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Abstract 13 

Streptomyces is a Gram-positive bacterium, belonging to the family Streptomycetaceae and order Streptomycetales. 14 

Several strains from different species of Streptomyces can be used to promote the health and growth of artificially 15 

cultured fish and shellfish by producing secondary metabolites including antibiotics, anticancer agents, antiparasitic 16 

agents, antifungal agents, and enzymes (protease and amylase). Some Streptomyces strains also exhibit antagonistic 17 

and antimicrobial activity against aquaculture-based pathogens by producing inhibitory compounds such as 18 

bacteriocins, siderophores, hydrogen peroxide, and organic acids to compete for nutrients and attachment sites in the 19 

host. The administration of Streptomyces in aquaculture could also induce an immune response, disease resistance, 20 

quorum sensing/antibiofilm activity, antiviral activity, competitive exclusion, modification in gastrointestinal 21 

microflora, growth enhancement, and water quality amelioration via nitrogen fixation and degradation of organic 22 

residues from the culture system. This review provides the current status and prospects of Streptomyces as potential 23 

probiotics in aquaculture, their selection criteria, administrative methods, and mechanisms of action. The limitations 24 

of Streptomyces as probiotics in aquaculture are highlighted and the solutions to these limitations are also discussed. 25 

Keywords: Aquaculture, Probiotics, Pathogens, Streptomyces, Toxicity, Microflora. 26 
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1. Introduction 73 

Sustainable aquaculture has recently emerged as a profitable alternative to provide proteinaceous 74 

diets to human consumers. This artificial way of rearing fish and shellfish not only helps to satisfy global 75 

demand but also contributes to the recovery of depleting natural resources. The global aquaculture production 76 

(aquatic animals only) reached a record 87.5 mt in 2020 [1] which as per the recent report of the Organization 77 

for Economic Co-operation and Development (OECD) and the Food and Agriculture Organization (FAO) of 78 

the United Nations (UN) is projected to reach 103 mt by 2030, rising by 17.7% as compared to 2020 [2]. 79 

However, the first, second, and third waves of COVID‑19 and later the arrival of Omicron and Delta variants 80 

and their sublineages (by far the most mutated and transmissible of all the variants of concern identified in 81 

the history of the COVID-19 pandemic) may affect the projected values. As far as the current situation is 82 

concerned, the world economy is on the verge of recovery from the post-pandemic crisis as it bounced back 83 

in 2021 with 5.6% growth defying the previous trends [3]. The development of COVID-19 vaccines and 84 

medications greatly reduced its impact on global production and trade [4].  85 

The escalation of aquaculture practices has caused major disease outbreaks in the aquaculture sector 86 

due to high fish stocking densities in the ponds and a lack of hygiene, making the cultured stocks vulnerable 87 

to mortalities. The estimated annual global loss due to various epizootics is a quarter billion US dollars [5]. 88 

Especially, the outbreak of several pathogens during aquaculture resulted in fatal diseases which caused 89 

large-scale mortalities of fish and shellfish [6–9]. Recently, experiments have been conducted on the use of 90 

bacterial species as potential probiotics to treat diseases in aquaculture [10–13]. There are several non-profit 91 

and commercial probiotic products prepared from different bacterial species, for instance, Arthrobacter spp., 92 

Acinetobacter spp., Bacillus spp., Clostridium spp., Enterococcus spp., Janthinobacterium spp., 93 

Lactobacillus spp., Lactococcus spp., Pediococcus spp., Pseudomonas spp., Rhodococcus spp., 94 

Rhodopseudomonas spp., Synechocystis spp., Streptococcus spp., Streptomyces spp., and the 95 

yeast Saccharomyces cerevisiae among others [14–17]. Streptomyces, in particular, have emerged among 96 

those that demonstrated numerous beneficial effects in aquaculture i.e., the production of industrially 97 

important enzymes and a broad range of biologically active secondary metabolites [18] such as antibiotics 98 

[19, 20], antioxidants [21], antifungal agents [22], and anticancer agents [23, 24]. In addition to producing 99 

secondary metabolites and exhibiting antimicrobial activity in aquaculture, Streptomyces strains also produce 100 

antagonistic and siderophore compounds to prevent bacterial infections and demonstrate antiviral and 101 

antibiofilm activity [25–27]. Other benefits of Streptomyces as potential probiotics include enhancement in 102 

the growth and survival of cultured species, disease resistance, competitive exclusion of pathogens, alteration 103 

in gastrointestinal microflora, and amelioration of water quality [28–31]. 104 

This review aims to provide detailed insight into the use of Streptomyces as a potential probiotic 105 

agent for sustainable aquaculture, including current evidence on the prospects of their use. Despite 106 

demonstrating promising results in aquaculture, Streptomyces also have a few limitations which we have 107 

discussed along with their possible solutions. 108 

 109 
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2. Probiotics  110 

2.1 Background on probiotics 111 

The word probiotic is a combination of the Latin preposition “pro,” which means “for” and the 112 

Greek terminology “biotic” meaning “life” [32]. This term was first coined by German scientist 113 

Werner Georg Kollath in 1953 where he proposed probiotics as “active substances essential for a healthy 114 

development of life”. Later, several definitions of probiotics were proposed by researchers and research 115 

organizations. Fuller [33] defined them as “a live feed supplement that enhances the intestinal microbial 116 

balance of the host”. According to World Health Organization (WHO), probiotics are “live microorganisms 117 

which, when administered in adequate amounts, confer a health benefit on the host” [34]. This definition is 118 

adopted as a consensus statement by the International Scientific Association for Probiotics and Prebiotics 119 

(ISAPP) [35]. Although the majority of proposed definitions of probiotics describe them as beneficial, their 120 

effect varies from species to species and host to host. As a result, it is critical to ensure that the probiotic 121 

being employed is not harmful to the host [36]. 122 

Before being considered for aquaculture practices, probiotics have shown remarkable beneficial 123 

effects on humans and terrestrial-based animal cultures. They were first tested in aquaculture in 1986 to 124 

determine their ability to escalate the growth of aquatic organisms [37]. The exact pathways of probiotic 125 

action in aquaculture are not well known, however, several possible modes of action have been proposed in 126 

recent experiments. The theoretical mechanisms of action of probiotics in aquaculture (except Streptomyces) 127 

mentioned in the literature are presented in Table 1.128 
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Table 1. Mechanisms of action demonstrated by probiotics (except Streptomyces) in aquaculture. 
Mechanism of Action Probiotic Strain Host Results References 

