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ABSTRACT Neuromorphic vision sensor is an attractive technology that offers high dynamic range, and low
latency which are crucial in robotic applications. However, the lack of event-based data in this field, limits the
sensors’ performance in a real-world environments. In this paper, we propose a novel augmentation technique
for neuromorphic vision sensors to improve contact force measurements from events. The proposed method
shifts a proportion of events across the time domain, ’Temporal Event Shifting’, to augment the dataset.
A new set of grasping experiments is performed to validate and analyze the effectiveness of the proposed
augmentation method for contact force measurements. The results indicate that temporal event shifting is
highly effective augmentation method which improves the models’ accuracy for the contact force estimation
by thirty percent without performing new experiments.

INDEX TERMS Event-based augmentation, neuromorphic augmentation, vision-based tactile sensor.

I. INTRODUCTION
Vision-based tactile sensor is a category of optical sensors
which aims to acquire tactile information by utilizing a
camera [1], [2], [3], [4]. The camera is mounted on the
robotic hand to capture images of the object’s contact area,
which are then processed to measure contact force, estimate
force distribution, and predict object slippage. A wide range
of sensors and robotic fingertips are designed to deal with
various applications. Since the sensors have different physical
properties, the data captured by sensors cannot be used
for other sensors. Therefore, the datasets are often small
and application specific in this field. On the other hand,
the data collection process is a time-consuming and costly
process. Therefore, alternative approaches such as simulation
and synthetic data generation are studied. For example,
simulation techniques have been adapted to increase the
volume and diversity of datasets for training deep learning
models [5], where the position and texture of the object were
randomized. On the other hand, sim-to-real techniques aim
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to transfer learning from simulations and adapt the model to
the real environment [6]. However, less attention is paid to
augmentation techniques for vision-based tactile sensors.

Ordinary image sensors capture the light intensity values
of each pixel at a given framerate, normally within the range
of 25-120Hz. Cameras with higher framerates up to 12kHz
are available but they are expensive and their dynamic range
may be reduced. On the other side, neuromorphic vision
sensors (event-based cameras) capture intensity changes with
low latency and high dynamic range. The main advantage
of neuromorphic vision sensors are a low latency (few
microseconds), high dynamic range (120dB) and low power
consumption (5-12mW) [7], [8], [9], [10]. The high sampling
rate and dynamic range of neuromorphic cameras enable the
sensor to achieve a higher sensitivity and time resolution in
robotic applications. The low latency of the sensory system
allows the robot to feedback control signals in real-time in
order to prevent failures [11], [12], [13]. In addition, the low
power consumption of the sensor may enable robotic systems
to perform longer with the limitations of batteries.

Computer vision has long been a key enabler of indus-
trial robots, where it is used to guide and control the
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positioning of the robot to achieve a high-level task.
As supported in the literature [12], [13], [14], [15], [16],
the use of conventional frame-based cameras for robotic
applications introduces several limitations on the maximum
speed and process robustness due to several shortcomings
of frame-based cameras such as motion blur, low dynamic
range, latency, exposure timing, poor perception at low-light
conditions and high-power consumption. These shortcom-
ings of frame-based cameras impose constraints on robot
operational speeds, workspace volumes, and ambient lighting
conditions; which affect the robustness and productivity
of robotic manufacturing processes. However, the use of
neuromorphic cameras introduces new challenges regarding
the unavailability of enough event data for robotic applica-
tions. Hence, in this paper, a novel augmentation-based DL
technique was introduced to develop predictive contact force
measurement models for neuromorphic vision sensors using
limited measured data. The presented results show that the
developed DL models can be considered promising tools
in learning measurement from limited experimental data to
make high-fidelity performance predictions.

In our previous work [17], we proposed a novel
vision-based tactile sensor using a neuromorphic vision
sensor to estimate the contact force using deep learning tech-
niques. A number of deep learning architectures and hyper-
parameters were studied whereas the deep learning model
based on ConvLSTM layers achieved the highest accuracy for
the contact force estimation. However, the experiments were
conducted with the same object size and this approach cannot
be generalized for objects with different sizes.

