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Abstract 

As one of the most complicated and challenging networks among healthcare systems, the 

organ transplant network necessitates an effective supply chain network design. In this 

article, a bi-objective mixed integer nonlinear programming (MINLP) location-allocation 

model is proposed to design the organ transplant supply chain network, with the objectives 

of minimizing overall costs (including strategical and operational costs) and the number of 

unsatisfied demands under uncertainty. The developed model calculates the optimum 

number of facilities to be established and equipped for each organ, the flows between them, 

as well as the optimal allocation of cold chain vehicles, which is a combination of similar 

works in this context with cold chain and resource allocation as one of the novelties of this 

paper. Moreover, the preciousness of human life necessitates a policy for allocating organs. 

Hence, in this study, high-risk recipients, who are more likely to die in case of unmet 

demand, are prioritized above low-risk ones to prevent mortality as much as possible. This 

article also takes transportation constraints into account in the effort to minimize carbon 

emissions, one of the most challenging environmental concerns of the present day. 

Numerical experiments demonstrate the applicability of the developed model, and a case 

study is presented to compute the optimal solutions of the proposed methodology. 

Finally, various sensitivity analyses are performed to provide managerial insights. 
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1. Introduction 

Nowadays, technological and medical advances have made organ transplantation one of the most 

successful and popular treatment methods. The first successful kidney transplant surgery was 

conducted by Joseph Murray in 1954 in the US (Leppke et al., 2013). Transplantation surgery is 

regarded to be the only treatment for the end-stage failure of organs such as the liver, lung, and 

heart, and also the most low-cost way to treat kidney end-stage diseases (Bouwman, Lie, Bomhoff, 

& Friele, 2013). Based on the statistics, over 40,000 transplants were performed in 2021. However, 

unfortunately, 17 people die each day waiting for an organ transplant. Figure 1 shows the number 

of patients on the waiting list and the performed transplantations divided by 4 major transplantable 

and other organs in 2021 (HRSA). 

According to a definition by Ahmadvand and Pishvaee (2018b), organ transplantation is a 

procedure in which a healthy organ is harvested from a living or deceased person (a donor) and it 

is transferred into the body of an individual who has been diagnosed with organ failure (a 

recipient). The intrinsic fact in this matter is that there is always a greater demand for organs than 

their supply. Thus, as precious scarce national resources, it is essential to plan strategies and 

policies to manage organs efficiently through the supply network (Ahmadvand & Pishvaee, 

2018a). 



 

 

 Figure 1 Patients on the waiting list vs. transplants performed by organ in 20211 (HRSA)  

 

The supply chain management (SCM) concept refers to the efficient process of planning, 

implementing, and controlling supply chain operations (Hernández-Pérez & Ponce-Ortega, 2021; 

Melo, Nickel, & Saldanha-Da-Gama, 2009; Mohammadnazari, Aghsami, & Rabbani, 2022). 

Supply chain network design (SCND) decisions typically entail determining the facilities’ optimal 

location, allocation, and capacity in order to meet the demand at the lowest possible cost 

(Jabbarzadeh, Fahimnia, & Seuring, 2014). A well-organized Organ Transplantation Network 

(OTN) provides efficient and collaborative management of all transplantation activities, including 

donation, procurement, preservation, transportation, and organ transplants (Ahmadvand & 

Pishvaee, 2018a). In transplantation networks, the location of facilities plays a crucial role since 

poor locations can lead to a higher mortality rate (Daskin & Dean, 2005).  

There are various types of facilities in an organ transplant network in every country. In a case by 

Rouhani and Amin (2022), it is described as follows: Organ transplant network is comprised of 

initial hospitals, Organ Procurement Unit (OPU), and Transplant Center (TC). The brain-dead 

donors are diagnosed at initial hospitals, as they make up the bulk of donor numbers. All activities 

associated with the procurement of organs, from identifying the donor to harvesting his/her organs, 

are done in an OPU. Ultimately, a center where the organs are transplanted to the recipient’s body 

is called a TC. In this study, the OTN is made up of donor hospitals (H), transplant centers (TC), 

recipient zones (Jabbarzadeh et al.; Sy et al., 2021), and shipping agents (Sh.A). The donation 

operations take place in the hospitals. The shipping agents are responsible for transporting blood 

samples and information of donors from hospitals to TCs, and then bringing back the results to the 

hospitals. The transplant centers are in charge of registering the recipients and conducting analyses 

of donors’ blood samples. TCs are where the transplantation operations are carried out. 

The organ transplantation process requires subtle management by virtue of its many constraints, 

such as time and perishability. For instance, Cold Ischemia Time (CIT) is the time period during 

which an organ is able to survive outside of the body without blood perfusion. It begins after the 

 
1 *Other includes allograft transplants like face, hands, and abdominal wall 



organ is harvested from a donor body and ends with the implantation of the organ into a recipient 

body. Each organ has a maximum allowable CIT, and also it is preferable to minimize it in order 

to optimize the post-transplant outcomes. Furthermore, because deceased donors are kept 

artificially alive, obviously, this condition cannot be sustained for a long time (Ahmadvand & 

Pishvaee, 2018b; Uehlinger, 2010).  

A successful and on-time transplant cannot always be achieved if there is an availability of organs. 

There are further problems, namely long transportation time to recipients and medical staff 

unavailability that may bring about the waste of time and, finally, shortage of organs (Fuzzati, 

2005). Therefore, this increases the significance of determining the location of OTN’s facilities, 

applying efficient coordination among medical staff, and considering transportation matters. 

Equity and efficiency are the other substantial issues in the optimization of OTN which are 

construed to be the two opposing objectives of the allocation process. To clarify, equity is 

comprised of (1) equal access (avoiding biases based on age, sex, waiting time, etc.) and (2) 

maximum benefit (considering the length of recipient’s life after transplantation, the recipient’s 

urgency level, etc.) (Ahmadvand & Pishvaee, 2018b; Benjamin, 1988). 

In the healthcare sector, optimal resource allocation and enhancing the quality of public health are 

crucial and have always been among controversial issues (Asante & Zwi, 2009). Resource 

allocation requires a great deal of attention in the context of organ transplantation due to the nature 

of body organs as scarce resources and the sensitivity of organ transplantation surgery for mortality 

possibilities. As mentioned before, the viability of organs out of the body depends on each type’s 

maximum allowable CIT. In response to this demand, the cold chain logistics infrastructure has 

needed a major overhaul, which may eventually be able to accommodate the transportation of 

organs as well. In this study, the vehicles for transporting the organs are refrigerated ones.  

In this study, the location of network’s facilities, including hospitals, TCs, and shipping agents, 

are determined in some recipient zones with uncertainty due to this industry's dynamic nature. Our 

novelties in this context are represented as bellows: 

• We contribute to the literature by designing an OTN with the approach of location-

allocation and resource-allocation. The perishable nature of the organs necessitates the 

employment of transportation methods that guarantee the organs' requisite temperature 

restrictions. As a result, the cold chain problem arises. The cold chain logistic is regarded 

by involving the refrigerated vehicles for transporting the organs as a resource, and their 

capacities are also taken into account. To the best of our knowledge, the combination of 

organ transplant network design and cold chain vehicle allocation has not been addressed 

so far. 

• Furthermore, Global warming is one of the most critical topics that humanity faces today. 

As one of the primary contributors to global warming, the fuel consumption of various 

modes of transportation has prompted us to include carbon neutrality as one of the article's 

objectives.  

• One of the important issues in organ transplantation is the successful performance of the 

surgical process, the failure of which can be manifested in the death of the recipient or an 

unsuccessful surgery. To this end, in addition to minimizing the total costs, this study aims 



to minimize the total number of unsatisfied demands that some of them may cause death 

and others may not. In addition, we have considered a prioritization of unmet demands 

leading to death over the ones that do not. 

• Most of the papers in this context have studied kidney and liver transplantation as the two 

most transplanted organs worldwide. Due to the possibility that pulmonary insufficiencies 

could grow in the future as a result of the covid-19 outbreak, we felt it vital to include lung 

transplantation as well. 

The rest of this study is structured as follows. In section 2, a literature review of the research is 

provided. The problem description and research methodology are presented in the third section. In 

section 4, the solution approach of the previous section is presented. Segment 5 corresponds to test 

problems and model validation. In section 6, a real case study is implemented. Some sensitivity 

analyses and their attained managerial insights are provided in sections 7 and 8, respectively. 

Finally, the conclusion is presented in section 9. 

2. Literature Review 

In this section, the research literature is divided into two categories. Studies related to healthcare 

location-allocation are provided in the first category, and in the second one, a review of healthcare 

resource allocation is presented. Subsequently, the contributions of this research are clarified. 

2.1. healthcare location-allocation 

Research in this area has presented different models for determining the location-allocation of 

healthcare facilities. In work by Zhang, Cao, Liu, and Huang (2016), a multi-objective genetic 

algorithm is used to achieve Pareto-optimal solutions and trade-offs between the conflicting 

objectives. Shariff, Moin, and Omar (2012) applied a healthcare location-allocation model in 

Malaysia. The formulation was a capacitated maximal covering location problem aiming 

maximization of the population assigned to a facility. A genetic algorithm was developed to solve 

the large size problem. Salimian and Mousavi (2022) introduced a novel scenario-based 

MINLP model to design a transplant network considering climate change. The objectives of this 

research are maximization of blood-type compatibility and organ quality while minimizing the 

amount of time it takes to deliver organs following a disruption. A mixed-integer linear 

programming methodology is proposed by Devi, Patra, and Singh (2022) for the location-

allocation of healthcare service networks. The study's objective is to determine the quickest and 

most cost-effective ways to transport test samples from different locations to testing laboratories. 

