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Summary

Unmanned aerial vehicle (UAV) assisted wireless communication has been recently
proposed as an effective solution to provide wireless connectivity to ground users
which can improve the network coverage area and spectral efficiency. In this paper,
we consider the post-disaster network scenario where users are isolated from the net-
work infrastructure. We investigate the best positioning of the UAV in terms of the
optimal trajectory as well as UAV vertical location to cover as many ground users as
possible to improve spectral efficiency. When the trajectory is optimized, the optimal
transmit power within the available power budget is then obtained. The simulation
results demonstrate that the proposed UAV-enabled wireless communication tech-
nique improves the overall spectral and energy efficiency.
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1 INTRODUCTION

The demand for wireless applications beyond the fifth generation (B5G) will exponentially increase which introduces new
challenges, e.g., the minimum quality-of-service (QoS) irrespective of users’ location and time. The challenge that every mobile
network operator has to face is to provide the best network quality and ubiquitous coverage when there is a huge gathering of
mobile users during, e.g., sports events and concerts. One of the proposed solutions is to fly unmanned aerial vehicles (UAVs)
as temporary base stations to route the users’ uplink traffic to the nearest base station1. Moreover, UAVs deployment would
possibly solve many technical issues during the post-disaster network where existing network components are congested or
partially dysfunctional. Since UAVs have strong line-of-sight (LoS) communication with the end users, the user throughput and
network coverage can be significantly improved.

The full potential of UAV-enabled cellular communication can be exploited only when the horizontal and vertical positions
of the UAVs can be optimized in real-time. The major challenge in such a communication system in comparison to the tradi-
tional cellular system is the mobility of UAV relays or base stations (BSs) that makes it difficult to measure the channel state
information2. On the other hand, there is more flexibility in system design due to the fact that there exist multiple tradeoffs
among UAV height, antenna beamwidth and transmit power. For example, larger beamwidth covers more ground users and in-
creases the transmit power and interference footprint. For the given beamwidth and transmit power, higher UAV altitude covers
more users but the system throughput is significantly decreased due to the higher path loss. Also, a novel 3-D nonstationary
geometry-based stochastic model for UAV-to-ground channel estimation is presented in3. Many techniques have been proposed
recently to achieve efficient UAV-enabled cellular communication. The minimum number of aerial BSs and their placement to
provide coverage to users with minimum QoS is studied in4. The UAV-supported clustered NOMA for the Internet of Things
is proposed in5 where UAV height and trajectory are optimized to get maximum throughput on the clustered user terminals. A
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Figure 1 The user distribution following Poisson cluster process in 2D plane and initial deployment of UAV above users.

different perspective of UAVs has been studied in6 where UAVs are used for wireless power transfer to the ground terminals,
which is important for Internet-of-Things (IoT) applications.

The tradeoff between UAV flight time and energy consumption has been reassessed by different settings of clustering radius
and the maximum flight speed7. Therefore, the flight time and maximum flight speed are related and constrained by each
other, there may be multiple combinations of mission time and maximum flight speed which makes this a multi-objective
optimisation problem8. Furthermore, the UAV trajectory design for dynamic environments where users constantly move and thus
change the node distribution is a more challenging task9. Such challenges motivate us to simplify the complex UAV trajectory
optimisation problem into a simplified single UAV trajectory design problem in this paper. This can be extended further to
analyse the multiple UAV dynamic network environment. In this paper, we investigate the best positioning of UAVs and optimal
transmit power control during the typical post-disaster network scenario. The best UAV position is obtained by optimizing the
horizontal trajectory and vertical position to maximize the performance of the network in terms of coverage, throughput and
energy efficiency. It is assumed that the UAVs are equipped with a directional antenna and the beamwidth is adjusted at a fixed
angle and does not change. The user distribution is considered to be a Poisson cluster process (PCP) which resembles the user
distribution during post-disaster scenarios, e.g., earthquakes or flooding, where users are dispersed as a cluster and the set of
clusters are distributed as per the Poisson point process.

2 SYSTEM MODEL

We consider the UAV-enabled wireless communication network as shown in Fig. 1, where one UAV is deployed to serve the
ground user terminals. The post-disaster network scenario is considered where the users are either partially or fully isolated
from the cellular network. The UAV is deployed at altitude ℎ𝑢, where ℎ𝑚𝑖𝑛 ≤ ℎ𝑢 ≤ ℎ𝑚𝑎𝑥, and the minimum and maximum
altitude, i.e., ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥, of UAV is decided by the aviation authority. The position of the horizontal axis is (𝑥𝑢, 𝑦𝑢), where
𝑥𝑚𝑖𝑛 ≤ 𝑥𝑢 ≤ 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛 ≤ 𝑦𝑢 ≤ 𝑦𝑚𝑎𝑥, depends on the network deployment area and the user distribution. The number of users
communicating with the UAV and their positions are always known in the considered system model.

