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ABSTRACT Electricity Transmission plays an imperative role in smooth provision of power to the
consumers. High voltage direct current (HVDC) system has a lead over high voltage alternate current
(HVAC) system in various aspects. As DC transmissions lines transmit electricity over long distance, it is
crucial to find the malfunctioning part of the line in case of faults occurrence. In this work, a decision-
making based unmanned aerial vehicle (UAV) control strategy is presented for identifying fault location in
HVDC transmission lines. The technique is developed on two layered control systems, i.e., command station
(Leader Agent) and UAV agents (Local Agents) control. The Markov decision process (MDP) based reward
policy for both agents is defined mathematically and has been implemented in MATLAB to depict their
behavior. The resulting policy is optimized through the value iteration algorithm based on reward functions
and transition probabilities.

INDEX TERMS Fault identification, high voltage DC (HVDC), multiagent system (MAS), markov decision
process (MDP), unmanned aerial vehicle (UAV).

I. INTRODUCTION
Reward based strategy is the key to policy-based decision-
making process. Such strategies are applicable to any indus-
trial based solution where decision making is of utmost
importance. When it comes to fault identification in power
transmission systems, locating the precise area of fault occur-
rence plays a vital role in providing timely corrective actions.
In the current transmission systems, especially in develop-
ing countries, the available solutions for locating the fault
are either very expensive, time taking or does not exist at
all. Using unmanned ariel vehicles (UAVs) combined with
reward-based movement strategies can act as an alternative
approach for the given problem, especially in remote areas
or long-distance transmission lines. Such strategies provide
input states for defining the policy function based on which
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UAVmovement decision is performed. In high voltage direct
current (HVDC) system, fault identification in transmission
lines becomes even more sensitive due to high voltage nature
and bulk power transmission capacity. So, an unmanned
approach is much more feasible for such systems [1], [2].

HVDC system is more reliable because it ensures safe
operation as compared to high voltage alternate current
(HVAC) system [3]. The HVDC grid is divided into different
zones and only that zone is isolated from the network which
is faulty or malfunction [4]. The DC grids are normally
protected by the use of converters with the capability of fault
blocking which interrupts the DC fault current. However, this
limits its applicability to small systems [5]. For efficient fault
protection, the second step is to identify the precise fault loca-
tion so that a timely remedial action can be taken to stabilize
power transmission [6]. The deployment of HVDC system
strongly demands a reliable protection system and timely
fault location identification ensures it. Till date, the HVDC
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system relies on technical fault identification approaches like
travelling wave approach [7]. However, general drawbacks of
such approaches are poor reliability and low accuracy, as they
can identify an area of fault but not the location of the fault.
Due to this problem, manned mission is required to recon the
identified faulty area for exact fault location, which is time
taking, risky and costly depending on the terrain. Keeping
all this in view, an unmanned autonomous learning-based
fault location identification strategy is proposed in this work.
The strategy is developed considering autonomous control of
UAVs using policy decision making process defined by MDP
technique. The proposed work acts as basis for providing
learning-based decision-making process for efficient move-
ment of UAV to locate the line faults. The proposed approach
does not involvemannedmissions which in case of dangerous
terrains are not only cost effective but also less risky.

The paper has been divided into following sections, sec-
tions II include literature review, section III describes the pro-
posed fault identification model for HVDC system, section
IV gives results and discussions using different scenarios of
the MDP implementation strategy based on multi-agent UAV
system in HVDC line. Finally, section V provides conclusion
and future extensions of this work.

II. LITERATURE REVIEW
To date several fault identifications schemes have been pre-
sented for power transmission systems. The directional pro-
tection scheme has been discussed in [8] for the realization
of internal and external faults. The basic principle lies in the
integral of reactive power. Theoretical analysis of directional
characteristics is implemented on HVDC test system which
is modeled in PSCAD. Sneath and Rajapakse [9] discussed
a protection scheme which was implemented on an earthed
bi-pole HVDC grid with the use of rate of change of voltage
(ROCOV) and hybrid direct current circuit breakers. The
effect of different sizes of inductors with the rise of current
was studied and necessary protection thresholds on HVDC
grid were also analyzed. The authors in [10] developed a
transient energy-based protection scheme for HVDC trans-
mission line by considering fault resistance and transmission
distance as two main factors. In [11], the authors have pro-
posed a unique fault location algorithm based on distributed
parameter line model in which fault position and fault resis-
tance are not required. Authors have made a comparison
of their algorithm with travelling wave-based method and
concluded that this algorithm is a better fault location method
because it requires low sampling frequency and can use any
segment of post fault data to identify faults.

Liu et al. [12] discussed travelling wave-based fault identi-
fication method using Hilbert Haung Transform and Ensem-
ble empirical mode decomposition (EEMD) time frequency
graph. Haleem et al. [13] proposed robustness technique
of low to high resistance fault detection schemes at dif-
ferent grid and operating configurations. Fault estimation
has been done in [14] using discrete wavelet transform and
extreme learning machine in an HVDC transmission lines.

FIGURE 1. Power transmission line inspection using UAVs.