Due to controversy and questionability surrounding optimal allocation methods and various 

policies, organ allocation methods and their associated policies have developed rapidly (Alagoz, 

Schaefer, & Roberts, 2009). Zahiri, Tavakkoli-Moghaddam, and Pishvaee (2014) proposed a 

robust possibilistic programming model for the location-allocation of organ transplantation supply 

chain in Iran under uncertainty. The objective function of the proposed MILP model was to 

minimize the total costs. Zahiri, Tavakkoli-Moghaddam, Mohammadi, and Jula (2014) extended 

their earlier work by developing a multi-objective location-allocation model for designing an organ 

transplant transportation network to minimize cost and delivery time, considering uncertainty. 

Bruni, Conforti, Sicilia, and Trotta (2006) developed a MILP optimization model to find the 



optimal location of OTN facilities based on equity. This was applied to an Italian case study. A 

possibilistic programming for liver allocation and transportation with a hybrid interactive fuzzy 

optimization model was proposed by  Kargar, Pishvaee, Jahani, and Sheu (2020). In this study, 

tradeoffs are made between equity and efficiency. Ahmadvand and Pishvaee (2018b) applied a 

model based on Data Envelopment Analysis (Daskin & Dean) for kidney allocation to evaluate 

the efficiency of eligible patient-organ allocation pairs as way to prioritize candidates. Rouhani 

and Amin (2022) developed a multi-objective hierarchical location-allocation model with the goal 

of minimization of total costs and time, and maximization of geographical equality. Supply and 

demand uncertainty was taken into account. In a work by Beliën, De Boeck, Colpaert, Devesse, 

and Van den Bossche (2013), mixed-integer linear programming was used to optimize the location 

of TCs as one of the most important components of an OTN by minimizing total weighted time as 

the objective function. 

2.2. healthcare resource allocation 

Almost every society in the world struggles with the availability and efficient allocation of 

healthcare resources. Healthcare service delivery gaps were investigated by Basu, Jana, Bardhan, 

and Bandyopadhyay (2017) using pinch analysis, a quantitative tool developed to optimize source-

demand allocation networks. Lai, Cheung, and Fu (2018) designed a new mechanism to optimize 

the allocation of public healthcare resources by utilizing a team-DEA model. The public healthcare 

was assumed as a public good, and the computations were applied to a Chinese healthcare data. 

Another application of healthcare resource allocation was studied by Ordu, Demir, Tofallis, and 

Gunal (2021) using the integration of forecast-simulation-optimization method to find the optimal 

number of beds and staff in a mid-size English hospital. Keshtkar, Salimifard, and Faghih (2015) 

worked on optimizing waiting time by considering budget constraints and resource management 

by evaluating 3 KPIs and making a simulation model. In order to allocate the optimal number of 

nurses to the shifts, Kiani Nahand, Hamid, Bastan, and Mollajan (2019) proposed a novel multi-

objective integer model that incorporates human errors. 

In this direction, some papers have investigated uncertainty in their research (Jalilvand, Karimi, 

Mohammadnazari, Aghsami, & Jolai, 2023). Yin and Büyüktahtakın (2021) developed a multi-

stage stochastic epidemic-logistic model to minimize new infections, while equal resource 

allocation and uncertain disease growth are taken into account. Feng, Wu, and Chen (2017)  

proposed a multi-objective simulation optimization algorithm for resource allocation in emergency 

departments by assuming the service time and patient arrival as uncertain parameters. Two 

objectives, one social and one economic, have been taken into account by Hernández-Pérez and 

Ponce-Ortega (2021). Minimizing the number of unaccepted patients is a social objective since it 

improves the likelihood of saving lives, while minimizing transportation and healthcare equipment 

(hospital beds and ICUs) expenses is an economic one. They have taken demand uncertainty into 

account. Considering the uncertainty of the disease's spread speed, Eriskin, Karatas, and Zheng 

(2022) developed a multi-objective location-allocation model that combines strategic, tactical, and 

operational decisions into a single decision model employing across-scenario robust (ASR). 

One of the most important issues in some healthcare subcategories is the matter of temperature. 

Since some healthcare stuff like vaccines or organs must be frozen to prevent spoilage, the cold 

chain gains significance in this context. Ashok, Brison, and LeTallec (2017) have investigated cold 



chain systems’ challenges and solutions like inadequate cold chain capacity, absence of cutting-

edge or optimal equipment, and insufficient inspection and maintenance systems for temperature. 

Another paper studies a cold chain logistics vehicle routing optimization problem considering 

customer satisfaction and carbon emissions (Fereidouni, Mehdizadeh Somarin, Mohammadnazari, 

Aghsami, & Jolai, 2022; Qin, Tao, & Li, 2019). In our article, cold chain vehicles are utilized as 

resources to transport the organs from hospitals to TCs, in order to prevent organ wastage as much 

as possible.  

2.3. Research gaps, motivation, and contributions 

There is a gap in current literature addressing the integration of designing the organ transplantation 

location-allocation and resource-allocation. To the best of our knowledge, the cold chain vehicles 

have not been considered as resources in this context. Another issue that has not been considered 

in previous studies is the external cost of carbon emission during transportation. Also, a large 

number of publications discussing organ transplantation issues have focused on kidney and liver 

transplants as the two most transplanted organs in the world. Another existing gap is that 

minimization of unsatisfied demand has not been regarded yet.  

Due to the different nature of each organ type, they have various maximum allowable CIT. 

Therefore, assigning a specific refrigerated vehicle to each organ is essential to ensure it will not 

perish and lead to organ wastage. With the increasing rise of global warming, it is crucial to pay 

attention to carbon neutrality and bestow on our environment as much as we are able to. Hence, 

involving green logistic techniques may reduce these emissions. With the epidemy of Covid-19, 

many people will suffer from lung diseases in the future, and it is estimated that the demand for 

lung transplantation will increase. That is our motivation to involve this type of organ in this study, 

as well as the heart and kidney. Organ transplantation unsatisfied demand requires substantial 

attention since it directly deals with the humans’ lives.  

This paper’s multi-period location-allocation model’s goal is to find the optimal locations of 

hospitals, TCs, and shipping agents under uncertain environments. Furthermore, the optimal 

interrelationship between these facilities will be obtained in order to design a cost-efficient organ 

transplant network. We propose two objective functions, including minimization of total costs and 

the number of unsatisfied demands, which the second one is one of our contributions. Furthermore, 

we have interfered with recipient prioritizing by dividing them into high-risk and low-risk 

recipients into two categories. The organ supply first satisfies the demand of high-risk recipients 

in order to prevent mortality as much as possible. The remainder is then allocated to low-risk 

clients. To address the aforementioned gap, we have assumed cold chain vehicles as resources to 

be allocated for organ transportation from hospitals to TCs, and their capacity constraints are 

regarded. The movement of the vehicles is also restricted by the determined amount of carbon 

emission allowed by the government.  

3.  Problem description and formulation 

Organ transplant candidates are increasing daily as medical technology advances. Transplantation 

is divided into two distinct phases: procurement and surgery. OTN's logistics management and 

design are centered on the procurement phase, with the surgery phase focusing exclusively on 



medicine. The procurement step is further subdivided into three stages: matchmaking, 

transportation route planning, and scheduling of medical teams. 

From a planning perspective, the organ transplantation articles are divided into two broad 

categories: (1) those addressing long-term (strategic) decision problems, and (2) those addressing 

short-term (operational) decision problems. The first category entails long-term considerations 

such as network facility location-allocation and regional configuration design of hierarchical 

allocation systems in order to maximize societal benefit while lowering overall network expenses. 

Given that the allocation of organs is the most critical component of short-term organ 

transplantation decisions, the second category and majority of operational planning research is 

devoted to studying organ allocation and distribution challenges, particularly kidney and liver 

allocation problems. This study's scope is limited to the first category. Given the potential sites, a 

long-term decision about finding the optimal facilities’ locations will be made. The details of the 

problem will be enlightened in the following paragraphs. 

In general, there are two categories of challenges in supply chain management: incoming and 

outbound problems. Inventory and collection planning are examples of inbound challenges, 

whereas supply, distribution, and scheduling are examples of outbound problems. Once the supply 

is ready, the next step is to distribute the organ to the appropriate recipient while balancing 

efficiency and equality, as well as expanding donor pools. The incoming dilemma concerns the 

placement and distribution of organs to ensure a successful transplant. All actions involving the 

coordination and networking of transplant centers in receiving and transplanting patients with the 

appropriate centers must be efficient and successful in terms of event planning. 

An organ transplant supply chain network that is modeled in this study is depicted in Figure 2, 

illustrating the interactions among the constituent facilities. The first stage is once a donor decides 

to donate an organ in the hospital (1). In order to test the blood and perform the required analyses, 

a shipping team will be sent to the hospital (2), and then from the hospital to TC transporting the 

required information and the donor's blood sample (3). Afterward, the transporter will turn back 

to the hospital (4). The process of allocating the most appropriate recipient and TC begins at this 

point.  In the event of an operation, the organ harvest procedure will take place in the hospital and 

the organ/organs will be transported to the TC for transplantation (5). During this time, the 

accepted recipient is informed and has to attend the TC as soon as possible to undergo the operation 

(6). It is worth noting that the arrows (3) and (4) are depicted with dashes demonstrating the 

information flows. 



 

 Figure 2 Organ transplant supply chain network 

The hospital receives direct referrals from brain-dead patients or donors. The TC's responsibility 

is to register the recipient, sample their blood, and perform the transplantation surgery. To avoid 

arrow congestion in Figure 2, two TCs are illustrated. However, they are not different practically.  

In this paper, the demand has been studied separately for high-risk and low-risk recipients. In order 

to have the lowest mortality as possible, the recipients are divided into two groups: The first group 

includes the recipients who the organ shortage will lead them to mortality (high-risk recipients), 

and the second one consists of people the deficiency may not bring about death for them (low-risk 

recipients). Consequently, this study works on prioritizing the patients as well. 