A UAV is deployed above the disaster area which serves 𝑘 = {1,… , 𝐾} ground terminals. The initial location of the UAV in
3D space is randomly chosen at {𝑥𝑢, 𝑦𝑢, ℎ𝑢} = {𝑥0, 𝑦0, ℎ0}. The hovering time of UAV is 𝑇 which is divided into 𝑛 = {1,… , 𝑁}
time slots of duration 𝑡, i.e., 𝑇 =

∑𝑁
𝑛=1 = 𝑁𝑡. The UAV stays at a particular 3D location for a duration of 𝑡. Therefore, the

random spatial location of UAV is denoted by {𝑥𝑢(𝑛), 𝑦𝑢(𝑛), ℎ𝑢(𝑛)} at 𝑛𝑡ℎ time slot. The choice of 𝑁 incorporates the tradeoff
between the accuracy of optimal trajectory and transmit power to the complexity of the algorithm. Another important parameter
is the transmit power of UAV, i.e., 𝑃𝑡 ≤ 𝑃𝑚𝑎𝑥, which must be optimized for better system performance.

The air-to-ground path loss model significantly depends on the probability of LoS in the considered UAV-enabled communi-
cation systems, which is calculated as Pr(LoS) = 1

1+𝑎exp(−𝑏( 180
𝜋
𝜃−𝑎))

, where 𝑎 and 𝑏 depend on the environment, e.g., rural, urban
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etc. and 𝜃 = tan−1(ℎ
𝑟
) is the elevation angle where ℎ is the altitude of UAV and 𝑟 is the horizontal distance from the receiver.

The mean path loss in the considered scenario according to10 is as follows.

PL(dB) = 20𝑙𝑜𝑔
(

4𝜋𝑓𝑐𝑑
𝑐

)

+ Pr(LoS)𝜂𝐿𝑜𝑆 + Pr(NLoS)𝜂𝑁𝐿𝑜𝑆 , (1)

where 𝑓𝑐 , 𝑐 and 𝑑 are the carrier frequency, speed of the electromagnetic wave and distance between UAV and receiver, respec-
tively. Moreover, Pr(NLoS) = 1 − Pr(LoS), 𝜂𝐿𝑜𝑆 and 𝜂𝑁𝐿𝑜𝑆 are the additional losses to the free space propagation for LoS and
NLoS components, respectively which depend on the considered network environment.

The users 𝑘 = {1,… , 𝐾}, at 𝑛𝑡ℎ time slot, are distributed following the PCP, where 𝑘𝑡ℎ user location is represented by
{𝑥𝑘(𝑛), 𝑦𝑘(𝑛), 0} considering the height of the user is negligible compared to the height of the UAV base station. The PCP Φ𝑘
is defined as Φ𝑘 =

⋃

𝛼∈Φ∗
(𝑥𝛼 ,𝑦𝛼 ,ℎ𝛼 )

𝛼 + 𝛽𝛼𝑘 , where Φ∗
(𝑥𝛼 ,𝑦𝛼 ,ℎ𝛼)

is the projection of point process on (𝑥, 𝑦)-plane which is the parent
Poisson point process of density 𝜆(𝑥𝛼 ,𝑦𝛼) and 𝛽𝛼𝑘 is the offspring, i.e., users point process where each point at 𝛽𝛼𝑘 is i.i.d around
the Φ∗

(𝑥𝛼 ,𝑦𝛼 ,ℎ𝛼)
with the user density 𝜆(𝑥𝛼 ,𝑦𝛼 ,0). Since users are distributed according to PCP, the 𝑘𝑡ℎ user location at 𝑛𝑡ℎ time slot

is represented by (𝑥𝑘(𝑛), (𝑦𝑘(𝑛), 0) considering the height of the user is negligible compared to the height of the UAVs. The
downlink channel gain between the UAV and the user 𝑘 = {1,… , 𝐾} is obtained as follows:

