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Abstract
Segmentina nitida Müller 1774 is a rare European freshwater snail of drainage ditches and marshland, which has seen a 
marked decrease in range (~ 80%) over the last 100 years in the UK. This has been attributed to over-dredging of drainage 
ditches for land management, conversion of grazing marshes to arable farmland, as well as eutrophication. Segmentina nitida 
is identified as a priority species in the UK Biodiversity Action Plan (UKBAP) that recommends further research to inform 
reintroduction and translocation for its conservation. We used nuclear markers (microsatellites and ITS2) and a mitochondrial 
(COI) marker to investigate population structure in S. nitida individuals sampled from Poland, Germany, Sweden, and the 
UK to identify differences within and between populations. Data based on 2D landmark-based geometric morphometrics of 
S. nitida shells was used to determine if phenotypic variation followed genetic differentiation. Two distinct genetic lineages 
of S. nitida were identified in ITS and COI phylogenies as well as cluster analysis of microsatellite markers, one of these 
lineages was present in eastern Europe (Poland, Sweden- Lineage 2), and one in western Europe (UK, Germany- Lineage 1), 
with lineages co-occurring in German populations. No genetic admixture was observed in German populations containing 
both lineages. These two lineages were also distinct in shape, with lineage 2 individuals having significantly wider shells 
and taller and wider apertures than those in Lineage 1. ~ 85% of shells assigned to the predicted lineage in a discriminant 
analysis of Procrustes shape coordinates. We infer that S. nitida includes at least one sympatric cryptic species. We discuss 
the implications of these findings on the conservation status of S. nitida in the UK and Europe.

Keywords Microsatellites · Gastropod · Segmentina · Cryptic species · Geometric morphometrics

Introduction

Freshwater ecosystems and their associated biodiversity 
provide essential ecological (Covich et al. 2004; Macadam 
and Stockan 2015), economic (Jones et al. 2006), and cul-
tural (Miller et al. 2015) benefits. Accurate understanding 

of freshwater biodiversity is critical for evaluating impacts 
and slowing the global decline of freshwater habitats and 
associated species (Strong et al. 2008; Régnier et al. 2009; 
Strayer and Dudgeon, 2010). Unfortunately, the diversity 
of freshwater invertebrate taxa is still poorly understood 
(Wallace and Webster 1996; Cardinale et al. 2002; Jons-
son and Malmqvist 2003; Dangles et al. 2004). Gaps in our 
knowledge of the range, genetic structure and consequent 
ecology of species may reduce the efficacy of monitoring 
programmes and the accuracy of biodiversity assessments 
(Macher et al. 2016). Additionally, misidentification of 
species can undermine conservation efforts. For example, 
two species of predatory land snail Euglandina spp. were 
inadvertently released instead of one in Hawaii in a failed 
bio-control effort of the giant African land snail, which 
severely impacted native snail species (Meyer et al. 2017). 
In freshwater ecosystems, taxonomic and genetic work on 
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apple snails has provided greater understanding of invasion 
patterns and native ranges of species, informing appropriate 
management decisions for conservation and control (Hayes 
et al. 2008, 2012).

Segmentina nitida Müller 1774, is a small (< 10 mm 
shell diameter) freshwater snail found throughout the tem-
perate regions of Europe, including southern Scandinavia. 
It has been identified as a freshwater conservation surro-
gate, whose presence can indicate a high biodiversity and 
conservation value of a site (Ormerod et al. 2010). There 
has been a significant decline in the distribution of S. nitida 
in the United Kingdom, most notably in the last 50 years 
(Kerney 1991). This is attributed to frequent mechanical 
ditch clearance, eutrophication from fertiliser run-off and 
draining of grazing marshes to create land for arable farm-
ing (Wells and Chatfield 1992; Hill-Cottingham 2004). In 
continental Europe, S. nitida is regarded as widespread but 
declining due to threats to its already fragmented habitat 
(JNCC 2010). While S. nitida was listed as endangered in the 
UK in the IUCN Red Data Book 3 (Kerney 1991), a change 
to the IUCN criteria in 1994 led to it being excluded from 
subsequent editions of the Red List. As is the case for many 
invertebrate species, insufficient data for assessing its status 
according to current criteria have left S. nitida without an 
updated IUCN conservation category (Régnier et al. 2009, 
2015). Segmentina nitida is, however, included on the UK 
Biodiversity Action Plan (UKBAP) as a priority species for 
conservation action (JNCC 2010).

Segmentina nitida has numerous synonyms in the lit-
erature across Europe that reflect a history of taxonomic 
confusion. This has contributed to the difficulty of produc-
ing accurate range maps of the species that are necessary 
for assessing its need for local conservation. Kennard and 
Woodward (1926) list 43 instances of synonyms for S. nitida 
in literature published between 1774 and 1884 alone. They 
also note that Hippeutis complanatus, a sister taxon, was 
used as a junior synonym for S. nitida multiple times. Addi-
tionally, confusion persists over a form of S. nitida (S. nitida 
f. distinguenda Gredler 1859) that some have suggested rep-
resents a separate species (Piechocki 1979; Stadnychenko 
1990; Piechocki and Wawrzyniak-Wydrowska 2016). The 
status of this form and synonyms of S. nitida (e.g. Segmen-
tina clessini Westerlund 1873) have, to date, remained unre-
solved due to a lack of genetic data.

In addition to identifying population structure, popula-
tion genetics can identify populations with rare or bottle-
necked genetic profiles that may be particularly vulnerable 
and therefore priority targets for conservation (Toro and 
Caballero 2005). Augmentation of declining populations 
through reintroduction and translocation programmes can 
support such conservation efforts (Jourdan et al. 2019). 
The success and efficacy of species conservation there-
fore usually depends on thorough knowledge of the genetic 

makeup of donor and recipient populations and identify-
ing evolutionarily significant units within them (Jourdan 
et al. 2019). Translocations and reintroductions should aim 
to maintain or, ideally, enhance the genetic diversity of 
populations (Frankham 2010; Weeks et al. 2011). Where 
genetics indicate the presence of cryptic species (two or 
more species described as one), this might ‘create’ two 
rare species (with smaller populations than previously 
assumed) where previously there was only thought to be 
one or reveal a species under threat of extinction that was 
previously ‘hidden’ among a much larger population that 
was considered of less concern (Bickford et al. 2007).

Often in conjunction with genetic data, the statistical 
analysis of shape has been used to reveal cryptic spe-
cies (Simison and Lindberg 1999; Villemant et al. 2007; 
Arribas et  al. 2013; Canal et  al. 2015). For example, 
geometric morphometrics, a landmark-based method of 
shape analysis (Adams et al. 2004; Zelditch et al. 2004) 
can reveal small but significant shape differences between 
morphologically highly similar populations to help deline-
ate subpopulations and/or cryptic species (e.g. Fontoura 
and Morais 2011; Karanovic et  al. 2016). Combining 
multiple complementary lines of evidence, such as genet-
ics and morphometrics in an integrative framework aids 
robust delineation of species and investigating of evolu-
tionary processes (Klingenberg 2010). Consequently, these 
integrative methods are increasingly being used in con-
servation to resolve uncertainties arising from phenotypic 
plasticity and aiding in the identification of evolutionary 
significant units (Chiari et al. 2009; McKendrick et al. 
2017).

To date, genetic data available for S. nitida have been 
relatively limited and do not provide clarity on the evo-
lutionarily significant units contained within its current 
range. Seven S. nitida sequences amplified with four com-
monly used barcoding markers (three COI, two 16S and 
one 18S, and one Histone H3), are currently deposited 
in GenBank (Jørgensen et al. 2004; Albrecht et al. 2007; 
Saito et al. 2018; as of 22nd February 2021). One other 
study of the population genetics of S. nitida (Mensch 
2009) used COI and 12S ribosomal DNA markers as well 
as Amplified Fragment Length Polymorphisms (AFLPs) 
to detect genetic differences between populations of S. 
nitida in Germany, Poland, and the UK. The mitochon-
drial marker (COI) indicated low genetic diversity in 
the UK, and it was estimated that this loss of diversity 
had occurred in the last 40 years, based on comparisons 
with DNA samples collected in the UK in 1969 (Mensch 
2009). COI sequences for Polish and UK samples differed 
from each other, though AFLP results did not clearly 
delineate lineages (Mensch 2009). The study highlighted 
the need for further investigation using additional mark-
ers to assess the extent of genetic variation in S. nitida 
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and the differentiation between geographically separated 
populations (Mensch 2009), but there has been no further 
work on S. nitida in this regard since.

To provide a better understanding of S. nitida in 
Europe that can inform potential reintroduction or trans-
location of the species in the UK under its Biodiversity 
Action Plan (JNCC 2010), this study combines population 
genetics and geometric morphometrics to analyse newly 
sampled European populations of S. nitida in the UK, 
Germany, Poland and Sweden. Novel S. nitida micros-
atellite markers were developed and used in addition to 
using established ITS and COI markers to assess genetic 
structure and clustering of populations. Morphological 
differences between countries and genetic lineages of S. 
nitida were explored using 2D landmark-based geometric 
morphometrics.

Materials and methods

Sample collection

A total of 367 Segmentina nitida individuals were collected 
in the summer of 2016 from 3 to8 sites each in Germany, 
Poland, Sweden, and the UK (Fig. 1; GPS coordinates for 
sampling locations and details of use in genetic analysis 
provided in Online Resource 1) following the washing 
method described by Hobbs and Harvey (2020). Samples 
were stored in 2–5 mL absolute ethanol (Analytical Rea-
gent Grade; Fisher, Loughborough, UK) or 70% isopropyl 
alcohol (German snails only; Hetterich, Fürth, Germany) in 
rubber-sealed screw-topped tubes at room temperature. The 
German samples were transferred to analytical reagent grade 
absolute ethanol (Fisher, Loughborough, UK) upon return 
to the laboratory (within 14 days of collection) and stored 
at room temperature.

Fig. 1  Location of the sites in the UK, Germany, Sweden and Poland where the Segmentina nitida were sampled. Proportions of circles are light 
or dark grey according to the proportion of individuals belonging to each of the genetic lineages later identified
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DNA extraction

DNA was extracted from 367 whole snails across the four 
sampled countries by homogenizing each snail including 
the shell in extraction buffer using genomic DNA purifica-
tion kits according to manufacturer’s instructions (DNeasy; 
QIAGEN, Manchester, UK; GeneJET; Thermo Scientific, 
Waltham, USA). Extracted genomic DNA was eluted twice 
into a single tube, each time in 25 uL volume of elution 
buffer.