Fuzzy programming, rather than being crisp/ probabilistic in the traditional sense, is an 

optimization approach for dealing with issues involving imprecisely described model parameter 

sets. It covers the modeling components of optimization challenges with imprecisely specified 

model parameters in the decision context. Triangular fuzzy numbers are commonly used to 

evaluate and present fuzzy information, and they are particularly well suited to small datasets or 

data with poor precision. As a result, in this article, we assume that transportation costs and total 

demand (including high-risk and low-risk recipients) are uncertain, and we seek to ensure that the 

amount of the items provided to the consumer is likewise uncertain in triangular fuzzy numbers. 

In this section, we propose a bi-objective multi-period location-allocation model to design an 

efficient organ transplantation network, taking uncertainties into account. As previously discussed, 



there are three types of facilities namely hospitals, shipping agents, and TCs. Due to the given 

potential sites for facilities and demands for different organs in varying recipient zones, this 

problem is concerned with issues like finding the optimal sites of the aforementioned facilities, the 

optimal flows between them, allocating refrigerated vehicles to transportation, monitoring excess 

carbon emission, and prioritizing the recipients. The model aims to minimize total costs and the 

unsatisfied demands leading to both mortality and survival. 

3.1. Notations 

The notations used for the mathematical formulation are presented separately, sorted by sets, 

parameters, and decision variables as follows. The uncertain ones are indicated with a tilde on. 

 

Sets  

𝑰 set of potential hospital locations, 𝑖 ∈ 𝐼 

𝑱 set of potential TC locations, 𝑗 ∈ 𝐽 

𝑹 set of recipient zones, 𝑟 ∈ 𝑅 

𝑶 set of organ types, 𝑜 ∈ 𝑂 

𝑺𝑨 set of shipping agent locations, 𝑠𝑎 ∈ 𝑆𝐴 

𝑽 set of refrigerated vehicles, 𝑣 ∈ 𝑉 

𝑽′ set of shipping agent vehicles, 𝑣′ ∈ 𝑉′ 

𝑻 set of time periods, 𝑡 ∈ 𝑇 

 

Parameters  

𝐜𝐢 fixed cost of establishing a hospital at potential location 𝑖 

𝐜𝐣 fixed cost of establishing a TC at potential location 𝑗 

𝐜𝒊𝒐 cost of harvest process of organ 𝑜 at hospital 𝑖 

𝐜𝒋𝒐 cost of equipping TC 𝑗 for organ type 𝑜 

𝐍𝐢
𝐭 number of donors at hospital 𝑖 at time period 𝑡 

𝑩𝐢𝐨
𝐭  number of organ 𝑜 harvested from a single body at hospital 𝑖 at time period 𝑡 

𝑷 total number of available shipping agents at each time period 

𝑫̃𝒓𝒐
𝒕  total demand of high-risk recipients in recipient zone 𝑟 for organ 𝑜 at time period 𝑡 

𝑫̃′𝒓𝒐
𝒕  total demand of low-risk recipients recipient zone 𝑟 for organ 𝑜 at time period 𝑡 

𝒄̃𝒊𝒋
𝒊→𝒋

 cost of transporting samples and needed information from hospital 𝑖 to TC 𝑗 

𝒄̃′𝒊𝒋
𝒊→𝒋

 cost of transporting an organ from hospital 𝑖 to TC 𝑗 

𝒄𝒓𝒋
𝒓→𝒋

 cost of transporting an individual from recipient zone 𝑟 to TC 𝑗 

𝒄𝑺𝑨𝒊
(𝑺𝑨→𝒊)

 cost of contract between hospital 𝑖 and shipping agent 𝑠𝑎 

𝒕𝒊𝒋𝒐
𝒕  traveling time of organ 𝑜 from hospital 𝑖 to TC 𝑗 at time period 𝑡 



𝑸𝒐 organ 𝑜 cold ischemia time (CIT) 

𝝀 importance weight of the strategic level costs 

𝒅𝒊𝒔𝒊𝒋 the distance between hospital 𝑖 and TC 𝑗 

𝒅𝒊𝒔𝒔𝒂𝒊 the distance between hospital 𝑖 and shipping agent 𝑠𝑎  

𝒆𝒕 amount of CO2 emission per distance unit in period 𝑡 

𝑳𝒕 maximum allowable amount of carbon emission in period 𝑡 determined by the 

government  

𝒄𝒂𝒑𝒗 capacity of refrigerated vehicle 𝑣 

𝒄𝒂𝒑𝒗′ capacity of shipping agent vehicle 𝑣′ 

𝑾𝟏 importance weight of high-risk recipient unsatisfied demands  

𝑾𝟐 importance weight of low-risk recipient unsatisfied demands  

𝝋 Importance weight of total cost objective function in weighted sum method 

𝟏 − 𝝋 Importance weight of unsatisfied demand objective function in weighted sum method 

𝑷𝑪 Penalty cost for each unsatisfied demand 

 

 

 Decision variables  

𝒙𝒊 {
 1          𝑖𝑓 𝑎 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖
 0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒙𝒋 {
 1          𝑖𝑓 𝑎 𝑇𝐶 𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗
 0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒚𝒊𝒐 {
 1          𝑖𝑓 𝑎 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑎𝑛𝑑 𝑒𝑞𝑢𝑖𝑝𝑝𝑒𝑑 𝑓𝑜𝑟 𝑑𝑜𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑟𝑔𝑎𝑛 𝑜
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒚𝒋𝒐 {
 1          𝑖𝑓 𝑎 𝑇𝐶 𝑖𝑠 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑎𝑛𝑑 𝑒𝑞𝑢𝑖𝑝𝑝𝑒𝑑 𝑓𝑜𝑟 𝑡𝑟𝑎𝑛𝑠𝑝𝑙𝑎𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑟𝑔𝑎𝑛 𝑜
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒛𝒔𝒂
𝒕

 {
 1          𝑖𝑓 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝑎𝑔𝑒𝑛𝑡 𝑠𝑎 𝑖𝑠 ℎ𝑖𝑟𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒛𝒔𝒂𝒊
(𝒔𝒂→𝒊)𝒕

 {
 1          𝑖𝑓 𝑎 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑖𝑠 𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑦 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝑎𝑔𝑒𝑛𝑡 𝑠𝑎, 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒛𝒐𝒗 {
 1         𝑖𝑓 𝑜𝑟𝑔𝑎𝑛 𝑜 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑣 
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒅 
{ 0         𝑖𝑓 𝐷

′̃
𝑟𝑜
𝑡
<∑∑𝐹′𝑖𝑗𝑜

(𝑖→𝑗)𝑡

𝐽

𝑗=1

𝐼

𝑖=1

− 𝐷̃𝑟𝑜
𝑡

1        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒅′ 
{ 0         𝑖𝑓 𝐷̃𝑟𝑜

𝑡 <∑∑𝐹′𝑖𝑗𝑜
(𝑖→𝑗)𝑡

𝐽

𝑗=1

𝐼

𝑖=1

1        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 



𝑭𝒊𝒋𝒐
(𝒊→𝒋)𝒕 flow of information and samples of organ 𝑜 from hospital to TC 𝑗 at time period 𝑡 

𝑭́𝒊𝒋𝒐𝒗
(𝒊→𝒋)𝒕 flow of organ 𝑜 from hospital 𝑖 to TC 𝑗 at time period 𝑡 by vehicle 𝑣 

𝑭𝒓𝒋𝒐
(𝒓→𝒋)𝒕

 flow of recipients moving from their region 𝑟 to TC 𝑗 for transplantation at time period 𝑡 

𝑨𝒊𝒐
𝒕  donor-sourced number of organ 𝑜 available at hospital 𝑖 at time period 𝑡 

𝑰𝒊𝒐
𝒕  Inventory level supply of organ 𝑜 at hospital 𝑖 at time period 𝑡 

𝑼𝒓𝒐
𝒕  Number of unsatisfied demands in region 𝑟 leading to mortality (high-risk recipients) 

𝑼′𝒓𝒐
𝒕  Number of unsatisfied demands in region 𝑟 not leading to mortality (low-risk recipients) 

 

3.2.Assumptions 

 

• Each organ has a specific maximum allowable CIT. 

• Due to the scarcity and perishability of organs’ nature, their transportation requires special 

consideration. Hence, this affair is not done by shipping agents, and the hospitals are 

responsible for that with a special type of vehicle. 

• The defined set of vehicles 𝑣 are exploited for transferring organs to TCs, and they are 

refrigerated vehicles. 

• The defined set of vehicles 𝑣′ are exploited for transporting samples and information from 

hospitals to TCs and vice versa, and they belong to shipping agents. 

• Each vehicle has a particular capacity. 

• The potential locations for settling the facilities are available and suggested by the experts. 