𝑔𝑘𝑢 [𝑛] =
𝛿0

(𝑥𝑢[𝑛] − 𝑥𝑘[𝑛])2 + (𝑦𝑢[𝑛] − 𝑦𝑘[𝑛])2 + (ℎ𝑢[𝑛] − 0)2
, (2)

where 𝛿0 is the reference channel power gain which depends on the considered path loss model in (1). Only one UAV is deployed
to optimize the optimal positions and transmit power. Therefore, subscript 𝑢 is removed for brevity. Moreover, downlink OFDMA
is considered where the total bandwidth 𝐵 is equally divided among the UAV and user pair. Since this is an isolated network
scenario, the co-channel interference is negligible from the existing cellular users. When the transmit power is 𝑃𝑡,𝑘[𝑛] for user 𝑘
and time-slot 𝑛, the received signal-to-noise-ratio (SNR) is as follows:

SNR[𝑛] =
𝑃𝑡,𝑘[𝑛]𝛿0

[

(𝑥[𝑛] − 𝑥𝑘[𝑛])2 + (𝑦[𝑛] − 𝑦𝑘[𝑛])2 + ℎ2[𝑛]
]

𝜎2
, (3)

where 𝜎2 is the variance of AWGN.The received spectral efficiency for user 𝑘 is as follows:

𝑅𝑘[𝑛] = 𝛼𝑘log2

(

1 +
𝑃𝑡,𝑘[𝑛]𝛿0

𝜎2𝛼𝑘
[

||𝒙𝑘||
2 + ||𝒚𝑘||

2 + ℎ2
]

)

, (4)

where 𝛼𝑘 is the allocated portion of bandwidth 𝐵 to the user 𝑘 and 𝑃𝑡,𝑘[𝑛] is the UAV’s transmit power to the user 𝑘 at timeslot
𝑛. Here, 𝒙𝑘 and 𝒚𝑘 represent the projected distance in (x, y)-axis from UAV to user 𝑘 = {1,… , 𝐾}.

3 SUM-THROUGHPUT OPTIMIZATION

Here, the aim is to maximize the spectral efficiency on downlink during the post-disaster, which can be formulated as follows:

max
𝑥[𝑛],𝑦[𝑛],ℎ[𝑛],𝑃𝑡,𝑘[𝑛]

𝐾
∑

𝑘=1
𝛼𝑘log2

(

1 +
𝑃𝑡,𝑘[𝑛]𝛿0

𝜎2𝛼𝑘
[

||𝒙𝑘||
2 + ||𝒚𝑘||

2 + ℎ2
]

)

(5a)

s.t.
𝐾
∑

𝑘=1
𝑃𝑡,𝑘[𝑛] ≤ P𝑚𝑎𝑥,∀𝑘, 𝑛, (5b)

𝑃𝑡,𝑘[𝑛] ≥ 0,∀𝑘, 𝑛, (5c)
𝑥𝑚𝑖𝑛 ≤ 𝑥[𝑛] < 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛 ≤ 𝑦[𝑛] < 𝑦𝑚𝑎𝑥, (5d)
ℎ𝑚𝑖𝑛 ≤ ℎ[𝑛] < ℎ𝑚𝑎𝑥,∀𝑛, (5e)

𝛼𝑘 ≥ 0,∀𝑘,
𝐾
∑

𝑘=1
𝛼𝑘 = 1. (5f)

The constraints (5b) and (5c) are related to the power budget of the UAV, constraints (5d) and (5e) are the location constraints in
horizontal and vertical axes, respectively, and constraints (5f) and (??) are related to the bandwidth allocation strategy. Here, the
optimization parameters, i.e., the 3D trajectory and transmit power, are directly coupled, which makes this problem a non-convex
optimization problem. It is therefore intractable to find optimal trajectory in 3D space and transmit power using the standard
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convex optimization theory. We hereby assume that the user distribution is not significantly changed for a few time slots during
the considered post-disaster network scenario. Therefore, we follow the step-by-step approach to solve the optimization problem.
When the UAV is deployed during post-disaster, e.g., earthquake or flooding, it is difficult to estimate the user distribution and
correct user density in real-time. Therefore, the UAV initial position axes, i.e., (𝑥[𝑚], 𝑦[𝑚], ℎ[𝑚]), are randomly selected within
the minimum and maximum values in the x-axis and y-axis, which depend on the location and area affected by the disaster. The
maximum UAV flying altitude is fixed and monitored by aviation authorities, for instance, ℎ𝑚𝑎𝑥 is 250 m in the UK. Moreover,
UAV deployment is also a step-by-step approach where height, trajectory and the transmit power are selected at a particular
point and assessed at every time slot to readjust these parameters depending on the unpredictable user movements during the
post-disaster.