Amplification, sequencing and analysis 
of mitochondrial and nuclear barcode markers

For a subset of snails from across all sites sampled (Online 
Resources 2 and 3), a mitochondrial cytochrome c oxidase 
subunit I sequence (COI, n = 98) and a nuclear ribosomal 
internal transcribed spacer 2 sequence (ITS2, n = 100) was 
amplified and sequenced. The COI sequence was amplified 
using the modified LCO1490 and HCO2198 primers (Albre-
cht et al. 2007). Mitochondrial DNA can be inherited pater-
nally in some bivalves, resulting in mtDNA heteroplasmy 
and separately inherited and evolving mitochondrial line-
ages as ‘doubly uniparental inheritance’ (DUI) (Ladoukakis 
and Zouros 2017). There is currently no evidence of het-
eroplasmy or DUI in gastropods (Gusman et al. 2017). The 
ITS2 ribosomal sequence was amplified using the ITS2F 
and ETTS2 primers for genus Biomphalaria (another genus 
within the Planorbidae) (Vidigal et al. 2000). PCR reaction 
mixtures consisted of QIAGEN Multiplex PCR Master Mix, 
5 µM forward primer, 5 µM reverse primer,  ddH2O and 1µL 
sample DNA with a final reaction volume of 10 µL. Reac-
tions were cycled in a DNA Engine Peltier Thermo Cycler 
(BioRad, Watford, UK). Cycling conditions for COI were 
95 °C for 15 min for one cycle, 40 cycles of 94 °C for 30 s, 
48 °C for 1 min, and 72 °C for 1 min, and a final extension 
of 72 °C for 5 min. Cycling conditions for ITS2 were 95 °C 
for 15 min for one cycle, 32 cycles of 95 °C for 45 s, 54 °C 
for 1 min, and 72 °C for 2 min, followed a final extension of 
72 °C for 5 min. Amplified PCR products were cleaned with 
EXO-Sap (ThermoFisher Scientific, Waltham, USA). Cycle 
sequencing reactions were performed using the BigDye 
V3.1 cycle sequencing kit (Applied Biosystems, Waltham, 
USA), with BigDye at 1/8th volume (0.5 µL per reaction). 
Automated sequencing was performed by capillary electro-
phoresis on an ABI3730 sequencer (Applied Biosystems, 
Waltham, USA).

Sequences were manually checked for calling errors 
and edited with CodonCode Aligner v. 8.0.2. (CodonCode 
Corporation; Centerville, USA). Sequence products were 
aligned with ClustalW using MEGAX (Kumar et al. 2016). 
Sequences for unique haplotypes of both COI and ITS2 
were deposited in GenBank (Online Resource 4, GenBank 

Accession Numbers: COI- MW829457-MW829487; ITS2- 
MW566752-MW566754). Protein coding (COI) align-
ments were checked against amino acid translations. The 
number of polymorphisms, haplotypes, nucleotide and 
haplotype diversity, average number of nucleotide differ-
ences between individuals, and phylogenetically informa-
tive sites for all European populations, as well as within 
each country, were calculated in DnaSP v6 (Rozas et al. 
2017). Population expansion in the dataset as a whole and 
within each country was also tested using DnaSP using 
Fu’s Fs test.

For COI, aligned sequences were reduced to unique 
haplotypes in DnaSP (n = 31). A minimum spanning hap-
lotype network was built using POPART (Leigh and Bry-
ant 2015) with an epsilon value of 0. Maximum Likelihood 
(ML) phylogenies using unique haplotypes were inferred 
for the haplotypes using MEGAX. Appropriate models for 
ML trees were selected by evaluating 24 ML nucleotide 
substitution models using BIC and Akaike Information 
Criterion (AIC) in MEGAX. For COI the General Time 
Reversible model of nucleotide substitution was used, 
with gamma distribution rate = 5. Strength of support of 
tree nodes was assessed via bootstrapping (n = 1000). For 
COI, Hippeutis complanatus, a sister taxon in the same 
tribe (Segmentinini) as S. nitida was used as the outgroup 
(GenBank Accession Number: EF012170; Albrecht et al., 
2007). For additional validation, phylogenetic trees were 
also generated following Neighbour-joining (NJ) and 
Unweighted Pair Group Method with Arithmetic Mean 
(UPGMA). The sequence alignment for both trees was 
constructed using Clustal Omega version 1.2.2 (Sievers 
and Higgins 2014). In each case, Hippeutis complana-
tus was used as an outgroup using Jukes-Cantor genetic 
distance and a bootstrap value of 500. The constructed 
trees were inspected using FigTree version v1.4.4 (Ram-
baut and Drummond 2017) and CLC Genomics workbench 
API version 21.0.2 (http:// www. clcbio. com).

The COI sequence from the S. nitida type locality in 
Denmark could not be used in the construction of the 
tree as the fragment of COI used in the previous study 
for an individual from Denmark (Jørgensen et al. 2004) 
did not overlap with the sequences obtained in this study. 
However, COI sequences from Lodz, Poland (GenBank 
Accession Number: LC429396; Saito et  al. 2018) and 
Brandenburg, Germany (GenBank Accession Number: 
EF012178.1; Albrecht et al. 2007) were included in phy-
logenetic analyses. For ITS2, due to no closely related 
outgroup being available for this marker and limited 
genetic diversity in the sequences obtained, instead of a 
phylogenetic tree a minimum spanning haplotype network 
was built using POPART (Leigh and Bryant 2015) with an 
epsilon value of 0.

http://www.clcbio.com
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Microsatellite genotyping and analysis

All individuals (n = 367) were genotyped at seven newly 
isolated S. nitida microsatellite loci (GenBank Acces-
sion Numbers MW960425-MW96031, Online Resource 
5), a number in line with that sufficient for investigating 
genetic structure and identify cryptic species in terres-
trial and freshwater invertebrates (e.g. Patel et al. 2015; 
McKendrick et al. 2017). Microsatellites were isolated 
using the enrichment hybridization method of Armour 
et al. (1994) using modifications suggested by Gibbs et al. 
(1997) and Glenn and Schable (2005) and sequenced on 
an Illumina MiSeq Sequencer. For loci P5943, P25580, 
and P12998 primer sets were designed from a sequence 
isolated from a Polish individual sampled for the present 
study (Online Resource 1; individual P3.19). Microsatel-
lite loci UK21826, UK15523, UK16382, and UK19417 
were isolated from a UK individual sampled for the pre-
sent study (Online Resource 1; individual UK1C). For-
ward primers were 5′‐labeled with HEX or 6FAM fluores-
cent dyes (Table S1). To reduce the cost and time required 
during the microsatellite genotyping multiplex PCR sets 
were designed based on the different expected products 
sizes and by selecting contrasting fluorescent labels using 
Multiplex Manager v. 1.2. (Holleley and Geerts 2009). The 
size of PCR products was assigned by comparison against 
an internal size marker (ROX-500). Amplifications were 
performed in 2 μL volumes with 2–10 ng genomic DNA, 
a final concentration of 0.2 μM of each primer and Qiagen 
MasterMix (Kenta et al. 2008). All multiplex PCR sets 
included negative controls containing no genomic DNA. 
Thermal cycling was performed with a DNA Engine Pel-
tier Thermo Cycler (BioRad) under the following condi-
tions: 94 °C for 15 min for a single cycle, 44 cycles of 
94 °C for 30 s, annealing at 56 °C for 1 min 30 s, 72 °C 
for 1 min 30 s, with a final extension at 72 °C for 30 min, 
followed by 4 °C for 15 min. Amplicons were separated 
on an ABI3730 48-well capillary sequencer (Applied Bio-
systems, Waltham, USA).

Microsatellite alleles were scored using GeneMap-
per version 3.7 (Applied Biosystems, Waltham, USA). 
Randomized, resampled genotyping (n = 72) of S. nitida 
populations from different European countries consistently 
showed the same allele profile for each of the seven loci. In 
repeat PCRs of the samples, 95.8% (n = 69) of individuals 
produced the same allele genotype. Five of the microsatel-
lite PCR products from three individual snails across all 
samples and all loci produced different profiles between 
runs, showing false alleles and some PCR artefacts. These 
samples were excluded from analysis. Probability of null 
alleles (alleles where only one of the two alleles amplified) 
in the data was estimated using CERVUS v3.0 software 
(Kalinowski et al. 2007) and probability of allele dropout 

calculated with MICROCHECKER (van Oosterhaut et al. 
2004).

The number of alleles per locus and observed and 
expected heterozygosity  (HO and  HE, respectively) at each 
microsatellite locus were calculated by country using CER-
VUS (Kalinowski et al. 2007). Genotypic linkage disequi-
librium, inbreeding and departures from Hardy–Weinberg 
equilibrium (HWE) at the seven microsatellite loci were 
assessed using Fisher’s exact test. Analysis of molecular 
variance (AMOVA), pairwise genotypic distances (FST) and 
inbreeding coefficients (FIS) were obtained using ARLE-
QUIN V.3.5.2.2 (Excoffier and Lischer 2010). To assess the 
levels of genetic diversity of S. nitida lineages identified, 
the allelic richness (i.e. number of alleles, Na), observed 
heterozygosity  (HO), and measured heterozygosity (He; 
Nei’s gene diversity), inbreeding coefficient  (FIS) and pri-
vate alleles (Np) per lineage were estimated in GenAlEx 
version 6.5 (Peakall and Smouse 2012). Genetic distances 
among individuals were estimated (Smouse and Peakall 
1999), and the distance matrix was converted to a covariance 
matrix to perform a Principal Coordinate Analysis (PCoA) 
in GenAlEx.

A Bayesian approach in STRU CTU RE version 2.3.4 
(Pritchard et al. 2000) was used to detect the most likely 
number of genetic clusters among S. nitida populations 
doing 10 replications with number of clusters K = 1–10 with 
100,000 burn-in, 1,000,000 MCMC iterations after burn-
in, and admixture model (using sampling locations as prior 
information) with correlated allele frequencies (Falush et al. 
2003). The most likely number of K clusters was examined 
in StructureSelector (Li and Liu 2018) using log likelihood 
scores [mean LnP(K)] and ΔK values (Evanno et al. 2005). 
As these methods often underestimate clusters due to uneven 
sample sizes (Janes et al. 2017), we obtained estimates of 
K based on Puechmaille’s method by subsampling the inde-
pendent clusters previously identified, a technique which 
accounts for uneven sample size across groups (Puechmaille 
2016). Likelihood scores and clusters were obtained using 
the CLUMPAK (Kopelman et al. 2015) function in Struc-
tureSelector and individual probability plots were generated 
using Structure Plot (Ramasamy et al. 2014). To further 
investigate genetic structure within identified clusters, these 
analyses were repeated separately for each identified cluster.

Geometric morphometrics of identified genetic 
lineages

Of the 367 snails for which microsatellite data were gener-
ated, 339 shells were imaged for morphometric analysis, 
excluding damaged shells. Shells were imaged to ensure 
consistency in orientation and allow all six landmarks to be 
visible (Fig. 2). Shell photographs were loaded into tpsU-
til, version 1.78 (Rohlf 2019) to build a file for landmark 
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placement and digitisation was performed in tpsDig2 version 
2.31 (Rohlf 2017) with a 1 mm scale set for all images. Shell 
width, aperture height, and aperture width for each specimen 
was measured using the distances between landmarks 1 and 
6, 2 and 5, and 1 and 4, respectively. Summary statistics 
(minimum, maximum, mean, and range) were calculated for 
each genetic lineage previously detected. Mann–Whitney U 
tests were used to compare median values for shell width, 
aperture height, and aperture width.

