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Abstract: We develop a discrete model of type-token dynamics based on random type 
selection from the Zipf-Mandelbrot probability distribution, with a view to examining the 
relationships between the constants of Zipf’s and Heaps’ laws. Analysis of items randomly 
selected items from the Standardised Project Gutenberg Corpus (SPGC) reveal a significant 
low-frequency “droop” in the 𝛽𝛽-slope of the types vs. frequency distribution, inconsistent 
with the model when vocabulary is unlimited: when a finite vocabulary limit is imposed, 
optimal parameter selection allows the droop to be reproduced. We adjust the parameters of 
both the limited and unlimited vocabulary models to obtain optimal agreement with the 
vocabulary growth curves: the limited vocabulary model usually yields the best optimised 
agreement, but a sizeable minority of items are better represented by an unlimited vocabulary. 
While the optimised Zipf 𝛼𝛼 indices correlate strongly with the corresponding values obtained 
directly from document statistics, the former are generally larger than the latter (though this 
this is partially explained by the distorting effect of large values of the Mandelbrot parameter 
𝑚𝑚). The 𝛽𝛽 indices optimised from the limited vocabulary model are also compared with their 
directly measured equivalents, showing significant positive correlation. The relationship 
between optimised 𝛼𝛼 and 𝛽𝛽 agrees plausibly with the well-known continuum model, though 
the degree of agreement depends on how 𝛽𝛽 is defined. The experiments yield repeatable 
results from each of three 100-item samples, demonstrating the statistical significance of the 
experiments. 
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1. Introduction 

Type/token systems, in which discrete entities or tokens belong to categories or types, are ubiquitous 
throughout the natural and artificial worlds [1]. They include biological habitats, where tokens are the 
individual organisms and types are the species or genera to which they belong; the Malayan butterfly 
populations studied by Corbett and modelled statistically by Fisher [2,3] led to some early insights, and 
more recent work [4,5] has yielded precise estimates of the number of unknown species awaiting 
discovery. Several statistical generalities have been observed [6]: Heaps’ (or Herdan’s) law relates the 
respective numbers of types and tokens, while the two Zipf laws (referred to here as Zipf’s “first” and 
“second” laws) govern the frequency and ranking of types. Traditionally, one or other Zipf law has been 
considered fundamental, with the remaining Zipf law and Heaps’ law emerging as mathematical 
consequences [7]. Recent work however suggests that all these laws may be emergent properties of 
underlying complex systems, which do not always remain stable as those systems expand [8]. 

Considerable attention has been paid to written documents, where tokens are the word instances and 
types are the dictionary words [9, 10]. This has several practical applications, including author 
attribution [11] and optimised information retrieval [12]. While some workers have looked only at 
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individual documents, others have studied of entire languages: Petersen et al. [13] observed a “cooling 
with expansion” whereby fewer new words emerge as vocabulary grows, a trend punctuated by periods 
of “heating” associated with political conflict. One of these authors, Perc [14], studied the evolution of 
English words and phrases over several centuries, revealing a 200-year period of self-organization 
leading to statistical stabilization around the year 1800. 

Table 1: Randomly selected samples from Standardized Project Gutenberg Corpus used in this study, all of which can be 
found at https://zenodo.org/record/2422561 [15]; the filename for each item is PG<ID Number>_tokens.txt. 
 

Sample 1 Item ID Numbers 
32369 3011 52872 41607 19028 10899 21629 6280 7374 48123 
42564 11255 32723 53375 3094 17741 27705 42086 8479 28655 
26550 5268 41154 11988 21496 38698 50030 37243 51854 35458 
53764 10383 2376 55541 16699 48497 1979 56408 50831 37107 
17253 43948 54483 14379 32242 43186 23152 6768 28491 43983 
1863 19951 36228 54078 24393 11696 11727 24621 21810 11947 

33856 37047 38905 21720 49570 41460 12273 32042 27441 26233 
32730 43953 21888 21092 28189 48027 22156 9311 36757 33041 
34825 43485 467 12984 7098 25944 17274 53688 51712 1558 
46365 36477 16253 25283 8724 56759 10718 19707 590 16448 

Sample 2 Item ID Numbers 
53138 35600 10543 26390 19353 43225 18429 6850 102 33222 
46111 46529 56009 56152 2053 12431 13026 13368 43452 44844 
15205 37181 19503 49344 39360 40262 14778 46623 48069 55230 
1397 35885 6164 41827 46594 10611 36790 57036 18330 55116 

19356 49204 14000 8673 10641 46107 6973 23022 37584 44112 
15149 36279 43737 28115 17035 2702 56676 48249 26154 1671 
25419 14586 41305 6663 47241 37739 9324 29838 35640 7065 
16378 28938 32129 14944 6640 7064 6715 49257 39483 16298 
34653 43736 40276 36540 14453 3321 13565 18030 11079 46971 
53735 5343 37998 8213 51753 40668 19907 26933 11030 56605 

Sample 3 Item ID Numbers 
47994 5401 48390 44804 38514 19298 39843 50918 39231 43788 
48358 17668 5961 29829 17418 52135 26315 21684 56187 50397 
12186 7359 49283 10762 2188 4014 18547 32428 6384 40032 
16074 31528 38151 45197 56473 10483 23780 14028 23031 35259 
27575 33156 19045 30609 41575 48015 38969 46428 39513 41697 
26034 31464 39105 28067 11556 37614 27222 46710 33305 5874 
2876 50360 11128 2943 46008 22158 44784 14874 53757 43956 

46382 24073 474 47350 36858 53007 37315 11848 34925 21660 
1483 37293 4590 36217 15994 40263 38196 11678 50184 26103 

18335 41122 45150 39453 41050 28106 31627 49471 55718 2741 

The current work focusses on documents, selected randomly from the Standardized Project Gutenberg 
Corpus (SPGC) [15]. Three independent samples are selected, each comprising 100 unique documents 
of 50,000 to 100,000 word tokens (see Table 1). These are processed under the assumption that a word 
“type” constitutes any unique sequence of letters, regardless of any common stem; for example “boy”, 
“boys”, “boy’s” and “boys’” are all counted as separate types. Following the “traditionalists”, we 
assume Zipf’s first law to be a basic system property (i.e. tokens selected randomly from a Zipfian 
distribution) and thus formulate a model with two variants: one in which vocabulary (number of types) 
is free to grow indefinitely, the other in which it has an artificially imposed ceiling. We optimise both 
models to fit the profiles of our sample texts and compare the optimised parameters with their 
independently measured values. Finally, we draw our conclusions. 

2. Background and Initial Observations 

2.1 Heaps’ Law 

Heaps’ law relates the number of tokens 𝑡𝑡 to the corresponding number of types 𝑣𝑣(𝑡𝑡), which we shall 
call the “vocabulary”. As the system “grows” (i.e. as the text is processed) tokens are selected randomly 
from an “at-risk” pool. Initially most of these are unique, but as time progresses an increasing number 
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of existing types reappear. This slows the growth of vocabulary, and over many selections the empirical 
relationship 

𝑣𝑣(𝑡𝑡) ∝ 𝑡𝑡𝜆𝜆 (1) 
 
is generally found to emerge. This known as Heaps’ or Herdan’s law [16] and the parameter 𝜆𝜆 ∈ [0,1] 
may be called the “Heaps index” (see Figure 1). (Appendix A defines the various power-law indices 
used in this table.) Common sense suggests that as the unused types are depleted, 𝑣𝑣(𝑡𝑡) must saturate 
and the law cease to apply. Although this is observed in ideogrammic languages like Chinese (where 
types are semantic characters with limited supply) it is not typically the case in grammatical languages 
like English or French, even for very long documents [17,18]. While all languages’ vocabularies are 
ultimately finite, few texts ever come close to exhausting all available words: the 2020 Oxford English 
Dictionary (OED) lists 171,476 distinct words and a typical 20-year-old knows about 42,000 [19] 
(though these refer to lexical word stems, excluding inflexions and proper names). In contrast, James 
Joyce’s Ulysses (SPGC item PG4300) has only 28,998 word-types and extrapolation using Heaps’ law 
(Figure 2) shows that it would need to be 10 times longer to reach the present OED vocabulary. Since 
Ulysses was written over seven years, this “ultra-Ulysses” would likely have taken Joyce a further sixty 
years, during which diachronic drift (the emergence of new words and the obsolescence of old ones) 
would have ensured a continued supply of unused types [20]. In fairness, Ulysses is not the best example 
since it contains many independently coined neologisms: Figure 2 compares it with a more conventional 
novel, Edith Nesbit’s The Railway Children (PG1874) with 𝜆𝜆 = 0.574 (cf. 0.732 for Ulysses). 
Extrapolation shows the text would need to be 300 times longer (100 times longer than Ulysses) to rival 
the OED vocabulary. 
 