The objectives in this paper are achieved by solving the optimization problem following the real UAV deployment scenario.
At particular time-slot 𝑛, the first step is to deploy the UAV in a random (𝑥[𝑛], 𝑦[𝑛]) location within the range. The UAV is
kept at height ℎ[𝑛], subchannels are equally distributed, i.e., 𝛼𝑘 =

1
𝐾
,∀𝑘 and the transmit power is fixed at 𝑃𝑡,𝑘[𝑛],∀𝑘. Then the

optimization problem is as follows:

max
𝑥[𝑛],𝑦[𝑛]

𝐾
∑

𝑘=1
𝛼𝑘log2

(

1 +
𝑃𝑡,𝑘[𝑛]𝛿0

𝜎2𝛼𝑘
[

||𝒙𝑘||
2 + ||𝒚𝑘||

2 + ℎ2
]

)

(6a)

s.t. 𝑥𝑚𝑖𝑛 ≤ 𝑥[𝑛] < 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛 ≤ 𝑦[𝑛] < 𝑦𝑚𝑎𝑥. (6b)

The UAV then estimates the average downlink throughput and stores it with associated location (𝑥[𝑛], 𝑦[𝑛]). The users’ dis-
tribution is estimated based on the arrival control signal from the ground users and changes its position by (𝛿𝑥, 𝛿𝑦) in four
directions. The number of times the UAV adjusts its position can be fixed depending on the size of the disaster area and the
energy availability of the UAV. At a fixed UAV height, the highest downlink spectral efficiency provides the optimal horizon-
tal position, i.e., (𝑥∗[𝑛], 𝑦∗[𝑛]) of the UAV. The next step is to keep the UAV within a small circular radius of 𝛿𝑟 about point
(𝑥∗[𝑛], 𝑦∗[𝑛]). The optimal height is then estimated which provides the best coverage, lower path loss and improved throughput.
The new optimization is then obtained as follows:

max
ℎ[𝑛]

𝐾
∑

𝑘=1
𝛼𝑘log2

(

1 +
𝑃𝑡,𝑘[𝑛]𝛿0

𝜎2𝛼𝑘
[

||𝒙∗
𝑘||

2 + ||𝒚∗
𝑘||

2 + ℎ2
]

)

(7a)

s.t. ℎ𝑚𝑖𝑛 ≤ ℎ[𝑛] < ℎ𝑚𝑎𝑥. (7b)

The step size of the increment of height, i.e., 𝛿ℎ, depends on the terrain conditions of the disaster area. This provides the
optimal height ℎ∗[𝑛] of the UAV in which the total spectral efficiency is maximized. when the trajectory optimization problem
is solved, the final objective is to optimally select the UAV’s transmit power for each user within the power budget. The 3D
trajectory and transmit powers are now decoupled which makes the optimization problem a convex optimization problem, as
shown below, which can be solved by using the standard convex optimization methods.

max
𝑃𝑡,𝑘[𝑛]

𝐾
∑

𝑘=1
𝛼𝑘log2

(

1 +
𝑃𝑡,𝑘[𝑛]𝛿0

𝜎2𝛼𝑘
[

||𝒙∗
𝑘||

2 + ||𝒚∗
𝑘||

2 + ℎ∗2
]

)

(8a)

s.t.
𝐾
∑

𝑘=1
𝑃𝑡,𝑘[𝑛] ≤ P𝑚𝑎𝑥,∀𝑘, 𝑛, (8b)

𝑃𝑡,𝑘[𝑛] ≥ 0,∀𝑘, 𝑛, (8c)

𝛼𝑘 ≥ 0,∀𝑘,
𝐾
∑

𝑘=1
𝛼𝑘 = 1 (8d)

4 SIMULATION AND ANALYSIS

The proposed 3D trajectory and transmit power optimization technique has been summarized in the Algorithm 1. The post-
disaster communication network is considered in an urban environment as shown in Fig. 1, where the users are distributed
according to the Poisson point process inside the cluster and the distribution of clusters follows the Poisson process. The user
density of 25 per cluster and 10 clusters have been considered with a radius of 180 m. The maximum transmit power, 𝑃𝑡,𝑚𝑎𝑥, in
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Algorithm 1 Optimization of 3D trajectory and the downlink transmit power from UAV to the users
Input: Minimum and maximum UAV heights: (ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥), Trajectory boundaries: (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥), (𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥), Power budget:
𝑃𝑚𝑎𝑥, Initial position:, (𝑥0, 𝑦0, ℎ0), Number of user: 𝐾 .
Output: Optimal 3D Trajectory: (𝑥∗[𝑛], 𝑦∗[𝑛], ℎ∗[𝑛]), Optimal transmit power: 𝑃 ∗