Scale, orientation, and position were removed from land-
mark data using Procrustes superimposition to obtain Pro-
crustes coordinates and centroid size for each sample. A 
Mann–Whitney U test was performed to compare median 
landmark centroid sizes between snails grouped by country 
of origin in Statistics Package for the Social Sciences (SPSS) 
version 24 (IMB 2018) as the data had unequal variance 
(Levine’s test; α = 0.05). A Principal Components Analysis 
(PCA) of the Procrustes shape coordinates obtained from 
the Procrustes superimposition was performed to determine 
the linear combinations of the coordinates that maximise 
the variation in the data. Warp grids that showed the devia-
tion of landmarks from the mean shape of all samples at the 
minimum and maximum of each principal component were 
generated. Pairwise Kruskal–Wallis tests were performed 
in SPSS on the principal components that described over 
80% of the total shape variation in the sample (n = 3), with 
shells grouped by country as the data had unequal variance 
(Levene’s test, α < 0.05) and were not normally distributed 
(Shapiro–Wilk test, P < 0.05). The Procrustes shape coor-
dinates were then used for a discriminant analysis in Past 
version 3.21 (Hammer et al. 2001) to calculate probabilities 
of individual shells being assigned to the correct country of 
origin by shell shape. Data were then grouped by genetic 
lineages identified in microsatellite analysis and all analy-
ses detailed above run with specimens grouped by lineage. 
Additionally, the specimens that most closely represented 
the mean shape for each lineage were identified and com-
pared to each other using thin plate splines to produce defor-
mation grids to determine key areas of difference in shell 

shape between countries. All analyses were performed in 
with the R package ‘geomorph’ (Adams et al. 2019), unless 
otherwise stated.

Results

Nuclear and mitochondrial markers

COI sequences were generated for 97 individuals, a 513 bp 
length was aligned for each individual and sequences com-
pared. Seven individuals, including six Polish and one Ger-
man individual had a single 9 bp deletion in their sequence, 
which did not affect the reading frame. Alignment of 
sequences without the deletion revealed 106 polymorphic 
sites (20.1%), of which 88 were phylogenetically informa-
tive, representing 31 unique haplotypes. Nucleotide diversity 
across all populations was 0.07, with a haplotype diversity 
of 0.927. Populations in the UK and Poland had compara-
tively low nucleotide diversity (0.02), and populations from 
Germany had the highest nucleotide diversity (0.08). Ger-
many had the highest haplotype diversity (0.930), followed 
by Poland and then Sweden (0.869 and 0.839, respectively), 
and the UK had the lowest haplotype diversity (0.363). The 
seven individuals containing the 9 bp deletion contained 70 
polymorphic sites (13.9%), none of which were phylogeneti-
cally informative, with two unique haplotypes. All six Polish 
individuals with the 9 bp deletion represented one haplotype 
and the German individual with the deletion represented the 
other. The haplotype network analysis revealed two distinct 
clusters of haplotypes with a 67 bp gap between the two 
clusters (Fig. 3a).

The Maximum Likelihood tree for COI contained two 
well supported clades (bootstrap values = 99.8 and 100) rep-
resenting some German populations and UK populations 
(‘Lineage 1′) and some German populations, Polish popu-
lations and one Swedish population (‘Lineage 2′) (Fig. 4). 
The German (Brandenburg; Albrecht et al. 2007) and Polish 
(Lodz; Saito et al. 2018) S. nitida sequences obtained from 
GenBank grouped with Lineage 1. These clades were also 
represented in the trees constructed using Neighbour-Joining 
and Unweighted Pair Group Method with Arithmetic Mean 
(Online Resources 6 and 7).

Among the 100 individuals sequenced at the ITS2 
region, only three haplotypes with four polymorphisms 
and 3 indel (insertion/ deletion) polymorphisms were 
detected: a 412 bp haplotype for 66 individuals (A), a 
412 bp haplotype with a 1 bp difference for 17 individu-
als (B), and a 413 bp haplotype with a 1 bp insertion for 
17 individuals (C). Haplotype A comprised all individu-
als from Poland, eight individuals from Germany and all 
Swedish individuals except those of one population (S2). 
Haplotype B comprised the remaining individuals from 

Fig. 2  Landmark placement for geometric morphometric analysis of 
Segmentina nitida shells. Red dots represent landmarks, next to cor-
responding landmark number
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Germany (n = 13) and population S2. Haplotype C com-
prised all UK individuals. The nucleotide diversity across 
all populations was 0.004. The haplotype network analysis 

for ITS2 for S. nitida grouped Haplotype B and C together 
as a single haplotype separated from Haplotype A by 4 bp 
(Fig. 3b).

Fig. 3  Minimum spanning hap-
lotype networks (epsilon = 0) of 
Segmentina nitida ITS (a) and 
COI (b) haplotypes. Each hatch 
mark represents a 1 bp differ-
ence, and each circle represents 
a unique haplotype. The size of 
each circle is proportional to the 
number of individuals with that 
haplotype

Fig. 4  Maximum Likelihood tree for Segmentina nitida cytochrome 
c oxidase subunit sequences from the UK, Germany, Sweden and 
Poland (numbers indicate source population and individual for each 
sequence). N = 31 haplotypes. Rooted using Hippeutis complanatus 
as an outgroup. Includes previously published sequences from Lodz, 

Poland and Brandenburg, Germany, with GenBank accession num-
bers indicated. Values shown on branches of the two major clades 
indicate bootstrap values (n = 1000) representing branch support. 
Representative photographs of shell morphology for each of the two 
major clades identified are included with 1 mm scale
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Microsatellite genotyping, diversity and population 
structure

A total of 46 unique microsatellite genotypes were identi-
fied at the 7 loci typed across all snails analysed (n = 367 
individuals, Table 1). No more than two alleles were found 
at any locus in any individual snail except for one UK snail, 
which had a tetraploid profile (possibly because it contained 
fertilized eggs) and this single sample was consequently dis-
counted from further analyses. The mean number of alleles 
per population across all loci ranged from 1.57 for the UK to 
5.86 for Germany. The loci across all populations contained 
between 3 (locus UK16382) and 11 alleles (loci UK15523 
and UK21826) (Online Resource 8).

There was no evidence of allele dropout at any locus. 
The  FIS values revealed that the highest levels of inbreeding 
existed in Germany and Sweden, with comparatively low 
levels in the UK and Poland (Table 1). The negative value 
of  FIS for the UK population indicates a higher level of het-
erozygosity then expected in a randomly mating population.

Of the 28 possible population/locus combinations, five 
were monomorphic, however no locus was monomorphic 
across all countries. The UK had the most monomorphic 
loci (n = 4), with Poland being the only other country with 
a monomorphic locus (n = 1). At all loci, Germany had the 
highest observed heterozygosity  (HO), with Sweden showing 
the next greatest  HO.

All pairwise genetic distances  (FST) by country were sig-
nificant (< 0.001) over 110 permutations. The  FST across 

all loci gave a value of 0.40. Pairwise  FST values ranged 
between 0.15 and 0.77 (Table 2), with the UK population in 
comparison to both Polish and Swedish populations showing 
values greater than 0.50.

The partitioning of the genetic variation in the dataset 
by AMOVA showed that the amount of genetic variation 
between populations (39.39%) was similar to that when indi-
viduals from all populations were pooled (36.96%). Differ-
ences between individuals within populations accounted for 
23.64% of variation (Table 3).

STRU CTU RE analysis identified K = 2 and K = 4 as the 
most likely number of lineages that would explain the data 
(Fig. 5). For K = 2, STRU CTU RE delineated Lineages 1 and 
2 as also identified in the COI analysis. Only one individual 
in Swedish population S1 showed evidence of admixture, 
with a probability of 83.3% of being assigned to the Line-
age 2 (Fig. 5). Lineage 2 (n = 270) was comprised of all 
individuals in Poland, all individuals in Sweden (apart from 
those in population S2) and some individuals from German 
populations Lineage 1 (n = 97) included all UK individu-
als, some of the German individuals as well as one of the 
Swedish populations. There was a significant difference 
between the two lineages  (FST = 0.64, P =  < 0.005) over 

Table 1  Mean number of 
alleles  (NALL), observed 
heterozygosity  (HO) and 
expected heterozygosity  (HE), 
inbreeding coefficient  (FIS) 
with significant values in bold, 
number of usable loci, and 
number of polymorphic loci 
across all microsatellite markers 
for each European Segmentina 
nitida population

FIS significance: Probability that random  FIS > observed  FIS, indicated by bold numbers in column. Usable 
loci: number of loci with fewer than 5% missing data. Number of polymorphic loci: number of usable loci 
with polymorphisms present in the population

Population Number of 
individuals

NALL HO HE FIS Number of informa-
tive/polymorphic 
loci

Germany 77 5.86 0.26 0.60 0.53 5/5
UK 31 1.57 0.16 0.14 − 0.17 7/3
Poland 83 3.43 0.28 0.35 0.08 7/6
Sweden 176 4.57 0.25 0.50 0.42 5/5
Lineage 1 97 3.57 0.18 0.31 0.36 5/2
Lineage 2 270 4.43 0.28 0.43 0.29 6/6

Table 2  Pairwise genetic distance  (FST) estimates with significance 
levels for the four European populations of Segmentina nitida 

*** P < 0.001

Germany UK Poland Sweden

UK 0.31***
Poland 0.45*** 0.77***
Sweden 0.30*** 0.62*** 0.15***

Table 3  Analysis of molecular variance (AMOVA) of microsatellite 
data for different groups of Segmentina nitida, grouped by country

***p < 0.001

Source of vari-
ation

Df Sum of squares Variance 
compo-
nents

Percentage 
of variation

P

Among popu-
lations

3 340.26 0.69 39.39 ***

Among 
individuals 
within popu-
lations

363 532.04 0.41 23.64 ***

Within individ-
uals

367 236 0.64 36.96 ***

Total 733 1108.30 1.74



863Conservation Genetics (2021) 22:855–871 

1 3

110 permutations. Both lineages had significant  FIS index 
scores (inbreeding coefficient) (P =  < 0.005, 1023 permu-
tations; Lineage 2:  FIS = 0.26, Lineage 1:  FIS = 0.35). The 
genetic distance  (FST) between Lineage 1 and Lineage 2 was 
significant over 110 permutations  (FST = 0.64, P < 0.0001). 
For K = 4, Lineage 1 and Lineage 2 were again delineated 
without significant admixture, but three sub-lineages were 
located within the Lineage 2, with evidence of admixture 
between these sub-lineages (Fig.  5). When each of the 
identified lineages was subjected separately to STRU CTU 
RE analysis, no further structure was detected in Lineage 1 
(Online Resource 9). In Lineage 2, Evanno’s ΔK method 
indicated the presence of four sub-clusters, with Polish 
snails representing a sub-cluster showing little admixture 
from three sub-clusters represented by Swedish and German 
snails (Online Resource 10).