Stimulation in immune 

responses/parameters 

Lactobacillus acidophilus 
Koi carp (Cyprinus carpio) 

fingerlings 
Improved IR and development. [38] 

Bacillus subtilis and trans-cinnamic acid Rainbow trout (Oncorynchus mykiss) Improved IR and DR against Yersinia ruckeri. [39] 

Bacillus velezensis V4 
Atlantic salmon (Salmo salar L.) 

juvenile 
Modulated IP. [40] 

Disease resistance 
Bacillus licheniformis Common carp (Cyprinus carpio) Increased resistance against artificially induced pathogenic fish infection. [41] 
Bacillus subtilis HAINUP40 Nile tilapia (Oreochromis niloticus) Enhanced GP, IR and DR. [42] 

Enterococcus casseliflavus Rainbow trout (Oncorynchus mykiss) Enhanced DR against Streptococcus iniae pathogen. [43] 

Competitive 

prohibition of 
pathogens 

Aeromonas sobria GC2 
Bacillus sp. JB-1 

Rainbow trout (Oncorhynchus mykiss, 
Walbaum) 

Proved inhibitory against Aeromonas salmonicida, Lactococcus garvieae, S. iniae, Vibrio 
anguillarum, V. ordalii and Y. ruckeri. 

[27] 

Bacillus subtilis AB1 
Rainbow trout (Oncorhynchus mykiss, 

Walbaum) 
Prohibited the virulent Aeromonas sp. [44] 

Modification in gut 

microbiota 

Bacillus OJ + IMO White shrimp (Litopenaeus vannamei) Addition in feed altered IM. [45] 

Arthrobacter XE-7 Pacific white shrimp (L. vannamei) Addition in feed modulated IM and increased resistance against V. parahaemolyticus. [46] 

Leucosnostoc mensenteroides Penaeus monodon Reduced the growth of pathogenic V. angillarum from hepatopancreas, gut and intestine. [47] 

Competition for 
space/blocking of 

adhesion sites 

Bacillus subtilis 
Indian major carp (Labeo rohita) Efficiently converted OM into nutrients and adhered to the intestine. [48] Lactococcus lactis 

Saccharomyces cerevisiae 

Lactococcus lactis CLFP 101 
Rainbow trout (Oncorynchus mykiss) 

Reduced the adhesion of A. salmonicida, A. hydrophila, Y. ruckeri and V. anguillarum to 

intestinal mucus. 
[49] Lactobacillus plantarum CLFP 238 

Lactobacillus fermentum CLFP 242 

Stimulation in growth 

and survival 

Pseudomonas sp. RGM2144 Rainbow trout (Oncorynchus mykiss) Increased survival to 92.7 ± 1.2% against Flavobacterium psychrophilum challenge. [43] 

Enterococcus faecium 
Big-belly seahorse (Hippocampus 

abdominalis) 
Enhanced GP and SR against pathogenic Edwardsiella tarda. [42] 

Enzymatic activities 

Bacillus subtilis and trans-cinnamic acid Rainbow trout (Oncorynchus mykiss) Produced intestinal amylase enzyme and reduced coliform and Enterobacteriaceae count. [50] 

Kocuria sp. 
Rainbow trout (Oncorynchus mykiss) 

Produced EEs to inhibit the growth of V. anguillarum, V. ordalii, E. coli, Pseudomonas 

aeruginosa and Staphylococcus aureus. 
[51] 

Rhodococcus sp. 

Bioremediation 

Commercial Bacillus megaterium 
Major carps (Cirrihinus nrigala, 

Labeo rohita and Catla catla) 
Showed significant effect on BOD, DO, COD, TDS, ammonia, alkalinity and pH. [52] 

Limosilactobacillus fermentum In vitro experiment 
Elevated Arsenic, Cadmium and Lead resistant patterns and exhibited excellent Arsenic 

removal efficiencies. 
[53] 

B. velezensis AP193 Channel catfish (Ictalurus punctatus) Significantly improved WQ by reducing TP (19%), TN (43%) and nitrate (75%). [54] 

Disruption of quorum 

sensing/ antibiofilm 
activity 

Bacillus sp. QSI-1 Zebrafish (Danio rerio) 
Efficiently disrupted QS-mediated virulence factors and attenuated biofilm formation of 

the fish pathogen A. hydrophila. 
[55] 

Pheaobacter inhibens S4Sm In vitro experiment 
Produced N-AHL against oyster pathogen V. coralliilyticus and disrupted QS pathway 
that activates protease transcription of V. coralliilyticus. 

[56] 

Bacillus sp. YB1701 Gibel carp (Carassius auratus gibelio) Significant QQ of the fish pathogen A. hydrophila. [57] 

Antiviral/antifungal 
activity 

Bacillus OJ + IMO White shrimp (Litopenaeus vannamei) Reduced mortalities of shrimp challenged with WSSV. [45] 

Pseudomonas species M162 

Rainbow trout (Oncorynchus mykiss) Improved IR against saprolegniasis. [58] Pseudomonas species M174 

Janthinobacterium species M169 

Abbreviations: IR: immune response, IP: immune parameters, GP: growth performance, DR: disease resistance, IMO: isomaltooligosaccharide,  IM: intestinal 129 

microbiota, OM: organic matter, SR: survival rate, EEs: extracellular enzymes, BOD: biological oxygen demand, DO: dissolved oxygen, COD: chemical oxygen 130 
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demand, TDS: total dissolved solids, WQ: water quality, TP: total phosphorus, TN: total nitrogen, QS: quorum sensing, QQ: quorum quenching, WSSV: white 131 

spot syndrome virus, N-AHL: N- Acyl Homoserine Lactone132 
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3. Streptomyces  133 

3.1 Taxonomic and morphologic background of Streptomyces 134 

Streptomyces is a genus of kingdom Bacteria, phylum Actinomycetota, class Actinomycetes, order 135 

Streptomycetales, and family Streptomycetaceae [59]. It was first proposed in 1943 [60] and initially 136 

classified based on its morphology, chemotype, whole-cell sugar patterns, phospholipid and fatty acid 137 

profiles, and composition of the cell wall and later based on its phenotypic and genotypic constitutional traits. 138 

To date, 1147 species and 73 subspecies of Streptomyces have been validly described (www.bacterio.net). 139 