 
 
Figure 1: Vocabulary growth curve for SPGC item PG102 (The Tragedy of Pudd’nhead Wilson by Mark 
Twain) with optimized Heaps curve (𝜆𝜆 = 0.5818) showing continuously slowing but non-saturating 
vocabulary growth. Inset shows the same graph plotted on a log-log scale. Optimization was performed by 
numerically minimising the sum of the square differences between the Heaps curve and the observed data. 

2.2 Zipf’s Laws 

We define the frequency of a type as the number of tokens by which it is represented in a system. For 
example, “the” appears 3,635 times in the novel Three Men in a Boat and therefore has a frequency 
𝑓𝑓 = 3635. In its simplest form Zipf’s law states the relationship between a type’s frequency 𝑓𝑓𝑟𝑟 and its 
rank 𝑟𝑟 (𝑟𝑟 = 1 being the most frequent, 2 being the next most frequent etc.) as 𝑓𝑓𝑟𝑟 ∝

1
𝑟𝑟
 [21], although this 

has been generalized as the Zipf-Mandelbrot law: 

𝑓𝑓𝑟𝑟 ∝
1

(𝑟𝑟 + 𝑚𝑚)𝛼𝛼 (2) 



[22] where 𝛼𝛼 may be called the “Zipf alpha index” and m the “Mandelbrot parameter” (which embraces 
an observed deviation from a power law when 𝑟𝑟 is small). There is also the “Yule law” 𝑓𝑓𝑟𝑟 ∝ Β(𝑟𝑟,𝛼𝛼) 
[23] (where Β(𝑥𝑥,𝑦𝑦) = ∫ 𝑢𝑢𝑥𝑥−1(1− 𝑢𝑢)𝑦𝑦−1𝑑𝑑𝑢𝑢1

0  is the Legendre beta function), which is asymptotically 

equivalent to 1
𝑥𝑥𝑦𝑦

 and more tractably normalized. These are all variants of Zipf’s “first law”, but for the 
current paper we confine our definition of the law to (2). 

 
Figure 2: Vocabulary growth curves for Ulysses and The Railway Children, compared with the vocabularies of the 
Oxford English Dictionary (OED) and an average 20 year old. Heaps’ extrapolation suggests that Ulysses would 
rival the OED after about 3,000,000 word tokens, while The Railway Children would require about 30,000,000. 
 

(a) Frequency vs. rank (b) Number of types vs. frequency 

 
Figure 3: Frequency distributions for SPGC item PG102 (The Tragedy of Pudd’nhead Wilson) illustrating 
Zipf’s first and second laws. (a) The frequency/rank curve is roughly continuous across the “mid range” (ranks 
100..1000) with a slope (𝛼𝛼) approximately 1.124, but becomes a series of discrete plateaux in the low frequency 
tail. (b) The Zipf 𝛽𝛽 index becomes smaller when computed using lower frequencies; a general trend displayed 
in Figure 4. The discrete higher frequency data smoothed with logarithmic binning (using the scheme outlined 
in [24]) agree closely with the maximum likelihood estimation based on frequencies 11..100. 

There is no universal consensus regarding the origin of Zipf’s law. Whilst linguistically it could arise 
from optimal coding/decoding [22] or from the length and composition of words [25, 26], it applies also 
to article citations [27], human genetics [28], the sizes of galactic superclusters [29] and to a wealth of 
other non-linguistic phenomena [30]. Zipf himself linked his law to the principle of least effort [21], 
while others have proposed a guiding animus of “the rich getting richer” [31]. In the latter, type 
selections make future selections of those same types more probable – a mechanism also known as 
“preferential attachment” [32]. This sometimes incorporates a linear increase in the number of types-
at-risk to prevent saturation [18], though Tria et al. [33] suggested that new-type selection itself expands 



the range of accessible types. Recent work by De Marzo et al. [34] showed that certain statistics 
including earthquake magnitudes and world city populations follow the rule only temporarily, and that 
Zipfian behaviour disappears as the sampling progresses. Davis [8] similarly proposed that Zipf’s law 
may be a transitory phase during system growth, without any asymptotic convergence. 

In textual documents we find that 𝛼𝛼, though supposedly constant, can vary quite considerably. A 
maximum likelihood estimate (MLE) of 𝛼𝛼 in the “mid-range” 𝑟𝑟 = 100 … 1000 (ideally beyond the 
influence of 𝑚𝑚) is shown in Figure 3(a). (The MLE technique is outlined in Appendix B.) We denote 
this value 𝛼𝛼𝑚𝑚𝑟𝑟, noting that it is not necessarily relevant to Heaps’ law, which is governed by the low-
frequency tail where new types are added. Although Montemurro [35] extended a smooth curve into 
this tail by averaging logarithmically spaced partitions, it is nevertheless better described using Zipf’s 
“second law”: that the number of types 𝑛𝑛(𝑓𝑓) exhibiting frequency 𝑓𝑓 = 1,2,3 … is governed by 

𝑛𝑛(𝑓𝑓) ∝
1
𝑓𝑓𝛽𝛽

 (3) 

where 𝛽𝛽 is the Zipf “beta index” (see Figure 3(b)). Since 𝛽𝛽 quantifies the rate at which the plateaux to 
the right of Figure 3(a) widen with increasing 𝑟𝑟, it must vary inversely with the corresponding value of 
𝛼𝛼: many authors (Lü et al. [7], Li [36] and others) have derived the formula 

𝛽𝛽 = 1 +
1
𝛼𝛼

 (4) 

from a continuous approximation of Zipf’s first law valid asymptotically for large 𝑓𝑓 [37]. For our 
purposes we define three measures of 𝛽𝛽: the “mid range” 𝛽𝛽𝑚𝑚𝑟𝑟 obtained by applying MLE to the 
frequencies between 11 and 100, together with 𝛽𝛽10 and 𝛽𝛽2 similarly computed using the frequency 
ranges 1 … 10 and 1 … 2 respectively. We find that (with the exception of a few outliers) 𝛽𝛽𝑚𝑚𝑟𝑟 > 𝛽𝛽10 >
𝛽𝛽2 (Figure 4) which is consistent with the “droop” in the types vs. frequency distribution and the 
steepening of the frequency vs. rank curve observed by Montemurro [35], Tria et al. [33] and Cancho 
& Solé [38] for 𝑟𝑟 ≳ 104. 

(a) 𝛽𝛽𝑚𝑚𝑟𝑟  vs. 𝛽𝛽10 (b) 𝛽𝛽2 vs. 𝛽𝛽10 

 

Figure 4: Zipf beta indices obtained from the SPGC items listed in Table 1 using MLE. (a) The “mid-range” 
beta index 𝛽𝛽𝑚𝑚𝑟𝑟 computed from frequencies 11 to 100 plotted against the corresponding values of 𝛽𝛽10 based on 
the ten lowest frequencies, showing that the former is almost universally larger than the latter. There is a small 
and marginally significant positive correlation. (b) The index  𝛽𝛽2 = log2�𝑛𝑛(1) 𝑛𝑛⁄ (2)� based on the two lowest 
frequencies plotted against 𝛽𝛽10, showing strong positive correlation with the former is almost universally lower 
than the latter. The results indicate a droop in the increasing number of types with decreasing frequency (see 
also Figure 3). 



Figure 5(a) shows 𝛽𝛽10 plotted against 𝛼𝛼𝑚𝑚𝑟𝑟, which indicates no significant correlation with most data-
points clustered well below the theoretical prediction. (This confirms more robustly an earlier finding 
by the authors [39].) However, Figure 5(b) shows that 𝛽𝛽𝑚𝑚𝑟𝑟 and 𝛼𝛼𝑚𝑚𝑟𝑟 are related in a manner consistent 
with established theory.  

The relationship between Zipf’s and Heaps’ laws has been studied by many researchers, most of whom 
assume Bernoulli token selection with probabilities governed by a Zipfian distribution, to which relative 
frequencies tend asymptotically as the system expands. Based on this assumption, Boystov [40], van 
Leijenhorst & van der Weide [41], Lü et al. [7] and many others agree that Zipf’s law leads to 𝑣𝑣(𝑡𝑡) =
𝒪𝒪�𝑡𝑡𝜆𝜆� with 

𝜆𝜆 =
1
𝛼𝛼

 . (5) 

Figure 6 shows that the measured 𝜆𝜆 is universally much lower than the value obtained by substituting 
𝛼𝛼𝑚𝑚𝑟𝑟 into (5), although there is significant correlation in the required direction. However, we noted 
before that the low-frequency tail is more relevant to vocabulary growth than the mid-range, so a low-
frequency 𝛽𝛽 (𝛽𝛽10 or 𝛽𝛽2) may be more useful. Substituting (5) into (4) and solving for 𝜆𝜆 we obtain 

 𝜆𝜆 = 𝛽𝛽 − 1 (6) 

and Figure 7 compares this with the measured data. With 𝛽𝛽 = 𝛽𝛽10 (Figure 7(a)) the correlation becomes 
much more significant, with the data clustered plausibly around the theoretical curve, though with a 
lower than expected slope. One might expect better results to be obtained using 𝛽𝛽2 (since it relates to 
the lowest frequencies most relevant to vocabulary growth) but Figure 7(b) shows that this is not the 
case: the centroid of the data now moves to the left of the line, and the coefficients of correlation 
decrease. The latter may be partly due to the fact that 𝛽𝛽2 is based on fewer data than 𝛽𝛽10 and is therefore 
more susceptible to noise. 