In the GeneAlex analysis, snails in Lineage 1 and Line-
age 2 were delineated sharply with no overlap along the first 
principal coordinate that explained 44.18% of variation in 
the similarity matrix (Fig. 6a). There was no evidence of 
further differentiation along the second principal coordinate 
(Fig. 6a). Based on their microsatellite alleles, all individuals 
were assigned to their putative lineage of origin (Lineage 1 
or 2), which also produced a sharp delineation of snails from 
the two lineages (Fig. 6b). In addition, GeneAlex identified 
25 private alleles in Lineage 1 and 19 in Lineage 2 (mean 
across all loci: 3.57 for Lineage 1, 2.71 for Lineage 2).

Geometric morphometrics of Segmentina nitida

Shell centroid size was significantly different between coun-
tries except between the UK and Germany, and the UK and 
Sweden (Table 4). When grouped by genetic lineage, the 
centroid size of snails in Lineage 2 was significantly greater 
than that of snails in Lineage 1 (Mann–Whitney U test; 
U = 7420, P =  < 0.0001).

Lineage 2 individuals had significantly wider shells 
and taller and wider apertures than those in Line-
age 1 (Mann–Whitney U tests: shell width: U = 7766, 
P =  < 0.0001; aperture height: U = 4988.5, P =  < 0.0001; 
aperture width: U = 6531, P =  < 0.0001). Both lineages had 
similar minimum values for all three variables, however Lin-
eage 2 had greater maximum values and mean values for all 
variables (Table 5).

In the principal component analysis of Procrustes 
shape coordinates, Principal Component (PC) 1 and 
PC2 accounted for 84% of variation in shape (60.6% and 
23.4% respectively, Fig. 7). When grouped by country 
there was a significant pairwise difference in PC1 score 
between all countries except Sweden and Poland, and a 
significant pairwise difference in PC2 score between all 
countries except the UK and Sweden, and Germany and 
Sweden (Table 4). There was a significant difference in 
both PC1 score and PC2 score between individuals from 
the two lineages (Mann–Whitney U Test; PC1: U = 4583, 
P =  < 0.0001; PC2: U = 7627, P =  < 0.0001).

Fig. 5  Genetic lineages and sub-lineages of Segmentina nitida 
inferred from the STRU CTU RE cluster analysis, using prior popula-
tion information included in the model. Each vertical line represents 
one individual snail and shades of grey represent their association 
with hypothesized lineages. STRU CTU RE identified K = 2 (a) and 

K = 4 (b) as the most likely number of lineages. Both models deline-
ated Lineage 1 and Lineage 2 without significant admixture of alleles. 
In the K = 4 model, additional sub-lineages were identified within 
Lineage 2, but there was no indication of further structure in Lineage 
1



864 Conservation Genetics (2021) 22:855–871

1 3

When grouped by country, the first two discriminant 
functions (DFs) of a discriminant analysis of the twelve Pro-
crustes shape coordinates accounted for 87.3% of the total 
shape variation in the dataset (DF1- 56.3%, DF2- 31.0%) 

and the discriminant functions correctly assigned 49.3% of 
the shells in the analysis to their correct country of origin 
(jackknifed). When grouped by genetic lineage (Lineage 1 
or Lineage 2), however, the discriminant analysis produced 

Fig. 6  a GeneAlex principal coordinates analysis (PCoA) based on a 
genetic distance matrix of individuals within the two putative genetic 
lineages of S. nitida (GeneAlex). b Snails grouped by assignment 
value for Lineage 1 and Lineage 2 in GeneAlex. In this analysis snails 

are assigned to a lineage based on the smaller of two assignment val-
ues calculated based on the log likelihood of their alleles occurring in 
that lineage

Table 4  Pairwise comparisons 
of centroid size and first two 
Principal Components (PCs) of 
Procrustes shape coordinates 
between Segmentina nitida 
individuals from European 
countries

Statistical tests: Centroid: Kruskal-Wallace. PCs: Mann–Whitney U. Bonferroni corrected P values. 
***p < 0.001

Pairwise compari-
son of Countries

Centroid Chi squared Centroid 
significance

PC1 U PC1 sig-
nificance

PC2 U PC2 
signifi-
cance

UK-Germany 5.21 1.00 453 *** 425 ***
UK-Sweden 46.40 0.18 645 *** 4850 0.06
UK-Poland 142.70 *** 257 *** 1098 ***
Germany-Sweden − 41.19 *** 3383 *** 4850 0.24
Germany-Poland − 137.49 *** 1559 *** 1098 ***
Sweden-Poland 13.34 *** 6514 0.93 2216 ***

Table 5  Summary statistics 
of traditional morphometrics 
of Segmentina nitida shells 
grouped by genetic lineage 
determined at least one genetic 
analysis

All measurements are given in mm

Statistic Shell Width Aperture Height Aperture Width

Lineage 1 Lineage 2 Lineage 1 Lineage 2 Lineage 1 Lineage 2

Minimum 2.57 2.43 0.70 0.68 0.61 0.57
Maximum 4.95 7.46 1.50 2.32 1.18 1.84
Mean 3.56 4.02 1.05 1.32 0.87 1.02
Range 2.38 5.03 0.80 1.64 0.57 1.27
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a single discriminant function, which accounted for 100% 
of the shape variation. The discriminant function correctly 
assigned 85% of shells to their genetic lineage (jackknifed) 
(Table 6).

The individuals that most closely represented the mean 
shape of each lineage were both from German populations 
(Fig. 8). The deformation grids of the mean shape of each 
lineage warped to the other lineage shows the aperture is 
the key area of differentiation between the two, with LMs 2, 
3, 4 and, 5 showing greatest deformation of grid lines, with 
less deformation around LMs 1 and 2, representing the keel 
(Fig. 8a and b).

Discussion

Mitochondrial and nuclear markers revealed two genetically 
lineages of European Segmentina nitida collected for this 
study with high bootstrap support: one lineage represented 
by Polish and Swedish individuals (Lineage 2), and one rep-
resented by UK individuals, and one Swedish population 
(Lineage 1) (Figs. 3, 4, 5). German populations contained 
individuals from both lineages (Figs. 3 and 5). STRU CTU 
RE analysis of the seven microsatellite loci investigated 
strongly supported these two main lineages (Fig. 6). More-
over, the  FST results from the microsatellite data show the 
S. nitida populations studied here cannot be considered as 
being drawn from the same gametic pool (overall  FST = 0.40; 
 FST > 0.15 indicates significant level of genetic differentia-
tion between populations (Hartl and Clark 2007; Frankham 
et al. 2010)). This is not the first time significant genetic dif-
ferentiation between European populations of S. nitida has 
been reported. Mensch (2009) posited the presence of three 
genetic lineages of S. nitida in Europe based on a genome-
wide genotyping method (Amplified Fragment Length Poly-
morphism, AFLP). One of these was comprised of UK and 
German individuals, one of only Polish individuals, and 
one of German, Polish and a UK individual. AFLP analysis 
can incorporate hundreds of polymorphisms across a whole 
genome, but it suffers from relatively high genotyping error 
(Zhang and Hare 2012) that can significantly affect analysis 
of population structure and make it impossible to determine 
the ‘true’ number of populations among a set of individuals. 
Mensch (2009) reports shifting AFLP peak profiles between 
individuals included in her study, which may have resulted in 
incorrect genotyping and thus the greater number of genetic 
lineages detected (Vašek et al. 2017). It is not clear if the 
lineages described here coincide with any of those identi-
fied by Mensch (2009) with the genetic data from that study 
unavailable, but the weight of genetic evidence suggests the 
existence of (at least) two morphologically cryptic but repro-
ductively isolated species within S. nitida.

Reproductive isolation of Lineage 1 and Lineage 2 within 
S. nitida is supported by the co-existence of snails from the 
two linages—without evidence of allele admixture—along 
the river Peene in Germany (Figs. 3 and 5). An alternative 

Fig. 7  Principal component plots of Procrustes shape coordinates for 
Segmentina nitida individuals. a Grouped by country. b Grouped by 
genetic lineage (Lineage 1 and Lineage 2). Deformation grids indi-
cate the shape of shells at the extremes of each Principal Component, 
in relation to the mean shape of all individuals

Table 6  Matrix of classifications of Segmentina nitida shells grouped 
by genetic lineage in discriminant analysis model of Procrustes shape 
coordinates

Numbers represent the number of shells classified as belonging to 
each lineage, with percentage in parentheses. Rows: genetic lineage 
assigned by structure analysis. Columns: Predicted lineage based on 
shape

Lineage assigned to snail by discriminant 
shape analysis

Lineage 1 Lineage 2 Total

Genetic lineage of 
snail from Structure 
analysis

Lineage 1 81 (94.2) 5 (5.8) 86

Lineage 2 46 (18.2) 207 (81.8) 253
Total 127 212 339

Fig. 8  Deformation grids of the two genetic lineages and photographs 
of the two specimens most closely representing the mean shape of 
each species. a Lineage 2 mean shape plotted to the mean shape of 
Lineage 1, magnification of deformation = 2; b Lineage 1 mean shape 
plotted to the mean shape of Lineage 2 mean shape, magnification 
of deformation = 2; c shell most closely representing the mean shape 
of Lineage 2 (Germany, population 3, snail 12); d shell most closely 
representing the mean shape of Lineage 1 (Germany, population 2, 
snail 15)
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explanation for the lack of admixture would be that sampled 
locations were colonized only very recently by members of 
one of the two lineages, leaving insufficient time for mating 
and admixture. This seems highly unlikely, however. Seg-
mentina nitida has a relatively short reproductive cycle, with 
multiple breeding events throughout a year (Książkiewicz 
and Gołdyn 2008). Moreover, S. nitida is a hermaphro-
ditic species that is able to outcross (Mavárez ety al. 2002; 
Lamy et al. 2012). Consequently, if the two lineages are not 
reproductively isolated, some evidence of genetic admix-
ture between them would be expected, even within a single 
breeding season.