Genus Streptomyces is a Gram-positive, multicellular, mycelial, and filiform aerophilous bacteria 140 

that mainly live as saprophytes in soil [61]. Interestingly, some exist as marine or rhizosphere symbionts, 141 

growing on thermal springs or gamma-irradiated surfaces [62]. Some Streptomyces strains are pathogens 142 

associated with humans, animals, or plants such as Streptomyces scabies that cause potato scab disease [63]. 143 

The cell wall of Streptomyces contains a simple peptidoglycan mesh surrounding the cytoplasmic membrane 144 

[64]. Morphogenesis in Streptomyces is determined by the establishment of aerial hyphae (that can 145 

differentiate into spores or arthrospores) that emerge from the substrate mycelium containing LL-146 

diaminopimelic acid as the predominant diamino acid [65, 66]. The spores help to enhance the survival of 147 

Streptomyces in the soil during the dormant phase as Streptomyces are resistant to water and nutrient 148 

deficiencies as well as extreme temperatures [61]. 149 

The increasing interest of researchers in the use of Streptomyces as a probiotic is due to its 150 

antagonistic behavior against pathogens, effect on the host metabolism, diversity in morphology, genomic 151 

size, genetic content such as Guanine + Cytosine (G + C), and the size of the coding sequences. Streptomyces 152 

are also distinguished by their large linear chromosomes with 8.5–12 Mb of DNA length and high G + C 153 

content averaging between 67–78 mol % [66–68]. The large size of the Streptomyces genome can explain its 154 

ability to produce distinctive secondary metabolites at a large scale [69]. Specialized metabolite production 155 

on this scale is unique to Streptomyces, and it has been proposed that these bacteria require a diverse 156 

metabolic repertoire to support their unusual life cycle [70].  157 

 158 

3.2 The biological rhythm of Streptomyces 159 

Streptomyces are abundant in nature and remain quiescent as spores before they obtain favorable 160 

conditions for growth. Streptomyces undergo the following development cycle: (1) the initial mitotic phase 161 

(dispersal of spores during the sporulation process), (2) germination (the dispersed spores settle and 162 

germinate), (3) primary mycelium formation (development of the vegetative hyphae), (4) secondary 163 

mycelium formation (development of the aerial hyphae) and, (5) sporulation (the formation of spores). The 164 

complete life cycle of Streptomyces is illustrated in Figure 1. 165 

  166 

 167 

 168 

http://www.bacterio.net/
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 169 

Once the dispersed spore settles in a nutrient-rich environment, it exits its dormant stage and starts 170 

germinating. Germination results in sprouting spores into germ tubes, which further develop into branching 171 

filaments during vegetative growth and form a mesh of hyphae called the vegetative mycelium. The 172 

vegetative mycelium stimulates the formation of an aerial mycelium on the colony surface possibly due to 173 

limited nutrient and cell density signals [65, 71, 72]. The aerial mycelium is a reproductive structure that 174 

transforms into spore chains that mature and ultimately liberate the spores. 175 

 Understanding the mechanisms underpinning the different developmental transitions during the 176 

Streptomyces life cycle has been easier because of advancements in both genomics techniques and cell 177 

biology. Till now, the investigations have focused on the study of single-species cultures. However, it was 178 

recently unearthed that the co-culture of several Streptomyces species with yeasts leads to a novel mode of 179 

its growth and development that had not been seen previously for Streptomyces cultured alone. This novel 180 

way of Streptomyces growth is described as ‘exploration’, named for the ability of explorer cells to rapidly 181 

lie across solid surfaces. This process is stimulated by fungal interactions and is associated with the 182 

production of an alkaline Volatile Organic Compound (VOC) which is capable of inducing exploration by 183 

other Streptomycetes. For detailed information regarding this novel phenomenon, please read Jones and 184 

Elliot [70]. 185 

 186 

3.3 Selection criteria of Streptomyces strains as probiotics 187 

All strains of Streptomyces should first be analyzed through a laboratory-based screening process 188 

consisting of the following steps: (1) preliminary screening, (2) experimental screening, and (3) post-189 

experimental screening. Considering the above methods, Hariharan and Dharmaraj [28] listed the following 190 

steps that should be followed to select Streptomyces strains as probiotics: (a) gathering preliminary details 191 

Figure 1. The life cycle of Streptomyces. 
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about sampling areas, (b) isolation and identification of strains, (c) conducting strain survivability tests 192 

against low pH, pepsin, bile, and pancreatin, (d) testing colonization potential (co-cultivation with pathogens 193 

to test strain dominance, hydrophobicity, hydrophilicity, and auto-aggregation), (e) conducting safety 194 

assessment of strains through antibiotic sensitivity test and nonhemolytic activity, (f) assessment of the 195 

antagonistic capacity of strains against pathogens existing in a particular environment and, (g) evaluation of 196 

the effects of probiotic strains on the host. Cost-effectiveness analysis of the probiotic strains may also be 197 

considered for their selection [73]. 198 

According to Verschuere et al. [74], selected strains should also possess the following properties: 199 

(1) nonpathogenic to the host; (2) can be administered through feed; (3) can exert targeted effect where 200 

needed; (4) effective In vivo as per In vitro findings; and (5) must not be virulent or possess antibiotic 201 

resistance genes. 202 

 203 

3.4 Methods of Streptomyces administration in aquaculture 204 

Methods for Streptomyces administration in aquaculture and their associated benefits are listed 205 

below. 206 

a) When used via intramuscular injection technique, reduces the occurrence of White Spot Syndrome Virus 207 

(WSSV) [75]. 208 

b) When administered/supplemented via feed, provides numerous beneficial effects [30, 76–79]. 209 

c) When added directly in the ponds as a water additive, reduces Vibrio count [80]. 210 

d) When added to inoculate or vaccinate ponds, increases the decomposition of organic matter [78]. 211 

e) When administered as bio-encapsulated Streptomyces cells, increases survival against Vibrio [77]. 212 

f) When sprayed on feed pallets as bacterial suspension, increases survival during the challenge experiment 213 

[81]. 214 

g) When administered in form of crude extract, shows average activity against fish-associated pathogens 215 

[82]. 216 

h) When Added as Single-Cell Proteins (SCPs), enhances growth [83]. 217 

 218 

Evidence shows that all species of Streptomyces can be administered as probiotics in one way or 219 

another, and there is no specificity regarding administration techniques. However, some species may not be 220 

able to withstand some administrative methods, compromising their viability. Also, the frequency of 221 

administration is vital for the proper functioning of probiotics [84]. 222 

Several In vitro experiments were also conducted to further test the capabilities of Streptomyces 223 

strains. Streptomyces when cultured In vitro on Chrome Azurol S (CAS) agar medium, produced siderophore 224 

compounds and demonstrated antibacterial activity [85]. In vitro bioassays of Streptomyces strains 225 

demonstrated antibiofilm activity [86]. Similarly, seaweed-associated Streptomyces strains when co-cultured 226 

with pathogens under lab conditions, competitively suppressed pathogenic strains [87].  A few of the 227 

administrative methods of Streptomyces are graphically represented in Figure 2. 228 