The discrete wavelet transform-coefficients have been used
to find the energy of the signal and Shannon’s Entropy in [15].
Yusuff et al. [16] proposed a fault location technique on
a 400 KV and 361.297 km long transmission line using
stationary wavelet transform and determinant function
feature. In [17], a fault identification method has been pre-
sented based on single ended travelling wave theory, dis-
crete wavelet transforms and support vector machine. The
transmission system is segmented into overhead and under-
ground cable. A robust internal faults identification system
for double circuit HVDC transmission line was introduced by
Yanjun et al. [18]. Currently it is used to increase the power
transmission capacity in China. Niaki et al. [19] proposed
wavelet-transform and cable sheath’s transient voltage-based
techniques to detect faults on the DC zone including HVDC
cable. In [20], multi-terminal meshed network fault detection
technique has been presented by taking voltage amplitudes
of two DC reactors connected to the same converter terminal
and voltage polarities. Epameinondas et al. [21] has discussed
various HVDC topologies and compared them in terms of
faults on MTDC network. Irnawan et al. [22] proposed fault
protection scheme for an HVDC transmission line that con-
nects wind turbines to grid. Kerf et al. [23] presented wavelet-
based fault protection scheme for a four terminal mesh DC
system. Li et al. [24] presented that the external and internal
faults can be identified via measuring the amplitudes of back
propagation of the travelling wave.

Most of the works presented for fault identification rely on
internal parameters of the system and are unable to precisely
provide the fault location. Several studies, relying on external
technologies like robotics, have also been presented for the
monitoring of power transmission lines. In [25], the authors
have provided a design of a robot having identical arms for
power lines inspection. In [26], a wheel-based climbing robot
is proposed for the inspection of power lines which requires
a separate line attached to the power lines. Similarly, in [27],
a novel design and analysis of a robot is provided for the
inspection of power lines using jumper cable attached to the
power lines. The authors of [28] have provided analysis of
a low weight transmission line robot for easy movement on
the transmission lines. Another explored field of robotics, for
transmission line fault identification, is the use of UAVs as
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TABLE 1. Comparison of existing works.

FIGURE 2. HVDC system basic structure.

shown in [29]. In [30], a cooperative communication mecha-
nism is presented for multiple UAVs using imaging technol-
ogy for power line inspection. In [31], [32], [34], and [35],
multiple works have been presented for different kinds of
fault identification using learning based approached applied
on ariel images taken through UAVs. In [36], the automatic
UAV based inspection solution is presented where the inspec-
tion system is designed for large solar system to visualize
the defects on PV module. The authors in [37], developed
a target detection algorithm for UAVs used in inspection
process for transmission lines. A real time fault detection
model based on acceleration engine was designed for UAVs
in [38]. In [39], the authors proposed a single and multi-
fault detection for insulators used in power transmission lines.
This method was implemented using UAVs for aerial images.
In [40], a novel end-to-end network was designed for UAVs to
inspect the railway system. In [41], the BSRT approach is pro-
posed for transmission line inspection based on UAVs. The
author in [42] proposed a modified model based on YOLO
for detecting insulator faults used in transmission lines. The
UAVs were used for taking aerial images. Most of the works
presented to date using UAVs, concentrate on developing
intelligent techniques for fault identification, like AI based
imaging, but limited works have explored UAV based intelli-
gent traversing strategies for fault location identification in

HVDC transmission lines, especially, using learning-based
approaches. The works that involve intelligent movement
of UAVs have used different application environments like
reconnaissance of disaster areas [43], residential areas [44]
and smart cities [45] etc. Similarly, the works involving MDP
based learning strategies for autonomousmovement of UAVs,
presented in [45], [46], [47], [48], [49], [50], and [51], also
focused on application areas other than the exploration of
HVDC transmission lines especially for fault location iden-
tification. In this work, we focus on autonomous control
strategy of UAVs working together to traverse the HVDC
transmission lines for fault location identification. The con-
cept of UAV based pole-to-pole transmission line inspection
is shown in Figure 1. A comparison of the work presented
in this paper with multiple existing techniques is given in
Table 1.

As aforementioned, several works have been performed
on fault detection using internal parameters like travelling
wave method etc. and almost none of them can provide
location of the fault. Further, use of the method depends on
the specifications of the network or part of the network. This
can impact on the cost of the network as multiple solutions
will be required across the whole network. However, such
solutions can be used to minimize the fault location identifi-
cation time together with our strategy. Furthermore, the work
can be enhanced by equipping UAVs with technologies like
thermal and HD imaging. So, there are many potentials of this
proposed strategy, however, these are not in the scope of this
paper as its sole focus is to provide control strategy.

As mentioned earlier, a much faster and precise fault
identification technique is needed that is not only able to
identify line faults but can also provide accurate and efficient
fault location. For such reasons, an efficient learning-based
strategy is devised using UAVs to detect and locate the fault
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FIGURE 3. Back-to-back scheme.

efficiently, especially in areas where mannedmissions are not
possible. In this context, limited work has been performed
using a learning-based UAV approach for fault identification
in HVDC transmission lines. The major contributing factors
of this work are summarized as follows:
• An unmanned and efficient HVDC Transmission line

inspection strategy using UAVs is presented for faulty
portion identification in the transmission line.

• Provides basis for the AI/Machine-Learning based
approaches for autonomous control of the UAVs to be
used in Power sector applications.

• Provides Reward based UAV control strategy for learn-
ing networks,
© where the reward equations are derived based on the

control strategy and
© Then usingMATLAB, the reward tables are derived

for each possible scenario based on the states of
the Leader agent (Command Center) and the local
agents (UAV agents).

• Intuition is provided using the application of HVDC
power system transmission lines to explain and support
the control strategy.

• Validation of the presented control strategy is provided
through MATLAB based simulation results.

III. SYSTEM MODEL
This section provides details of the system model for fault
location identification in HVDC transmission lines using a
reward based multiagent system. The section starts with a
brief description of the general HVDC transmission system
with its link classifications. The latter subsections concentrate
on the multiagent reward-based strategy.