In this paper, we conduct a new set of experiments
by considering three different object sizes. In addition,
new augmentation methods are proposed to synthesize
experiments for an unseen object size without performing
real experiments. We demonstrate that the augmentation
methods improve the neural networks’ accuracy without
performing further experiments. Our approach significantly
reduces the cost and time for the data collection process
by creating new synthetic datasets for unseen object sizes.
In the proposed augmentation techniques, both 2D (image-
based) and temporal (time-domain) are investigated and
a novel technique is proposed that shifts events along
the time dimension to generate further synthetic samples.
For evaluation purposes, all the augmentation methods are
validated on the best deep learning architecture (ConvLSTM)
from [17].

The main contributions of this paper are:
• Developing time-domain and image-based augmenta-
tion for the neuromorphic tactile sensor for objects with
different sizes.

• Proposing a novel event-based augmentation technique,
’’Temporal Event Shifting’’, to synthesize sequences
and increase the model’s accuracy.

• Performing new experiments with various object sizes
to validate the effectiveness of augmentation methods
considering ConvLSTM architecture proposed in [17].

A. RELATED WORK
Data augmentation techniques aim to generate synthetic
data for training to improve model generalization. Aug-
mentation methods can be divided into two main cate-
gories [18]: Model-based augmentation, and data manipula-
tion. Model-based augmentation methods focus on training
models to generate synthetic data from the real data such
as Generative Adversarial Networks (GAN) introduced
in [19].

Algorithmic data manipulation techniques apply funda-
mental operations to the data to generate realistic samples.
For images, the geometric transformation of the training
data such as rotation, translation, and shear has shown an
improvement for classification tasks [20]. In [21], geometric
translations and dropout layers are utilized to improve traffic
sign recognition. The results indicate that the validation
accuracy was improved by more than 5% considering
rotation, translation, and shearing augmentation methods.
In addition to spatial methods, other image-based augmen-
tation techniques such as image distortion, morphological,
and noise injection techniques have increased the networks’
accuracy for image classification [22].

In the augmentation process, many variables are involved
that can be tuned based on application and system char-
acteristics. Some of the studies such as [23] proposed
an automatic framework for data augmentation. The pro-
posed approaches consider both feature-space and data-
space augmentation methods to generate synthetic data.
To validate the augmentation methods, the models are trained
multiple times to account for random initialization ofweights.
From another point of view, the effectiveness of refining
the labels for augmentation is investigated in [24]. The
authors demonstrate that algorithmic augmentation methods
including the cropping technique may result in inaccurate
labels for specific classes. Therefore, rules and conditions
must be applied in the augmentation process by considering
samples of each class independently.

Time-series augmentation methods consider time and
frequency domain features to generate synthetic data. One
of the common approaches in the time-domain is shifting
inputs in regard to the ground truth to introduce a random
delay in the sequence. In [25], signals are shifted randomly
to make the model robust against unseen signals. Moreover,
the authors considered a combination of pitch shifting in
the frequency domain and time warping to improve the
accuracy of the model for classifying environmental sounds.
Window slicing is another popular approach in time-series
classification which considers a sequence of the original
signal during both the training and testing process of the
model [26].

GANs are a class of machine learning models that
includes two networks jointly trained to synthesize data.
The first network (known as generative) learns to generate
samples from a latent feature space while the second
network (discriminator) identifies the realism of the produced
samples. Although GANs achieved impressive results in [19],
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there is a lack of stability for training in practice [27].
Several studies have modified the GAN structure to improve
the generated samples. For instance, a cascade CNN with
pyramid (multi-scale) features is proposed in [28] which has
produced high-quality realistic samples. In [29], a novel class
of architecture, Deep Convolutional Generative Adversarial
Networks (DCGAN), is presented to generate samples in an
unsupervised manner. In addition to image generation, time-
dependent GANs are designed to capture temporal features
and produce time-series samples. In [30], recurrent neural
networks are employed in both generator and discriminator to
produce continuous time-series samples. Similarly, recurrent
conditional GAN is proposed in [31] and [32] with conditions
in the time dimension to generate multi-dimensional time-
series samples. A comprehensive review of recent time-series
GANs is provided in [33]. as

However, training a GAN model requires a considerable
number of existing data to achieve acceptable results. The
training process for GAN is time-consuming and the results
are required to be confirmed by human. Furthermore, inter-
pretation of learning representations using GANs and deep
learning models are difficult compared to the algorithmic
augmentation methods [18]. Due to the lack of event-based
data for grasping applications, we propose algorithmic
augmentation methods to enrich data for the contact force
estimationmodels. Algorithmic augmentationmethods target
handcrafted features to produce synthetic data based on logic
and observations tailored for a particular application.