10 
 

  229 

Figure 2. Distribution, methods of administration and mechanisms of action of Streptomyces in aquaculture. 
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3.5 Mechanisms of action of Streptomyces in aquaculture 230 

Streptomyces strains demonstrate similar mechanisms as other probiotics; however, some 231 

mechanisms are unique and only associated with Streptomyces. Listed are the detailed mechanisms exhibited 232 

by Streptomyces during different experiments and research-based studies. 233 

 234 

 3.5.1 Production of bioactive, inhibitory and siderophore compounds 235 

Streptomyces are widely recognized as important microorganisms due to their ability to produce a 236 

variety of chemical compounds [88] such as streptomycin, polyoxins, oxytetracycline, blasticidin-S, 237 

validamycin, natamycin, kusagamycin, actinovate, milbemycin, abamectin/avermectins, polynactins, 238 

emamectin benzoate, and mycostop [89]. Streptomyces can also produce antimicrobial compounds such as 239 

chalcomycin A, which was extracted from Streptomyces termitum N-15, demonstrated significant 240 

antibacterial activities when used as an antimicrobial agent against 5 different bacterial fish pathogens 241 

including Aeromonas hydrophila, Aeromonas veronii, Aeromonas sobria, Aeromonas salmonida, and 242 

Plesiomonas shigelloides [90].  Actinomycin D and Mycinamicin III glycoside isomer derived from 243 

Streptomyces strain showed antimicrobial activities against Bacillus cereus and Fusarium oxysporum [91]. 244 

Actrinomycin D, a chromophoric phenoxazine, inhibits microbial growth by being incorporated into the base 245 

pair of a double helical DNA molecule and interfering with RNA polymerase [92, 93] while Mycinamicin 246 

III, an aglycone, confers antibacterial activity against pathogens [94]. Phenazinolin D, izumiphenazine A, B, 247 

and E are bioactive compounds produced by the termite-associated strain Streptomyces showdoensis BYF17. 248 

Izumiphenazine B has strong antagonistic activity against Pseudomonas syringae pv. Actinidiae, Escherichia 249 

coli, Staphylococcus aureus, and Micrococcus tetragenus with zones of inhibition 20.6, 12.9, 12.6, and 13.3 250 

mm, respectively. Phenazinolin D, izumiphenazine A, and E showed antagonistic activity against 251 

Staphylococcus aureus and Micrococcus tetragenus with the zone of inhibition values of 10.3, 10.6, 11.7 mm 252 

and 15.9, 11.2 mm, respectively [95]. Streptomyces strains in aquaculture may benefit from the ability to 253 

produce antagonistic compounds to compete for nutrients, space, and binding sites in the host (see Figure 254 

2). You et al. [85] found that seven Streptomyces isolates from shrimp farm sediments (Streptomyces 255 

cinerogriseus A03, A05; Streptomyces griseorubroviolaceus A26, A42; Streptomyces lavendulae A41; 256 

Streptomyces roseosporus A45; Streptomyces griseofuscus B15) can compete for iron and produce 257 

siderophore compounds to prevent pathogenic Vibrio species during In vitro challenge experiment.  258 

 259 

3.5.2 Disruption of quorum sensing and antibiofilm activity 260 

Pathogenic bacteria associated with aquaculture frequently produce many virulence factors and 261 

cause widespread mortality in fish and shellfish. Such virulence factors are induced by high cell density and 262 

abundant quorum-sensing signals. In aquaculture, some Streptomyces species have shown antiquorum 263 

sensing and anti-biofilm activities. The Streptomyces strain IM20 obtained from the gut of Indian mackerel 264 

(Rastrelliger kanagurta) isolated from Kovalam coastal area of Tamil Nadu tested for antiquorum sensing 265 

violacein production against pathogenic strain Chromobacterium violaceum MTCC 2656 and Serratia 266 
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marcescens. For 6 days, strain IM20 was grown on ISP2 plates at 30°C. After 6 days, overnight cultures of 267 

Chromobacterium violaceum MTCC 2656 and Serratia marcescens were spread on the bioassay plates and 268 

incubated for 24 hours at 30°C. As strain IM20 suppressed violet pigment production in the subjected strains 269 

without affecting bacterial growth, the antiquorum sensing screening activity resulted in the formation of 270 

turbid halo pigment-less areas [96, 97].  271 

Streptomyces albus A66 isolated from near-shore marine sediments of the South China Sea was 272 

examined as per the screening system used by You et al. [85], disrupted the biofilm formation of Vibrio 273 

harveyi (isolated from infected white shrimp Litopenaeus vannamei) by 99.3% and scattered the mature 274 

biofilm of Vibrio harveyi by 75.6% when used at a concentration of 2.5% (v/v). This antibiofilm activity was 275 

seen since Streptomyces metabolites reduced the number of Vibrio harveyi microcolonies by nearly tenfold 276 

and degraded the quorum sensing factor N-AHLs (N-acylated homoserine lactone) [86]. 277 

 278 

 3.5.3 Antiviral activity 279 

In addition to suppressing the pathogenic bacterial growth in aquaculture, the secondary metabolites 280 

extracted from the Streptomyces have the ability to induce an antiviral effect against different aquaculture-281 

associated viruses. Marine Streptomyces sp. VITSDK1 produced the secondary metabolite furan-2-yl acetate 282 

(C6H6O3), which demonstrated an inhibitory effect against the replication of fish nodavirus in the cell lines 283 

of Sahul Indian Grouper Eye (SIGE) with 90% cell survival when used at a minimum concentration of 284 

20 µg mL−1 [98]. Ethyl acetate secondary metabolites extracts (unspecified) of haloalkaliphilic Streptomyces 285 

sp. AJ8 isolated from the solar salt works of Kovalam, Kanyakumari, Tamilnadu, India. This strain 286 

was incubated with White Spot Syndrome Virus (WSSV) suspensions and injected intramuscularly into the 287 

Indian white shrimp, Fenneropenaeus indicus, according to Balasubramanian et al. [99], resulting in 288 

significant antiviral activity by reducing the occurrence of WSSV by 85% (P < 0.001) [75] (see Figure 2). 289 