A. HIGH VOLTAGE DC TRANSMISSION SYSTEM
HVDC transmission system is also termed as electrical super-
highway because it can transmit a large electrical power over
long distances with less electrical losses. These transmission
lines can carry 100kV to 1500kV respectively [1]. In HVDC
transmission system there is no skin effect hence, the con-
ductor area is fully utilized. Also, the inductive and capac-
itive parameters do not apply any limit on the transmission
capacity as well as length of the DC cable [2].

The basic structure of HVDC transmission system is shown
in Figure 2. This system consists of AC side rectifier, trans-
formers, DC side inverter and DC transmission lines or
cables. A brief description of HVDC link classification is
provided as follows.

FIGURE 4. HVDC mono-polar transmission system: (a) with ground return
path (b) with metallic return pat.

FIGURE 5. HVDC bi-polar transmission system (balanced operation):
(a) with electrodes (b) with low voltage DC (LVDC).

Back-to-back: If the rectifier and inverter are placed on the
same station, then this scheme is termed as back-to-back as
shown in Figure 3. It is used in contiguous AC grids that are
not synchronized and in meshed grids [52].
Mono-polar: Mono-polar HVDC transmission system is

used for very long power transmission especially undersea
cable transmission with its return path to ground or sea
electrodes [52]. The system is shown in Figure 4(a). If the
environmental constraints or existing infrastructure limit the
use of electrodes, then in that case a metallic return path can
be applied as shown in Figure 4(b).
Bipolar: This type of scheme is required if the single

pole is not able to handle the desired transmission capacity.
It can also be used when the rejection power of the load is
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low or there is need of high energy availability [52]. If the
transmission distance is short or infrastructure restrictions of
using electrodes, then a metallic return path is used instead of
electrodes. Both configurations, i.e., with electrodes and low
voltage DC are shown in Figure 5(a) and (b) respectively.
Homo-polar: The Homo-polar system has conductors with

negative polarity. Its advantage lies in its less installation
cost [52]. The system is shown in Figure 6.

FIGURE 6. HVDC homo-polar transmission system.

As the research focuses on policy-based input for Learn-
ing approaches to derive autonomous UAV control for fault
location identification in HVDC transmission lines, so it is
important to mention that the proposed work is primarily for
the faults related to the transmission lines, mainly:
• Line to Line Faults
• Line to Ground Faults
• Double line to ground Faults
After the brief description of HVDC transmission system

with its link classifications, the description of multi-agent
system (MAS), policy derivation and control strategy are
provided in the next subsections.

B. MULTI-AGENT SYSTEM (MAS)
As aforementioned, multiple methods are used for fault
detection in HVDC transmission system, however, using
UAVs with implementation of reward policy-based move-
ment makes the detection process more efficient. The process
is safer due to its autonomous and unmanned nature. The
technique implemented in this paper for UAV movement is
hierarchical multi-agent system (MAS) where agents are con-
sidered as UAVs, that will monitor the HVDC transmission
line. The distribution possibilities of UAVs in different areas
of the HVDC transmission line through multiagent system is
explained taking a simple example for better understanding
shown in Figure 7. The example scenario in Figure 7 can be
interpreted as a chunk of HVDC transmission line divided
into five partition areas considering eight UAV agents con-
trolled by a command center called the Leader agent. It is
considered that there can be a maximum of two UAVs in one
partition, if the number of UAVs is more than that; the leader
agent must divide the UAV agents appropriately. To explain
it further a total of four cases have been taken to check the
efficiency of our system shown in Figure 7 and explained as
follows:

• Case 1: First case starts with all the agents in the area 3.
To make sure that the presented system works smoothly
according to the defined conditions, the network will
divide these UAV agents into all areas for achieving
better efficiency such that Area 1 and 5 have 1 agent and
other areas have 2 agents each shown in Figure 7(a).

• Case 2: Second possibility starts with 3 UAV agents in
the area 2. Other areas have a satisfactory number of
UAV agents; thus, our network takes 1 agent and moves
it to area 1 which is close by and has 1 agent shown in
Figure 7(b).

• Case 3: Third possible case starts with 3 UAV agents in
the area 4. However, both close by areas 3 and 5 have
satisfactory number of agents, thus our network takes
1 agent and moves it to area 1 but in doing so complete
topology is changed as shown in Figure 7(c).

• Case 4: Forth case starts with 3 UAV agents in
area 4 and 5. However, area 5 is the last one and area 3
has only one agent. This topology is complex and to get
satisfactory results 1 agent is moved to area 1 and one
agent is moved to area 2 as shown in Figure 7(d).

Based on the cases in above example, the general
design and derivation of MAS for fault location identifi-
cation in HVDC transmission lines is provided in the next
sections.

C. IMPLEMENTATION OF MAS ON HVDC
Normally the HVDC transmission system is divided into dif-
ferent zones as shown in Figure 8. It is recommended to divide
the system into adjacent overlapping zones for better protec-
tion as when a fault occurs in the overlapping area, the circuit
breakers of both the zones will open. After a fault occur-
rence, efficient fault location identification is required in the
transmission lines, right after the breaker operation, which
is zone 2 shown in Figure 8 and is the focus of this work.
Further, the proposed work offers independence of 24/7 mon-
itoring or monitoring once the fault has occurred, depending
on what is required, and which one is more convenient. Like
the example in Figure 7, for deriving the policy and reward
functions, the zone 2 in Figure 8 can be divided into different
sections called partition areas, each having ‘m’ UAV agents,
controlled by a command center called the leader agent. The
UAV agents must be distributed efficiently, as shown in the
example given in Figure 7, to perform searches with specified
goals of locating Faults. Further details of how the trans-
mission line can be divided into subsections and partitions
for better coverage by UAV agents are discussed later in the
results and discussion section.