(a)  𝛽𝛽10 vs. 𝛼𝛼𝑚𝑚𝑟𝑟  (b) 𝛽𝛽𝑚𝑚𝑟𝑟  vs. 𝛼𝛼𝑚𝑚𝑟𝑟  

 
 
Figure 5: Zipf 𝛽𝛽 indices plotted against the corresponding mid-range 𝛼𝛼𝑚𝑚𝑟𝑟 (ranks 100 to 1000) indices for the 
SPGC items listed in Table 1, compared with the theoretical 𝛽𝛽 = 1 + 1/𝛼𝛼 (4). All indices were obtained using 
the MLE method (Appendix B). Graph (a) shows 𝛽𝛽10 based on the ten lowest frequencies, while (b) shows  𝛽𝛽𝑚𝑚𝑟𝑟  
based on frequencies 11 to 100. The former are mostly considerably lower than the model, with no significant 
correlation (Pearson 𝑅𝑅 coefficients fail universally to meet the criterion for 𝑝𝑝 = 0.1). The latter are clustered 
around the model curve, with very strong negative correlation. 



 

 
 

Figure 6: The optimised Heaps index 𝜆𝜆 plotted against the mid-range 𝛼𝛼𝑚𝑚𝑟𝑟, with the curve of (5) shown for 
reference. The data are universally lower than the theoretical curve, though the strong negative correlation (𝑝𝑝 ≈
0.00001) shows that 𝛼𝛼𝑚𝑚𝑟𝑟 does have a significant impact upon 𝜆𝜆. 

 

(a) Beta 𝛽𝛽10 based on ten lowest frequencies (b) Beta 𝛽𝛽2 based on two lowest frequencies 

 
 

Figure 7: Comparison of the observed relationship between 𝜆𝜆 and 𝛽𝛽 with the theoretical 𝜆𝜆 = 𝛽𝛽 − 1. The 𝛽𝛽-
values were based on the slope of 𝑛𝑛(𝑓𝑓) vs. 𝑓𝑓 for (a) the ten lowest frequencies (𝛽𝛽10) and (b) the two lowest 
frequencies (𝛽𝛽2). Note that in (b) there is a general bias towards over-prediction and a significantly weaker 
correlation than in (a). 

Throughout the remainder of this paper we explore what use can still be made of traditional assumption 
of random selection from a static Zipfian distribution, using a combination of mathematical analysis 
and the SPGC documents of Table 1. We proceed on the assumption used by van Liejonhorst & van 
der Weide [41] that the Zipf-Mandelbrot law (2) is the most fundamental, and investigate the other laws 
in relation to it. We begin by examining the link between the Zipf indices 𝛼𝛼 and 𝛽𝛽, before considering 
these in relation to the Heaps index 𝜆𝜆. 



3. Model Development 

3.1 Relationship between the Two Zipf Laws 

Most existing theory (e.g. Lü et al. [7]) relies on an approximation in which rank and frequency are 
represented as continuous numbers: 𝑓𝑓(𝑟𝑟) = 𝜂𝜂(𝑟𝑟 + 𝑚𝑚)−𝛼𝛼 where is 𝜂𝜂 is a normalizing constant. If 𝛿𝛿𝑟𝑟 is 
the number of ranks associated with a small frequency change 𝛿𝛿𝑓𝑓 then (assuming 𝛿𝛿𝑟𝑟 ≪ 𝑟𝑟) 𝛿𝛿𝑓𝑓 ≈
𝜂𝜂[(𝑟𝑟 + 𝑚𝑚)−𝛼𝛼 − (𝑟𝑟 + 𝑚𝑚 + 𝛿𝛿𝑟𝑟)−𝛼𝛼] ≈ 𝜂𝜂𝛼𝛼(𝑟𝑟 +𝑚𝑚)−𝛼𝛼−1𝛿𝛿𝑟𝑟. Substituting 𝑟𝑟 + 𝑚𝑚 = (𝜂𝜂 𝑓𝑓⁄ )1 𝛼𝛼⁄  and  

rearranging we obtain 𝛿𝛿𝑟𝑟 ≈ 1
𝛼𝛼
𝜂𝜂
1
𝛼𝛼𝑓𝑓−�1+

1
𝛼𝛼�𝛿𝛿𝑓𝑓. Since the number of types 𝑛𝑛(𝑓𝑓) associated with a single 

frequency 𝑓𝑓 is roughly the 𝛿𝛿𝑟𝑟 associated with 𝛿𝛿𝑓𝑓 = 1, it seems reasonable to state that 

𝑛𝑛(𝑓𝑓) ≈
1
𝛼𝛼
𝜂𝜂
1
𝛼𝛼𝑓𝑓−�1+

1
𝛼𝛼� (7) 

which clearly implies (4). However, it is counterintuitive to use a continuous approximation to represent 
the least continuous part of the frequency vs. rank distribution. We therefore develop a discrete 
alternative based on the following assumptions: each token added to the document 𝐶𝐶𝑡𝑡 = {𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑡𝑡} 
is selected from a “dictionary” 𝐷𝐷𝑉𝑉 = {𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑉𝑉} of size 𝑉𝑉 with an independent probability 𝑝𝑝𝑟𝑟 =
Pr[𝑆𝑆𝑖𝑖 = 𝑤𝑤𝑟𝑟], 𝑖𝑖 ∈ {1,2, … , 𝑡𝑡}. (Note that 𝑡𝑡 begins at 0 for an empty document and increases by 1 
whenever a token is added.) We further assume Mandelbrot’s version of Zipf’s first law (see Section 2) 
governed by the distribution: 

𝑝𝑝𝑟𝑟 =
1

𝜁𝜁𝑉𝑉(𝛼𝛼,𝑚𝑚)(𝑟𝑟 + 𝑚𝑚)𝛼𝛼 ; 1 ≤ 𝑟𝑟 ≤ 𝑉𝑉 (8) 

where 𝑚𝑚 is the Mandelbrot parameter and 𝜁𝜁𝑉𝑉(𝛼𝛼,𝑚𝑚) = ∑ 1
(𝑖𝑖+𝑚𝑚)𝛼𝛼

𝑉𝑉
𝑖𝑖=1 . (Appendix C outlines the procedure 

used to calculate this function.) We can call r the “rank” of the corresponding type, while noting that 
this is not necessarily its rank within the actual document. 

 
Figure 8: Conceptual probability/rank distributions: (a) Zipf-Mandelbrot law with unlimited vocabulary, (b) 
Zipf-Mandelbrot with artificially imposed finite maximum vocabulary 𝑉𝑉, (c) increased slope at low frequency 
observed by Montemurro [34],Tria et al. [32] and Cancho & Solé [42] represented by an “effective” maximum 
vocabulary 𝑉𝑉. (All scales are logarithmic.) 

The maximum vocabulary 𝑉𝑉 could be infinite as in Figure 8(a) or finite as in Figure 8(b), though in the 
former case normalization requires 𝛼𝛼 > 1. That a single Zipf-Mandelbrot distribution should remain 
undisturbed up to some precisely defined cut-off 𝑉𝑉 may seem unnatural, especially in the light of the 
frequently observed gradual droop in the extreme low-frequency tail [33, 35, 38]: nevertheless, the 
assumption of a finite maximum vocabulary may help to mimic its effects for the purpose of modelling 
(see Figure 8(c)). (It should be noted that this low-frequency droop is somewhat speculative anyway, 
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since it is only clearly observed in the aggregate of many different documents; in the case of Tria et al. 
[33] the entire Project Gutenberg corpus.) 

For the extreme low-frequency tokens (𝑝𝑝𝑟𝑟 ≪ 1) the Poisson approximation may be applied, so the 
probability that type 𝑤𝑤𝑟𝑟 appears 𝑓𝑓 times in document 𝐶𝐶𝑡𝑡 is given by 

𝑝𝑝𝑡𝑡(𝑓𝑓|𝑤𝑤𝑟𝑟) ≈
(𝑡𝑡𝑝𝑝𝑟𝑟)𝑓𝑓𝑒𝑒−𝑡𝑡𝑝𝑝𝑟𝑟

𝑓𝑓!
 (9) 

and the number of types appearing exactly 𝑓𝑓 times is 

𝑛𝑛𝑡𝑡(𝑓𝑓) = �𝑝𝑝𝑡𝑡(𝑓𝑓|𝑤𝑤𝑟𝑟) ≈
𝑡𝑡𝑓𝑓

𝑓𝑓!
� 𝑝𝑝𝑟𝑟𝑓𝑓𝑒𝑒−𝑡𝑡𝑝𝑝𝑟𝑟𝑑𝑑𝑟𝑟
𝑉𝑉

1

𝑉𝑉

𝑟𝑟=1

. (10) 

Changing the variable of integration to 𝑝𝑝𝑟𝑟 we obtain 

𝑛𝑛𝑡𝑡(𝑓𝑓) =
𝑡𝑡𝑓𝑓

𝑓𝑓!𝛼𝛼𝐴𝐴
1
𝛼𝛼
� 𝑝𝑝𝑟𝑟

𝑓𝑓−1𝛼𝛼−1
1

𝐴𝐴(𝑚𝑚+1)𝛼𝛼

1
𝐴𝐴(𝑉𝑉+𝑚𝑚+1)𝛼𝛼

𝑒𝑒−𝑡𝑡𝑝𝑝𝑟𝑟𝑑𝑑𝑝𝑝𝑟𝑟

=
1
𝛼𝛼𝑓𝑓!