 290 

 3.5.4 Amelioration of water quality 291 

The physicochemical status of pond water plays a crucial role in the well-being and growth of 292 

organisms in aquaculture as they are heavily dependent on their environment [52]. Deterioration of culture 293 

water mainly occurs when the metabolic waste from living organisms accumulates in the system or by the 294 

decay and decomposition of biotic material and unutilized feed. This affects the survival of the fish and 295 

shellfish against infections and diseases [100]. However, the addition of probiotic strains either in water or 296 

diet enhances water quality and improves the growth and survival of the host [52, 101]. The outcome of the 297 

bioremediation or bioaugmentation process depends greatly on the nature of the probiotics being used. Thus, 298 

probiotics should be added as per their specificity to perform bioremediation under the right environmental 299 

conditions at the correct population density to achieve the desired results.  300 

According to Wang et al. [102], the probiotics tested on the ponds containing Penaeus vannamei 301 

during intensive farming, resulted in the following beneficial effects: 302 

● Improved water quality. 303 
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● Improved microbial interactions and diversity. 304 

● Increased beneficial microbial count, ammonifying, and protein mineralizing bacteria. 305 

● Increased organic matter decomposition and reduced nitrogen (N) and phosphorus (P) concentrations. 306 

● Higher Dissolved Oxygen (DO) concentration and better algal growth. 307 

Some species of Streptomyces also increase the count of heterotrophic bacteria in the culture system 308 

(see Figure 2) when used at a proper concentration at regular intervals, which plays a significant role in 309 

accelerating the decomposition of organic waste and reduction in the level of ammonia [76, 78].  310 

Streptomyces coelicoflavus (A6), Streptomyces diastaticus (A44), Streptomyces parvus (A56) and 311 

Streptomyces champavatii (R32) in form of biogranules effectively decompose organic matter and ameliorate 312 

shrimp culture systems [103]. In vitro, soil-isolated Streptomyces sp. MOE6 was evaluated against complex 313 

pollutants such as heavy metals and oil spills. MOE6 strain's siderophore compound "hydroxamate" and 314 

secondary metabolites "extracellular polysaccharides" reduced hazardous pollutants in metal removal assays 315 

and emulsification activity tests [104]. 316 

 317 

3.5.5 Protection against pathogens during challenge experiments  318 

Before the introduction of probiotic strains into the actual aquaculture environment, laboratory-319 

based challenge experiments are necessary to determine the viability of probiotic strains to compete against 320 

pathogens. Multiple In vivo challenge experiments demonstrate the importance of Streptomyces as a 321 

protective agent when employed as probiotics in aquaculture. Marine sediment-derived Streptomyces sp. SH5 322 

strain was isolated from Xinghai Bay, Dalian, China, and used for the challenge experiment in zebrafish 323 

larvae. Aeromonas hydrophila pathogenic strain was isolated from silver carp (Hypophthalmichthys molitrix) 324 

infected with Aeromonas. Prior to the challenge, zebrafish larvae were pretreated with SH5 dilutions of 1:100 325 

or 1:1000. After 24 hours of challenge, there was no mortality in the pretreated group, with 80% and 50% 326 

survival after 36 hours and 72 hours of challenge, respectively. There was no noticeable difference in survival 327 

rate between larvae treated with different dilution rations. Pretreatment of zebrafish larvae with SH5 328 

effectively inhibited Aeromonas hydrophila colonies by 67.53%. Multiple factors contributed to the SH5 329 

strain's potential, including an improvement in zebrafish metabolism due to a reduced inflammatory response, 330 

repression of virulence factors, a reduction in pathogen colony potential, and improved immune parameters 331 

[105]. Juvenile and adult Artemia treated with Streptomyces cells at 1% concentration (v/v) through 332 

bioencapsulation ensued a higher survival rate as compared to the control group after being challenged with 333 

Vibrio pathogens at 106 CFU/mL [77]. Streptomyces CLS-28 supplemented with feed for 15 days at the same 334 

concentration, increased protection of shrimp Penaeus monodon against 12 hours Vibrio challenge as median 335 

lethal dose (LD50) at 106.5 CFU/mL. Streptomyces sp. N7 and Streptomyces sp. RL8 sprayed on pelleted feed 336 

as a bacterial suspension at 1 × 108 CFU g−1 weekly increased the survival of Litopenaeus vannamei during 337 

the Vibrio challenge [81]. Ethyl acetate crude extract of Streptomyces VITNK9 evaluated for its efficacy as 338 

a protective agent against different fish-associated pathogens showed a moderate response against 339 

Aeromonas hydrophila, Edwardsiella tarda, Vibrio anguillarum, Vibrio harveyi and Aeromonas caviae [82]. 340 
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 341 

 3.5.6 Competitive exclusion of pathogens from the system 342 

In addition to the In vivo challenge Streptomyces also competitively excluded pathogens from the 343 

culture system (see Figure 2). The isolation of compound 1-(2-hydroperoxycyclopentyl)-4-hydroxytridecan-344 

7-one (HCHD) with the chemical formula C18H34O4 and the molecular weight 314.46 g/mol was achieved 345 

through bioactivity-guided extraction of ethyl acetate crude extract from Streptomyces sp. VITNK9. When 346 

used at a concentration of 100 g/ml against Edwardsiellatarda and Aeromonas hydrophila, the isolated 347 

compound demonstrated significant antipathogenic activity with an inhibition zone of 19.33 ± 0.47 mm and 348 

minimal inhibitory concentration of 3.125 μg/ml and 16.66 ± 0.47 mm and 12.5 μg/ml respectively. HCHD 349 

treatment inhibited the bacterial acetate kinase to disrupt bacterial metabolism [106]. According to these 350 

findings, bioactive extracts of Streptomyces sp. VITNK9 could competitively exclude pathogens from the 351 

system. Biogranules of Streptomyces rubrolavendulae M56 reduced the mortality rate of P. monodon (Post 352 

Larvae) and the viable Vibrio count in the rearing system after 28 days of treatment. Streptomyces 353 

rubrolavendulae M56 also antagonized V. harveyi, V. alginolyticus, V. parahaemolyticus, and V. fluvialis 354 

growth during In vitro co-culture experiment [29]. Streptomyces sp. RL8 isolated from marine sediments 355 

excluded V. parahaemolyticus from the culture system when used as a water additive [80]. 356 