The approach proposed in this work has been consid-
ered through modifications in the work performed in [53]
implementing multi-agent systems. The system includes an
implementation of leader (command and control center) and
local agents (UAVs) approach. For this purpose, an effec-
tive implementation of Markov decision process (MDP)
model is important for both leader and local agents given as
follows:
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FIGURE 7. UAV multiagent system distribution possibilities, an example.

FIGURE 8. HVDC transmission system.

FIGURE 9. Partition and block distribution of HVDC transmission line for
UAV agent movement.

1) MDP MODEL FOR LEADER AGENT
For leader agent (command and control), the MDP model
includes the states, actions, and transition probabilities, which
are defined as follows:

a: STATES
Four state variables are used in this work with each having
its own function, i.e., a is the UAV agent state which depicts
that either UAV agent is in on or off state, g depicts the goal
completion, c gives the UAV agent partition (location) and
b is the status of partition (faulty, not faulty, and dangerous).

The state equation comprising of these variables is given as:

S = {s1, s2, . . . , sn
si =

{
a1, a2, . . . , am, g, c1, c2, . . . , cm, b1, b2, . . . , bp

}
i ∈ {1, 2, . . . , n} ,

aj ∈ {0, 1} , j ∈ {1, 2, . . . ,m}

bk ∈ {0, 1, 2} , k ∈ {1, 2, . . . , p} ,

cj ∈ {1, 2, . . . , p} , j ∈ {1, 2, . . . ,m} ,

gw ∈ {0, 1} , w ∈ {1, 2, . . . ,m} , (1)

where, S is the total number of states, si is the state space,
m is the number of UAV agents and p is the number of
partitions shown in the Figure 9.

b: ACTIONS
There is a total of m agents and p partitions thus, the maxi-
mum number of actions is given by m × p = M . An agent a
can move to any partition k . The set of actionsM is given as:

M = {µ1,1, µ1,2, . . . , µ2,1, µ2,2, . . . , µm,p,NOOP} (2)

where, NOOP is the abbreviation for no operation.
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FIGURE 10. State transition conditions for leader agent.

c: REWARD FUNCTION
The reward function is the most important part in any MDP
process. The states and reward function are defined according
to the application, which in our case is exploration of HVDC
transmission lines for fault location identification. The reward
function shows how important any task is from the number
of choices. In this model the reward function includes the
following:

1. The completion of goals g (fault detected).
2. Avoiding congestion of agents in one partition αj,k .
3. Avoiding dangerous partitions βj,k .

The equation for the reward function is given as

R (s)= (α1,1 + α1,2 + · · · + α2,1 + α2,2 + · · · + αm,p)

× [λ1egw + λ2eα1,1+α1,2+···+α2,1+α2,2+···+αm,p

+ λ3e−(β1,1+β1,2+···+β2,1+β2,2+···+βm,p)]

αj,k =

{
1 agentsj,k ≤ 2
0 otherwise,

j ∈ {1, 2,m}

βj,k =

{
1 agentsj,k > 1 and bk == 2
0 otherwise,

i ∈ 1, 2, 3}

(3)

After the definition of the reward function, the second most
important part is the state transition probability.

d: STATE TRANSITION PROBABILITY
Transition probability typically shows the probability of mov-
ing from one state to another state. It may vary according
to any given state and thus it is very important to have
probabilities that agree with the application. These probabil-
ities are typically calculated from an external source and are
utilized here for the purpose of research. The state transition
conditions are shown in Figure 10, where the next states of
the agent A′, partition status B′ and goal G′ are dependent
on their respective previous states and the partition status
state C .
Practically, there are multiple ways of defining the con-

ditional probabilities involved in the problem. These can be
available from statistical data or can be learned through real
time environment. The methods of obtaining the probabilities
do not lie in the scope of this work, instead it shows how to
use them in a MDP model.

FIGURE 11. State transition conditions for member UAV agents.

2) MDP MODEL FOR LOCAL AGENT
a: STATES
For the local individual UAV agent, in the proposed model,
seven variables are considered, i.e., partition status ps which
depicts that a partition is normal (0), unknown (1) or
faulty (2), companion present cpwhich depicts that an agent’s
current partition has a companion (0) or not (1), goal g (fault
detected (1) or not (0)), battery status energy which depicts
three levels; empty (0), half (1) and full (2), companion
location status cs which depicts the location of companion
agents depending on the partition number, block location
in a partition is given by block and the block status is
given by bcq which gives that a block is explored (1), not
explored (2) or dangerous (3) and q gives the total number
of blocks in a partition as shown in Figure 9. Using all
above variables, the generalized member state equation is
given as:

S = {s1, s2, . . . , sn

si =
{
ps, cp, gw, energy, cs, block, bc1, bc2, . . . , bcq

}
ps ∈ {0, 1, 2} ,

cs ∈ {1, 2, 3 . . . p} ,

energy ∈ {0, 1, 2} ,

cp ∈ {1, 2, 3 . . . p} ,

block ∈ {1, 2, . . . , q}

bc ∈ {1, 2, 3}

gw ∈ {0, 1} ,w ∈ {1, 2, . . . ,m} (4)

b: ACTIONS
Each UAV agent can take any of the five actions, given below,
which are given to it by the leader commanding agent. These
actions simply are related to the movement. Thus, the actions
can be movement in any four directions or no movement at
all. To sum it all, the following are the movements which are
given by the leader agent.

M = {MovLeft,MovRight,MovStraight,MovBack, stay}

(5)

c: REWARD FUNCTION DEFINITION
Reward function is a main part of the MDPmodel and should
be defined with caution. A problem with a single variable
definition can alter the whole policy.
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FIGURE 12. HVDC transmission line zone distribution experimentation scenario.