In the populations sampled for this study, the two lineages 
were geographically discrete outside of Germany, except 
for one population in Sweden that belonged to Lineage 1 
(Fig. 4). In addition, a GenBank COI sequence from a snail 
collected in Lodz, Poland, nested within Lineage 1, unlike 
the Polish snails collected around Poznan for this study (all 
within Lineage 2; Fig. 4). This may indicate that the over-
lap in the geographical distribution of the two lineages is 
more extensive than was captured by the geographical sam-
pling range for the present study. There was also evidence 
that Lineage 2 contains three or four distinct genetic sub-
lineages, based on STRU CTU RE analysis (Fig. 5, Online 
Resource 10). There was no evidence of further structure 
within Lineage 1 (Online Resource 9). Analysis of the struc-
ture within Lineage 2 indicated that one sub-lineage was 
exclusive to Poland, while there was evidence of admix-
ture in individuals from German and Swedish sub-lineages 
(Online Resource 10). Geneflow between sub-lineages and 
the presence of geographically isolated populations of one 
lineage of S. nitida within the range of the other is likely the 
result of long-distance dispersal of propagules by waterbirds 
(van Leeuwen et al. 2012). Figuerola et al. (2005) report that 
matrices of bird movement probabilities related to genetic 
differences between invertebrate populations in the same 
areas and explained significant variations in the mtDNA 
relationships between populations of freshwater microin-
vertebrates Daphnia ambigua, Daphnia laevis, and Crista-
tella mucedo populations (Figuerola et al. 2005). Geneflow 
between the sub-lineages within Lineage 2 of S. nitida is 
most likely also facilitated by dispersal via waterbirds (van 
Leeuwen et al. 2012) and flooding events. Most sample 
source locations in both Germany and Sweden were part 
of extensive wetlands and near large water bodies that are 
likely to experience seasonal flooding (e.g. the River Peene 
in Germany and coastal marsh areas in Sweden). Migratory 
birds favour coastal marshes as stopover sites (Figuerola 
et al. 2003; Green and Figuerola 2005), this may explain 
the high levels of sub-lineage admixture observed in these 
populations.

Differences between the two lineages corresponding to 
genetic differences were reflected in shell phenotype. For the 

339 individuals with genetic and morphological data availa-
ble, grouping snails by shape and genetic lineage (Lineage 1 
or Lineage 2) explained the data better than grouping snails 
by country of origin and there was a significant difference in 
shape, traditional morphometrics, and centroid size between 
snails from Lineage 1 and Lineage 2 as captured (Figs. 6 
and 7, Tables 4, 5, 6). Shape differences were also observed 
between snails form different countries, but these may be a 
consequence of the varying prevalence of snails from Line-
age 1 or 2 in different countries.

While the differences in shell shape between the two 
lineages may be attributable to underlying genetic differ-
ences, it could also be the result of phenotypic plasticity, 
i.e. the expression of alternative phenotypes by the same 
genotype, usually in response to environmental conditions 
(Stearns 1989). Phenotypic plasticity can complicate and 
confound classification of snails and obscure morphological 
differences between species (Minton 2002; Perez and Min-
ton 2008). Plasticity in snail shell shape has been attributed 
to factors such as thermal stress (Hazel and Johnson 1990), 
population density (Kemp and Bertness 1984), and preda-
tion (Appleton and Palmer 1988; DeWitt 1998). Changes 
in shell morphology can occur suddenly, sometimes within 
the growth phase of a single generation (Johnson and Black 
1999; Urabe 2000; Minton and Gunderson 2001). Pheno-
typic plasticity in conjunction with evolutionary pressures 
may ultimately drive genetically fixed variation in shell mor-
phology (Kistner and Dybdahl 2013). Further study into the 
climatic conditions and habitat parameters of S. nitida from 
both lineages in European populations and their genetics is 
required to investigate the contributions of directional selec-
tion and phenotypic plasticity to shape variation.

Nevertheless, there was still a large amount of overlap 
between lineages in the principal components of the Pro-
crustes shape coordinates (Fig. 7). It is therefore not sur-
prising that the status of S. nitida has been the subject of so 
much debate and confusion (Kennard and Woodward 1926), 
especially given the importance of shell morphology in snail 
taxonomy. The presence of an additional morphologically 
distinct form of Segmentina nitida in Eastern Europe (Seg-
mentina nitida f. distinguenda) has previously been posited 
(Piechocki 1979). It has been argued, however, that this form 
is a species separate from S. nitida (Stadnychenko 1990) 
synonymous with that previously described as Segmentina 
clessini Westerlund 1873. Piechocki and Wawrzyniak-
Wydrowska (2016) have distinguished the shell of Segmen-
tina nitida f. distinguenda from that of S. nitida referring 
to a keel displaced towards the centre of the shell, a narrow 
umbilicus, more strongly developed internal thickenings 
(compared to S. nitida) and having a lower shell height than 
S. nitida. This description more closely matches Lineage 1 
identified here, which seems to extend into Poland as indi-
cated by the placement of the COI sequence from Lodz, 
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Poland (Saito et al. 2018; Fig. 4). To resolve the confusion 
around the various synonyms and their geographic range, 
the next step should be to compare individuals from Line-
age 1 and Lineage 2 revealed by genetic and shape analysis 
to individuals from Denmark, the type location, including 
the shells of the type specimens. This should reveal which 
of the lineages (1 or 2) represents Segmentina nitida Müller 
1774, and whether one lineage should be described as a new 
species or resurrect a previously synonymised species name. 
Comparison to genetic data of S. nitida individuals from the 
species type locality (Denmark) was not possible here as the 
only genetic data available for this population (Jørgensen 
et al. 2004) is a fragment of the COI locus outside of the 
region amplified for the present study.

The data presented here indicate that S. nitida is most 
likely diploid (almost uniformly two alleles were recorded 
per microsatellite locus), as are other planorbids (e.g. Sza-
belska et al. 2015). Segmentina nitida is hermaphroditic 
and can self-fertilize, which will increase the likelihood of 
directly related individuals occurring in a population. The 
prevalence of such individuals in our samples is not likely to 
have been high enough to significantly affect the outcomes 
of analysis, however, for two reasons. First, egg clutches 
produced by S. nitida are small (typically up to 11 eggs, 
Bondesen 1950), reducing the number of directly related 
individuals per generation in a population. Second, samples 
in each country were collected at multiple locations that 
were separated from others physically (i.e. no direct connec-
tion of freshwater habitats) or geographically (i.e. distance 
of > 5 km between locations). Even if a small number of 
snails from any individual location were directly related, it 
is highly unlikely there was any direct relatedness between 
snails from different locations, due to the poor dispersal of 
S. nitida even at a local scale (Niggebrugge et al. 2007).

Regardless of the taxonomic identity of the two lineages 
of Segmentina nitida identified here, our results could have 
significant implications for the conservation of both lineages 
and S. nitida sensu lato, especially in the UK. If Lineage 
2 indeed represents a reproductively isolated species, the 
lineage found in the UK (Lineage 1) may have a reduced 
geographical range and number of remaining populations 
than that of S. nitida sensu lato. However, without expanded 
sampling to cover the entirety of the range of S. nitida sensu 
lato, inferences as to the phylogeographic implications of 
this study, and relative population ranges of each species 
are limited. A collaborative, international effort to sample 
and genotype S. nitida sensu lato would allow more effective 
estimation of the distribution of each lineage across Europe, 
particularly in areas where their ranges of overlap. This 
would facilitate a more thorough evaluation of the genetic 
diversity, range and population size of each lineage and aid 
in the development of a collaborative management deci-
sions. Potentially informative populations could be located 

in Spain (coastal marshland associated with bird-mediated 
dispersal (Green and Figuerola 2005), France (as the closest 
country to the UK), the Netherlands (containing extensively 
networked wetland areas) and the Czech Republic. All UK 
snails included in this study were taken from a single marsh 
system in the southeast of England. Analysis of individuals 
from populations in Norfolk, Sussex and Yorkshire (Hill-
Cottingham 2004; Watson and Ormerod 2004; Mensch 
2009) would allow comparison of populations in light of 
the proposed Lineage 1 and a more in-depth analysis of local 
diversity and gene flow in the UK. Of the 367 European 
individuals genetically analysed, only 26.4% (n = 97) clus-
tered with Lineage 1. In the UK Biodiversity Action Plan 
for S. nitida the current distribution of the species is stated 
as “widespread but declining” and the UK populations are 
“unlikely to be significant in global terms” (JNCC 2010). 
With the populations in the UK having the potential to repre-
sent a distinct species (or at least a regionally highly distinct 
genotype), these assessments may have to be revised, after 
expanded surveying. Existing populations may therefore 
require more attention and more extensive management and 
any breeding or translocation from outside of the UK can 
only originate from genetically compatible Lineage 1 popu-
lations (e.g. some German populations, currently). Moreo-
ver, the low genetic diversity in UK populations indicates 
that the sampled habitats have only recently been colonised 
by a limited number of individuals or that they have under-
gone a genetic bottleneck. This makes these populations 
more vulnerable to local extinction (Aguilar et al. 2008) 
and also means that translocation of snails within the UK 
may result in further loss of genetic diversity. These findings 
underscore the importance of having detailed knowledge of 
the genetic structure and providence of S. nitida and other 
freshwater invertebrates—especially those with a complex 
taxonomic history—that are the subject of ongoing manage-
ment and conservation efforts.
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Acknowledgements The genetics work for this project was sup-
ported by a grant from the UK Natural Environment Research Coun-
cil (NERC) and was completed at the NERC Biomolecular Analysis 
Facility (NBAF) at the University of Sheffield (Grant no. NBAF1075). 
The microsatellite library was sequenced on an Illumina MiSeq by the 
Sheffield Diagnostic Genetic Service, part of the Sheffield Children’s 
NHS Foundation Trust. The authors would like to thank the staff & 
visitors at the NBAF laboratory in Sheffield for their guidance, advice, 
and insightful discussions. The authors also would like to thank John 
Hills at Canterbury Christ Church University for his support and advice 
on mapping survey locations and Dr Samit Kundu for his support and 
advice on the analysis of genetic data. They would also like to thank 
Dr. Phillip Buckley for fieldwork assistance, and Prof. Georges Dussart 
for help and guidance. Finally, we thank colleagues in Germany (Prof 
Martin Haase), Sweden (Jan Projts) and Poland (Dr Bartek Gołdyn) for 
their guidance and advice while sampling snails in continental Europe.

https://doi.org/10.1007/s10592-021-01369-8


868 Conservation Genetics (2021) 22:855–871

1 3

Declarations 

Conflict of interest There are no conflicts of interest or competing in-
terests to declare.

