We compared our method with the latest research in this domain,
confirming considerable performance gain on standard benchmarks for video sum-
marization.

Learning discrete latent representations is the core topic of Chapter 4. In this
work, we set to develop a method to learn binary latent representations in an un-
supervised way with gradient-based techniques and demonstrate an ability to nav-
igate this latent space and modify its attributes. The biological inspiration behind
this method originates from the nature of the neural coding in our brain. The neu-
ral coding has been reported to exhibit a discrete, binary form and a high degree of
sparsity across all brain regions. Over several experiments, we developed a straight-
forward method to efficiently learn binary representations with the backpropagation
method. The binarization in our method is accomplished by setting up a tanh() func-
tion followed by thresholding around zero. This non-differentiable function is then
treated as a unit function during backpropagation. That is, a gradient flowing back
to the binarization function is passed through to its input unchanged. Furthermore,
we developed new algorithms for generating novel images, interpolating between
given images, and changing image attributes, all in the binary latent space. Here,
we proposed a method where the binary state of each latent dimension is relaxed to
a unit length, continuous-valued vector with the same dimensionality as the latent
space. These vectors, each representing one bit, are positioned in an n-sphere ac-
cording to their mutual correlations. Operations in the binary latent space are then
conducted on the surface of this n-sphere. We evaluated our method on the MNIST,
CIFAR-10 and CelebA benchmarks and compared against generative, representation
learning methods with our method exhibiting superior performance.

In the final Chapter 5, we present our method on continual learning with sparse
binary representations. In this work, we explored brain processes mitigating catas-
trophic forgetting, particularly the complementary learning systems and the pattern
separation in the hippocampus. Furthermore, we studied the plasticity of the pri-
mary visual cortex (V1) in the context of catastrophic forgetting due to learning new
visual features. The research literature on this topic revealed that the primary visual
cortex is highly plastic over the critical developmental period when it likely learns
most of the visual features. This period is then followed by pruning, when the vi-
sual cortex stabilizes to remain primarily as a fixed feature extractor for the rest of
our lives. In light of this observation, we focused on the later layers of our neu-
ral network, as the location experiencing the highest interference between already
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learnt and new data points. In experiments with natural images from the CIFAR-
100 dataset, we set up a pre-trained CNN network as the fixed feature extractor,
similar to the function of the V1 cortex. More importantly, our research on the rep-
resentation sparsification in the Dentate Gyrus region in the hippocampus brought
the most compelling inspirations. Particularly, it highlighted the low interference
between random sparse vectors and, consequently, a high overlap of similar vec-
tors.

The main contributions of our work are: (1) learning sparse binary representa-
tions by novel binarization method with sparsity enforced by `0/`2 regularization,
(2) methods to continually learn new and infer old classes with the sparse binary
representations. To continually learn new class categories, our method calculates a
union set of all instances within the same class category by performing a binary or
operation along each latent dimension. The union is then added to a dynamically
expanded memory as a pattern attractor for the specific class category. A class of an
unknown test sample is then established by comparing how many bits of the test
sparse representation overlap with each pattern attractor in the memory and select-
ing the category with the highest overlap.

Our method significantly outperforms the latest state-of-the-art methods on con-
tinually learnt long class sequences in the most challenging task-free, class incremen-
tal learning scenario. Moreover, despite the high dimensionality of the latent space,
our sparse binary representations occupy less memory than the low dimensional,
continuous-valued latents of the prior art methods.

While architecturally quite different, the SBRCL model presented in this work
evolved from a meta-learning method. Over a number of experiments, we estab-
lished that learning the high dimensional sparse binary representations outperformed
the meta-learning method in the term of the computational complexity (for each CL
training update the meta-learning requires several gradient descent updates, while
SBRCL only a binary OR operation over training SBRs) as well as the performance
to adapt to novel tasks. These experimental results indicate that our method could
be likely applied in other domains as an alternative to the meta-learning methods.
The meta-learning method learns a parameter space bordering with all targeted
tasks. The parameter space is then fine-tuned to a specific task during the meta-
test-training stage. Rather than learning a parameter space that could be updated
towards individual tasks, our method SBRCL appears to reserve regions in the la-
tent space for the targeted tasks. As this method helps avoid catastrophic forgetting
in the continual learning scenario, it is conceivable to believe that such a method
would also avoid interference among the meta-learnt tasks in other domains.
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