 357 

 3.5.7 Modulation of enzymatic activities 358 

Feed utilization and digestion in cultured fish and shellfish depend on the ability of the host to 359 

produce enzymes. Probiotics can potentially produce digestive, extracellular, and antioxidant enzymes and/or 360 

modulate enzymatic activity [107–109]. Antioxidant enzymes protect the host against oxidative stress [110]. 361 

Soil-derived Streptomyces chartreusis KU324443 was used to prepare a basal-based diet for common carp 362 

(Cyprinus carpio) for three different experimental groups (S1, S2, and S3) at a concentration of 105, 106, and 363 

107 CFU/g, properly blended and pelletized using a meat grinder. The prepared diets were fed to all three 364 

experimental groups for two months, and antioxidant enzyme activity (both in serum and skin mucus) was 365 

measured using a commercially available kit Zellbio®, Berlin, Germany. Serum antioxidant enzyme activity 366 

treatment groups showed higher superoxide dismutase (SOD) levels (P > 0.05) and moderate changes in 367 

catalase (CAT) and glutathione peroxidase (GPx). In terms of skin mucus antioxidant enzyme activity, no 368 

significant differences were observed between the treated and control groups [111]. Streptomyces' ability to 369 

stimulate oxidative protection enzymes in the host that are hostile to oxidative stress could be attributed to 370 

the production of Exopolysaccharide (EPS). To prevent the harmful consequences of free radicals in various 371 

tissues, EPS production induces robust DPPH radical scavenging activity [112, 113]. Streptomyces also 372 

produces several hydrolytic enzymes that decompose organic matter to provide nutrients for mycelium 373 

formation. These nutrients can then be reutilized to produce spores by activating the reproduction process of 374 

aerial development [114]. Streptomyces can further secrete exoenzymes that colonize the host’s intestine to 375 

facilitate the digestion of food. For example, Streptomyces strains supplemented with feed secreted hydrolytic 376 
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exoenzymes which improved the amylolytic and proteolytic activity in the digestive tract of Penaeus 377 

monodon to enhance feed utilization [77]. 378 

 379 

 3.5.8 Stimulation in growth and survival 380 

The proper utilization of feed is also essential for the development and survival of cultured fish and 381 

shellfish.  Streptomyces virginiae W18 cultures were grown in AM6 medium for 6 days before being mixed 382 

with Carassius auratus feed in two different concentrations: 1:1 (Group II) and 1:2 (Group III). Carassius 383 

auratus was fed the prepared concentration for each group for 30 days, and the fish (n = 10/group) were 384 

randomly selected from both groups to observe their growth. In addition, fish (n = 10/group) from each group 385 

were selected for the challenge experiment and administered with 100 μL of Aeromonas 386 

veronii (1.0 × 108 CFU/mL) injection. Both groups fed W18-associated feed grew at a rate of 27.10% and 387 

24.87%, respectively. In comparison to the control group's 10% survival, groups challenged with Aeromonas 388 

veronii demonstrated 70% and 50% survival, respectively [115]. Streptomyces sp. supplemented with feed 389 

at a concentration of 5% fish body mass fed to Xiphophorus helleri once a day for 50 days. Absolute growth 390 

rate (AGR), specific growth rate (SGR), and relative growth rate (RGR) were all increased with overall 391 

140.54% growth, 45% feed conversion efficiency, and 54.72% protein content [79]. Streptomyces sp. N7 392 

supplemented feed increased the survival rate of Litopenaeus vannamei (Post Larvae) compared to the control 393 

group, whereas Streptomyces sp. RL8 increased the survival rate and stimulated weight gain in Vibrio-394 

challenged shrimp. Both strains made the host more resistant to disease when given as a feed supplement at 395 

a concentration of 108 CFU g⁻1 for 30 days [31]. 396 

  397 

3.5.9 Source of protein to aquaculture species 398 

Conventionally, animal-based proteins are used to fulfill the protein requirement of fish and shellfish 399 

in aquaculture due to a good amino acid balance and digestibility. However, probiotics based on Streptomyces 400 

are being considered an inexpensive and accessible alternative to animal-based proteins [79]. Single-Cell 401 

Protein (SCP) based on Streptomyces has been used as an alternative to animal-based proteins during 402 

Xiphophorus helleri culture, as it increases feed conversion and growth rate [83]. Another study demonstrated 403 

that using Streptomyces strains as SCP for 30 days of SCP-based feeding trials on Xiphophorus helleri 404 

resulted in significantly higher Absolute Growth Rate (AGR), Specific Growth Rate (SGR) and Feed 405 

Conversion Ratio (FCR) than the control group [116]. SCPs based on Streptomyces could thus play an 406 

important role in aquaculture nutrition and should be studied further. 407 

 408 

 3.5.10 Alteration in gut microflora 409 

The intestinal ecology in aquaculture is important as the fish gut microbiome regulates health and 410 

determines the onset of disease [14]. A healthy gut microbiome aids in the digestion and absorption of feed, 411 

maintenance of an osmotic balance, and enhances immunity. Whereas an unhealthy gut can induce various 412 

diseases and cause mortalities. Artificially altering the fish gut microflora using probiotics is the focus of 413 
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researchers recently. When a dietary intervention trial of Streptomyces sp. RL8 was undertaken on white 414 

shrimp Litopenaeus vannamei modulation in the gut microbiota and an increased Bacteriovorax population 415 

was observed, which protected shrimp against Vibrio infection [30]. 416 

 417 

A tabular representation of the specie/strain-wise mechanism of action of Streptomyces can be seen 418 

in Table 2. 419 
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Table 2. Mechanisms of action demonstrated by potential probiotic Streptomyces in aquaculture. 
Mechanism of Action Streptomyces Strains Host References 

Production of antagonistic/ siderophore compounds  

Streptomyces cinerogriseus A03, A05  

Streptomyces griseorubroviolaceus A26, A42  
Streptomyces lavendulae A41  

Streptomyces roseosporus A45  

Streptomyces griseofuscus B15 

In vitro experiment 

[85] 

Streptomyces termitum N-15 [90] 

Streptomyces showdoensis BYF17 [95] 

Disruption of quorum sensing/ antibiofilm 

Streptomyces IM20 In vitro experiment [96] 

Streptomyces albus A66 In vitro experiment [86] 

Antiviral activity 

Streptomyces sp. AJ8 Indian white shrimp (Fenneropenaeus indicus) [75] 

Streptomyces sp. VITSDK1 Sahul Indian Grouper Eye (SIGE) cell lines [98] 