Ethical approval Sequence and genotyping data and original DNA 
samples are available upon request (source DNA has been used up for 
some samples).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: 
Ten years of progress following the “revolution.” Ital J Zool 
71:5–16. https:// doi. org/ 10. 1080/ 11250 00040 93565 45

Adams DC, Collyer ML, Kaliontzopoulou A (2019) Geomorph: Soft-
ware for geometric morphometric analyses. R package version 
3.1.0. https:// cran.r- proje ct. org/ packa ge= geomo rph

Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J 
(2008) Genetic consequences of habitat fragmentation in plant 
populations: Susceptible signals in plant traits and methodo-
logical approaches. Mol Ecol 17:5177–5188. https:// doi. org/ 
10. 1111/j. 1365- 294X. 2008. 03971.x

Albrecht C, Kuhn K, Streit B (2007) A molecular phylogeny 
of Planorboidea (Gastropoda, Pulmonata): Insights from 
enhanced taxon sampling. Zool Scr 36:27–39. https:// doi. org/ 
10. 1111/j. 1463- 6409. 2006. 00258.x

Appleton RD, Palmer R (1988) Water-borne stimuli released by 
predatory crabs and damaged prey produce more predator- 
resistant shells in a marine gastropod. Proc Natl Acad Sci USA 
85:4387–4391

Armour JAL, Neumann R, Gobert S, Jeffreys AJ (1994) Isolation 
of human simple repeat loci by hybridization selection. Hum 
Mol Genet 3(4):599–605. https:// doi. org/ 10. 1093/ hmg/3. 4. 599

Arribas P, Andújar C, Sánchez-Fernández D, Abellán P, Millán A 
(2013) Integrative taxonomy and conservation of cryptic bee-
tles in the Mediterranean region (Hydrophilidae). Zool Scr 
42:182–200. https:// doi. org/ 10. 1111/ zsc. 12000

Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, 
Ingram KK, Das I (2007) Cryptic species as a window on 
diversity and conservation. Trends Ecol Evol 22:148–155. 
https:// doi. org/ 10. 1016/j. tree. 2006. 11. 004

Bondesen P (1950) A comparative morphological-biological analy-
sis of the egg capsules of freshwater pulmonate Gastropods. 
Naturhistorik Museum, Aarhus, Denmark

Canal NA, Hernández-Ortiz V, Salas JOT, Selivon D (2015) Mor-
phometric study of third-instar larvae from five morphotypes 
of the Anastrepha fraterculus cryptic species complex (Dip-
tera, tephritidae). ZooKeys 540:41–59. https:// doi. org/ 10. 3897/ 
zooke ys. 540. 6012

Cardinale BJ, Palmer MA, Collins SL (2002) Species diversity 
enhances ecosystem functioning through interspecific facili-
tation. Nature 415:426–429. https:// doi. org/ 10. 1038/ 41542 6a

Chiari Y, Hyseni C, Fritts TH, Glaberman S, Marquez C, Gibbs JP, 
Claude J, Caccone A (2009) Morphometrics parallel genet-
ics in a newly discovered and endangered taxon of Galápagos 
tortoise. PLoS ONE 4:e6272. https:// doi. org/ 10. 1371/ journ al. 
pone. 00062 72

Covich AP, Austen MC, Bärlocher F, Chauvet E, Cardinale BJ, Biles 
CL, Inchausti P, Dangles O, Solan M, Gessner MO, Statzner 
B (2004) The role of biodiversity in the functioning of fresh-
water and marine benthic ecosystems. Bioscience 54:767–775. 
https:// doi. org/ 10. 1641/ 0006- 3568(2004) 054

Dangles O, Malmqvist B, Laudon H (2004) Naturally acid freshwater 
ecosys- tems are diverse and functional: Evidence from boreal 
streams. Oikos 104:149–155. https:// doi. org/ 10. 1111/j. 0030- 
1299. 2004. 12360.x

DeWitt TJ (1998) Costs and limits of phenotypic plasticity: Tests 
with predator- induced morphology and life history in a fresh-
water snail. J Evol Biol 11(4):465–480. https:// doi. org/ 10. 
1007/ s0003 60050 100

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of 
clusters of individuals using the software STRU CTU RE: A 
simulation study. Mol Ecol 14:2611–2620. https:// doi. org/ 10. 
1111/j. 1365- 294X. 2005. 02553.x

Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series 
of programs to perform population genetics analyses under 
Linux and Windows. Mol Ecol Resour 10:564–567. https:// 
doi. org/ 10. 1111/j. 1755- 0998. 2010. 02847.x

Falush D, Stephens M, Pritchard JK (2003) Inference of population 
structure using multilocus genotype data: linked loci and cor-
related allele frequencies. Genetics 164:1567–1587

Figuerola J, Green AJ, Santamaría L (2003) Passive internal trans-
port of aquatic organisms by waterfowl in Doñana, southwest 
Spain. Glob Ecol Biogeog 12:427–436. https:// doi. org/ 10. 
1046/j. 1466- 822X. 2003. 00043.x

Figuerola J, Green AJ, Michot TC (2005) Invertebrate eggs can fly: 
evidence of waterfowl mediated gene-flow in aquatic inverte-
brates. Am Nat 165:274–280. https:// doi. org/ 10. 1086/ 427092

Fontoura P, Morais P (2011) Assessment of traditional and geometric 
morphometrics for discriminating cryptic species of the Pseu-
dechiniscus suillus complex (Tardigrada, Echiniscidae). J Zool 
Sust Evol Res 49:26–33. https:// doi. org/ 10. 1111/j. 1439- 0469. 
2010. 00594.x

Frankham R (2010) Challenges and opportunities of genetic 
approaches to biological conservation. Biol Conserv 
143:1919–1927. https:// doi. org/ 10. 1016/j. biocon. 2010. 05. 011

Frankham R, Ballou JD, Briscoe DA (2010) Introduction to Con-
servation Genetics, 2nd edn. Cambridge University Press, 
Cambridge

Gibbs M, Dawson DA, McCamley C, Wardle AF, Burke T, Armour 
JA (1997) Chicken microsatellite markers isolated from 
libraries enriched for simple tandem repeats. Animal Genet 
28(6):401–417. https:// doi. org/ 10. 1111/j. 1365- 2052. 1997. 
00187.x

Glenn TC, Schable NA (2005) Isolating microsatellite loci. Method 
Enzymol 395:202–222. https:// doi. org/ 10. 1016/ S0076- 6879(05) 
95013-1

Green AJ, Figuerola J (2005) Recent advances in the study of long-
distance dispersal of aquatic invertebrates via birds. Divers 
Distrib 11:149–156. https:// doi. org/ 10. 1111/j. 1366- 9516. 2005. 
00147.x

Gusman A, Azuelos C, Breton S (2017) No evidence of sex-linked 
heteroplasmy or doubly-uniparental inheritance of mtDNA in 
five gastropod species. J Mollus Stud 83:119–122. https:// doi. 
org/ 10. 1093/ mollus/ eyw034

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/11250000409356545
https://cran.r-project.org/package=geomorph
https://doi.org/10.1111/j.1365-294X.2008.03971.x
https://doi.org/10.1111/j.1365-294X.2008.03971.x
https://doi.org/10.1111/j.1463-6409.2006.00258.x
https://doi.org/10.1111/j.1463-6409.2006.00258.x
https://doi.org/10.1093/hmg/3.4.599
https://doi.org/10.1111/zsc.12000
https://doi.org/10.1016/j.tree.2006.11.004
https://doi.org/10.3897/zookeys.540.6012
https://doi.org/10.3897/zookeys.540.6012
https://doi.org/10.1038/415426a
https://doi.org/10.1371/journal.pone.0006272
https://doi.org/10.1371/journal.pone.0006272
https://doi.org/10.1641/0006-3568(2004)054
https://doi.org/10.1111/j.0030-1299.2004.12360.x
https://doi.org/10.1111/j.0030-1299.2004.12360.x
https://doi.org/10.1007/s000360050100
https://doi.org/10.1007/s000360050100
https://doi.org/10.1111/j.1365-294X.2005.02553.x
https://doi.org/10.1111/j.1365-294X.2005.02553.x
https://doi.org/10.1111/j.1755-0998.2010.02847.x
https://doi.org/10.1111/j.1755-0998.2010.02847.x
https://doi.org/10.1046/j.1466-822X.2003.00043.x
https://doi.org/10.1046/j.1466-822X.2003.00043.x
https://doi.org/10.1086/427092
https://doi.org/10.1111/j.1439-0469.2010.00594.x
https://doi.org/10.1111/j.1439-0469.2010.00594.x
https://doi.org/10.1016/j.biocon.2010.05.011
https://doi.org/10.1111/j.1365-2052.1997.00187.x
https://doi.org/10.1111/j.1365-2052.1997.00187.x
https://doi.org/10.1016/S0076-6879(05)95013-1
https://doi.org/10.1016/S0076-6879(05)95013-1
https://doi.org/10.1111/j.1366-9516.2005.00147.x
https://doi.org/10.1111/j.1366-9516.2005.00147.x
https://doi.org/10.1093/mollus/eyw034
https://doi.org/10.1093/mollus/eyw034


869Conservation Genetics (2021) 22:855–871 

1 3

Hammer Ø, Harper DAT, Ryan PD (2001) Past: Paleontological statis-
tics software package for education and data analysis. Palaeontol 
Electron 4:1–9

Hartl DL, Clark AG (2007) Principles of population genetics, 4th edn. 
Sinauer, Sunderland, UK

Hayes KA, Joshi RC, Thiengo SC, Cowie RH (2008) Out of South 
America: multiple origins of non-native apple snails in Asia. 
Divers Distrib 14(4):701–712. https:// doi. org/ 10. 1111/j. 1472- 
4642. 2008. 00483.x

Hayes KA, Cowie RH, Thiengo SC, Strong EE (2012) Comparing 
apples with apples: clarifying the identities of two highly inva-
sive Neotropical Ampullariidae (Caenogastropoda). Zool J Lin-
nean Soc 166:723–753. https:// doi. org/ 10. 1111/j. 1096- 3642. 
2012. 00867.x

Hazel WN, Johnson MS (1990) Microhabitat choice in the land snail 
Theba pisana (Müller). Heredity 65:449–454

Hill-Cottingham P (2004) The ecology of the Shining Ram’s-horn Snail 
Segmentina nitida (Müller) 1774 on Catcott North Reserve (part 
of a SSSI on the Somerset Levels and Moors) to determine strate-
gies for its conservation. PhD Dissertation, The Open University

Hobbs CS, Harvey CD (2020) Evaluating washing and sifting meth-
ods for sampling gastropods in freshwater vegetation samples. J 
Mollus Stud 86:139–146. https:// doi. org/ 10. 1093/ mollus/ eyz039

Holleley CE, Geerts PG (2009) Multiplex Manager 1.0: a cross-plat-
formcomputer program that plans and optimizes multiplex PCR. 
Biotechniques 46:511–517. https:// doi. org/ 10. 2144/ 00011 3156

Janes JK, Miller JM, Dupuis JR, Malenfant RM, Gorrell JC, Culling-
ham CI, Andrew RL (2017) The K= 2 conundrum. Mol Ecol 
26:3594–3602. https:// doi. org/ 10. 1111/ mec. 14187

JNCC (2010) UK priority species pages – Version 2: Segmentina nitida 
(Müller, 1774) The Shining Ram’s-horn. JNCC, Peterborough, 
UK

Johnson MS, Black R (1999) Nodilittorina nodosa (Gray, 1839) is 
a plastic morphotype of Nodilittorina australis (Gray, 1826). J 
Molluscan Stud 65(1):111–119. https:// doi. org/ 10. 1093/ mollus/ 
65.1. 111