 

3.3. Mathematical Formulation 

 

 𝐌𝐢𝐧 𝐙𝟏 =  𝝀( ∑ 𝒄𝒊𝒙𝒊
𝑰
𝒊 + ∑ 𝒄𝒋

𝑱
𝒋 𝒙𝒋 + ∑ ∑ 𝒄𝒋𝒐𝒚𝒋𝒐

𝑱
𝒋

𝑶
𝒐 ) 

                  +∑∑∑∑𝒄𝒊𝒐𝑭𝒊𝒋𝒐
(𝒊→𝒋)𝒕

𝑰

𝒊

𝑱

𝒋

𝑶

𝒐

𝑻

𝒕

 +∑∑∑𝒄𝒔𝒂𝒊
(𝑺𝑨→𝒊)

𝑺𝑨

𝒔𝒂

𝑰

𝒊

𝑻

𝒕

𝒛𝑺𝑨𝒊
(𝑺𝑨→𝒊)𝒕 

                  +∑∑∑∑𝒄̃𝒊𝒋
𝒊→𝒋

𝑰

𝒊=𝟏

𝑱

𝒋=𝟏

𝑶

𝒐=𝟏

𝑻

𝒕=𝟏

𝑭𝒊𝒋𝒐
(𝒊→𝒋)𝒕

+∑∑∑∑∑𝒄̃′𝒊𝒋
𝒊→𝒋
𝑭′𝒊𝒋𝒐𝒗
(𝒊→𝒋)𝒕

𝑽

𝒗=𝟏

𝑰

𝒊=𝟏

𝑱

𝒋=𝟏

𝑶

𝒐=𝟏

𝑻

𝒕=𝟏

 

                  +∑∑∑∑𝒄𝒓𝒋
(𝒓→𝒋)

𝑭𝒓𝒋𝒐
(𝒓→𝒋)𝒕

𝑹

𝒓

𝑱

𝒋

𝑶

𝒐

𝑻

𝒕

 

 
 

(1) 

𝐌𝐢𝐧 𝐙𝟐 =∑∑∑𝑾𝟏𝑼𝒓𝒐
𝒕

𝑻

𝒕

𝑶

𝒐

𝑹

𝒓

+∑∑∑𝑾𝟐𝑼′𝒓𝒐
𝒕

𝑻

𝒕

𝑶

𝒐

𝑹

𝒓

 

(2) 



 

 

s.t:   

𝒚𝒊𝒐 ≤ 𝒙𝒊 ∀ 𝑖, 𝑜 (3) 

𝒚𝒋𝒐 ≤ 𝒙𝒋 ∀ 𝑗, 𝑜 (4) 

∑𝒚𝒊𝒐 ≥ 𝟏

𝑰

𝒊=𝟏

 ∀ 𝑜 (5) 

∑𝒚𝒋𝒐 ≥ 𝟏

𝑱

𝒋=𝟏

 ∀ 𝑜 (6) 

∑ 𝒛𝒔𝒂
𝒕 = 𝑷

𝑺𝑨

𝒔𝒂=𝟏

 ∀ 𝑡 (7) 

𝒛𝒔𝒂𝒊
(𝒔𝒂→𝒊)𝒕

≤ 𝒛𝒔𝒂
𝒕  ∀ 𝑖, 𝑠𝑎, 𝑡 (8) 

𝒚𝒊𝒐
𝒕 ≤ ∑ 𝒛𝒔𝒂𝒊

(𝒔𝒂→𝒊)𝒕

𝑺𝑨

𝒔𝒂=𝟏

 ∀ 𝑖, 𝑜, 𝑡 (9) 

𝒛𝒔𝒂
𝒕 ≤∑𝒛𝒔𝒂𝒊

(𝒔𝒂→𝒊)𝒕

𝑰

𝒊=𝟏

 ∀ 𝑠𝑎, 𝑡 (10) 

∑ 𝒛𝒔𝒂𝒊
(𝒔𝒂→𝒊)𝒕

≤ 𝟏

𝑺𝑨

𝒔𝒂=𝟏

 ∀ 𝑖, 𝑡 (11) 

∑𝑭𝒊𝒋𝒐
(𝒊→𝒋)𝒕

= 𝑨𝒊𝒐
𝒕 𝒚𝒊𝒐

𝑱

𝒋=𝟏

 ∀ 𝑖, 𝑜, 𝑡 (12) 

𝑭𝒊𝒋𝒐
(𝒊→𝒋)𝒕

≤ 𝑨𝒊𝒐
𝒕 𝒚𝒋𝒐 ∀ 𝑖, 𝑗, 𝑜, 𝑡 (13) 

𝑭′𝒊𝒋𝒐𝒗
(𝒊→𝒋)𝒕

= 𝟎   | 𝒕𝒊𝒋𝒐
𝒕 > 𝑸𝒐 ∀ 𝑖, 𝑗, 𝑜, 𝑡, 𝑣 (14) 

∑𝑭′𝒊𝒋𝒐𝒗
(𝒊→𝒋)𝒕

𝑽

𝒗=𝟏

≤ 𝑨𝒊𝒐
𝒕 𝒚𝒋𝒐 ∀ 𝑖, 𝑗, 𝑜, 𝑡 (15) 

∑∑𝑭′𝒊𝒋𝒐𝒗
(𝒊→𝒋)𝒕

𝑽

𝒗=𝟏

≤ 𝑨𝒊𝒐
𝒕 𝒚𝒊𝒐

𝑱

𝒋=𝟏

 ∀ 𝑖, 𝑜, 𝑡 (16) 

𝑨𝒊𝒐
𝒕 = 𝑵𝒊

𝒕𝑩𝒊𝒐
𝒕  ∀ 𝑖, 𝑜, 𝑡 (17) 

∑∑𝑭𝒓𝒋𝒐
(𝒓→𝒋)𝒕

𝑱

𝒋=𝟏

=∑∑∑𝑭′𝒊𝒋𝒐𝒗
(𝒊→𝒋)𝒕

𝑽

𝒗=𝟏

𝑱

𝒋=𝟏

+∑𝑼𝒓𝒐
𝒕 +∑𝑼′𝒓𝒐

𝒕

𝑹

𝒓=𝟏

𝑹

𝒓=𝟏

𝑰

𝒊=𝟏

𝑹

𝒓=𝟏

 ∀ 𝑜, 𝑡 (18) 



∑𝑼𝒓𝒐
𝒕 = (∑𝑫̃𝒓𝒐

𝒕

𝑹

𝒓=𝟏

𝑹

𝒓=𝟏

−∑∑∑𝑭′𝒊𝒋𝒐𝒗
(𝒊→𝒋)𝒕

𝑽

𝒗=𝟏

𝑱

𝒋=𝟏

𝑰

𝒊=𝟏

) × 𝒅′ ∀ 𝑜, 𝑡 (19) 

∑𝑼′𝒓𝒐
𝒕 = [∑𝑫′̃𝒓𝒐

𝒕
𝑹

𝒓=𝟏

− (∑∑∑𝑭′𝒊𝒋𝒐𝒗
(𝒊→𝒋)𝒕

𝑽

𝒗=𝟏

𝑱

𝒋=𝟏

𝑰

𝒊=𝟏

−∑𝑫̃𝒓𝒐
𝒕

𝑹

𝒓=𝟏

) (𝟏 − 𝒅′)] × 𝒅

𝑹

𝒓=𝟏

 ∀ 𝑜, 𝑡 (20) 

𝑰𝒊𝒐
𝒕 = 𝑰𝒊𝒐

𝒕−𝟏 + 𝑨𝒊𝒐
𝒕 −∑∑𝑭′𝒊𝒋𝒐𝒗

(𝒊→𝒋)𝒕

𝑱

𝒋=𝟏

𝑽

𝒗=𝟏

 ∀ 𝑖, 𝑜, 𝑡|𝐼𝑖𝑜
0 = 0 (21) 

𝟐𝒆𝒕[∑∑
𝑭′𝒊𝒋𝒐𝒗
(𝒊→𝒋)𝒕

𝒄𝒂𝒑𝒗

𝑰

𝒊

𝑱

𝒋

𝒅𝒊𝒔𝒊𝒋 +∑∑
𝑭𝒊𝒋𝒐
(𝒊→𝒋)𝒕

𝒄𝒂𝒑𝒗′

𝑰

𝒊

𝑱

𝒋

(𝒅𝒊𝒔𝒊𝒋 + 𝒅𝒊𝒔𝒔𝒂𝒊)] ≤ 𝑳𝒕 ∀ 𝑠𝑎, 𝑜, 𝑡, 𝑣, 𝑣′ (22) 

𝑭′𝒊𝒋𝒐𝒗
(𝒊→𝒋)𝒕

 ≤ 𝒄𝒂𝒑𝒗𝒛𝒐𝒗 ∀𝑖, 𝑗, 𝑜, 𝑡, 𝑣 (23) 

𝒙𝒊 , 𝒙𝒋 , 𝒚𝒊𝒐 , 𝒚𝒋𝒐 , 𝒛𝒔𝒂
𝒕  , 𝒛𝒔𝒂𝒊

𝒕  , 𝒛𝒐𝒗, 𝒅, 𝒅′ ∈ {𝟎, 𝟏} 
 
 

 

∀ 𝑖, 𝑗, 𝑜, 𝑡, 𝑠𝑎 (24) 

𝑭𝒊𝒋𝒐
(𝒊→𝒋)𝒕

 , 𝑭′𝒊𝒋𝒐𝒗
(𝒊→𝒋)𝒕

 , 𝑭𝒓𝒋𝒐
(𝒓→𝒋)𝒕

≥ 𝟎 , 𝑰𝒏𝒕𝒆𝒈𝒆𝒓 ∀ 𝑖, 𝑗, 𝑜, 𝑟, 𝑡 (25) 

𝑨𝒊𝒐
𝒕   , 𝑷 ≥ 𝟎 , 𝑰𝒏𝒕𝒆𝒈𝒆𝒓 ∀ 𝑖, 𝑜, 𝑡 (26) 

 

The objective function (1) minimizes the weighted total costs. It comprises fixed opening costs 

(including costs of setting up and equipping hospitals and TCs), harvesting process costs, and 

transportation costs. The last term in this equation refers to the carbon emission costs. Objective 

function (2) aims to minimize the number of unsatisfied demands considering the importance of 

mortality and survival weights. According to constraint set (3), a hospital can only serve a special 

organ donation if it is established. Constraint set (4) does the same for each TC, as well. In 

constraint sets (5) and (6), it is guaranteed that at least one hospital and one TC must be set up for 

each organ. Constraint set (7) indicates the total number of shipping agents available to each time 

period. Constraint set (8) points out that no hospital can be in the service domain of a shipping 

agent unless that agent is selected. Constraint set (9) ensures that at least one shipping agent covers 

each hospital. In constraint set (10), we ensure that a shipping agent can only be selected if assigned 

to at least one hospital to avoid unutilized shipping agents. Constraint set (11) assures that each 

hospital is covered by no more than one shipping agent. Constraint sets (12) and (13) are associated 

with the flows of information and samples between hospitals and TCs. These flows are possible if 

and only if these facilities are established. Constraint set (14) asserts that the flow of an organ from 

hospital to TC will be zero if the delivery time exceeds the maximum available CIT of that organ. 