Bioremediation 

Streptomyces sp. P. monodon [76] 

Streptomyces fradiae Penaeus monodon [78] 

Streptomyces coelicoflavus (A6) 
Streptomyces diastaticus (A44) 

Streptomyces parvus (A56) 

Streptomyces champavatii (R32) 

Penaeus monodon [103] 

Streptomyces sp. MOE6 In vitro experiment [104] 

In vivo protection during challenge experiment 

Streptomyces sp. SH5 In vitro experiment [105] 

Streptomyces CLS-28 

Streptomyces CLS-39 
Streptomyces CLS-45 

Artemia 
[77] 

P. monodon (Post Larvae) 

Streptomyces sp. N7 
Streptomyces sp. RL8 

White shrimp (Litopenaeus vannamei) juvenile [81] 

Streptomyces sp. VITNK9 n/a [82] 
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Competitive exclusion of pathogens 

Streptomyces sp. VITNK9 In vitro experiment [106] 

Streptomyces rubrolavendulae M56 

In vitro experiment 

[29] 

P. monodon (Post Larvae) 

Streptomyces sp. RL8 Artemia franciscana nauplii [80] 

Enzymatic activities 

Streptomyces chartreusis KU324443 Common carp (Cyprinus carpio) [111] 

Streptomyces CLS-28 

Streptomyces CLS-39 

Streptomyces CLS-45 

Artemia and P. monodon (Post Larvae) [77] 

Stimulation in growth and survival 

Streptomyces virginiae W18 Carassius auratus [115] 

Streptomyces sp. Red swordtails (Xiphophorus helleri) [79] 

Protein source 

Streptomyces sp. Xiphophorus maculatus (Juvenile) [83] 

Streptomyces sp. Xiphophorus maculatus [116] 

Modification in gut microbiota Streptomyces sp. RL8 White shrimp (Litopenaeus vannamei) [30] 

420 
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4. Biotoxicity of Streptomyces strains 421 

García-Bernal et al. [31] evaluated the toxicity of Streptomyces sp. RL8 and N7 in Artemia salina 422 

nauplii adopting the method used by Rajabi et al. [117]. The experiment was conducted using Streptomyces 423 

spp. RL8 and N7 cell mass in five different concentrations 1, 5, 10, 50, and 100 g/L accordingly in 96-well 424 

polystyrene plates by adding 200 μL in each well. Ten (10) nauplii of Artemia salina were added per well 425 

for each concentration in triplicate and incubated at room temperature. Negative control was prepared using 426 

10 nauplii of Artemia salina and artificially produced seawater. The toxicity of probiotic bacteria was 427 

determined by comparing the survival outcome of Artemia salina to the control group after the interval of 24, 428 

48, and 72 hours of the experiment. The addition of these concentrations in feed and oral administration 429 

caused no mortality to Artemia salina indicating the nontoxic behavior of mentioned Streptomyces strains. 430 

In the same study, he also performed the toxicity assay of the RL8 and N7 towards the postlarvae of 431 

Litopenaeus vannamei with an average weight of 0.24 ± 0.04 g. Streptomyces suspension cultures were 432 

equally sprayed on feed concentrations of 1 × 108, 1 × 109, and 1 × 1010 CFU g–1 and administered ad libitum. 433 

Ten (10) shrimps were cultured per experimental unit per treatment in triplicate according to the experimental 434 

design previously used by Purivirojkul et al. [118] for controlling pathogenic bacteria in fairy shrimp 435 

Branchinella thailandensis culture. Survival of Litopenaeus vannamei was determined by comparing the 436 

results of this experiment with the control group after three intervals of 24, 48, and 72 hours. Both strains 437 

were found innocuous to Litopenaeus vannamei as no mortality was caused during the experiment. Another 438 

experiment revealed that Streptomyces sp. MAPS15 was innocuous and nontoxic and caused no infection or 439 

mortality in Penaeus monodon  [119]. 440 

Das et al. [77] have analyzed the biotoxicity of Streptomyces strains towards both nauplii and adults 441 

of Artemia salina. The toxicity test used harvested wet cell mass from three Streptomyces strains (CLS-28, 442 

CLS-39, and CLS-45). The experiment was carried out in sterile polystyrene 12-well cell culture plates. 443 

Artemia was counted and stored in five separate wells each containing 5 ml of sterile seawater with cell mass 444 

suspension concentrations of 0.1%, 0.5%, 1%, 5%, and 10%. After 72 hours of incubation at 28°C, the 445 

mortality rate was determined at 24, 48, and 72 hour intervals.  The increase in cell mass concentration of 446 

Streptomyces strain CLS-39 resulted in a notably high mortality rate (F=69.71, P0.01) for both nauplii (67.7%) 447 

and adult (64.3%) artemia. 448 

To test, whether the Streptomyces treated fish/shellfish pose any threat to human consumers, García-449 

Bernal et al. [120] evaluated Streptomyces strain V4 to determine its toxigenicity using the hemolytic assay.  450 

The strain was inoculated on agar plates (Cat. # 211728, BD-Bioxon, Franklin Lakes, NJ, USA) prepared 451 

with 5% of human blood and 2.5% of sodium chloride (NaCl); the plates were then incubated for 7 days at 452 

30°C. Hemolytic activity was examined using a hemolytic Vibrio parahaemolyticus strain as a control. No 453 

hemolytic or toxic activity was observed during the experiment, however, In vivo testing in fish/shellfish is 454 

necessary for further clarity. 455 

 456 

5. Drawbacks of using Streptomyces as probiotics in aquaculture and possible solutions 457 
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The possible limitations of using Streptomyces as probiotics in aquaculture are as follows: 458 

(1) Some Streptomyces strains are found in extreme environments and thus are difficult to extract. 459 

(2) Culturing Streptomyces is laborious and challenging. 460 

(3) Several compounds produced by Streptomyces have an unpleasant odor and taste. 461 

(4) There is a risk of lateral gene transfer associated with Streptomyces. 462 

 463 

Extreme and untapped environments are considered a hotspot of novel bacterial and fungal species 464 

with unique properties and applications, thus, attracting researchers from all around the globe. Several 465 

Streptomyces species are also extremophiles [121–124] possessing distinctive characteristics favorable to 466 

aquaculture [18, 25, 77, 125, 126]. Modern mechatronic collection devices are used to collect samples from 467 

extreme habitats [127]. For example, Remote-Operated Submarine Vehicle (ROVs) [128], Robotic Sampling 468 