The reward function definition for member UAV agent is
dependent upon the following parameters:

1) Maximum area coverage.
2) Congestion avoidance (at most two UAV agents allowed

the same partition).
3) Status Check (UAV agent must send its active/inactive

status report to the Leader agent).
4) Hazardous block avoidance.
5) Maximize battery utility.

R (s) =
∑5

i=1
γiri, γi ∈ [0,∞)

r1 =
∑q

l=1
(bcl == 2)+ δ1 (ps == 0)

+
δ1

2
(ps == 1) , δ1 ∈ (0,∞)

r2 = (cp⊕ cs)

r3 = energy

r4 =
∑q

l=1
(block == l) ∗ (bcl 6= 3)

r5 = g1 + g2 (6)

where, r1 prompts the UAV agent for area exploration,
as the block search area increases, the reward function also
increases with it, γ1 is the value of coefficient, for this sce-
nario, and is taken to be a large positive number for increasing
the exploration area. r2 is the reward for congestion avoid-
ance, γ2 is also taken to be large positive number, as its pur-
pose is also to maximize the reward function, the 3rd reward
r3 gives the battery utility status, defined by three levels, i.e.,
low, medium or full, γ3 is taken about ten times larger than
that of γ2 for the missions where level of battery is most
important, on the other hand, lower value of γ3 may be used if
exploration is more important (full value of energy will take
reward function to maximum value), r4 is for hazardous block
avoidance to avoidUAVagent failure, i.e., the blockmay have
high temperature, or unsustainable terrain (leader agent must
make sure to not assign agents to such blocks), in the last fifth
variable r5 equation gives goal achievement.

FIGURE 13. Flowchart for the presented reward-based strategy.

d: STATE TRANSITION PROBABILITY
As aforementioned, transition probability gives the change
from one state to another. The state transition conditions of
member agent state are shown in Figure 11. The state transi-
tion depends on seven variables of the member UAV agent,
where the next state of goal G′ depends upon the previous
states of goalG, companion present cp, partition status ps, and
block. The remaining all other states, in Figure 11, depend on
their respective previous states.

IV. RESULTS AND DISCUSSION
To validate the proposed strategy, this section provides
simulation-based outcomes and discussion on the results.
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FIGURE 14. Reward based optimization flowchart for leader agent.

The simulation scenario is defined as follows: the strategy is
applied on zone 2 (transmission lines) provided in Figure 8.
The zone is divided into three sections F, G, and H, each
considering 100 km transmission line as shown in Figure 12.
Zone F of the transmission line is divided into ten small
zones with each zone covering 10 kilometers. If we take one
of the sub zones into consideration, it is again divided into
three specific partitions, each of these partitions is divided
into two equal blocks as shown in Figure 12. The purpose
of these blocks is to foresee which part of the partition is
hazardous and which partition is friendly enough for the
agent to move there. As aforementioned, leader agent is
considered as command-and-control center and local agents
are UAVs.

The resulting policy is optimized through the value iter-
ation algorithm [53] using the transition probabilities and
reward functions defined in previous section. The value iter-
ation equation which gives the optimal solution is given as:

V ∗ = max
A

′∑
s

T
(
s, a, s′

) [
R
(
s, a, s′

)
+ γV ∗

(
s′
)]

(7)

where,R is the reward function, T is the transition probability,
s is the current state of MDP, s′ is the previous state of MDP,
and a is the action taken by the UAV agent. The iterative
algorithm will keep running till it converges at an optimized
result. This section is divided into two parts, i.e., the first part
provides results and discussion on MDP based reward table
derivations using MATLAB for understanding the behavior
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FIGURE 15. Reward based optimization flowchart for Local UAV agents.

of both leader agent and local UAV agents, the second part
provides simulation results, also derived using MATLAB,
showing the behavior of UAVs for fault location identification
in transmission lines based on the presented reward-based
strategywhere the time taken to reach the fault location is also
calculated depending on distance and velocity of UAVs. The
overall system flowchart is shown in Figure 13 and the flow
charts for reward-based system optimization for both leader
and local UAV agents are shown in Figures 14 and 15.

A. MDP BASED LEADER AND LOCAL AGENT REWARD
RESULTS AND DISCUSSION
This section provides the leader and local UAV agent reward
tables and their behavior understanding based on cases taken
from these tables. For both leader and local UAV agent
cases, let’s assume that UAVs are trying to explore through
an HVDC transmission line during normal condition with
a goal to search for faults. Unknown constraints are if any
transmission line has fault it is declared as faulty. If the
transmission line does not contain fault, it is considered as
normal condition and if the part of transmission line is not
explored yet it is considered unknown.

TABLE 2. Initial conditions of leader agent.

1) LEADER AGENT BEHAVIOR
Two cases are discussed for better understanding of Leader
agent’s reward function behavior, i.e., 1) with uneven dis-
tribution of UAVs and 2) with even distribution of UAVs.
MDP is used to derive the states of leader agent and the
reward for each state of leader agent is calculated to formulate
a complete policy. The values of leader agent reward are
dependent on the variables discussed in Section III. The ini-
tial conditions for the variables associated with leader agent
are depicted in Table 2. The MDP policy of the controlling
leader agent is given as follows:

a: MDP POLICY
The MDP policy of leader agent is dependent on multiple
state variables defined in section III of this paper. The targeted
UAV movements are dependent on these state variables and
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TABLE 3. MDP policy: states definition.

TABLE 4. Behavior of leader agent reward function with odd no. of UAV
agents.