�
𝑡𝑡
𝐴𝐴
�
1
𝛼𝛼
�Γ �𝑓𝑓 −

1
𝛼𝛼

,
𝑡𝑡

𝐴𝐴(𝑉𝑉 + 𝑚𝑚 + 1)𝛼𝛼� − Γ �𝑓𝑓 −
1
𝛼𝛼

,
𝑡𝑡

𝐴𝐴(𝑚𝑚 + 1)𝛼𝛼�� 

(11) 

where 𝐴𝐴 = 𝜁𝜁𝑉𝑉(𝛼𝛼,𝑚𝑚) and Γ(𝑠𝑠, 𝑥𝑥) = ∫ 𝑢𝑢𝑠𝑠−1𝑒𝑒−𝑢𝑢𝑑𝑑𝑢𝑢∞
𝑥𝑥   is the upper incomplete gamma function [42]. Since 

𝑉𝑉 ≫ 1, the +1 in the first term is negligible and if 𝑚𝑚 ≪ 𝑉𝑉 the final term may also be ignored. Thus 

𝑛𝑛𝑡𝑡(𝑓𝑓) ≈
1
𝛼𝛼𝑓𝑓!

�
𝑡𝑡

𝜁𝜁𝑉𝑉(𝛼𝛼,𝑚𝑚)�
1
𝛼𝛼
Γ �𝑓𝑓 −

1
𝛼𝛼

,
𝑡𝑡

𝜁𝜁𝑉𝑉(𝛼𝛼,𝑚𝑚)(𝑉𝑉 + 𝑚𝑚)𝛼𝛼� (12) 

which for the case of unlimited types (𝑉𝑉 → ∞) becomes 

𝑛𝑛𝑡𝑡(𝑓𝑓) ≈
1
𝛼𝛼𝑓𝑓!

�
𝑡𝑡

𝜁𝜁(𝛼𝛼,𝑚𝑚)�
1
𝛼𝛼
Γ �𝑓𝑓 −

1
𝛼𝛼
� (13) 

where Γ(𝑠𝑠) = ∫ 𝑢𝑢𝑠𝑠−1𝑒𝑒−𝑢𝑢𝑑𝑑𝑢𝑢∞
0 , the complete gamma function, and 𝜁𝜁(𝛼𝛼,𝑚𝑚) = lim

𝑉𝑉→∞
𝜁𝜁𝑉𝑉(𝛼𝛼,𝑚𝑚) which 

equals the Riemann zeta function 𝜁𝜁(𝛼𝛼) when 𝑚𝑚 = 0. (A similar expression to (13) was derived 
independently by Eliazar [43] on the basis of Poissonian token arrival.) Now for integer 𝑧𝑧, 𝑧𝑧! =
Γ(𝑧𝑧 + 1) such that Γ(𝑧𝑧 + 1) = 𝑧𝑧Γ(𝑧𝑧), which generalizes to Γ(𝑧𝑧 + 𝛾𝛾) = 𝑧𝑧𝛾𝛾Γ(𝑧𝑧) �1 + 1

2𝑧𝑧
𝛾𝛾(𝛾𝛾 − 1) +

𝒪𝒪(|𝑧𝑧|−2)� , 𝛾𝛾 ∈ ℝ [44]. Substituting this into (13) we obtain 

𝑛𝑛𝑡𝑡(𝑓𝑓) =
1
𝛼𝛼
�

𝑡𝑡
𝜁𝜁(𝛼𝛼,𝑚𝑚)�

1
𝛼𝛼
𝑓𝑓−�1+

1
𝛼𝛼� �1 +

1 + 𝛼𝛼
2𝛼𝛼2𝑓𝑓

+ 𝒪𝒪 �
1
𝑓𝑓2
��. 

0B(14) 

Now setting 𝜂𝜂 = 𝑡𝑡
𝜁𝜁(𝛼𝛼,𝑚𝑚) we find that the continuum approximation (7) is identical to (14) with all but 

the first bracketed term ignored. Therefore (given our assumptions) Zipf’s first and second laws are 
only strictly consistent when 𝑓𝑓 ≫ 1+𝛼𝛼

2𝛼𝛼2
, so it is hardly surprising that (4) does not work well in the low-



frequency tail (Figure 5(a)). However, returning to our previous definition 𝛽𝛽2 = log2
𝑛𝑛𝑡𝑡(1)
𝑛𝑛𝑡𝑡(2) and 

substituting (13), we obtain after some manipulation 

𝛽𝛽2 = 1 − log2 �1 −
1
𝛼𝛼
� (15) 

which provides a discrete equivalent to (4) for extreme low frequencies under unlimited vocabulary 
(though (4) still holds asymptotically for larger frequencies). Interestingly, for all 𝛼𝛼 > 1 (15) returns a 
value larger than (4), conflicting with our previous observation that the extreme low frequency 𝛽𝛽 is 
almost universally smaller than the average (Figure 4). 

For a finite maximum vocabulary, we obtain a similar expression to (15) by substituting (12) in place 
of (13): with the aid of the identity Γ(𝑠𝑠 + 1, 𝑥𝑥) = 𝑠𝑠Γ(𝑠𝑠, 𝑥𝑥) + 𝑥𝑥𝑠𝑠𝑒𝑒−𝑥𝑥 [42] we find 

𝛽𝛽2 = 1 − log2 �1 −
1
𝛼𝛼

+
(𝑝𝑝𝑉𝑉𝑡𝑡)

1−1𝛼𝛼𝑒𝑒−𝑝𝑝𝑉𝑉𝑡𝑡

Γ �1 − 1
𝛼𝛼 ,𝑝𝑝𝑉𝑉𝑡𝑡�

� (16) 

where 𝑝𝑝𝑉𝑉 = 1
𝜁𝜁𝑉𝑉(𝛼𝛼,𝑚𝑚)(𝑉𝑉+𝑚𝑚)𝛼𝛼. Since the final bracketed term is positive, this must always give a value 

lower than (15), suggesting the reduced values of  𝛽𝛽2 seen in Figure 4 can be reproduced in the model 
by imposing an effective limit on the vocabulary. 

3.2 Relationship Between Zipf and Heaps’ Laws 

Although this has been firmly established elsewhere, we note that (13) provides yet another proof of 
that Zipf’s law leads to Heaps’ law: theoretically 𝑣𝑣(𝑡𝑡) = ∑ 𝑛𝑛𝑡𝑡(𝑓𝑓)∀𝑓𝑓 , but if we assume some upper 
frequency 𝑓𝑓𝑝𝑝 beyond which further summation of 𝑛𝑛𝑡𝑡(𝑓𝑓) is negligible, (13) may be substituted for 𝑛𝑛𝑡𝑡(𝑓𝑓) 
to give 

𝑣𝑣(𝑡𝑡) ≈
1
𝛼𝛼
�

𝑡𝑡
𝜁𝜁(𝛼𝛼,𝑚𝑚)�

1
𝛼𝛼
�

Γ�𝑓𝑓 − 1
𝛼𝛼�

𝑓𝑓!

𝑓𝑓𝑝𝑝

𝑓𝑓=1

. (17) 

Since the summation is independent of 𝑡𝑡 we have 𝑣𝑣(𝑡𝑡) ∝ 𝑡𝑡𝜆𝜆 with 𝜆𝜆 = 1
𝛼𝛼

 as required. However, before 
(17) can be used in any practical calculations, the issue of choosing 𝑓𝑓𝑝𝑝 must be addressed: this cannot 
be arbitrarily large since the resulting high probabilities would invalidate the Poisson approximation 
(9). Nevertheless, as the frequency increases progressively fewer types exhibit the same frequency, until 
eventually a given frequency 𝑓𝑓𝑚𝑚 can be associated with a single rank 𝑟𝑟𝑚𝑚 with probability 𝑝𝑝𝑟𝑟𝑚𝑚 ≈ 𝑓𝑓𝑚𝑚

𝑡𝑡
. 