Jones JP, Andriahajaina FB, Ranambinintsoa EH, Hockley NJ, Ravoa-
hangimalala O (2006) The economic importance of freshwater 
crayfish harvesting in Madagascar and the potential of commu-
nity-based conservation to improve management. Oryx 40:168–
175. https:// doi. org/ 10. 1017/ S0030 60530 60005 00

Jonsson M, Malmqvist B (2003) Mechanisms behind positive diver-
sity effects on ecosystem functioning: testing the facilitation and 
interference hypotheses. Oecologica 134:554–559. https:// doi. 
org/ 10. 1007/ s00442- 002- 1148-5

Jørgensen A, Kristensen TK, Stothard JR (2004) An investigation of 
the “Ancyloplanorbidae” (Gastropoda, Pulmonata, Hygrophila): 
Preliminary evidence from DNA sequence data. Mol Phylogenet 
Evol 32:778–787. https:// doi. org/ 10. 1016/j. ympev. 2004. 02. 011

Jourdan J, Plath M, Tonkin JD, Ceylan M, Dumeier AC, Gellert G, 
Graf W, Hawkins CP, Kiel E, Lorenz AW, Matthaei CD (2019) 
Reintroduction of freshwater macroinvertebrates: challenges and 
opportunities. Biol Rev 94:368–387. https:// doi. org/ 10. 1111/ brv. 
12458

Kalinowski ST, Taper M, Marshall TC (2007) Revising how the 
computer program CERVUS accommodates genotyping error 
increases success in paternity assignment. Mol Ecol 16:1099–
1106. https:// doi. org/ 10. 1111/j. 1365- 294X. 2007. 03089.x

Karanovic T, Djurakic M, Eberhard SM (2016) Cryptic species or inad-
equate taxonomy? Implementation of 2D geometric morphomet-
rics based on integumental organs as landmarks for delimitation 
and description of copepod taxa. Syst Biol 65:304–327. https:// 
doi. org/ 10. 1093/ sysbio/ syv088

Kemp P, Bertness MD (1984) Snail shape and growth rates: Evidence 
for plastic shell allometry in Littorina littorea. Proc Natl Acad 
Sci USA 81(3):811–813. https:// doi. org/ 10. 1073/ pnas. 81.3. 811

Kennard AS, Woodward BB (1926) Synonymy of the British non-
marine mollusca (recent and post-tertiary). The British Museum 
(Natural History), London

Kenta T, Gratten J, Haigh NS, Hinten GN, Slate J, Butlin RK, Burke 
T (2008) Multiplex SNP-SCALE: A cost-effective medium-
throughput single nucleotide polymorphism genotyping method. 
Mol Ecol Resour 8:1230–1238. https:// doi. org/ 10. 1111/j. 1755- 
0998. 2008. 02190.x

Kerney MP (1991) Segmentina nitida. In Bratton JH (ed) Red Data 
Book 3: Invertebrates other than insects. JNCC, Peterborough, 
UK

Kistner EJ, Dybdahl MF (2013) Adaptive responses and invasion: The 
role of plasticity and evolution in snail shell morphology. Ecol 
Evol 3(2):424–436. https:// doi. org/ 10. 1002/ ece3. 471

Klingenberg CP (2010) Evolution and development of shape: Integrat-
ing quantitative approaches. Nat Rev Genet 11:623–635. https:// 
doi. org/ 10. 1038/ nrg28 29

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I 
(2015) Clumpak: a program for identifying clustering modes and 
packaging population structure inferences across K. Mol Ecol 
Resour 15:1179–1191. https:// doi. org/ 10. 1111/ 1755- 0998. 12387

Książkiewicz Z, Gołdyn B (2008) Life cycle of Segmentina nitida 
(Gastropoda : Pulmonata : Planorbidae ) in a small, imperma-
nent kettle hole pond. The Functioning and Protection of Water 
Ecosytems. Adam Mickiewicz University, Poznań, pp 51–57

Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolution-
ary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol 
Evol 33:1870–1874. https:// doi. org/ 10. 1093/ molbev/ msw054

Ladoukakis ED, Zouros E (2017) Evolution and inheritance of animal 
mitochondrial DNA: rules and exceptions. J Biol Res-Thessalon 
24:1–7

Lamy T, Lévy L, Pointier JP, Jarne P, David P (2012) Does life in 
unstable environments favour facultative selfing? A case study 
in the freshwater snail Drepanotrema depressissimum (Basom-
matophora: Planorbidae). Evol Ecol 26:639–655. https:// doi. org/ 
10. 1007/ s10682- 011- 9520-8

Leigh JW, Bryant D (2015) POPART: Full-feature software for hap-
lotype network construction. Methods Ecol Evol 6:1110–1116. 
https:// doi. org/ 10. 1111/ 2041- 210X. 12410

Li YL, Liu JX (2018) StructureSelector: A web-based software to 
select and visualize the optimal number of clusters using mul-
tiple methods. Mol Ecol Resour 18(1):176–177. https:// doi. org/ 
10. 1111/ 1755- 0998. 12719

Macadam CR, Stockan JA (2015) More than just fish food: Ecosystem 
services provided by freshwater insects. Ecol Entomol 40:113–
123. https:// doi. org/ 10. 1111/ een. 12245

Macher JN, Weiss M, Beermann AJ, Leese F (2016) Cryptic diversity 
and population structure at small scales: The freshwater snail 
Ancylus (Planorbidae, Pulmonata) in the Montseny mountain 
range. Ann Limnol 52:387–399. https:// doi. org/ 10. 1051/ limn/ 
20160 26

Mavárez J, Steiner C, Pointier JP, Jarne P (2002) Evolutionary history 
and phylogeography of the schistosome-vector freshwater snail 
Biomphalaria glabrata based on nuclear and mitochondrial DNA 
sequences. Heredity 89:266–272. https:// doi. org/ 10. 1038/ sj. hdy. 
68001 28

McKendrick L, Provan J, Fitzpatrick Ú, Brown MJ, Murray TE, Stolle 
E, Paxton RJ (2017) Microsatellite analysis supports the exist-
ence of three cryptic species within the bumble bee Bombus luco-
rum sensu lato. Conserv Genet 18:573–584. https:// doi. org/ 10. 
1007/ s10592- 017- 0965-3

Mensch S (2009) Population genetics of three threatened lowland 
Gastropod species. Masters Dissertation, Cardiff University, UK

Meyer WM, Yeung NW, Slapcinsky J, Hayes KA (2017) Two for one: 
inadvertent introduction of Euglandina species during failed 

https://doi.org/10.1111/j.1472-4642.2008.00483.x
https://doi.org/10.1111/j.1472-4642.2008.00483.x
https://doi.org/10.1111/j.1096-3642.2012.00867.x
https://doi.org/10.1111/j.1096-3642.2012.00867.x
https://doi.org/10.1093/mollus/eyz039
https://doi.org/10.2144/000113156
https://doi.org/10.1111/mec.14187
https://doi.org/10.1093/mollus/65.1.111
https://doi.org/10.1093/mollus/65.1.111
https://doi.org/10.1017/S0030605306000500
https://doi.org/10.1007/s00442-002-1148-5
https://doi.org/10.1007/s00442-002-1148-5
https://doi.org/10.1016/j.ympev.2004.02.011
https://doi.org/10.1111/brv.12458
https://doi.org/10.1111/brv.12458
https://doi.org/10.1111/j.1365-294X.2007.03089.x
https://doi.org/10.1093/sysbio/syv088
https://doi.org/10.1093/sysbio/syv088
https://doi.org/10.1073/pnas.81.3.811
https://doi.org/10.1111/j.1755-0998.2008.02190.x
https://doi.org/10.1111/j.1755-0998.2008.02190.x
https://doi.org/10.1002/ece3.471
https://doi.org/10.1038/nrg2829
https://doi.org/10.1038/nrg2829
https://doi.org/10.1111/1755-0998.12387
https://doi.org/10.1093/molbev/msw054
https://doi.org/10.1007/s10682-011-9520-8
https://doi.org/10.1007/s10682-011-9520-8
https://doi.org/10.1111/2041-210X.12410
https://doi.org/10.1111/1755-0998.12719
https://doi.org/10.1111/1755-0998.12719
https://doi.org/10.1111/een.12245
https://doi.org/10.1051/limn/2016026
https://doi.org/10.1051/limn/2016026
https://doi.org/10.1038/sj.hdy.6800128
https://doi.org/10.1038/sj.hdy.6800128
https://doi.org/10.1007/s10592-017-0965-3
https://doi.org/10.1007/s10592-017-0965-3


870 Conservation Genetics (2021) 22:855–871

1 3

bio-control efforts in Hawaii. Biol Invasions 19:1399–1405. 
https:// doi. org/ 10. 1007/ s10530- 016- 1354-4

Miller S, Tait P, Saunders C (2015) Estimating indigenous cultural 
values of freshwater: A choice experiment approach to Māori 
values in New Zealand. Ecol Econ 118:207–214. https:// doi. org/ 
10. 1016/j. ecole con. 2015. 07. 031

Minton RL (2002) A cladistic analysis of Lithasia (Gastropoda: 
Pleuroceridae) using morphological characters. The Nautilus 
116(2):39–49

Minton RL, Gunderson RW (2001) Puperita tristis is an ecotype of 
Puperita pupa. Am Malacol Bull 16:13–20

Niggebrugge K, Durance I, Watson AM, Leuven RSEW, Ormerod SJ 
(2007) Applying landscape ecology to conservation biology: 
Spatially explicit analysis reveals dispersal limits on threatened 
wetland gastropods. Biol Conserv 139:286–296. https:// doi. org/ 
10. 1016/j. biocon. 2007. 07. 003

Ormerod SJ, Durance I, Terrier A, Swanson AM (2010) Priority wet-
land invertebrates as conservation surrogates. Conserv Biol 
24:573–582. https:// doi. org/ 10. 1111/j. 1523- 1739. 2009. 01352.x

Patel S, Schell T, Eifert C, Feldmeyer B, Pfenninger M (2015) Char-
acterizing a hybrid zone between a cryptic species pair of fresh-
water snails. Mol Ecol 24:643–655. https:// doi. org/ 10. 1111/ mec. 
13049

Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. 
Population genetic software for teaching and research–an update. 
Bioinformatics 28:2537–2539. https:// doi. org/ 10. 1111/j. 1471- 
8286. 2005. 01155.x

Perez KE, Minton RL (2008) Practical applications for systematics 
and taxonomy in North American freshwater gastropod conser-
vation. J N Am Benthol Soc 27(2):471–483. https:// doi. org/ 10. 
1899/ 07- 059.1

Piechocki A (1979) Fauna Słodkowodna Polski 7. PWA, Warsaw, 
Mięczaki (Mollusca) Ślimaki (Gastropoda)