𝑡,𝑘∀𝑘.
Start

1: Set UAV height randomly between ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥
2: Adjust (𝑥[𝑛], 𝑦[𝑛]) to cover large set of 𝑖 = {1,… , 𝑁} users and calculate 𝑅 =

∑

𝑘 log2(1 + SNR(𝑘))
3: When 𝑅 = 𝑅𝑚𝑎𝑥, fix UAV on (𝑥∗[𝑛], 𝑦∗[𝑛]) and increase UAV height until ℎ = ℎ𝑚𝑎𝑥
4: Optimize height ℎ∗[𝑛] where

∑

𝑘 log2(1 + SNR(𝑘)) is maximum
5: For the optimal trajectory, numerically solve the optimization problem (8a)-(??).
6: Measure and compare the spectral efficiency.

End

UAV is set to 30 dBm whereas the number of subchannels 𝑁 = 32 each with bandwidth 125 KHz and the carrier frequency
is set to be 1800 MHz. Thermal Noise Density is considered to be -174 dBm/Hz and other simulation parameters are {𝑎, 𝑏} =
{9.61, 0.16}, {ℎ𝑚𝑖𝑛, ℎ𝑚𝑎𝑥} = {20 m, 350 m}, {𝜂𝐿𝑜𝑆 , 𝜂𝑁𝐿𝑜𝑆}={1, 20.0} and 𝛽0 = −50 dB.

At first, the UAV is randomly deployed within the considered area. It starts finding the best trajectory where it can achieve the
highest spectral efficiency. At this optimal coordinate, the best UAV height is obtained which provides the maximum network
coverage. At this point, the transmit power is selected to maintain the minimum level of performance on the downlink com-
munication. Here, we consider the users get equal bandwidth in each subchannel irrespective of their locations. Moreover, the
partial channel state information is also available to the UAV from the users from which the user distribution pattern is known
which helps to select the next optimal trajectory point.

The average spectral efficiency, measured in bps/Hz, for a range of transmit power, is shown in Fig. 2a. The proposed optimal
UAV positioning always outperforms the case when the UAV’s trajectory is randomly chosen. This is due to the fact that the
UAV always selects the horizontal and vertical positions according to the mobility and distribution of the ground users and
serves comparatively more ground terminals. Moreover, even when the lower transmit power is set, i.e., 1 dBm to 15 dBm, the
spectral efficiency of the proposed method is approximately four times more than the random UAV deployment scenario. For
instance, at 𝑃𝑡 =10 dBm, the proposed optimal trajectory achieves 2.5 bps/Hz spectral efficiency whereas it is just 0.5 bps/Hz
for a random deployment scenario. It indicates that the proposed optimal trajectory design is exceptionally energy efficient.

The average spectral efficiency performance when varying the vertical height of the UAV at 𝑃𝑇 = 20 dBm is shown in Fig. 2b.
Here, the spectral efficiency is first increased up to the optimal UAV height in both the proposed and random UAV deployment
methods. When the UAV further flies up, the spectral efficiency starts degrading due to the severe signal path loss. However,
the proposed optimal trajectory and transmit power technique outperforms the random UAV trajectory irrespective of the UAV
altitude. On further observation in Fig. 2b, the optimal UAV height in the proposed method is approximately 50 m where spectral
efficiency is 4.7 bps/Hz. On the other hand, the optimal UAV altitude in the random UAV deployment is approximately 100 m
where spectral efficiency is 3.11 bps/Hz. Therefore, we can conclude that more users are covered at the lower UAV altitude
when the transmit power and UAV 3D trajectory are calculated optimally. As a result, the proposed method needs lower transmit
power for a similar performance, which makes it a highly energy and spectral-efficient technique.

5 CONCLUSION

The UAV-enabled aerial communication network has been considered as an effective solution to provide wireless connectivity to
ground users. We investigated the optimal trajectory design for the UAV at optimal altitudes to provide wireless services to iso-
lated users. The simulation results have shown that increasing transmit power from 15 dbm to 25 dbm does not improve spectral
efficiency without proper UAV trajectory design. It can also be concluded that the proposed UAV trajectory design technique
could improve spectral efficiency by 1.5 bps/Hz at the optimal UAV location and improve network coverage simultaneously. As
a future work, the optimal trajectory design in a multi-UAVs scenario to improve both spectral and energy efficiencies will be
further investigated.
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Figure 2 (a) The performance analysis of the proposed method in terms of spectral efficiency vs. the transmit power in com-
parison to the random UAVs (b) The performance analysis of the proposed method in terms of spectral efficiency vs. the UAV
height in comparison to the random trajectory design.
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