Evaluation of the augmentation methods is often per-
formed on a validation set by using the augmented data in
the training process. Since deep neural networks can easily
overfit the training data, performance on the validation set
provides a more intuitive evaluation. For instance, algorith-
mic and GAN augmentation methods are used in [34] to
evaluate the effectiveness of each method for a classification
task on the validation set. Similarly, various augmentation
methods are proposed in [35] to classify medical images.
The networks’ accuracy is evaluated on the validation set to
analyze the effectiveness of augmentation techniques.

Even though image augmentation techniques have been
studied widely in the literature, few studies have been
conducted to investigate event-based augmentation for any
applications. In [36], dropout event augmentation techniques
are proposed to drop events randomly, based on time and
area of events. Authors demonstrate that such a technique
leads to improved network accuracy using various event
representations and datasets. Another study [37] proposed a
mix of geometric augmentation including rotation, flipping,
rolling, cutout, mix-up, and shear methods to augment
events. This method shows a significant improvement in
network accuracy for SNN and ANN networks. The event
augmentation techniques can be applied directly on event
streams, event-frames and other common event represen-
tations reviewed in [7]. This investigates image-based and
time-series augmentation methods applied to sequences of
event-frames in tactile sensing applications.

FIGURE 1. Frames are constructed by accumulation events considering
two channels for positive and negative polarities. The left images show
the constructed frames while the middle and right images illustrate the
constructed frames after cropping and resizing respectively.

II. EVENT FRAME SEQUENCE AUGMENTATION
Events captured by neuromorphic vision sensors are char-
acterized by location (x,y), timestamp (t), and polarity (p).
Similar to the frame construction in [17], event frames
are constructed by the accumulation of events over a
time window while preserving spatial information. The
accumulation of events is performed on positive and negative
polarity events separately to construct two channels of the
frame. This technique has beenwidely used to compress event
data [38], apply image-based deep learning methods [39]
and be compatible with standard hardware accelerations for
images and sequence of frames.

The sensor has a dimension of 240 × 180 which covers
the contact area and the background. To reduce the memory
requirements of the system and the effect of the background
noise, each frame is cropped to 140 × 150 pixels by
considering the largest contact area size. Afterwards, the
frames are downscaled to half (70×75) by adding the closest
neighborhoods to a single pixel to reduce the frame size.
Furthermore, the two channels are resized and then combined
into one matrix to create the event frames. For visualization
purposes, the image is populated with the created matrix
considering red and green channels.

There is a trade-off between resizing the frame and main-
taining spatial information of the events. In this application,
pixel-wise information is not critical for the accuracy of the
overall contact force estimation. Reduction of image size
decreases the model inference and training time which is
important for real-time applications. Figure 1 presents the
cropping and resizing process over the two channels. After
constructing of the frames, the augmentation methods are
applied to generate further synthetic sequences for training
the networks.

A. IMAGE-BASED AUGMENTATION
2D or image-based augmentation techniques aim to enrich
the dataset to achieve a better generalization and eliminate
biases in the dataset. For example, if experiments are captured
within a specific range of object orientation, the rotation
augmentation adds experiments with other object orientations
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FIGURE 2. (a) A DVS is mounted on the left plane to observe the intensity
changes in the contact area through the silicone membrane. A F/T sensor
is located on the right plane to record force values through the grasp.
(b) A bolt with an 18mm diameter painted in black.

to the dataset. Parallel grippers apply force on the object
from both sides simultaneously, as shown in Figure 2. The
object orientation remains the same through the grasp after
the object stabilization. Assuming that objects have the same
shape, twomain features are varied between different objects:
(i) Size; (ii) Contact area orientation. Both of the features can
be augmented by affine transformations on the contact area
images (event-frames).