Substituting this expression into (8) and rearranging yields 𝑟𝑟𝑚𝑚 = � 𝑡𝑡
𝜁𝜁(𝛼𝛼,𝑚𝑚)𝑓𝑓𝑚𝑚

�
1
𝛼𝛼 − 𝑚𝑚 , which must equal 

the approximate shortfall in 𝑣𝑣(𝑡𝑡) obtained by summing terms in (17) up to the frequency 𝑓𝑓𝑚𝑚 − 1. We 
can therefore state that 

𝑣𝑣(𝑡𝑡) ≈ �
𝑡𝑡

𝜁𝜁(𝛼𝛼,𝑚𝑚)�
1
𝛼𝛼
�

1

𝑓𝑓𝑚𝑚
1
𝛼𝛼

+
1
𝛼𝛼
�

Γ�𝑓𝑓 − 1
𝛼𝛼�

𝑓𝑓!

𝑓𝑓𝑚𝑚−1

𝑓𝑓=1

� −𝑚𝑚. (18) 



While the final term in (18) violates precise consistency with Heaps’ law, if 𝑚𝑚 is small relative to 𝑣𝑣(𝑡𝑡) 
the difference should only be slight. The choice of 𝑓𝑓𝑚𝑚 is somewhat arbitrary; for our calculations we 
use the smallest 𝑓𝑓𝑚𝑚 for which 𝑛𝑛𝑡𝑡(𝑓𝑓𝑚𝑚) < 0.1𝑛𝑛𝑡𝑡(1). 

The expression (18) assumes infinite maximum vocabulary; to allow 𝑉𝑉 to be finite, we substitute (12) 
in place of (13) to obtain:  

𝑣𝑣(𝑡𝑡) = �
𝑡𝑡

𝜁𝜁𝑉𝑉(𝛼𝛼,𝑚𝑚)�
1
𝛼𝛼
�

1

𝑓𝑓𝑚𝑚
1
𝛼𝛼

+
1
𝛼𝛼
�

Γ�𝑓𝑓 − 1
𝛼𝛼 ,𝑝𝑝𝑉𝑉𝑡𝑡�
𝑓𝑓!

𝑓𝑓𝑚𝑚−1

𝑓𝑓=1

� −𝑚𝑚 (19) 

where again 𝑝𝑝𝑉𝑉 = 1
𝜁𝜁𝑉𝑉(𝛼𝛼,𝑚𝑚)(𝑉𝑉+𝑚𝑚)𝛼𝛼. Not only does the presence of t within the summation further violate 

Heaps’ law, but 𝑣𝑣(𝑡𝑡) must also saturate as 𝑟𝑟𝑚𝑚 approaches 𝑉𝑉: a phenomenon never observed in practice. 
It may nevertheless provide a useful regional approximation within a limited range of 𝑡𝑡 to accommodate 
the low frequency droop illustrated in Figure 8(c). 

The approximations used in the development of this model are justified by simulation in Appendix E. 

(a) Unlimited Vocabulary (b) Limited Vocabulary 
 

 

Figure 9: (a) Vocabulary growth curve for PG308 Three Men in a Boat compared with (18) using optimised parameters 
𝛼𝛼 = 1.732, 𝑚𝑚 = 74.08. The r.m.s. optimization error was 44.40 tokens. (a) The same growth curve compared with (19) 
using optimised parameters 𝛼𝛼 = 1.396, 𝑚𝑚 = 15.41, 𝑉𝑉 = 19575.6. The r.m.s. optimisation error here was 32.43 tokens. 

4. Application of Model to Sample Texts 

4.1 Analysis of an Individual Text 

We begin by optimising (18) and (19) to fit the vocabulary growth profile of a single text: PG308 Three 
Men in a Boat. The optimisation algorithm (described more fully in Appendix D) evolves an initial 
hypothesis concerning the model parameters towards an optimal solution for which the root mean 
square (r.m.s.) error between the measured and theoretical 𝑣𝑣(𝑡𝑡) profiles is at a minimum. Figure 9(a) 
compares measured and optimised model 𝑣𝑣(𝑡𝑡) for the unlimited vocabulary model (18), and Figure 9(b) 
for the limited vocabulary model (19). The introduction of the finite vocabulary reduces the optimal 
error quite considerably (by 27%) which is to be expected given the extra degree of freedom. 

Figure 10 shows the respective frequency vs. rank distributions obtained from the same optimised 
models (𝑓𝑓(𝑟𝑟) = 𝑡𝑡𝑝𝑝𝑟𝑟 where 𝑝𝑝𝑟𝑟 is computed from (8)) compared with the corresponding measured 



distribution. Figure 10(a) shows that for unlimited vocabulary considerable disagreement exists in the 
high frequency statistics: the introduction of a vocabulary limit (Figure 10(b)) significantly improves 
the fit, though the optimised slope is still somewhat greater across the mid-range than that of the 
measured distribution. Finally Figure 11 shows the types vs. frequency distributions, comparing 
optimised (12) and (13) with the measured data. We note that in the former case (Figure 11(a)) the 
predicted increase in 𝛽𝛽 for very small frequencies is not reflected in the measured data, although the the 
introduction of the vocabulary limit (Figure 11(b)) does bring the theoretical and experimental 
distributions into better agreement. 

              (a) Unlimited Vocabulary                          (b) Limited Vocabulary 
 

 
Figure 10: (a) Measured token frequency distribution for PG308 Three Men in a Boat, compared with unlimited 
vocabulary model ((8) with 𝑉𝑉 → ∞) using optimised parameters. (b) The same measured distribution compared 
with limited vocabulary model using optimised parameters. 

 
                (a) Unlimited Vocabulary          (b) Limited Vocabulary 

 
Figure 11: (a) Measured types vs. frequency distribution for PG308 Three Men in a Boat, compared with 
limited vocabulary model (13) using optimised parameters. (b) The same measured types vs. frequency 
distribution compared with (12) using optimised parameters. 

4.2 Optimised Parameters for Project Gutenberg Samples 

Figure 12 shows the cumulative distributions of optimised 𝛼𝛼 and 𝑚𝑚 for all three Gutenberg samples. 
The distributions of 𝛼𝛼 are approximately Gaussian, with an average greatly reduced by the introduction 
of limited vocabulary (Figure 12(a)). There is a similar reduction in the average 𝑚𝑚, though the 
distribution is significantly different (Figure 12(b)): for unlimited vocabulary this is still basically 
Gaussian, while for limited 𝑉𝑉 it resembles a gamma distribution with a shape parameter less than unity. 



Figure 13(a) shows the cumulative distribution for optimised 𝑉𝑉: 70-90% of each sample remains 
lognormal, though with a heavy tail extending in (the case of sample 2) to more than 1011 types.  

To ensure that these results are genuinely unique (rather than merely local minima), initial hypotheses 
are chosen at random and the optimisation procedure repeated for all items. With the unlimited 
vocabulary model, optimised parameters were almost identical (within ±1%) between repeated tests, as 
were the values of 𝛼𝛼 and m obtained using the limited vocabulary model. However, the effect of 
repeated optimisation on 𝑉𝑉 are shown in Figure 13(b): for 𝑉𝑉 < 105 the results again differ by little more 
than a fraction of a percent, but this changes in the upper tail of the distribution where (especially for 
𝑉𝑉 ≳ 106) successive optimisations may be up to an order of magnitude apart. 

(a) Optimised Alpha (b) Optimised Mandelbrot Number 

 
 
Figure 12: Cumulative frequency distributions of (a) optimised alpha indices and (b) optimised Mandelbrot 
parameters obtained from the Project Gutenberg samples (Table 1). Both are reduced significantly by the 
introduction of a vocabulary limit.  
 

(a) Maximum Vocabulary Distribution (b) Repeatability of Measurement 

 
 
Figure 13: (a) Cumulative frequency distributions of optimised 𝑉𝑉. The inset shows an expansion of the 
steepest part of the distribution displaying approximately lognormal shape. (b) Comparison of optimised 
𝑉𝑉 between independent optimisations: for smaller 𝑉𝑉 the experiment is accurately repeatable (within ±1%), 
while in the upper tail of the distribution (𝑉𝑉 > 105) measurements are not accurately repeatable.  

Figure 14 shows that the improvement in the optimisation error caused by the introduction of limited 𝑉𝑉 
(observed anecdotally in Figure 9) is in fact almost universal. Only a very few items display a ratio 
𝜀𝜀𝑉𝑉 𝜀𝜀∞⁄ > 1, and for all of these 𝑉𝑉 > 105 (which we have already observed is not consistently 
reproducible). Figure 15 shows that in all such cases the optimised values of 𝛼𝛼 and 𝑚𝑚 are practically 
identical for the limited and unlimited vocabulary models, and we conclude that here the unlimited 
vocabulary model provides the better description. We surmise that these are not in fact true 
optimisations associated with global (or even local) minima as shown in Figure 16(a): they lie instead 



upon a slope of ever-decreasing gradient, tending towards a “true” optimum at infinity (Figure 16(b)). 
The exit criteria are met arbitrarily in a manner dependent on the stochastic nature of the optimisation 
process itself, or on the randomly selected initial hypotheses. These values of 𝑉𝑉 are therefore not 
particularly meaningful, except in so far as they are always very large. 