FIGURE 16. UAV distribution example with odd no. of UAV agents.

their definition is provided in Table 3. The behavior analysis
of leader agent’s reward function is shown in Tables 4 and 5
with respect to odd and even distribution of UAV agents
respectively. The even and odd cases are discussed as
follows.

TABLE 5. Behavior of leader agent reward function with even no. of UAV
agents.

b: CASE A: UNEVEN DISTRIBUTION OF UAVs AND LEADER
AGENT BEHAVIOR
To simulate and discuss this case, five UAV agents, two goals
for each agent and three partitions are considered as shown in
Figure 16. The behavior of the leader agent’s reward function
in this case is shown in Table 4. This table is derived by
simulating the leader agent’s reward function in Section III
using MATLAB. The table shows reward changes according
to the changing value of each state (values defined in Table 3).
The simulation table of leader agents reward behavior is too
large to be presented here so, fifteen different states, given
in Table 4, are chosen from the actual table, derived using
MATLAB, to showcase the behavior of leader agent. The
reward is directly dependent on the agent’s state. If the state
of any agent is inactive, then those agents cannot participate
in computation of reward values. In case 1, all agents are
inactive, so the reward function returns 0, as our reward func-
tion is UAV agent dependent, and it becomes inactive if all
agents are inactive. The reward increases with the changing
state of each UAV agent from inactive to active. This can be
seen from cases 2 to 6 where one agent is activated in the
second case, two agents in case three, until the activation of
all agents in case 6 shows the increasing value of reward in the
first six cases. The next two cases, i.e., case 7 and 8, depict the
behavior according to goal completion, where it can be seen
that goal completion also increases the reward values. In the
ninth state both goals are completed therefore the reward
value increases further. In all the cases from 1 to 11 all the
UAV agents are in the same partition which is why from case
9 to 11 the behavior of reward function does not change when
the number of partitions is changed as all UAV agents are still
in same partition. The same partition case in this work is not
recommended to achieve better search results and this kind of
problem is considered as congestion.Which is why in the next
states due to different partitions assigned to UAV agents the
reward increases further showing that congestion is reduced.
In case 12 the congestion is removed with two UAVs in the
first partition, two UAVs in second partition and one in third.
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FIGURE 17. UAV distribution example with even no. of UAV agents.

In this case the state of all partitions is assigned dangerous
value. In the preceding case 13, the state of all three partitions
is changed to unknown instead of dangerous which further
increases the reward. For the last chosen case 15, the partition
status of all partitions is changed to known increasing the
reward value further. Moreover, in the same case all agents
are active, goals are completed, and no congestion is found
in this case, therefore it depicts the maximum reward. Next,
we will discuss the advantage of having an even number of
drone agents.

c: CASE B: EVEN DISTRIBUTION OF UAVs AND LEADER
AGENT BEHAVIOR
Table 5 depicts the representation of Leader agent’s reward
function behavior with six agents with two goals each and
three partitions. Each of these partitions includes two blocks
whichwill be further explained in the next section formember
UAV agent reward function. In this table the major difference
occurs when we have Case 1 of Table 5 showing all agents in
active state, both goals completed, no congestion, i.e., having
two UAVs in each partition, one for each block, shown in
Figure 17 and all partition status are known. Therefore, the
reward is maximum for this case as the agent assignment is
equal for all partitions. The major significance of having an
even number of UAVs is the maximization of Leader agent’s
reward function which is visible if we compare the results
of case 15 in Table 4 and case 1 in Table 5 showing that
case 1 in Table 5 has higher value. The remaining Table 5
shows similar behavior of reward as in Table 4. As mentioned
earlier, it is not possible to show the complete reward tables,
so their graphical results are shown in Figures 18 and 19
for Table 4 and Table 5 respectively. A similar trend can
be seen in these results, i.e., the reward values in terms of
even UAV agents, shown in Figure 19, is higher as com-
pared to the values for odd number of UAV agents, shown
in Figure 18.

FIGURE 18. Reward value vs leader agent states with odd distribution of
UAV agents.

FIGURE 19. Reward value vs leader agent states with even distribution of
UAV agents.

TABLE 6. Initial status for member UAV agent.

d: MOVEMENT FOR CONGESTION
In the cases where congestion is present in Table 4 and V,
the movement of UAV, based on the reward, is such that it
moves tomaximize the reward and coverage. One such case is
depicted in Figure 17(a), where partition 2 has four UAVs and
the reward is minimum in this case. The reward-based policy
takes two UAVs to partition 3 to complete uniform UAV
assignment across all partitions and maximizes the reward by
assigning one UAV to each block (Figure 17(b)).

2) MEMBER AGENT BEHAVIOR
As in Leader agent, MDP is used to detect the states of
UAV member agent so the reward for each state of UAV
is calculated to formulate a complete policy. The member
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TABLE 7. MDP policy: states definition.

FIGURE 20. UAV agent movement.

UAV agent’s reward values are dependent on the variables
discussed in the local agent’s MPD policy given in section
III. The initial conditions for the variables associated with
UAVs are provided in Table 6. The policy-based block
to block movement of a member UAV agent is shown in
Figure 20 (left or right).

a: MDP POLICY
The MDP policy of member agent is dependent on several
factors with their specific state variable values. The member
UAV movements are dependent on these state values. The
state variables alongside their state definition are shown in
Table 7. The behavior of member UAV agent’s reward func-
tion, based on state definition in Table 7, is shown in Table 8.