1) ROTATION
The contact area orientation may vary across experiments.
On the other hand, the object orientation remains the
same in a stable grasp using a parallel gripper. Therefore,
we considered the same rotation transformation for all frames
of each sequence, instead of varying the transformation
along the sequence. Xt (x, y, p) represents the sequence of the
original frames with spatial coordinates (x, y) with polarity
p at timeframe t . For each experiment, the newly generated
frames X ′t (x

′, y′, p) are formulated according to Equation 1

X ′t (x
′, y′, p) = Xt (x, y, p) (1)

while Equation 2 represents the rotation around the centre of
the object (xo, yo) by an angle φ.[

x ′

y′

]
=

[
cosφ − sinφ
sinφ cosφ

]
×

[
x − xo
y− yo

]
(2)

2) RESIZE
The aim of this paper is to augment data for a grasped
object with a different size than the ones used in the captured
data. For example, training data includes experiments for a
small and a large object while the sensor must estimate the
contact force for any intermediate object size. In order to
augment the images to the desired size (e.g medium size),
the original images are required to be resized considering a
specific scaling ratio β. The scaling ratio is determined based
on the real object sizes where β > 1 and β < 1 for resizing
to larger and smaller sizes respectively. We choose linear
interpolation to assign values to the pixels. To preserve the
same image resolution for all samples, a margin with zeros is
added to maintain the image size. As x and y dimensions are
scaled with the same ratio, the resized samples preserve the
aspect ratio of the object contact area.

B. NOISE
To establish a noise model, a set of experiments are recorded
without any movements in the scene. Afterwards, the
triggered events are considered noise which is accumulated
over a time window over two different channels. Finally, the
noise frames are added to the frames in the original dataset to
generate samples with artificially added noise.

C. TIME-SERIES AUGMENTATION
In the grasping process, a lot of parameters such as Dynamic
Vision Sensor (DVS) threshold, silicone material, sensor
hysteresis, and uncertainty cause a varying delay between
the applied force and the triggered events. Time-series
augmentation methods aim to generate synthetic sequences
by considering transformations along the time dimension.

1) FRAME SHIFTING
One of the simplest augmentation techniques in the time
domain is to shift the index of the frames by a certain value (j)
while preserving the ground truth. This approach assists the
network to deal with a slight lag between different sequences.
Since shifting frames remove j frames from the input, new
frames are required to be added to keep the sequence length
fixed and are all set to zero values. Equation 3 presents the
frameshifting process where the new frames are denoted as
X ′t and j presents the shifting value. The frameshifting is
applicable in both directions (i) Left: The frames are shifted
to the earlier timestamps (j < 0); (ii) Right: The frames are
shifted to the future timestamps (j > 0).

∀t, X ′t (x, y, p) = Xt+j(x, y, p) (3)

2) TEMPORAL EVENT SHIFTING
Similar to frameshifting, we propose a novel approach to
shift events across the frames, called ‘‘Temporal Event Shift
(TES)’’. In fact, Frame Shifting is a specific case of temporal
event shifting where all the events are moved to the previous
or next frames. The proposed method selects a fraction ζ of
events (0 < ζ < 1) randomly in each frame. These events
are removed from the current frame and added to the next
or previous j frames. Figure 3 demonstrates the procedure
for temporal event shifting to the right while preserving the
spatial information of events.

To shift the events to the past frames, j value is considered
negative. This process is formulated in Equation 3 where the
new frame is denoted as X ′t . ∀t, p, create a difference frame
Zt (x, y, p) such as:

Zt (x, y, p) ≤ Xt (x, y, p), ∀x, y (4)∑
x,y

Zt (x, y, p) = ζ ·
∑
x,y

Xt (x, y, p) (5)

X ′t (x, y, p) = Xt (x, y, p)− Zt (x, y, p)+Zt+j(x, y, p) (6)

Based on the formulation, frame shifting is a special case
of temporal event shifting where Zt = 1.
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FIGURE 3. Temporal event shifting diagram when a ratio of events is
shifted to the future frames (j > 0).

III. EXPERIMENTAL SETUP
The experimental environment is not fully controlled to
mimic real-world grasping applications and show the sensor
performance under uncertainty. Real-life experiments are
conducted on a Baxter robot including a F/T sensor, silicone
membrane, DVS, and 3D-printed transparent planes. The
transparent silicone membrane has 50 shore hardness and
8mm depth. Furthermore, the range of contact force is set
to 0-25N which is significantly higher than the force range
in [11], [17]. Figure 2(a) presents the experimental setup for
the grasping task.