Constraint sets (15) and (16) state that the flow of organs from hospitals to TCs depends on whether 

these facilities are settled, and also there is a limitation on the amount of flow due to the availability 



of organs in the hospital. Based on the constraint set (17), we estimate how many organs of each 

type were supplied at each hospital and each time period. Constraint set (18) shows the equation 

of total flows from recipient zones to TCs and total flows from hospitals to TCs plus the unsatisfied 

demand at each time period. At each time period and for each organ, constraints set (19) and (20) 

calculate the unsatisfied demand of high-risk and low-risk recipients, respectively. Constraint set 

(20) is associated with the inventory level of each organ type in each hospital and over each period 

of time. Constraint set (21) restricts the number of vehicle movements between hospitals and TCs 

through the maximum allowable amount of carbon emission in period t determined by the 

government. Constraint set (22) assures that if a vehicle is assigned to an organ at a time period, 

the capacity of the vehicle should not be violated. Lastly, constraint sets (24-26) identify the type 

of decision variables. 

4.  Solution approach 

The proposed methodology for each small, medium and large size is straightforward. Therefore, 

the exact solution can be obtained by employing exact methods and using the Generalized 

Algebraic Modelling system (GAMS) software in a reasonable time. In the following subsections, 

we are going to defuzzify the model by Jiménez method, first. Then a weighted sum multi-

objective approach is presented in order to solve the problem. 

4.1. Jiménez method 

Due to the nature of the data in real-world situations, a number of parameters are uncertain. In this 

research, we, therefore, consider total demand (including high-risk and low-risk recipients) and 

transportation costs to be possibilistic data represented by triangular fuzzy numbers as shown 

below: 

𝑫̃𝒓𝒐
𝒕 = (𝑫𝒓𝒐(𝟏)

𝒕 , 𝑫𝒓𝒐(𝟐)
𝒕 , 𝑫𝒓𝒐(𝟑)

𝒕 ) (27) 

𝑫′̃𝒓𝒐
𝒕 = (𝑫′𝒓𝒐(𝟏)

𝒕 , 𝑫′𝒓𝒐(𝟐)
𝒕 , 𝑫′𝒓𝒐(𝟑)

𝒕 ) (28) 

𝒄̃𝒊𝒋
(𝒊→𝒋)

= (𝒄𝒊𝒋(𝟏)
(𝒊→𝒋)

, 𝒄𝒊𝒋(𝟐)
(𝒊→𝒋)

, 𝒄𝒊𝒋(𝟑)
(𝒊→𝒋)

 (29) 

𝒄′̃𝒊𝒋
(𝒊→𝒋)

= (𝒄𝒊𝒋(𝟏)
(𝒊→𝒋)

, 𝒄𝒊𝒋(𝟐)
(𝒊→𝒋)

, 𝒄𝒊𝒋(𝟑)
(𝒊→𝒋)

) (30) 

 

The literature has presented a number of strategies for comparing or ranking fuzzy numbers, 

although ranking techniques are not necessarily consistent with one another (Wang & Kerre, 1996) 

. Numerous factors, including distinguishability(Bortolan & Degani, 1985), rationality(Nakamura 

& Hanafusa, 1986), fuzzy or linguistic presentation, and robustness, have been used to support 

ranking algorithms. In this study, we employ a technique (Jiménez) that confirms all the 

aforementioned characteristics and, in addition, is computationally effective for solving an LP 

problem because it maintains linearity. 

The Jiménez approach is presented in this section to solve the proposed mixed-integer 

programming model. This method is one of the most efficient methods of possibility planning that 



uses the concept of the expected value of fuzzy numbers in ranking numbers. In this method, there 

is no limit to the possibility of distributing fuzzy values and triangular and trapezoidal distributions 

can be used (Jiménez, Arenas, Bilbao, & Rodrı, 2007). We now turn to this definition of the two 

concepts of expected interval and expected value. The expected interval of a fuzzy number such 

as 𝑎̃ is defined as follows: 

𝐸𝐼(𝑎̃) = [𝐸1 ,
𝑎  𝐸2

𝑎] =  [∫𝑓𝑎
−1(𝑟)𝑑𝑟 

1

0

, ∫ 𝑔𝑎
−1(𝑟)𝑑𝑟 

1

0

] 

 

(31) 

 

And the concept of expected value for the fuzzy number 𝑎̃ is written as follows: 

𝐸𝑉(𝐼) =
𝐸1
𝑎  + 𝐸2

𝑎

          2          
  

(32) 

 

For fuzzy numbers of triangular type with parameters (𝑎1, 𝑎2, 𝑎3), the expected value and expected 

interval are calculated as follows: 

𝐸𝐼(𝑎̃) = [𝐸1 ,
𝑎  𝐸2

𝑎] = [
1

2
 (𝑎1 + 𝑎2 ) ,

1

2
 ( 𝑎2  +  𝑎3 )] , 𝐸𝑉(𝑎 ̃) =

1

4
 (𝑎1 + 2𝑎2 + 𝑎3) 

 
(33) 

 

In the Jimenez method, the ranking method is used to de-fuzzy the constraints of a possibility 

model. According to this method, for any pair of fuzzy numbers 𝑎̃ and 𝑏̃, the degree of more 

significance or equality of 𝑎̃ relative to fuzzy number 𝑏̃ is defined as follows: 

Degree (𝑎̃ ≥ 𝑏̃) = 𝜇𝑀 (𝑎̃, 𝑏̃) = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎̃ 𝑜𝑣𝑒𝑟 𝑏̃ 

 

𝜇𝑀(𝑎̃, 𝑏̃) =

{
 
 

 
  0                                                𝑖𝑓 𝐸2

𝑎 < 𝐸1
𝑏                                                               

𝐸2
𝑎  − 𝐸1

𝑏      

    𝐸2
𝑎 + 𝐸2

𝑏 − 𝐸1
𝑎 − 𝐸1

𝑏         
 𝑖𝑓 𝐸1

𝑎   − 𝐸2
𝑏   < 0 , 𝐸2

𝑎    − 𝐸1
𝑏  > 0                   

1                                               𝑖𝑓 𝐸1
𝑎  > 𝐸2

𝑏                                                                

 

 

(34) 

 

If 𝜇𝑀(𝑎̃, 𝑏̃) ≥ 𝛽  and 𝛽 ∈ [0,1] is established,   𝑎̃ is at least greater than or equal to 𝑏̃ with a 𝛽 

rating. Then: 



 

𝑎̃𝑥 ≥ 𝑏̃ 

𝐸2
𝑎  − 𝐸1

𝑏      

    𝐸2
𝑎 + 𝐸2

𝑏 − 𝐸1
𝑎 − 𝐸1

𝑏         
≥ 𝛽 → 𝛽𝐸1

𝑎 + (1 − 𝛽)𝐸2
𝑎 ≥ 𝛽𝐸2

𝑏 + (1 − 𝛽)𝐸1
𝑏 

 

(35) 

 

In equal constraints, de-fuzzy is performed as follows: 

 

𝑎̃𝑥 = 𝑏̃ 

{
[(1 −

𝛽

2 
)𝐸2

𝑎 +
𝛽

2
𝐸1
𝑎]𝑥 ≥ (1 −

𝛽

2
)𝐸1

𝑏 +
𝛽

2
𝐸2
𝑏

[(1 −
𝛽

2
)𝐸1

𝑎 +
𝛽

2
𝐸2
𝑎]𝑥 ≤ (1 −

𝛽

2
)𝐸2

𝑏 +
𝛽

2
𝐸1
𝑏

 

 

(36) 

 

And to de-fuzzy the objective function, we will do as follows: 

 

𝑀𝑖𝑛 𝑍 = 𝑐̃𝑥 

𝑀𝑖𝑛𝑍 = 𝐸𝑉(𝑐̃). 𝑥 

 

(37) 

 

Accordingly, the proposed defuzzification approach for the studied problem can be formulated as 

follows: 

The first objective function will be constituted with equation (38). 

Min Z1 =  𝜆( ∑ 𝑐𝑖𝑥𝑖
𝐼
𝑖 + ∑ 𝑐𝑗

𝐽
𝑗 𝑥𝑗 + ∑ ∑ 𝑐𝑗𝑜𝑦𝑗𝑜

𝐽
𝑗

𝑂
𝑜 ) 

                +∑∑∑∑𝑐𝑖𝑜𝐹𝑖𝑗𝑜
(𝑖→𝑗)𝑡

𝐼

𝑖

𝐽

𝑗

𝑂

𝑜

𝑇

𝑡

+∑∑∑𝑐𝑠𝑎𝑖
(𝑆𝐴→𝑖)

𝑆𝐴

𝑠𝑎

𝐼

𝑖

𝑇

𝑡

𝑧𝑆𝐴𝑖
(𝑆𝐴→𝑖)𝑡 

               +∑∑∑∑(
𝑐𝑖𝑗(1)
(𝑖→𝑗)

+ 2𝑐𝑖𝑗(2)
(𝑖→𝑗)

+ 𝑐𝑖𝑗(3)
(𝑖→𝑗)

4

𝐼

𝑖

𝐽

𝑗

𝑂

𝑜

𝑇

𝑡

)𝐹𝑖𝑗𝑜
(𝑖→𝑗)𝑡

 

               + ∑∑∑∑∑(
𝑐′𝑖𝑗(1)
(𝑖→𝑗)

+ 2𝑐′𝑖𝑗(2)
(𝑖→𝑗)

+ 𝑐′𝑖𝑗(3)
(𝑖→𝑗)

4
)𝐹′𝑖𝑗𝑜

(𝑖→𝑗)𝑡

𝑉

𝑣=1

𝐼

𝑖

𝐽

𝑗

𝑂

𝑜

𝑇

𝑡

 