In Table 8, 23 cases are considered from the original Table
simulated in MATLAB, but like the leader agents reward
tables, this table also cannot be shown here due to being too
large. However, the complete table values are shown graph-
ically in the result shown in Figure 21. The cases 1 and 2
for local agent depicts partition status to be normal, current
partition of the drone is taken as 1, goals are completed,
energy is full and block status is dangerous. The difference
between both cases is companion status. In case 1 where
companion is in partition 3 there is no congestion therefore
the reward is bigger than case 2 where companion is present
in the same partition as the member UAV itself. Cases 3 to 5

TABLE 8. Reward behavior of local UAV agent.

FIGURE 21. Reward vs state for local agent (UAV).

depict the importance of block status keeping all other vari-
ables constant. In these cases, block is dangerous in case 3
thus the reward is minimum in this case. For case 5 the
block is unexplored therefore the reward function performs
better than case 3. Case 4 performs best in this scenario
because block status is explored in this case. Cases 6 and 7
depict the fact that the reward function remains the same
in case of congestion. In case 6 congestion is in partition 3
and in case 7 congestion is in partition 2. Cases 8 and 9
depict the variance caused due to goal completion with all
other variables being constant. In case 9, where both goals
are completed, it performs better than case 8, where one
goal is completed. Cases 10 and 11 depict the difference in
reward created due to battery level of the drone. Reward is
more for case 10 when battery level is half as compared to
case 11 when battery level is empty. Cases 12 and 13 also
depict the battery level but in this scenario battery level
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FIGURE 22. Simulation environment: Area (10 × 10) km2 scaled from
(1 × 1) km2, 3 Pole-to-pole partitions (4 poles), 6 blocks (two blocks in
each partition).

shifts from completely empty to full, therefore, the reward
change is more than the change between cases 10 and 11.
Cases 14 and 15 depict the difference created due to goal
status change from unachieved to achieved. Case 15, where
a goal is achieved, has a better reward value than 14, where
both goals are unachieved. Case 16 takes the same values of
all variables as in case 15 other than the block status which is
changed from explored to unexplored resulting in decrease
of reward. For cases 17 to 19 the response of battery is
checked by keeping the block status to dangerous. The reward
is maximum for the case 18 where battery is at maximum
level and minimum for the case 19 where battery is empty.
Case 20 takes the same variable values as in case 19 with
the presence of congestion when both drones are present in
partition 2. In this scenario the reward function decreases.
Cases 21, 22 and 23 depict the minimum values of reward
function with congestion present, goals are unachieved, par-
tition is dangerous, energy is drained to completely empty.
The only difference between these cases is the value of
block status. Reward is minimum for test case 23 where
the block status is dangerous andmaximum for case 22 where
block status is explored. The behavior of the complete reward
table of a member UAV agent is shown in result given in
Figure 21. The policy based optimized movement of UAV
member agent will be from block to block based on all the
factors explained above and is detailed in the second part of
this section provided next.

B. SIMULATION RESULTS SHOWING UAV MOVEMENT
AND FAULT LOCATION IDENTIFICATION
This section provides the MATLAB based simulation results
for showing the movement of UAVs and fault location identi-
fication in transmission lines after the system optimization
through the reward tables derived in the previous section.
For showing the behavior of UAV agents, four poles are
considered connecting three transmission lines. A total area
of 1 × 1 km2 is considered scaled over 10 × 10 km2.

FIGURE 23. Case 1 of Table 4: All UAVs at initial position with inactive
status.

FIGURE 24. Case 2 of Table 4: One UAV active and assigned to
partition 1’s block 1.

Three pole-to-pole transmission lines are considered. To cre-
ate more realistic terrain, Voronoi topology is considered for
uniform distribution of partitions and blocks in the trans-
mission line. Each pole-to-pole transmission line presents a
single partition, and each partition is divided into two blocks
using the Voronoi area division line. The environment is
shown in Figure 22. To keep uniformity in explanation of the
results related to previous sections, 5 UAV agents are consid-
ered and for congestion avoidance two UAVs are assigned to
one partition with each block having one UAV. The results
for this section are also provided in two parts: to represent
different scenarios from the reward Table 4 and to calculate
UAV’s time to reach the fault location by considering a single
partition with two blocks using distance equation given as:

s = v× t

t =
s
v

(8)

where, v is the velocity of the UAV and s is the UAV’s distance
to fault.

121574 VOLUME 10, 2022



W. A. Khan et al.: HVDC Transmission Line Fault Identification: A Learning Based UAV Control Strategy

FIGURE 25. Case 10 of Table 4: All UAV active and assigned to partition 2
(congestion behavior).

FIGURE 26. Case 12 of Table 4: All UAV active with no congestion and one
fault introduced in each partition.

1) REWARD TABLE BEHAVIOUR DEPICTION
The results shown in Figures 23 to 26 provide the reward
table behavior depiction by choosing different scenarios from
Table 4. Figure 23 presents Case 1 from Table 4. It shows that
when all UAVs are at an initial position and are not assigned
to any partition, they are considered inactive and the reward
in this case is calculated to be 0. The result in Figure 24 shows
Case 2 of Table 4. It is shown that one UAV is assigned
to block 1 of partition 1 and that the UAV has reached the
assigned partition, with the status of two other partitions as
unknown. Here, one thing to understand is that all partitions
are healthy, and no fault has yet been introduced. The reward
in this case is 840. Figure 25 shows Case 10 of the reward
Table 4. It is shown that all the UAVs are now assigned to
partition 2 with three UAVs in block 1 and two UAVs in
block 2. This case depicts the congestion behavior of the
reward-based control strategy and in this scenario the reward
is 5.7980 × 103. Yet no fault has been introduced to any par-
tition. The result in Figure 26 shows Case 12 from the reward
Table 4. In this case, two depictions are shown, firstly it is

FIGURE 27. Case 15 of Table 4: All UAV active with no congestion and no
faults.