 

Figure 14: The impact on optimisation error of limiting 𝑉𝑉. The inset graph shows the limited 𝑉𝑉 error 𝜀𝜀𝑉𝑉 
plotted against the unlimited vocabulary error 𝜀𝜀∞, showing that the vocabulary limit generally improves 
accuracy. The main graph plots optimised 𝑉𝑉 against the error ratio 𝜀𝜀𝑉𝑉 𝜀𝜀∞⁄  showing that the largest and 
therefore least repeatable (see Figure 13(b)) 𝑉𝑉s appear when there is little or no accuracy improvement. 
 

(a) Optimised 𝛼𝛼 (b) Optimised 𝑚𝑚 

 
 
Figure 15: Comparison of optimised 𝛼𝛼 and 𝑚𝑚 values obtained using limited (19) and unlimited (18) 
vocabulary models. Note that when the ratio of the optimisation errors 𝜀𝜀𝑉𝑉 𝜀𝜀∞ > 1⁄  (i.e. when the unlimited 
vocabulary gives the better fit) the parameters from the two models are practically identical.  



 

Figure 16: Schematic representation of (a) “true” parameter optimisation at a global (or local) minimum, 
and (b) “false” optimisation at arbitrary points along an ever-decreasing slope (the latter tending towards 
the true optimum at infinity). 
  

4.3 Comparison of Optimised 𝛼𝛼 and Mid-Range 𝛼𝛼𝑚𝑚𝑟𝑟 

Although the mid-range 𝛼𝛼𝑚𝑚𝑟𝑟 values were obtained by applying EM to the ranks 100-1000 (Figures 5 
and 6), the optimised values of 𝑚𝑚 were often well within this range (Figure 15(b)) such that measured 
𝛼𝛼𝑚𝑚𝑟𝑟 depends in reality on both 𝛼𝛼 and 𝑚𝑚. We therefore combine the optimised parameters to obtain a 
“reconstructed” 𝛼𝛼�𝑚𝑚𝑟𝑟 between ranks 𝑟𝑟1 and 𝑟𝑟2. By manipulating (8) we obtain 

𝛼𝛼�𝑚𝑚𝑟𝑟 = −𝐸𝐸 �
𝑑𝑑 log𝑝𝑝𝑟𝑟
𝑑𝑑 log 𝑟𝑟 �

=
1

𝑟𝑟2 − 𝑟𝑟1
�

𝛼𝛼𝑟𝑟
𝑟𝑟 + 𝑚𝑚

𝑑𝑑𝑟𝑟
𝑟𝑟2

𝑟𝑟1
= 𝛼𝛼 �1−

𝑚𝑚
𝑟𝑟2 − 𝑟𝑟1

log
𝑟𝑟2 +𝑚𝑚
𝑟𝑟1 + 𝑚𝑚

� (20) 

for which we set 𝑟𝑟1 = 100 and 𝑟𝑟2 = 1000. Figures 17 and 18 compare the optimised values of 𝛼𝛼 with 
the predictions of (20) obtained using the unlimited and limited vocabulary models, plotted against the 
directly measured 𝛼𝛼𝑚𝑚𝑟𝑟 for the same items. The mean “overestimations” (𝛼𝛼 − 𝛼𝛼𝑚𝑚𝑟𝑟) and (𝛼𝛼�𝑚𝑚𝑟𝑟 − 𝛼𝛼𝑚𝑚𝑟𝑟) 
are plotted to the right of both graphs, indicating that (20) gives an improved estimation in both cases. 
However, there is still an overall positive bias, suggesting that notwithstanding the effects of 𝑚𝑚, the 
value of 𝛼𝛼 relevant to vocabulary growth is appreciably larger than that of the mid-range. 

 
 

Figure 17: 𝛼𝛼𝑚𝑚𝑟𝑟 from frequency vs. rank distributions, compared with corresponding values optimised using 
the unlimited vocabulary model, and mid-range values 𝛼𝛼�𝑚𝑚𝑟𝑟 reconstructed using (20). The graph to the right 
shows the average overestimations 𝛼𝛼 − 𝛼𝛼𝑚𝑚𝑟𝑟 and 𝛼𝛼�𝑚𝑚𝑟𝑟 − 𝛼𝛼𝑚𝑚𝑟𝑟 , error bars indicating the 95% confidence 
interval for the mean (±1.98𝜎𝜎 √𝑛𝑛⁄ ). 
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Figure 18: 𝛼𝛼𝑚𝑚𝑟𝑟 from frequency vs. rank distributions, compared with corresponding values optimised using 
the limited vocabulary model, and mid-range values 𝛼𝛼�𝑚𝑚𝑟𝑟 reconstructed using (20). The graph to the right 
shows the average overestimations 𝛼𝛼 − 𝛼𝛼𝑚𝑚𝑟𝑟 and 𝛼𝛼�𝑚𝑚𝑟𝑟 − 𝛼𝛼𝑚𝑚𝑟𝑟 , error bars indicating the 95% confidence 
interval for the mean (±1.98𝜎𝜎 √𝑛𝑛⁄ ). 

Figure 19 shows these same overestimations plotted as cumulative distributions. For the unlimited 
vocabulary model we note that the lower tails of the two distributions (where the overestimation is close 
to zero) are almost exactly convergent, indicating that here 𝑚𝑚 has negligible impact. For the limited 
vocabulary model the distributions are more clearly separated. Interestingly, the (𝛼𝛼�𝑚𝑚𝑟𝑟 − 𝛼𝛼𝑚𝑚𝑟𝑟) values 
are almost twice as widely dispersed for the limited vocabulary model than for the unlimited vocabulary 
model, and a greater proportion of them (around 25-30%) are less than zero (indicating underestimation 
of the true 𝛼𝛼𝑚𝑚𝑟𝑟). The close agreement between the distributions obtained from the three independent 
Project Gutenberg samples suggests that these effects are genuine, and are not artifacts of the limited 
sample sizes. 

(a) Unlimited Vocabulary (b) Limited Vocabulary 

 
 
Figure 19: Alpha indices measured from frequency vs. rank distributions, compared with corresponding 
values reconstructed from (a) unlimited vocabulary and (b) limited vocabulary models optimised to fit the 
measured vocabulary growth curves. On average both models over-predict the measured value; by about 
0.3 for the unlimited vocabulary model, and 0.2 for the limited vocabulary model.    

4.4 Analysis of Measured and Optimised Zipf Indices 

Figure 20 shows the measured 𝛽𝛽 indices plotted against the optimised values of 𝛼𝛼 obtained using the 
unlimited vocabulary model, along with the theoretical curves predicted by (4) and (15). We see that 
the discrete model (15) grossly overestimates both 𝛽𝛽10 and 𝛽𝛽2, while the continuous model (4) skims 



the underside of the 𝛽𝛽10 data. Interestingly (4) does plausibly agree with the measured 𝛽𝛽2 values, though 
the latter are extremely variable (each data point being based on only two measurements). 

 

(a) Ten Lowest Frequencies (𝛽𝛽10) (b) Two Lowest Frequencies (𝛽𝛽2) 

  

Figure 20: Relationship between the 𝛼𝛼 indices optimised using the unlimited vocabulary model (18) and the 𝛽𝛽 
indices measured directly from the samples using (a) the ten lowest frequencies and (b) the two lowest 
frequencies. The broken lines indicate for reference the continuum model (4) and the discrete model for the 
two lowest frequencies (15). 

 

(a) Ten Lowest Frequencies (𝛽𝛽10) (b) Two Lowest Frequencies (𝛽𝛽2) 

 

Figure 21: Relationship between the 𝛼𝛼 indices optimised using the limited vocabulary model (19) and the 𝛽𝛽 
indices measured directly from the samples using (a) the ten lowest frequencies and (b) the two lowest 
frequencies. The broken line indicate for reference the continuum model (4). 

 

Figure 21 shows the same analysis applied to the optimised values of 𝛼𝛼 obtained using the limited 
vocabulary model (19), along with the continuum model curve predicted by (4). (The corresponding 
curve of the discrete model (16) cannot pe plotted on the same axes, since it requires the additional 
parameter V.) We now find that it is 𝛽𝛽10 which gives better agreement with the continuum model, while 
the latter skims the topside of the 𝛽𝛽2 data. Figure 22 compares the measured values of 𝛽𝛽2 with the 
corresponding predictions of the discrete model (16) using the optimised parameters 𝛼𝛼, 𝑚𝑚 and 𝑉𝑉. We 
find both data-sets are statistically equivalent around 1.5, the regression line passing through this point. 
There is a weak but significant positive correlation, though the slope is almost an order of magnitude 
too small. 



 

Figure 22: Relationship between the directly measured 𝛽𝛽2 indices and those computed with (16) using the 
optimised parameters of the limited vocabulary model (19). The broken lines indicate the expected result 
(equality) and the regression line based on the aggregate data. The two lines agree approximately when 𝛽𝛽2 ≈
1.5. 