               +∑∑∑∑𝑐𝑟𝑗
(𝑟→𝑗)

𝐹𝑟𝑗𝑜
(𝑟→𝑗)𝑡

𝑅

𝑟

𝐽

𝑗

𝑂

𝑜

𝑇

𝑡

 

 

(38) 



Constraints sets (19) and (20) are first linearized and defuzzied as follows: 

∑[𝛽(
𝐷𝑟𝑜(2)
𝑡 + 𝐷𝑟𝑜(3)

𝑡

2
) + (1 − 𝛽)(

𝐷𝑟𝑜(1)
𝑡 + 𝐷𝑟𝑜(2)

𝑡

2
)]

𝑅

𝑟=1

≤ 𝑀𝑑′ +∑∑∑𝐹′𝑖𝑗𝑜𝑣
(𝑖→𝑗)𝑡

𝑉

𝑣=1

𝐽

𝑗=1

𝐼

𝑖=1

 ∀ 𝑜, 𝑡 (39) 

𝑑′ ≤
1

∑ ∑ ∑ 𝐹′𝑖𝑗𝑜𝑣
(𝑖→𝑗)𝑡𝑉

𝑣=1
𝐽
𝑗=1

𝐼
𝑖=1

∑𝛽(
𝐷𝑟𝑜(1)
𝑡 + 𝐷𝑟𝑜(2)

𝑡

2
) + (1 − 𝛽)(

𝐷𝑟𝑜(2)
𝑡 +𝐷𝑟𝑜(3)

𝑡

2
)

𝑅

𝑟=1

 ∀ 𝑜, 𝑡 (40) 

∑𝛽(
𝐷′𝑟𝑜(2)
𝑡 + 𝐷′𝑟𝑜(3)

𝑡

2
) + (1 − 𝛽)(

𝐷′𝑟𝑜(1)
𝑡 + 𝐷′𝑟𝑜(2)

𝑡

2
)

𝑅

𝑟=1

−∑∑∑𝐹′𝑖𝑗𝑜𝑣
(𝑖→𝑗)𝑡

𝑉

𝑣=1

𝐽

𝑗=1

𝐼

𝑖=1

−∑𝛽(
𝐷𝑟𝑜(2)
𝑡 + 𝐷𝑟𝑜(3)

𝑡

2
) + (1 − 𝛽)(

𝐷𝑟𝑜(1)
𝑡 + 𝐷𝑟𝑜(2)

𝑡

2
)

𝑅

𝑟=1

≤ 𝑀𝑑 

∀ 𝑜, 𝑡 (41) 

𝑑 −𝑀𝑑′ ≤
∑ 𝛽(

(𝐷′𝑟𝑜(1)
𝑡 + 𝐷′𝑟𝑜(2)

𝑡

2 ) + (1 − 𝛽)(
𝐷′𝑟𝑜(2)
𝑡 + 𝐷′𝑟𝑜(3)

𝑡

2 )𝑅
𝑟=1

∑ ∑ ∑ 𝐹′𝑖𝑗𝑜𝑣
(𝑖→𝑗)𝑡𝑉

𝑣=1
𝐽
𝑗=1

𝐼
𝑖=1 − ∑ 𝛽(

𝐷𝑟𝑜(1)
𝑡 + 𝐷𝑟𝑜(2)

𝑡

2
) + (1 − 𝛽)(

𝐷𝑟𝑜(2)
𝑡 + 𝐷𝑟𝑜(3)

𝑡

2
)𝑅

𝑟=1

 ∀ 𝑜, 𝑡 (42) 

∑𝑈𝑟𝑜
𝑡 ≤ (∑

𝛽

2
(
 𝐷𝑟𝑜(1)
𝑡 +𝐷𝑟𝑜(2)

𝑡

2
) + (1 −

𝛽

2
)

𝑅

𝑟=1

(
𝐷𝑟𝑜(2)
𝑡 + 𝐷𝑟𝑜(3)

𝑡

2
) −∑∑∑𝐹′𝑖𝑗𝑜𝑣

(𝑖→𝑗)𝑡

𝑉

𝑣=1

𝐽

𝑗=1

𝐼

𝑖=1

) × 𝑑′

𝑅

𝑟=1

 ∀ 𝑜, 𝑡 (43) 

∑𝑈𝑟𝑜
𝑡

𝑇

𝑡=1

≥ (∑(1 −
𝛽

2
)(
𝐷𝑟𝑜(1)
𝑡 + 𝐷𝑟𝑜(2)

𝑡

2
) + (

𝛽

2
)(

𝑅

𝑟=1

𝐷𝑟𝑜(2)
𝑡 + 𝐷𝑟𝑜(3)

𝑡

2
) −∑∑∑𝐹′𝑖𝑗𝑜𝑣

(𝑖→𝑗)𝑡

𝑉

𝑣=1

𝐽

𝑗=1

𝐼

𝑖=1

)  × 𝑑′ ∀ 𝑜, 𝑡 (44) 

∑𝑈′𝑟𝑜
𝑡
≤ [∑(1−

𝛽

2
)(
𝐷′𝑟𝑜(2)
𝑡

+ 𝐷′𝑟𝑜(3)
𝑡

2
) + (

𝛽

2
)(
𝐷′𝑟𝑜(1)
𝑡

+ 𝐷′𝑟𝑜(2)
𝑡

2
)

𝑅

𝑟=1

𝑅

𝑟=1

− (∑∑∑𝐹′𝑖𝑗𝑜𝑣
(𝑖→𝑗)𝑡

𝑉

𝑣=1

−∑(1−
𝛽

2
)(
𝐷𝑟𝑜(2)
𝑡 + 𝐷𝑟𝑜(3)

𝑡

2
) + (

𝛽

2

𝑅

𝑟=1

𝐽

𝑗=1

𝐼

𝑖=1

)(
𝐷𝑟𝑜(1)
𝑡 + 𝐷𝑟𝑜(2)

𝑡

2
) ) (1

− 𝑑′)] × 𝑑 

∀ 𝑜, 𝑡 (45) 

∑𝑈′𝑟𝑜
𝑡 ≥ [∑(1 −

𝛽

2
)(
𝐷′𝑟𝑜(1)
𝑡

+ 𝐷′𝑟𝑜(2)
𝑡

2
) + (

𝛽

2
)(
𝐷′𝑟𝑜(2)
𝑡

+ 𝐷′𝑟𝑜(3)
𝑡

2
)

𝑅

𝑟=1

𝑅

𝑟=1

− (∑∑∑𝐹′𝑖𝑗𝑜𝑣
(𝑖→𝑗)𝑡

𝑉

𝑣=1

−∑(1 −
𝛽

2
)(
𝐷𝑟𝑜(1)
𝑡 + 𝐷𝑟𝑜(2)

𝑡

2
) + (

𝛽

2

𝑅

𝑟=1

𝐽

𝑗=1

𝐼

𝑖=1

)(
𝐷𝑟𝑜(2)
𝑡 + 𝐷𝑟𝑜(3)

𝑡

2
)) (1

− 𝑑′)] × 𝑑 

∀ 𝑜, 𝑡 (46) 



4.2. Multi-objective approach 

In order to convert two objective functions into one, the weighted sum method presented by Marler 

and Arora (2010) is utilized. Using the weighted sum approach to solve the given problem requires 

the selection of scalar weights 𝜑𝑖 and the minimization of the following composite objective 

function:  

 

𝐹 =∑𝜑𝑖𝐹𝑖(𝑥)

𝑘

𝑖=1

 

𝑠. 𝑡.      ∑𝜑𝑖 = 1

𝑘

𝑖=1

 

             𝜑𝑖 ≥ 0 

 

(47) 

 

In our problem, the first objective function is in the scale of cost and the second one represents the 

number of shortages. Thus, to implement the weighted sum approach, we have considered a 

penalty cost (determined as 𝑃𝐶 in formulation) for each unsatisfied demand due to the opinion of 

decision makers. Consequently, the scale of the second objective function will also be converted 

to cost, and the weighted sum method can be executed. The composite objective function would 

be as follows: 

Min Z =  𝜑[𝜆( ∑ 𝑐𝑖𝑥𝑖
𝐼
𝑖 + ∑ 𝑐𝑗

𝐽
𝑗 𝑥𝑗 +∑ ∑ 𝑐𝑗𝑜𝑦𝑗𝑜

𝐽
𝑗

𝑂
𝑜 ) 

                +∑∑∑∑𝑐𝑖𝑜𝐹𝑖𝑗𝑜
(𝑖→𝑗)𝑡

𝐼

𝑖

𝐽

𝑗

𝑂

𝑜

𝑇

𝑡

+∑∑∑𝑐𝑠𝑎𝑖
(𝑆𝐴→𝑖)

𝑆𝐴

𝑠𝑎

𝐼

𝑖

𝑇

𝑡

𝑧𝑆𝐴𝑖
(𝑆𝐴→𝑖)𝑡 

               +∑∑∑∑(
𝑐𝑖𝑗(1)
(𝑖→𝑗)

+ 2𝑐𝑖𝑗(2)
(𝑖→𝑗)

+ 𝑐𝑖𝑗(3)
(𝑖→𝑗)

4

𝐼

𝑖

𝐽

𝑗

𝑂

𝑜

𝑇

𝑡

)𝐹𝑖𝑗𝑜
(𝑖→𝑗)𝑡

 

               + ∑∑∑∑∑(
𝑐′𝑖𝑗(1)
(𝑖→𝑗)

+ 2𝑐′𝑖𝑗(2)
(𝑖→𝑗)

+ 𝑐′𝑖𝑗(3)
(𝑖→𝑗)

4
)𝐹′𝑖𝑗𝑜𝑣

(𝑖→𝑗)𝑡

𝑉

𝑣=1

𝐼

𝑖

𝐽

𝑗

𝑂

𝑜

𝑇

𝑡

 

               +∑∑∑∑𝑐𝑟𝑗
(𝑟→𝑗)

𝐹𝑟𝑗𝑜
(𝑟→𝑗)𝑡

] + 𝑃𝐶 ×

𝑅

𝑟

𝐽

𝑗

𝑂

𝑜

𝑇

𝑡

(1 − 𝜑)[∑∑∑𝑊1𝑈𝑟𝑜
𝑡

𝑇

𝑡

𝑂

𝑜

𝑅

𝑟

+∑∑∑𝑊2𝑈′𝑟𝑜
𝑡 ]

𝑇

𝑡

𝑂

𝑜

𝑅

𝑟

 

 

 

(48) 

 



5. Numerical Examples 

5.1. Computational experiments 

In order to validate the effectiveness of the proposed methodology and solution strategy, two 

numerical examples of small and medium sizes are generated at first. A real case study problem is 

then applied to demonstrate the applicability and utility of the provided mathematical model in 

section 6. It is noteworthy that all findings are obtained using GAMS 25.1.2 software with the 

BARON solver on a core i5 PC with 8 GB of RAM. The aforementioned test problems are 

presented in section 5.2, and table 1 displays the parameter values. The sizes of hospitals, TCs, 

recipient zones, organs, shipping agents, hospital vehicles, shipping agents vehicles, and time 

periods are different in each test problem. 