FIGURE 28. UAV transmission line traversing: fault location = block 1,
UAV distance to fault = 1.86km, UAV velocity v = 120km/h and 60km/h.

shown that once the congestion avoidance becomes active,
the UAVs, that were in partition 2 in previous result, readjust
themselves to maximize the reward value. It is visible in this
result that 2 UAVs have moved to partition 1, 2 remained
in partition 2 and 1 has moved to partition 3 in a way that
each block in each partition has one UAV. In partition 3, there
is only one UAV in block 1 because of the odd number of
UAVs. Secondly, in this case a single fault is introduced
in each partition and the UAVs have completed the goal of
identifying the fault locations, due to which the reward value
is now 1.2049 × 104. The result in Figure 27 is shown for
Case 15 in the reward Table 4. After successful identification
of fault location in previous result, this result is produced by
removing the faults from each partition. In this result, each
UAV reports to the leader agent that the partition status is
now normal, hence achieving its goal. In this case, it can be
seen that the reward value has now increased to 1.2265× 104.
The significance of these results is to show that as soon as the
situation improves, the system maximizes the reward value
for better optimization.
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FIGURE 29. UAV transmission line traversing: fault location = block 1,
UAV distance to fault = 0km (fault location reached), UAV velocity
v = 120km/h and 60km/h.

FIGURE 30. UAV transmission line traversing: fault location = block 2,
UAV distance to fault = 2.16km, UAV velocity v = 120km/h and 60km/h.

2) FAULT LOCATION IDENTIFICATION TIME CALCUATION
In this subsection, the results for UAV’s time to locate the
fault, while traversing the transmission line, are shown. The
results are derived by choosing partition 2 from the envi-
ronment shown in Figure 22. Two UAVs are considered,
one assigned to each block. To depict the time to reach the
fault, equation (8) is used. Distance s in (8) is calculated by
substituting x and y coordinates in the line equation given as:

s =
√
(x2 − x1)2 + (y2 − y1)2 (9)

In Figure 28, it is shown that each block is of 2.2km with
UAVs at the initial position. A fault is introduced in block 1 of
the partition and the distance to fault from the UAV, assigned
to block 1, is 1.86km. In Figure 29, it is shown that the UAV
from block 1 has reached the fault location by traversing the
distance of 1.86km. The calculation of time taken to reach
the fault is dependent on the velocity of the UAV which
varies depending on the type of UAV used. To show as an
example, in this result, it is assumed that the velocity v of
the UAVs in each block is 120km/h, resulting in calculated
time to reach the fault = 0.93mins given from equation (8).

FIGURE 31. UAV transmission line traversing: fault location = block 2,
UAV distance to fault = 1.86km, UAV velocity v = 120km/h and 60km/h.

FIGURE 32. UAV transmission line traversing: fault location = block 2,
UAV distance to fault = 0km (fault location reached), UAV velocity
v = 120km/h and 60km/h.

If we change the value of velocity v to 60km/h, then the
time to reach the fault changes to 1.86mins. In the result in
Figure 30, now the fault is introduced in block 2 at an instant
when UAV has traversed the distance of 1.86km from its
initial position. In this case it is shown that now the distance
to reach the fault is 2.16km because the UAV must traverse
to the final position, as shown in Figure 31, and then it will
start traversing backwards towards the initial position. While
traversing backwards it is shown in Figure 32 that the UAV in
block 2 reaches the fault after covering the distance of 2.16km
calculated from the position when the fault was introduced.
In this case, considering v = 120km/h the time to reach
the fault, calculated from (8) is 1.08mins and in the case of
v = 60km/h the calculated time to reach the fault increases
to 2.16mins. These results are deduced for depiction of time
calculation considering ideal scenario whereas in real-time
environment, factors like wind and height etc. may affect
the results. However, real-time testing is not in the scope of
this work and will be considered as part of future extensions,
because the focus of this paper is to present and validate the
reward-based control strategy for the fault location identifi-
cation in HVDC transmission lines.
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V. CONCLUSION
An intelligent control strategy is presented in this paper using
UAVs for fault location identification in HVDC transmission
lines The technique is developed for autonomous movement
of UAV agents to explore HVDC transmission lines based
on MDP Reward based policy. Reward equations are derived
for both Leader (command center) and Local (UAVs) agents.
Complete reward tables are derived, throughMATLAB, using
the reward functions for every possible scenario. The graph-
ical results, derived using MATLAB, provide the reward
behavior for both commanding leader agent and the member
UAV agents. The resulting policy is optimized through the
value iteration algorithm using the transition probabilities and
defined reward functions behaviors. The validation of system
optimization through the MDP based reward tables is pro-
vided using MATLAB based simulation results. The results
are provided by creating different scenarios in MATLAB
using the reward Table 4. The results show the movement
of UAVs and reward behavior for scenarios like congestion
avoidance and fault occurrence etc. Furthermore, based on
simulation results, calculation for time to reach the fault loca-
tion is also derived using the fault distance and UAV velocity
by considering two velocities, i.e., 120km/h and 60km/h. The
results are derived considering the ideal scenario whereas
in real-time environment, factors like wind and height etc.
may affect the results. As the work focuses on presenting the
reward-based control strategy for the fault location identifi-
cation in HVDC transmission lines, real-time testing is not in
the scope of this work and will be considered as part of future
extensions.

The presented work provides a baseline for the future work
using learning techniques, such as machine learning/deep
learning, for autonomous control and movement of UAVs in
the power field applications. Such techniques are capable of
learning and evaluating completely on their own, so enhanced
traversing strategies can be developed by integrating vision-
based or sensor-based technologies etc.
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