Three bolts with 12, 15, and 18mm diameters are used
for the grasping process as shown in Figure 2(b). In this
paper, all objects are painted in black to increase the
contrast between the environment and the object’s surface.
Alternatively, a black silicone membrane with fixed lighting
conditions can be considered like [40]. The fixed lighting
conditions and DVS thresholds lead to standardizing the
threshold of the event for all experiments in various
environments.

This study aims to reduce the cost and time of the data
collection process by investigating the impact of augmenta-
tion methods. Therefore, we assume that experiments for two
object sizes are given while the network learns to estimate
the contact force for unseen object sizes (e.g medium). The
main reason for choosing medium size objects for validation
and testing is to ensure the right interpolation between the
smallest and the largest distribution. In practice, the collection
of data for two sizes (smallest and largest) is applicable and
other sizes can be augmented with the proposed method.
Therefore, we choose the small and large bolts for training
(48 sequences) while the medium bolt experiments (6
sequences for validation and 6 sequences for the test set)
are considered for validation. Furthermore, the augmented
data for the desired size (medium bolt) are added to the
training set to evaluate the network performance and compare
augmentation techniques. Figure 4 presents the force values
recorded by the F/T sensor for the training (a) and validation
sets (b).

Two configurations are set for the gripper to grasp the
object with a different applied force. The experimental setup
is not fully controlled which results in a slight variation

FIGURE 4. Each row demonstrates the force values that is captured by
the F/T sensor over time. (a) Training set: 48 experiments are conducted
using the small and large objects. (b) Validation set: 12 experiments
considering the medium size object.

of force between experiments with the same configura-
tion. Therefore, a slight variation of force over time is
visible.

A. PREPARATION OF FRAMES
The experiments have a maximum length of 360ms. In this
paper, 36 frames are conducted for each sequence by the
accumulation of events over a 10ms window. The frames
are cropped to 140 × 150 to reduce the noise and eliminate
the background which is selected based on the largest
object contact area. Afterwards, the frames are resized to
70×75 pixels considering the accumulation of neighborhoods
to reduce memory requirements. The resizing ratio is selected
based on the maximum saturation level of each pixel over
the time window. The force readings have a resolution
of 2ms which is measured by the F/T sensor. After the
synchronization, force measurements are read every 10ms to
synchronize them with the frames.

B. TRAINING CONFIGURATIONS
We have studied various architectures including LSTM,
CNN-LSTM and Convolutional LSTM architectures in [17]
comprehensively. In this paper, we validate the effectiveness
of the augmentation techniques on the best-performing
architecture (ConvLSTM) only to have a fair comparison
between the augmentation methods without changing the
network architecture.

To select the hyperparameters, firstly we performed
experiments on the original dataset to find the best optimizer,
early stopping value and learning rate and ensure network
convergence. Secondly, we train the model on each aug-
mented dataset 10 times with a different random seed while
keeping the same hyperparameters and network architecture
to remove any influence of randomness. Finally, we evaluate
the results by considering the average error accross the
10 trained models. Figure 5 presents examples of training and
validation loss for different augmentation methods.

To ensure all the networks reach the stabilization point
of training and validation loss, we set the early stopping
parameter to 20 based on trial and error. Therefore, the
training process finishes when the validation loss stops
improving after 20 consecutive epochs. Adam optimizer is
used to minimize the training loss (MSE) for the training set
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FIGURE 5. Examples of training and validation loss for the original
dataset, TES2-50, FS-1 and hybrid augmentation methods.

while monitoring the validation loss for selecting the best
network. The training process finishes when the validation
loss stops improving after 20 consecutive epochs. All the
models are trained with the same configuration to provide a
fair comparison. Keras framework is used to set the training
configuration using an NVIDIA 1080 GPU. Figure 4 presents
the training and validation set of the data set.

IV. RESULTS AND DISCUSSION
To evaluate the augmentation techniques, the training data
size is doubled with the synthetic sequences while preserving
the ground truth. Since the random initialization of weights
affects the training process, the random seed is controlled
for 10 runs. The final results are obtained by averaging
the lowest error on the validation set using the same
random initialization. Figure 6 presents the average of
MSE for the validation set where the red line shows the
standard deviation ofMSE for the image-based augmentation
methods.