Table 1  parameter ranges for test problems 

Parameters Random Distribution 

𝝀 0.8 

𝒄𝒊 ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(2000,4000) 

𝒄𝒋 ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(3000,5000) 

𝒄𝒊𝒐 ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(3,6) 

𝒄𝒋𝒐 ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(50,80) 

𝒄̃𝒊𝒋
(𝒊→𝒋)

 ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1.5,6.5) 

𝒄̃′𝒊𝒋
(𝒊→𝒋)

 ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(2,7) 

𝒄𝒔𝒂𝒊
(𝒔𝒂→𝒊)

 ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1,5) 

𝒄𝒓𝒊
(𝒓→𝒋)

 ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0.8,2) 

𝑵𝒊
𝒕 ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(10,30) 

𝑩𝐢𝐨
𝐭  ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(1,2) 

𝑫̃𝒓𝒐
𝒕  ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(10,40) 

𝑫̃′𝒓𝒐
𝒕  ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(10,40) 

𝒄𝒂𝒑𝒗, 𝒄𝒂𝒑𝒗′ ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(100,130) 

𝒅𝒊𝒔𝒊𝒋 ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(50,200) 

𝒅𝒊𝒔𝒔𝒂𝒊 ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(20,100) 

𝒕𝒊𝒋𝒐
𝒕  ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(2,15) 

𝒆𝒕 ~𝑛𝑜𝑟𝑚𝑎𝑙(50,15) 

𝑳𝒕 ~𝑢𝑛𝑖𝑓𝑜𝑟𝑚(10000,40000) 

𝝋 0.4 

𝑷𝑪 70 

 



5.2. Results and model validation 

In this section, the values of each of the first and second objective functions and the overall one 

for small and medium sizes are presented in table 2. The first and second row corresponds to the 

small and medium sizes, respectively. As shown in Table 2, increasing the magnitude of the 

problem will increase CPU execution time and the weighted-sum objective function value (value 

of 𝑍). The results of the computations conducted on a small scale will then be provided. 

Table 2  values of objective functions for each test problem size 

Test Problem size 

𝒊 × 𝒋 × 𝒓 × 𝒐 × 𝒔𝒂 × 𝒗 × 𝒗′ × 𝒕 
𝒁𝟏 𝒁𝟐 𝒁 

CPU running time 

(s) 

6 × 5 × 5 × 2 × 9 × 8 ×  9 × 3 33481 519 35195 76 

7 × 6 ×  8 × 2 × 8 × 10 × 8 × 3 39206 1004 57978 152 

  

In order to validate the proposed approach, a small-scale test problem (𝑖 × 𝑗 × 𝑟 × 𝑜 × 𝑠𝑎 × 𝑣 ×

𝑣′ × 𝑡 = 6 × 5 × 5 × 2 × 9 × 8 ×  9 × 3) is constructed, and the optimal solution is presented 

in Figure 3. The parameter values are shown in table 1. As illustrated in figure 3, the nodes 

determined using 𝑖, 𝑗, and 𝑟 correspond to selected hospitals, selected TCs, and the recipient zones. 

The results are shown for organ type 2 (𝑜 = 2). The hatched hospitals and TCs are equipped to 

process this type of organ. The arrows and associated number of each depict the flows of organs 

from hospitals to TCs (𝐹′𝑖𝑗𝑜𝑣
(𝑖→𝑗)𝑡

) and the flows of recipients from recipient zones to TCs (𝐹𝑟𝑗𝑜
(𝑟→𝑗)𝑡

), 

in order to have a transplant surgery done. Regarding the number of flows, it is approved that the 

demand for organs exceeds the supply. As long as the model prioritizes high-risk recipients above 

low-risk receivers, the demand of high-risk recipients is met first, and the remaining organs are 

distributed to low-risk recipients. For instance, the unsatisfied demand of recipient zone 2 can be 

shown as follows: 

∑𝑈22
𝑡

3

𝑡=1

= 3  𝑎𝑛𝑑 ∑𝑈′22
𝑡

3

𝑡=1

= 9 

The matter of CIT is the reason why 𝑈𝑟𝑜
𝑡  is not equal to zero, which indicates that the organ has 

decomposed before it reaches the recipient. 



 

Figure 3 Optimal solution of small-size test problem   

6. Case study implementation 

In real-world applications, a large number of network design issues have been addressed. Strategic 

location presents a unique challenge in developing nations since site decisions are frequently 

determined by local officials, which can result in the placement of facilities that may not be cost-

effective. On the other hand, what considerably matters is the issue of humans' lives besides 

minimizing the costs. Consequently, location-allocation decisions should be made such that organ 

shortages are kept to a minimum. 
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Figure 4 Khorasan Razavi geographical map and the candidate locations of the facilities 

This paper considers as an application of the problem at hand the design of an organ transplantation 

network at the lowest possible cost and the unsatisfied demand simultaneously for one of the most 

populated provinces of Iran, Khorasan Razavi. This province has 19 main cities designated as 

recipient zones, 14 hospitals where donors can be accommodated, 8 TCs, and 7 shipping agents. 

All of them are labeled on the map depicted in Figure 4. Some facilities are not available in some 

cities due to the lack of resources. For instance, in the province's most populated and facilitated 

city, Mashhad, there are three potential locations for TCs. The recipients from cities like Kashmar 

should travel to undergo the transplant surgery anyway.  

In order to apply the proposed model to the province of Khorasan Razavi, a portion of the generated 

parameters are determined by subject matter experts, while the remaining parameters are derived 

from historical data. For instance, the number and candidate locations of facilities are selected 

based on the recommendations of specialists. The remaining essential information regarding organ 

supply and demand has been gathered from the official transplantation organizations in Iran. All 

costs are estimated in light of previous data. In addition, transportation expenses are computed 

using the data of a number of transportation service providers. The distances and travel times 

between different cities within the province have been extracted from google Maps. The proposed 

model is implemented for the heart (o = 1), liver (o = 2), and lung (o = 3) in three time periods, 

each of which corresponds to four months of the planning horizon. The average CIT (given in 

hours) for each organ is displayed in table 3. The costs are stated on the scale of million Tomans. 
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Table 3  The average CIT for each organ 

Organ CIT (hour) 

1) Heart 5 

2) Liver 10 

3) Lung 7 

 

This section analyzes the model to provide some managerial insights. When faced with multiple 

solutions to a multi-objective problem, decision-makers should evaluate the options and select the 

optimal one. For this purpose, to assist the decision-makers in finding the best possible choice, 

figure 5 illustrates one of the solutions. Evidently, it is optimal to equip some of the potential 

facilities with organ processing capabilities. The figure demonstrates, for instance, that among all 

14 candidate hospitals, hospital 1 is equipped to receive organ donors of types 1 and 3. 

Additionally, hospital 9 should be equipped to process all three types of organs. It is not optimum 

to facilitate other potential hospitals in this respect. Moreover, TCs 3,4, and 7 are equipped for 

harvest operation of all three organ types, while TCs 1 and 6 can recite recipients with the demand 

of organ types 3 and 1, respectively. Additionally, in figure 5, arrows indicate the optimal organ 

flows from hospitals to transplant centers (𝐹′𝑖𝑗𝑜𝑣
(𝑖→𝑗)𝑡

) and the flows of recipients from their zone to 

the TCs (𝐹𝑟𝑗𝑜
(𝑟→𝑗)𝑡

). 

 

Figure 5 optimal solution of the case study 
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In multi-objective problems, the table of Pareto solutions is one of the most crucial tools for 

decision-makers. In this regard, table 4 displays the pareto solutions of the proposed weighted sum 

model and the hospitals and TCs to be equipped by a change in the weighted relevance of each 

objective function (𝜑). In order to place the two objective functions on the same scale, a penalty 

cost of 15 has been considered (𝑃𝐶=15) and multiplied by the second objective function. As is 

common knowledge, the two present objective functions (cost and unmet demand) are in conflict 

with each other. In other words, if we want to reduce unmet demand, we must utilize more 

facilities, such as equipping more transplant centers and hospitals, entering into contracts with 

more shipping agents, utilizing more refrigerated vehicles, etc. In this scenario, the cost objective 

function (𝑍1) will grow if we place a greater emphasis on reducing unmet demand (𝑍2)  and, 

subsequently, mortality and transplant rejection. To clarify more, increasing 𝜑 concentrates the 

weighted sum objective function on minimizing 𝑍1. Whereas decreasing 𝜑 that leads to the value 

of 1 − 𝜑 having more value than 𝜑,  𝑍2 receives a higher minimization priority. 