Systems (RSS), Unmanned Ground Vehicles (UGVs), Unmanned Aerial Vehicles (UAVs) [129], and 469 

Autonomous Underwater Vehicles (AUVs) [130] are often used. 470 

 471 

Culturing Streptomyces can be challenging due to a lack of standardized media and culturing 472 

methods. Streptomyces also have a slow growth rate; thus, identification requires extensive culture-dependent 473 

studies [28]. Additional experiments are needed to develop suitable and standardized laboratory procedures. 474 

 475 

Geosmin (GSM, trans-1,10-dimethyl-trans-9-decalol) and 2-methylisoborneol (MIB (1-R-exo)-476 

1,2,7,7-tetramethyl-bicyclo[2.2.1]heptan-2-ol) are two saturated bicyclic terpenoids produced as secondary 477 

metabolites by Streptomyces [131]. These compounds have a muddy/earthy taste and unpleasant odor [132, 478 

133] which reduces the palatability of feed, consequently reducing the feed intake of cultured fish and 479 

shellfish [134].  Both GSM and MIB can be accumulated or absorbed in the gills, skin, and flesh up to 200–480 

400 folds, reducing the commercial value of the fish [135]. Several techniques have been used for the 481 

remediation of these compounds from rearing water such as the use of powdered activated carbon, ozonation, 482 

and biofiltration [136]. In the case of Streptomyces, ozonation is more effective as it eradicates GSM and 483 

MIB from the rearing system via oxidation [137]. 484 

 485 

Additionally, various bacterial species are used for the biodegradation of MIB and GSM such as 486 

Pseudomonas spp., Pseudomonas aeruginosa, Pseudomonas putida, Enterobacter spp., Candida spp., 487 

Flavobacterium multivorum, Flavobacterium spp., Slaviensisbacillus spp., Bacillus subtilis, and Bacillus 488 

cereus, Bacillus subtilis, Arthrobacter atrocyaneus, Arthrobacter globiformis, Rhodococcus moris, 489 

Chlorophenolicus strain N-1053, Rhodococcus wratislaviensis respectively. 490 

 491 

Inducing genetic mutation in Streptomyces and Polymerase Chain Reaction (PCR)-492 

targeted Streptomyces gene replacement are other techniques used to eliminate the odorous soil geosmin. 493 
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Research shows that the Cyc2 protein in Streptomyces (specifically the N-terminal domain), required for 494 

geosmin biosynthesis can be made to be inactive or even eliminated by PCR or a double crossover [28, 138]. 495 

 496 

Lastly, the possibility of lateral transfer of antibiotic resistance genes could be another limitation of 497 

using Streptomyces as probiotics in aquaculture. Various other probiotics which are often used in aquaculture 498 

may also develop antibiotic resistance such as several species of Enterococcus [139], Lactobacillus sp. [140], 499 

and Bacillus sp. [141]. Therefore, it is suggested that preference should be given to strains that do not possess 500 

any virulence or antibiotic-resistant genes. Systematic analysis should be carried out to determine the 501 

potential risks associated with antibiotic resistance genes in the Streptomyces genome. Remedial techniques 502 

could be opted to eliminate the genetic factor from the relevant probiotic strains which facilitate antibiotic 503 

resistance. For example, protoplast formation is used as a method to eliminate resistance gene-carrying 504 

plasmids from the Lactobacillus reuteri (ATCC55730) without affecting the therapeutic characteristics of 505 

the probiotic [142]. 506 

 507 

6. Future prospects 508 

Despite several bacterial species being extensively analyzed and utilized in aquaculture practices as 509 

probiotics, members of the class Actinomycetes are rarely considered [81, 143, 144]. A Few experiments in 510 

the recent past have highlighted the potential and prospects of species belonging to the class Actinomycetes, 511 

especially, Streptomyces in promoting the overall health of aquaculture species. Most of the previously 512 

conducted experiments focused on the use of single or multi-strain Streptomyces-based probiotics and 513 

overlooked the aspects of using multi-species Streptomyces-based probiotics. Several recently published 514 

original articles indicated the importance of multi-species probiotics as an eco-friendly growth stimulator in 515 

aquaculture [145, 146]. Thus, the use of Streptomyces in combination with other bacterial species could 516 

induce promising health benefits in aquaculture and requires further consideration. 517 

Several other non-bacterial products such as prebiotics, mushrooms, microalgae, and yeast also 518 

benefited aquaculturists in maintaining healthy and sustainable aquaculture practices.  Recently, postbiotics, 519 

phytobiotics, and paraprobiotics have also emerged and gained research attention by virtue of their long shelf 520 

life, safety, and potential health-promoting benefits on the host. Streptomyces incorporation with these 521 

products may synergistically confer greater health benefits which may result in better production and growth 522 

rate in both fish and shellfish aquaculture. Therefore, further experimentation on the use of Streptomyces as 523 

a probiotic candidate in a non-conventional manner is needed to better ascertain its potential in aquaculture. 524 

 525 

7. Conclusion 526 

Maintaining a sufficient food supply for an increasing global population is an expensive and 527 

strenuous task. Sustainable aquaculture has provided an alternative to meet market demands and global trade, 528 

reducing the overexploitation of natural resources by capture fisheries.  529 
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Additionally, the recent diversification and intensification of aquaculture also necessitated the 530 

development of new technological innovations to mitigate the effects of viral epizootics prevalent in 531 

aquaculture practices and to produce high-quality livestock with lower production time. An innovative 532 

approach to using live biotherapeutics for sustainable aquaculture has emerged in recent decades. 533 

This review focuses particularly on the role of Streptomyces strains as potential probiotics in 534 

aquaculture. Studies have revealed numerous beneficial effects of Streptomyces on reared fish and shellfish. 535 

The secondary metabolites, antagonistic, and siderophore compounds produced by Streptomyces strains 536 

exerted antimicrobial, antibiofilm, antiviral, antifungal, and antioxidative effects on the cultured species. 537 

Streptomyces also enhance disease resistance, survival, growth, enzymatic activities, bioremediation of pond 538 

water, and modify the gut microflora. 539 

There are also limitations and uncertainties associated with the use of some Streptomyces strains in 540 

aquaculture. To avoid undesired results, following a standardized, experimentally proven procedure of strain 541 

selection is mandatory. Further research is required for a comprehensive understanding of Streptomyces 542 

strains as probiotics before their use in aquaculture practices, especially those causing adverse effects and 543 

those with the possibility of gene transfer to the gastrointestinal microflora of fish, and later to human 544 

consumers. 545 

 546 
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