Piechocki A, Wawrzyniak-Wydrowska B (2016) Guide to freshwater 
and marine mollusca of Poland. Bogucki Wydawnictwo Nau-
kowe, Poznań

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population 
structure using multilocus genotype data. Genetics 155:945–959

Puechmaille SJ (2016) The program structure does not reliably recover 
the correct population structure when sampling is uneven: sub-
sampling and new estimators alleviate the problem. Mol Ecol 
Resour 16:608–627. https:// doi. org/ 10. 1111/ 1755- 0998. 12512

Ramasamy RK, Ramasamy S, Bindroo BB, Naik VG (2014) STRU 
CTU RE PLOT: a program for drawing elegant STRU CTU RE 
bar plots in user friendly interface. Springerplus 3:1–3. https:// 
doi. org/ 10. 1186/ 2193- 1801-3- 431

Rambaut A, Drummond AJ (2017) FigTree version 1.4.4 [computer 
program]. http:// tree. bio. ed. ac. uk/ softw are/ figtr ee/. Accessed 
Jan 2021

Régnier C, Fontaine B, Bouchet P (2009) Not knowing, not recording, 
not listing: Numerous unnoticed mollusk extinctions. Conserv 
Biol 23:1214–1221. https:// doi. org/ 10. 1111/j. 1523- 1739. 2009. 
01245.x

Régnier C, Bouchet P, Hayes KA, Yeung NW, Christensen CC, Chung 
DJD, Fontaine B, Cowie RH (2015) Extinction in a hyperdi-
verse endemic Hawaiian land snail family and implications for 
the underestimation of invertebrate extinction. Conserv Biol 
29(6):1715–1723. https:// doi. org/ 10. 1111/ cobi. 12565

Rohlf FJ (2017) tpsDig, digitize landmarks and outlines, version 2.31. 
Department of Ecology and Evolution, State University of New 
York at Stony Brook

Rohlf FJ (2019) tpsUtil, file utility program, version 1.78. Department 
of Ecology and Evolution, State University of New York at Stony 
Brook

Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Lib-
rado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 
v6: DNA Sequence Polymorphism Analysis of Large Datasets. 
Mol Biol Evol 34:3299–3302. https:// doi. org/ 10. 1093/ molbev/ 
msx248

Saito T, Hirano T, Prozorova L, Sulikowska-Drozd A, Sitnikova T, 
Surenkhorloo P, Yamazaki D, Morii Y, Kameda Y, Fukuda 
H, Chiba S (2018) Phylogeography of freshwater planorbid 
snails reveals diversification patterns in Eurasian continen-
tal islands. BMC Evol Biol 18:1–13. https:// doi. org/ 10. 1186/ 
s12862- 018- 1273-3

Sievers F, Higgins DG (2014) Clustal omega. Curr Protoc Bioinfor-
matics 48:3–13. https:// doi. org/ 10. 1002/ 04712 50953. bi031 3s48

Simison WB, Lindberg DR (1999) Morphological and molecular 
resolution of a putative cryptic species complex: A case study 
of Notoacmea fascicularis (Menke, 1851) (Gastropoda: Patel-
logastropoda). J Mollus Stud 65:99–109. https:// doi. org/ 10. 1093/ 
mollus/ 65.1. 99

Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of indi-
vidual multiallele and multilocus genetic structure. Heredity 
82:561–573. https:// doi. org/ 10. 1038/ sj. hdy. 68851 80

Stadnychenko AP (1990) Molljuski. Prudovikovoobraznye. Fauna 
Ukraïni, 29. Naukova Dumka, Kiev, Ukraine

Stearns SC (1989) The evolutionary significance of phenotypic plas-
ticity - phenotypic sources of variation among organisms can be 
described by developmental switches and reaction norms. Biosci-
ence 39(7):436–445. https:// doi. org/ 10. 2307/ 13111 35

Strayer DL, Dudgeon D (2010) Freshwater biodiversity conserva-
tion: recent progress and future challenges. J N Am Benthol Soc 
29:344–358. https:// doi. org/ 10. 1899/ 08- 171.1

Strong EE, Gargominy O, Ponder WF, Bouchet P (2008) Global 
diversity of gastropods (Gastropoda; Mollusca) in freshwa-
ter. Hydrobiologia 595:149–166. https:// doi. org/ 10. 1007/ 
s10750- 007- 9012-6

Szabelska A, Juchno D, Spóz A, Boron A (2015) Mitotic and mei-
otic chromosomes of the Great Rams Horn Snail Planorbarius 
corneus (Linnaeus, 1758) (Gastropoda, Planorbidae) from Lake 
Kortowskie. Polish J Nat Sci 30:47–57

Toro MA, Caballero A (2005) Characterization and conservation of 
genetic diversity in subdivided populations. Philos T R Soc B 
360:1367–1378. https:// doi. org/ 10. 1098/ rstb. 2005. 1680

Urabe M (2000) Phenotypic modulation by the substratum of shell 
sculpture in Semisulcospira reiniana (Prosobranchia: Pleuroceri-
dae). J Molluscan Stud 66:53–59

van Leeuwen CH, Van Der Velde G, Van Lith B, Klaassen M (2012) 
Experimental quantification of long distance dispersal poten-
tial of aquatic snails in the gut of migratory birds. PLoS ONE 
7:e32292. https:// doi. org/ 10. 1371/ journ al. pone. 00322 92

van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) 
MICRO-CHECKER: software for identifying and correcting 
genotyping errors in microsatellite data. Mol Ecol Notes 4:535–
538. https:// doi. org/ 10. 1111/j. 1471- 8286. 2004. 00684.x

Vašek J, Hlásná Čepková P, Viehmannová I, Ocelák M, Cachique 
Huansi D, Vejl P (2017) Dealing with AFLP genotyping errors to 
reveal genetic structure in Plukenetia volubilis (Euphorbiaceae) 
in the Peruvian Amazon. PLoS ONE 12:e0184259

Vidigal T, Kissinger JC, Caldeira RL, Pires ECR, Monteiro E, Simpson 
JG, Carvalho OS (2000) Phylogenetic relationships among Bra-
zilian Biomphalaria species (Mollusca: Planorbidae) based upon 
analysis of ribosomal ITS2 sequences. Parasitology 121:611–
620. https:// doi. org/ 10. 1017/ S0031 18200 00068 31

Villemant C, Simbolotti G, Kenis M (2007) Discrimination of Eubazus 
(Hymenoptera, Braconidae) sibling species using geometric mor-
phometrics analysis of wing venation. Sys Entomol 32:625–634. 
https:// doi. org/ 10. 1111/j. 1365- 3113. 2007. 00389.x

https://doi.org/10.1007/s10530-016-1354-4
https://doi.org/10.1016/j.ecolecon.2015.07.031
https://doi.org/10.1016/j.ecolecon.2015.07.031
https://doi.org/10.1016/j.biocon.2007.07.003
https://doi.org/10.1016/j.biocon.2007.07.003
https://doi.org/10.1111/j.1523-1739.2009.01352.x
https://doi.org/10.1111/mec.13049
https://doi.org/10.1111/mec.13049
https://doi.org/10.1111/j.1471-8286.2005.01155.x
https://doi.org/10.1111/j.1471-8286.2005.01155.x
https://doi.org/10.1899/07-059.1
https://doi.org/10.1899/07-059.1
https://doi.org/10.1111/1755-0998.12512
https://doi.org/10.1186/2193-1801-3-431
https://doi.org/10.1186/2193-1801-3-431
http://tree.bio.ed.ac.uk/software/figtree/
https://doi.org/10.1111/j.1523-1739.2009.01245.x
https://doi.org/10.1111/j.1523-1739.2009.01245.x
https://doi.org/10.1111/cobi.12565
https://doi.org/10.1093/molbev/msx248
https://doi.org/10.1093/molbev/msx248
https://doi.org/10.1186/s12862-018-1273-3
https://doi.org/10.1186/s12862-018-1273-3
https://doi.org/10.1002/0471250953.bi0313s48
https://doi.org/10.1093/mollus/65.1.99
https://doi.org/10.1093/mollus/65.1.99
https://doi.org/10.1038/sj.hdy.6885180
https://doi.org/10.2307/1311135
https://doi.org/10.1899/08-171.1
https://doi.org/10.1007/s10750-007-9012-6
https://doi.org/10.1007/s10750-007-9012-6
https://doi.org/10.1098/rstb.2005.1680
https://doi.org/10.1371/journal.pone.0032292
https://doi.org/10.1111/j.1471-8286.2004.00684.x
https://doi.org/10.1017/S0031182000006831
https://doi.org/10.1111/j.1365-3113.2007.00389.x


871Conservation Genetics (2021) 22:855–871 

1 3

Wallace JB, Webster JR (1996) The role of macroinvertebrates in 
stream ecosystem function. Annu Rev Entomol 41:115–139. 
https:// doi. org/ 10. 1146/ annur ev. en. 41. 010196. 000555

Watson AM, Ormerod SJ (2004) The distribution of three uncommon 
freshwater gastropods in the drainage ditches of British graz-
ing marshes. Biol Conserv 118(4):455–466. https:// doi. org/ 10. 
1016/j. biocon. 2003. 09. 021

Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller 
KA, Byrne M, Coates DJ, Eldridge MD, Sunnucks P, Breed 
MF (2011) Assessing the benefits and risks of translocations 
in changing environments: a genetic perspective. Evol Appl 
4:709–725. https:// doi. org/ 10. 1111/j. 1752- 4571. 2011. 00192.x

Wells S, Chatfield J (1992) Threatened non marine molluscs of Europe. 
Strasbourg, Germany, Council of Europe

Zelditch ML, Swiderski DL, Sheets HD (2004) Geometric morpho-
metrics for biologists: a primer. Elsevier Academic Press, San 
Diego, USA

Zhang H, Hare MP (2012) Identifying and reducing AFLP genotyping 
error: an example of tradeoffs when comparing population struc-
ture in broadcast spawning versus brooding oysters. Heredity 
108:616–625. https:// doi. org/ 10. 1038/ hdy. 2011. 132

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1146/annurev.en.41.010196.000555
https://doi.org/10.1016/j.biocon.2003.09.021
https://doi.org/10.1016/j.biocon.2003.09.021
https://doi.org/10.1111/j.1752-4571.2011.00192.x
https://doi.org/10.1038/hdy.2011.132

	Population genetics and geometric morphometrics of the freshwater snail Segmentina nitida reveal cryptic sympatric species of conservation value in Europe
	Abstract
	Introduction
	Materials and methods
	Sample collection
	DNA extraction
	Amplification, sequencing and analysis of mitochondrial and nuclear barcode markers
	Microsatellite genotyping and analysis
	Geometric morphometrics of identified genetic lineages

	Results
	Nuclear and mitochondrial markers
	Microsatellite genotyping, diversity and population structure
	Geometric morphometrics of Segmentina nitida

	Discussion
	Acknowledgements 
	References