In addition, according to table 4, the change in 𝜑 affects the quantity and position of the hospitals 

and TCs to be equipped. For instance, if the importance weight of the cost function is increased, 

the number of these facilities will decrease, or the ones with the lowest equipping costs will be 

opened. The scenario is the opposite when the unsatisfied demand function's importance weight 

surpasses the one for cost functions. In this situation, the facilities should be equipped that simplify 

the access of recipients to TCs, before the organs perish. Hence, the decision-makers should make 

up their mind on choosing the best importance weight (𝜑) which best fits their priorities and 

limitations. 

Table 4 Pareto optimal solutions 

 𝜑 𝑍1 𝑍2 Equipped hospital Equipped TC 

1 0.2 60072 2685 1,5,9 1,3,4,5,6,8 

2 0.4 58693 2951 1,9 1,3,4,6,7 

3 0.6 57224 3462 1,6 3,4,6 

4 0.8 55981 3837 9 1,6,8 

 

7. Sensitivity analysis 

In this section, the effect of different parameters such as number of donors (𝑁), total demand of 

high-risk recipients (𝐷), and total demand of low-risk recipients (𝐷′) on the objective functions, 

namely total cost objective function (𝑍1) and the number of unsatisfied demand objective function 

(𝑍2) will be investigated to analyze the model’s behavior. It is noteworthy that the second objective 

function has been multiplied by a penalty cost coefficient with a value of 15 to show the results on 

the diagram more clearly, and in the figures of this section, it is written as “Normalized second 

objective function value”. It is worth noting that the term change percentage in this section's figures 

refers to the percentage of increase and decrease in the parameters' values. 

First, we would like to examine the impact of the number of donors (𝑁) on the first and second 

objective functions. The value of 𝑁 in this analysis has been modified slightly to account for the 

reality that organ transplantation supply can never exceed demand. As depicted in Figure 6, the 



total number of unsatisfied demands reduces with the increase in the number of donors. In this 

context, however, unmet demand will always exist because there are always fewer donors than 

recipients, and some organs are already lost owing to organ perishability and variations in travel 

times.  

 

Figure 6 Sensitivity analysis of number of donors on objective functions 

In order to analyze the effect of high-risk recipients' total demand (𝐷) on the objective functions, 

figure 7 is presented. As mentioned in previous sections, in this methodology, the priority is on 

the high-risk recipients. If their demand decrease, the remaining organs will be allocated to the 

low-risk ones. Therefore, a shortage of organs does not lead to fewer transplantation costs. 

However, the slight change in the cost objective function is due to the different transportation costs 

and different types of surgeries. The same conclusion can be drawn for the increase in this type of 

demand. Moreover, the second objective function is directly related to every type of demand, no 

matter high-risk or low-risk. 



 

Figure 7 Sensitivity analysis of total demand of high-risk recipients on objective functions 

Figure 8 depicts the impact of low-risk recipients total demand (𝐷′) on objective functions. Even 

with a 20% decrease in this type of demand, there are still low-risk recipients whose organ 

demand cannot be met due to the organ shortage. Therefore, due to the reduction in transport costs 

between recipient zones and TCs, the value of the cost objective function reduces marginally. With 

a 70 percent reduction in this parameter, the supply exceeds the demand, and certain transportation 

and transplant operation expenses fall, leading to more reduction in the first objective function 

than the case of 20% decrease. However, the total unsatisfied demand function does not equal zero. 

This is due to the fact that some organs have passed their CIT and perished in route to the recipient. 

In addition, since the majority of operational costs correspond to transplant surgery costs, which 

do not deviate from the 0% change in 𝐷′ due to the current lack of supply, the increase in this 

parameter marginally raises the total cost. This shift is primarily motivated by the transportation 



costs between recipient zones and TCs.  Obviously, the total unmet demand function emerges as a 

result of grow in low-risk recipients demands. 

 

 

Figure 8 Sensitivity analysis of total demand of low-risk recipients on objective functions 

8. Discussion and managerial insights 

Some papers, such as Zahiri, Tavakkoli-Moghaddam, and Pishvaee (2014) and Ahmadvand and 

Pishvaee (2018a), have addressed the issue of organ transplant network design with the single 

objective of reducing the total costs, including the cost of establishing and equipping the network's 

facilities, surgery operations, and transportation. Unlike our approach, none of the aforementioned 

articles cover the selection of cold chain vehicles. In this study, transportation restrictions are also 

based on the government's carbon emission allowance. Also, in a later work by Zahiri, Tavakkoli-

Moghaddam, Mohammadi, et al. (2014), the prior model is expanded by adding a second objective 

function of minimizing total time, which includes operation time in hospitals, transport time 

between facilities, and waiting time at TCs. However, the second objective function in the current 

paper is the minimization of unmet demand. The implementation of the priority mechanism in the 

work of Zahiri, Tavakkoli-Moghaddam, Mohammadi, et al. (2014) is the waiting time, whereas 

the purpose of this paper is to give high-risk recipients precedence over low-risk recipients. Hence, 



in order to prevent the risk of mortality in recipients as much as possible, significant consideration 

has been given to the precious life of humans in this context. 

The proposed methodology helps organ transplant supply chain managers allocate an optimal number of 

cold chain vehicles to transport the organs between hospitals and TCs. Furthermore, the number of these 

transportations is restricted by the amount of allowed carbon emission determined by the government. 

Therefore, the suggested OTN is environmentally friendly besides being cost-efficient. Moreover, there has 

always been a deficiency in this context. The reason is that recipients always outnumber donors, and some 

organs will perish if their traveling time to the transplant center exceeds their CIT. In the present study, the 

demand has been evaluated individually for high-risk and low-risk recipients, and a mechanism of 

prioritization has been established to prevent the mortality of high-risk recipients. Following this strategy, 

organs will be distributed to high-risk patients first, with the balance going to low-risk recipients. However, 

there have been some debates on the equity of the clients, in this paper, we have focused on the recipient’s 

urgency level in the category of maximum benefit.  

In section 7, a good comprehension of the behavior of objective functions was achieved by 

modifying the parameters. In light of the findings and conclusions of the analyses, this section 

provides some practical and managerial insights. According to Figure 6, hospital managers should 

increase the number of cold chain vehicles by spending more money to reduce unmet demand. 

Through this effort, fewer organs will be delivered from hospitals to TCs outside of their Cold 

Ischemia Times (CITs). Therefore, organ wastage and consequently unsatisfied demand will 

diminish. Figures 6 and 7 show that the number of unsatisfied demands will grow as the demands 

of high-risk recipients increase. In this case, managers can increase the number of vehicles based 

on Figure 6 in order to lessen the increasing slope of unmet demand. 

9. Conclusion 

 Organ transplantation is the main approach for treating diseases in their last development stage. 

In recent years, despite the significant advances in medical science in the field of organ 

transplantation, a significant percentage of patients die while waiting to receive an organ due to 

the demand exceeding the supply and the scarcity of organs. Considering the importance of this 

issue and the direct effect of organ transplantation on patients' survival, it is necessary to find the 

most effective means to receive the organ on time and prevent the death of patients. Therefore, 

designing an efficient organ transplant supply chain network as one of the main subgroups of 

health care management is vital in balancing demand and supply, choosing the appropriate location 

of involved facilities and distributing involved flows between them, and timely transfer of organs 

to patients. In addition to the above, another challenge in the design of the organ transplant network 

is the time limit for transporting organs from hospitals to transplant centers, and if it exceeds the 

CIT determined based on the nature of the organ, consequences such as organ corruption, an 

increase in the waiting time of the patients will lead to the possibility of their death and, as a result, 

an increase in the costs of the system. Therefore, it is necessary to determine the mechanism of 

maintenance and transportation of organs. 

In this paper, a bi-objective mixed integer nonlinear programming (MINLP) location-allocation 

model is proposed to address the design of the organ transplant supply chain network, minimizing 

the total strategic and operational costs and the number of unmet demands. Due to the imprecise 



structure of the studied network, the model has been assessed as uncertain. In addition, the organ 

demand and some transportation costs have been considered triangular fuzzy numbers due to their 

uncertain nature and lack of historical data, and the approach Jiménez is also used to deal with 

uncertainty. Some test problems were done to validate the model. In the following, a real case 

study was conducted in one of Iran's most populous and prominent provinces. The studied organs 

were the heart, liver, and lung. Then, several sensitivity analyses were performed on some effective 

parameters to evaluate their influence on the objective function’s values. 

Despite advancements in medical, pharmaceutical, and surgical treatments, there are some 

limitations in this context. For instance, organ shortage is a global issue that must be addressed at 

the highest possible international level. With the occurrence of crises and natural disasters beyond 

human control, the demand for organs also increases with the increase of injured people. In 

addition, depending on the severity of occurrence, these incidents can lead to damage to facilities 

or their destruction. Therefore, the development of a mathematical model in the conditions of 

uncertainty to reduce the costs of transportation and the shortage of organs, choosing the location 

of the construction of hospitals and transplant centers from among the situations with the highest 

safety factor, examining the shortest routes for transporting essential items to the injured, taking 

into account CIT, can be a field for future research. Furthermore, considering different modes of 

organ transportation, such as air and water transportation in different parts of the network, can be 

a field for future research. In this type of issue, a trade-off is made between cost and time, and the 

best option can be chosen depending on the budget limit, the nature of the organ, CIT, and the 

priority of the goals in the issues. As another limitation of organ transplantation, there has been no 

consensus over the prioritization of recipients. As previously indicated, this study has divided 

recipients into two groups: those whose organ deficiency causes their death and those whose organ 

deficiency does not. Hence, in the future studies the model can be improved by involving other 

factors such as waiting time. However, some ethical issues can be taken into consideration, such 

as avoiding biases based on age, life expectancy, sex, etc. Utilizing other methods of dealing with 

uncertainty, extending the model to larger scales, and using meta-heuristic algorithms suitable for 

solving can also be defined as the other subjects of future research. 
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