The network trained without augmentation (No Augment)
achieves MSE of 7.89N with STD of 2.09N. The standard
deviation of more than 25% indicates instability of the
training process with respect to random initialization. The
rotation of images between 0 and 45 degrees (Rot45) provides
a slight improvement in network accuracy. The best result
using the geometric augmentation approaches is achieved by
the resizing method for the desired object size. The scaling
factor of resizing is considered as 1.25 and 0.83 for small and
large objects respectively.

On the other hand, we consider background noise for
further augmentation. The background noise includes both
event polarities which are added to the original frames to
double the training samples. The results indicate a slight
improvement of 10% in MSE and the standard deviation
is comparable to the networks that are trained without
augmentation.

FIGURE 6. MSE for geometric augmentation methods. y-axis shows the
average of MSE(N) for the trained networks after 10 repetitions with
random initialization. The red lines represent the standard deviation
(STD) of MSE(N) for each method.

FIGURE 7. Comparison of average MSE for frame shifting methods. x-axis
shows the j value for frame shifting and the red bar illustrates the
standard deviation (STD) of MSE over 10 runs.

The results indicate that theMSE of the network is reduced
to 6.05N and the standard deviation is decreased to 1.04N,
a decrease of 50%. Therefore, resizing is the most effective
image-based augmentationmethod, whichmakes sense as the
challenge in our experiments was to train the networks for
unseen object size.

Two time-series augmentation methods, mentioned in the
section, are tested: Frame Shifting (FS) and the proposed
Temporal Event Shifting (TES). In most of the experiments,
the majority of events are fired within three frames (30ms) for
the grasping and releasing phase. Therefore, our time-series
augmentation considers a maximum shifting of 3 frames.
For the FS method, j is varied between -3 and 3 to find the
most effective value to shift the frames. Figure 7 presents the
effectiveness of frameshifting augmentation with different j
values.
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FIGURE 8. Comparison of average MSE of the networks for Temporal
Event Shifting augmentation technique. x-axis and y-axis present the j
and ζ values respectively. The MSE value of each method is illustrated on
z-axis. The color of each bar surface represents the standard deviation
(STD) of MSE over 10 runs.

Shifting one frame to left (FS-1) results in the lowest MSE
of 5.51N which is 30% less than the MSE achieved without
augmentation. Furthermore, the STD of errors is reduced
significantly to one fourth (0.41N) of the networks trained
on the real data.

For the TES method, the fraction of the events to be moved
(ζ ) is considered as 0.25, 0.50 and 0.75 with the same j
variations as in the FS method. Figure 8 demonstrates the
average MSE of the validation set considering different j
and ζ . Among the TES augmentation configurations, two
frames shift to the left with 50% threshold (TES-2(0.50))
resulting in the minimumMSE of 5.98N with 30% reduction
of standard deviation (0.53N) compared to the results without
augmentation.

In FS-based augmentations, the amount of new data
generated is limited to one new sequence for the original
sequence considering a fixed j value. On the other hand,
in TES-based augmentations, the random seeds affect the
selection of events, and as a consequence, an unlimited
number of new samples can be produced for specific values of
j and ζ . We produced an experiment to generate 480 synthetic
sequences by varying the seed for TES-2(50) method. The
results show that increasing the generated samples does not
improve the network performance where an average MSE
of 6.25N with 0.82N standard deviation is achieved. The
main reason for this phenomenon is that the ground truth
remains the same, despite the significant variation in the
input.

Most of the augmentation techniques in the time domain
improve the networks’ performance. The main factors that
affect the events along the time dimension are the F/T
sensor hysteresis, the non-linear behavior of the silicone
membrane, uncertainty, and vibrations. These factors are
inevitable in real-world applications which show the benefit
of the augmentation methods in the time domain.

A typical grasping task includes three phases: (i) Grasping
phase is defined where the contact force increases to the
maximum level (The first 5 frames); (ii) Holding phase

FIGURE 9. The highlighted area illustrates the standard deviation of the
estimated force over 10 runs. The phases of a grasp are differentiated by
the green line in each figure. Each column presents an experiment from
the validation set.Top row presents the average of estimated force and
groundtruth without augmentation. The middle row demonstrates the
output of the network for FS-1 augmentation method. The bottom row
(e,f) presents the average of estimated force and groundtruth for
TES-2(0.50) augmentation method.

includes a slight variation of force during the time from 6th
frame to 30th frame. (iii) Releasing phase where the force
values are decreased continuously to zero (The last 5 frames).
Figure 9 presents the average of estimated force (blue) and
ground truth (red) for two examples of the validation set
over 10 runs. The top row (a,b) demonstrates the average of
the force predictions for training without augmentation while
the middle row (c,d) presents the average of estimated force
considering FS-1 method. The bottom row (e,f) demonstrates
the average of estimated force and ground truth using TES-
2(0.50) method.