5. Conclusions and Future Work 

In this paper we develop a discrete type-token model based on random selection from a Zipf-Mandelbrot 
probability distribution. Versions of this model, assuming unlimited and limited vocabularies, are 
optimised so as to agree with the observed vocabulary growth curves of a range of 50,000-100,000 word 
texts, selected at random from the Standardised Project Gutenberg Corpus (SPGC) and randomly 
grouped into three samples of 100 items each. The optimised parameters for each item were compared 
with values gleaned independently from the statistical distributions of those same texts. We make the 
following observations: 

1. The data supposedly governed by Zipf’s second law exhibit a low frequency “droop” such that 
the beta index for the two lowest frequencies 𝛽𝛽2 (those most relevant to vocabulary growth) is 
generally lower than that obtained using MLE across wider frequency ranges. This hints at the 
low-frequency steepening of the frequency vs. rank distribution observed by Montemurro [35] 
and Tria et al. [33] and others. 

2. When comparing the mid-range Zipf alpha (𝛼𝛼𝑚𝑚𝑟𝑟) and beta (𝛽𝛽𝑚𝑚𝑟𝑟) indices, the well-known 
equation 𝛽𝛽 = 1 + 1

𝛼𝛼
 agrees with the general trend, though with a wide statistical scatter. 

However, the other widely-reported formula 𝜆𝜆 = 1
𝛼𝛼

 shows no agreement with the measured 𝛼𝛼𝑚𝑚𝑟𝑟 
vs. Heaps’ (𝜆𝜆) indices beyond a strong correlation in the required direction. The combined 
expression 𝛽𝛽 = 1 + 𝜆𝜆 agrees better when the beta index is estimated over the ten lowest 
frequencies (𝛽𝛽10) than over the two lowest (𝛽𝛽2), though in both cases the slope is less than the 
expected unity.  

3. Assuming random selection from a Zipf-Mandelbrot distribution with no vocabulary limit, the 
number of types exhibiting a given frequency can be expressed in terms of the gamma function, 
with Zipf’s second law valid asymptotically for large frequencies. Contrary to observation 1, 
the resulting 𝛽𝛽2 is larger than its asymptotic value. 



4. By summing gamma function expressions, we obtain a vocabulary growth function 𝑣𝑣(𝑡𝑡) almost 
exactly consistent with Heaps’ law (barring an additive term equal to the Mandelbrot parameter 
𝑚𝑚). This function can be optimised to agree quite closely with the measured vocabulary curves. 

5. By introducing a maximum vocabulary limit, the model can be reformulated in terms of the 
incomplete gamma function, yielding modified expressions for 𝛽𝛽2 and 𝑣𝑣(𝑡𝑡). The former 
contains a new term, which could potentially compensate for the increased 𝛽𝛽2 mentioned in 
observation 3, and thus replicate the droop noted in observation 1. 

6. In general, the limited vocabulary model gives better agreement with the measured data than 
does the unlimited vocabulary model. However, in the minority of cases where the optimised 
vocabulary 𝑉𝑉 exceeds about 105 tokens, the latter ceases to be reproduced consistently between 
repeated optimisations. In these cases the unlimited vocabulary model fits the data best. 

7. For both limited and unlimited vocabulary models, the average optimised 𝛼𝛼 is significantly 
larger than 𝛼𝛼𝑚𝑚𝑟𝑟, even when the distortion caused by the Mandelbrot parameter m is taken into 
account. The two 𝛼𝛼’s are nevertheless strongly correlated. This adds further credence to the 
speculation appended to observation 1. 

8. When 𝛼𝛼 is optimised using the unlimited vocabulary model, the directly measured 𝛽𝛽2 agrees 
plausibly with 𝛽𝛽 = 1 + 1

𝛼𝛼
, while 𝛽𝛽10 is underpredicted. The situation is reversed when 𝛼𝛼 is 

optimised using the limited vocabulary model: the equation agrees plausibly with  𝛽𝛽10, while 
𝛽𝛽2 is overpredicted. 

9. The values of 𝛽𝛽2 computed from the limited vocabulary model agree somewhat with the directly 
measured values. The correlation is positive and significant, and the graphs of the two 
distributions cross at about 𝛽𝛽2 = 1.5. 

10. All experiments yielded statistically consistent results from each of the three 100-item samples, 
demonstrating the statistical significance repeatability of our experiments. 

We note that even our most accurate model (random selection from Zipf-Mandelbrot distribution with 
a limited vocabulary) is still quite a blunt instrument; it uses an abrupt cut-off to represent what is almost 
certainly a continuous steepening of the frequency vs. ranks distribution and thus predicts a vocabulary 
saturation contrary to what is observed in practice (see Figure 2). Furthermore, the model is built upon 
a static probability distribution, while many researchers have found dynamically evolving processes 
better applicable to complex systems (e.g. Tria et al. [33]). Finally, the corpus items are selected at 
random with reference only to their lengths: though this is reasonable to eliminate selection bias, it 
means that texts exhibiting homogeneous vocabulary growth are placed together with ones displaying 
temporary bursts and lulls of new vocabulary. By screening out the latter, it may be possible to reduce 
the noise in the data and uncover clues not yet visible. 

Appendix A. Definition of Power-Law Exponents 

Papers on type-token theory use a range of conflicting names for the different power-laws, and symbols 
for their exponents. Table A.1 summarises the terminology used in this paper. 

Table A.1: Power-law terminology 

Name Describes Exponent 
Zipf’s first law Rank vs. frequency Alpha (𝛼𝛼) 

Zipf’s second law Frequency of frequency Beta (𝛽𝛽) 
Heaps’ Law Vocabulary growth Lambda (𝜆𝜆) 

 



Appendix B. Maximum Likelihood Estimation of the Index in a Power Law Distribution 

Historically many techniques have been used to estimate the index 𝛽𝛽 for distributions of the form 
𝑝𝑝(𝑥𝑥) ∝ 1 𝑥𝑥𝛽𝛽⁄ , but maximum likelihood estimation (MLE) gives an unbiased result with minimal 
statistical variability [24, 45, 46]. If a variable 𝑋𝑋 is power-law distributed across the range 𝐴𝐴 ≤ 𝑋𝑋 ≤ 𝐵𝐵, 
then the probability of outcome 𝑋𝑋 = 𝑥𝑥 is given by 

𝑝𝑝(𝑥𝑥|𝛽𝛽) =
1

𝜁𝜁𝐴𝐴,𝐵𝐵(𝛽𝛽)𝑥𝑥𝛽𝛽
 (B.1) 

where 𝜁𝜁𝐴𝐴,𝐵𝐵(𝛽𝛽) = ∑ 1
𝑖𝑖𝛽𝛽

𝐵𝐵
𝑖𝑖=𝐴𝐴 . If the observed outcomes are {𝑥𝑥1 … 𝑥𝑥𝑛𝑛} then the likelihood of any particular 

value of 𝛽𝛽 is ∏ 𝑝𝑝(𝑖𝑖|𝛽𝛽)𝑛𝑛
𝑖𝑖=1 . It is easier to work with the logarithm of this expression, so we define ℒ(𝛽𝛽) =

−𝑛𝑛 log 𝜁𝜁𝐴𝐴,𝐵𝐵(𝛽𝛽)− 𝛽𝛽
𝑛𝑛
∑ 𝑛𝑛(𝑖𝑖) log 𝑖𝑖𝐵𝐵
𝑖𝑖=𝐴𝐴 , where 𝑛𝑛(𝑖𝑖) is the number of observed outcomes equal to 𝑖𝑖. To find 

the value of 𝛽𝛽 which maximises this function, we set ℒ′(𝛽𝛽) = 0 and rearrange to obtain the implicit 
expression 

𝜁𝜁𝐴𝐴,𝐵𝐵
′ (𝛽𝛽)
𝜁𝜁𝐴𝐴,𝐵𝐵(𝛽𝛽) = −

1
𝑛𝑛
�𝑛𝑛(𝑖𝑖) log 𝑖𝑖
𝐵𝐵

𝑖𝑖=𝐴𝐴

 (B.2) 

where 𝜁𝜁𝐴𝐴,𝐵𝐵
′ (𝛽𝛽) = −∑ log 𝑖𝑖

𝑖𝑖𝛽𝛽
𝐵𝐵
𝑖𝑖=𝐴𝐴 . Although approximate analytic solutions to (B.2) have been devised [46], 

𝛽𝛽 can easily be obtained numerically to any required degree of accuracy. Note that if we consider only 
the two lowest data points (𝐴𝐴 = 1, 𝐵𝐵 = 2) the solution becomes 𝛽𝛽 = log2

𝑛𝑛(1)
𝑛𝑛(2). 