The results indicate that both frameshifting and temporal
event-shifting augmentation reduce the standard deviation of
the predictions in all three phases. In fact, the impact of
random initialization is decreased by augmenting the training
data. In Figure 9 (b) and (d), a clear improvement of the
estimated force in the majority of the vibration phase is
visible. Even though the frameshifting results in a lowerMSE
and standard deviation, the temporal event shifting method
captures the maximum contact force (at 5th timestamp) more
accurately in most of the cases.

In order to investigate the impact of augmentation methods
on all the measurements, 12 predictions of 10 models are
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FIGURE 10. Estimated force using models a) trained without
augmentation, b) trained with FS-1, c) trained with TES-2(50).

considered for grasping, holding, and releasing phases. The
final results include 4320 points which are demonstrated
in Figure 10. The black line presents the contact force
measured by F/T sensor. The estimated force is presented
by blue, red, and green for the grasping, holding, and
releasing phases respectively. Figure 10 compares the
estimated force using FS-1 and TES-2(50) augmentation
techniques.

As observed in Figure 10, FS-1 and TES-2(50) aug-
mentations improve the force estimation in the holding
phase. Both augmentation methods shift events to the earlier
frames to create synthetic sequences. The main reason for
this phenomenon is that the number of triggered events
increases significantly after applying a certain amount of
force. Therefore, shifting the events to the left allow the
network to relate more events to the contact force in the early
frames. Furthermore, the silicone membrane has a non-linear
deformation that absorbs a ratio of the contact force,
particularly in the transition phases. The force absorption
coupled with the F/T sensor hysteresis introduces a variable
delay between the triggered events and the contact force.

The image-based and time-domain augmentation methods
synthesize the training data from different perspectives.
Therefore, a combination of both methods provides both
spatial and time-domain variations in the generated samples.
Since the best accuracy is achieved by resizing and FS-1,

FIGURE 11. Comparison of average MSE for the proposed augmentation
method. The independent and hybrid methods are considered for FS-1
and resizing methods that achieved the lowest error for time-domain and
image-based techniques respectively. The STD of each method is
presented as a red line.

these two methods are combined to generate a new set
of synthetic samples. There are two ways to combine
the two methods: (i) Perform each augmentation method
independently to generate synthetic sequences; (ii) Hybridise
both augmentations methods on samples to generate a set
of synthetic samples. The results indicate that independent
augmentation of each sample achieves better accuracy than
a simultaneous combination of methods. The independent
sample generation method reduces the average MSE of the
networks to 5.71N with a standard deviation of 1.06N which
is slightly higher than FS-1method. The hybrid augmentation
method results in a high MSE of 7.20N with a standard
deviation of 1.22N, a significantly higher error compared
to FS-1 method. Figure 11 demonstrates the average MSE
of the proposed augmentation methods where the standard
deviation is highlighted as a red line.

In image-based augmentation techniques, resizing the
object to a desired size results in the best accuracy. Since
the network learns the relationship between the applied force
and triggered events based on the contact area, resizing the
training data simulates the experiments for the new size of an
object.

A noticeable delay was observed in the releasing phase
where the network always responds faster than the F/T sensor.
In fact, the responding time of the silicone membrane has a
significant impact on the delay between the triggered events
and the contact force. For example in [11], we demonstrated
that same shape objects with different elasticity generate a
different number of events which can be used to classify the
objects’ material. Therefore, the augmentation methods in
the time domain improve the network accuracy remarkably
whereas FS-1 results in the lowest average of MSE.

V. CONCLUSION
This paper proposed a novel event-based method to generate
synthetic data for vision-based force estimation consider-
ing spatial and temporal domains. The experiments are
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performed on three objects’ sizes where the smallest and
the largest objects are considered for training and the
middle size object is used for testing. A novel augmen-
tation technique event-shifting is proposed to generalize
the network on unseen experiments. We demonstrated that
algorithmic augmentation methods improve the network
accuracy significantly without performing new experiments.
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