Appendix C. Computing the Zipf-Mandelbrot Normalization Constant 

To aid computation we use the approximation 𝜁𝜁𝑉𝑉(𝛼𝛼,𝑚𝑚) ≈ ∑ 1
(𝑖𝑖+𝑚𝑚)𝛼𝛼 + ∫ 𝑑𝑑𝑟𝑟

(𝑟𝑟+𝑚𝑚)𝛼𝛼
𝑉𝑉
𝑖𝑖𝑚𝑚+1

𝑖𝑖𝑚𝑚
𝑖𝑖=1 = ∑ 1

(𝑖𝑖+𝑚𝑚)𝛼𝛼 +𝑖𝑖𝑚𝑚
𝑖𝑖=1

1
𝛼𝛼−1

� 1
(𝑖𝑖𝑚𝑚+1+𝑚𝑚)𝛼𝛼−1 −

1
(𝑉𝑉+𝑚𝑚)𝛼𝛼−1� which, assuming 𝑉𝑉 > 𝑖𝑖𝑚𝑚, allows 𝑉𝑉 to be a non-integer and if necessary 

infinite. (In the latter case we use the notation 𝜁𝜁(𝛼𝛼,𝑚𝑚).) For all our calculations we set 𝑖𝑖𝑚𝑚 = 5000. 

Appendix D. Optimization Algorithm 

The following process applies to the finite vocabulary model (19): the infinite vocabulary version is 
identical, with only two parameters and is based on (18). Since the optimal Mandelbrot number 𝑚𝑚 is 
sometimes very close to zero (or even negative) we find it easier to redefine the model in terms of the 
parameter 𝜇𝜇 = 𝑚𝑚 + 3, adjusting the equations accordingly. 

We define the optimization problem as the discovery of 𝛼𝛼, 𝜇𝜇 and 𝑉𝑉 which minimize the error 

𝜀𝜀(𝛼𝛼, 𝜇𝜇,𝑉𝑉) = �∑ �𝑣𝑣𝛼𝛼,𝜇𝜇,𝑉𝑉(𝑖𝑖∆𝑡𝑡) − 𝑣𝑣�(𝑖𝑖∆𝑡𝑡)�2⌊𝑇𝑇 ∆𝑡𝑡⁄ ⌋
𝑖𝑖=1 ⌊𝑇𝑇 ∆𝑡𝑡⁄ ⌋�  where 𝑣𝑣�(𝑡𝑡) is the measured vocabulary curve, 

𝑣𝑣𝛼𝛼,𝜇𝜇,𝑉𝑉(𝑡𝑡) is the model prediction, ∆𝑡𝑡 is a suitably chosen sampling interval (we use 1000 tokens) and 𝑇𝑇 
is the final number of tokens in the corpus.  

Optimization begins with a randomly selected initial hypothesis: 𝛼𝛼1 between 1 and 2, 𝑚𝑚1 between 0 
and 150 (1.5 to 2.5 and 20 to 270 in the case of unlimited vocabulary) and 𝑉𝑉1 between 10,000 and 
100,000. The following iterative process is then applied. (The cycle number 𝑗𝑗 is initially set to 1 and the 
step size and step-size 𝑆𝑆1 to 10−5).  



1. Establish the function 𝐹𝐹𝑗𝑗(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝜀𝜀�𝛼𝛼𝑗𝑗[1 + 𝑥𝑥],𝜇𝜇𝑗𝑗[1 + 𝑦𝑦],𝑉𝑉𝑗𝑗[1 + 𝑧𝑧]�. (The arguments 𝑥𝑥, 𝑦𝑦 
and 𝑧𝑧 are not yet specified.) 

2. Set the “working step-size” 𝑆𝑆𝑗𝑗′ = 𝑆𝑆𝑗𝑗. 
3. Set the non-beneficial mutation counter 𝑖𝑖 = 0. 
4. Create a “random mutation” by selecting independent Gaussian random variables 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧, 

each with a standard deviation 𝑆𝑆𝑗𝑗′ and zero mean. To prevent extreme outliers from derailing 
the procedure, outcomes are constrained to the range (−1,1). 

5. Compute 𝐹𝐹𝑗𝑗(𝑥𝑥,𝑦𝑦, 𝑧𝑧). 
6. If 𝐹𝐹𝑗𝑗(𝑥𝑥,𝑦𝑦, 𝑧𝑧) < 𝐹𝐹𝑗𝑗(0,0,0) then accept the mutation as “beneficial” and go to step 9. Otherwise 

increment 𝑖𝑖. 
7. If 𝑖𝑖 = 100 then reduce 𝑆𝑆𝑗𝑗′ by 10% and reset 𝑖𝑖 = 0. 
8. Go to step 4. 
9. Compute the magnitude of the mutation 𝑑𝑑 = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 and the corresponding gradient 

�∇𝐹𝐹𝑗𝑗� computed across finite intervals 𝛿𝛿𝑥𝑥 = 𝛿𝛿𝑦𝑦 = 𝛿𝛿𝑧𝑧 = 10−9. 
10. Update the model 𝛼𝛼𝑗𝑗+1 = 𝛼𝛼𝑗𝑗(1 + 𝑥𝑥), 𝜇𝜇𝑗𝑗+1 = 𝜇𝜇𝑗𝑗(1 + 𝑦𝑦) and  𝑉𝑉𝑗𝑗+1 = 𝑉𝑉𝑗𝑗(1 + 𝑧𝑧). 
11. If �∇𝐹𝐹𝑗𝑗� < 0.01 or 𝑆𝑆𝑗𝑗 < 10−9 then go to step 14. 
12. Update the step-size to a weighted average of itself and the magnitude of the most recent 

mutation: 𝑆𝑆𝑗𝑗=0.9𝑆𝑆𝑗𝑗−1 + 0.1𝑑𝑑. (This communicates the need for a step-size adjustment.) 
13. Increment 𝑗𝑗 and go to step 1. 
14. The exit condition is now met. Report 𝛼𝛼𝑗𝑗+1, 𝜇𝜇𝑗𝑗+1 and 𝑉𝑉𝑗𝑗+1 as the optimal solution, along with 

the solution error  𝜀𝜀�𝛼𝛼𝑗𝑗+1,𝜇𝜇𝑗𝑗+1,𝑉𝑉𝑗𝑗+1�. 

Despite the random starting hypotheses, the final parameters are replicated almost exactly by repeated 
optimisations (with the exception of the larger values of 𝑉𝑉, see Figure 13(b)), providing evidence that 
the minima are global and that the optimisations are therefore genuine.  

Appendix E. Model Verification by Simulation 

Simulation is used to verify the mathematical model, and thus to justify the approximations used in its 
development. Parameters obtained from optimisation (Appendix D) are used to create a simulated 
version of a corpus item; each potential type is assigned a rank identifier 𝑟𝑟 (not necessarily its rank in 
the generated document) with a selection probability given by (8). For each token, potential 𝑟𝑟-values 
are taken sequentially (𝑟𝑟 = 1, 2, 3…), and for each a uniform random number 𝑢𝑢 (between 0 and 1) is 
generated. The first 𝑟𝑟 for which 𝑝𝑝𝑟𝑟

1−∑ 𝑝𝑝𝑖𝑖𝑟𝑟−1
𝑖𝑖=1

< 𝑢𝑢 is selected as the type for that token. However, since 

selection becomes less likely as 𝑟𝑟 increases, the algorithm sometimes entered an effectively infinite 
loop. Therefore if 𝑟𝑟 reaches a pre-set value 𝑟𝑟𝑚𝑚 without selection occurring, the inversion method was 
used instead: i.e. r was chosen such that 1

1−∑ 𝑝𝑝𝑖𝑖
𝑟𝑟𝑚𝑚
𝑖𝑖=1

∫ 𝑑𝑑𝑟𝑟
𝜁𝜁𝑉𝑉(𝛼𝛼,𝑚𝑚)(𝑟𝑟+𝑚𝑚)𝛼𝛼

𝑉𝑉
𝑟𝑟𝑚𝑚

= 𝑢𝑢 (where again 𝑢𝑢 is a uniform 

random variable between 0 and 1). For most our simulations we use the smallest value of 𝑟𝑟𝑚𝑚 such that 
∑ 𝑝𝑝𝑖𝑖
𝑟𝑟𝑚𝑚
𝑖𝑖=1 > 0.99. The resulting vocabulary profiles and frequency vs. rank and types vs. frequency 

distributions were compared with the corresponding model curves, and Figures E.1 to E.3 show the 
results, verifying that the model is approximately valid. 

 

 

 



(a) Unlimited Vocabulary (b) Limited Vocabulary 

  

Figure E.1: Simulated vocabulary growth curves based on the optimal model for Three Men in a Boat, 
compared with the optimal model predictions: (a) unlimited vocabulary simulation/model, (b) limited 
vocabulary simulation/model. 

(a) Unlimited Vocabulary (b) Limited Vocabulary 

  

Figure E.2: Simulated frequency vs. rank distributions based on the optimal model for Three Men in a Boat 
compared with the optimal model predictions: (a) unlimited vocabulary simulation/model, (b) limited 
vocabulary simulation/model. 

(a) Unlimited Vocabulary (b) Limited Vocabulary 

  

Figure E.3: Simulated types vs. frequency distributions based on the optimal model for Three Men in a Boat 
compared with the optimal model predictions: (a) unlimited vocabulary simulation/model, (b) limited 
vocabulary simulation/model. 
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