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Abstract

The results of numerical simulation of the particle-laden supersonic flows expanding from
converging-diverging nozzle into a rarefied atmosphere are presented. To calculate flow
quantities in a wide range of nozzle pressure ratios and investigate a possibility of a strong
turn of the flow at the nozzle outlet, a marching scheme and finite volume method are
applied. The marching calculations of the supersonic jet starts from the nozzle section, in
which supersonic flow velocities are realized. The trajectories of motion of solid particles
during the flow expansion are provided. The influence of the particle size and coordinates of
the particle injection point into the flow on their transport by a supersonic flow is discussed.
The results of calculations obtained in the framework of the Stokes approximation for the
drag coefficient of an individual particle and with corrections for the inertia of the particle
and rarefaction of the gas flow are compared. Conclusions are drawn about the effect of
the dispersed phase on the distribution of gas flow quantities. The calculation results are
of interest for studying supersonic particle-laden flows around bodies and for calculating
oblique shock waves.
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1 Introduction

In space engineering, various devices are used, during the operation of which jet flows develop.
These include, in particular, devices that create control forces necessary for the orientation
of spacecraft. A feature of the operation of such devices is the jet expansion into a medium
with low pressure and their expansion in a wide range of speeds [1]. The jets of the control
system engines have a negative impact on the design of the spacecraft and the surfaces
of instruments [2, 3], being one of the reasons for the deterioration of their operational
characteristics. The impact of jets is reduced to force (local force loads, total perturbing
forces and moments), thermal (local and total thermal loads) and physical and chemical
(changes in the properties surfaces washed by jets) impacts, as well as the influence of
particles on the operation of on-board equipment (optical, radio engineering) and the failure
of the astro-navigation system (sunlight scattered by particles is perceived as stars).
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The shape of the jet, the structure of shock waves and mixing layers, and the distribu-
tion of parameters in the jet depend on the altitude and speed of the flight. Combustion
products of high-energy rocket propellants are multi-component mixtures with high stagna-
tion temperatures. The presence of condensed particles in the combustion products leads to
the formation of a two-phase flow, which develops under conditions of transition from the
continuum flow regime to the rarefied flow regime [4, 5]. Particles of the condensed phase
not only affect the functioning of space technology, being deposited, for example, on the
elements of optical systems, but are also long-lived formations, creating a special form of
pollution of the space environment [6–8].

The creation of universal methods for calculating jet flows based on the numerical solu-
tion of the full Navier–Stokes equations or the Reynolds-averaged Navier–Stokes equations
is not always expedient. This is connected not so much with the problems of numerical
solution of the equations themselves, but with the existing uncertainties in the values of the
coefficients of the turbulence models, the kinetic parameters of combustion, and interphase
interaction. When solving applied problems, it becomes necessary to formulate simplified
mathematical models and develop algorithms that take into account the features of the flows.

One of the methods for modelling stationary supersonic flows is the marching method.
In the case of the appearance of gas wave disturbances propagating against the flow direction,
the use of marching calculation methods becomes problematic. If there are subsonic regions
in the computational domain (external subsonic flow, subsonic zone behind the Mach disk),
special approximations are applied to expand the range of applicability of the marching
method. Suppression of upwind disturbances in subsonic flow regions is possible by making
additional changes to the Navier–Stokes equations [9]. In particular, the semi-permeable
boundary approximation is used, which makes it possible to limit the flow turn angle at the
nozzle edge, thus preventing the formation of a subsonic region [10].

A large number of studies are devoted to the theoretical study of the expansion of an
ideal perfect gas flow into a vacuum [11–13]. In particular, in [12,13] the results of numerical
calculations for conical nozzles are presented in graphical and tabular form for various Mach
numbers and nozzle angles. The limitations of the performed calculations for the half-opening
angle are associated with an increase in computer time and calculation errors.

A numerical study of the expansion of supersonic jets into a co-current flow is carried out
in [14] on the basis of the parabolized Navier–Stokes equations. To calculate the jet flowfield
in [15], flow is divided into supersonic and subsonic zones, and assumes that the pressure is
constant in the subsonic part of the mixing layer. The flow in the supersonic non-isobaric
zone of the jet is calculated on the basis of the parabolic Navier–Stokes equations, and the
flow in the subsonic part of the mixing layer is described by the equations of the boundary
layer. A procedure for matching local solutions and a method for solving boundary layer
equations is proposed in [16], which makes it possible to determine the position of the outer
boundary of the computational domain based on local flow gradients.

Due to the presence of a boundary layer on the nozzle walls, the gas density in the
peripheral part of the jet is much higher than the density calculated from the model of
inviscid gas flow into vacuum. Study of [17] proposes an approximate model that makes it
possible to improve the accuracy of calculating the parameters of a supersonic jet expanding
into a vacuum. The area of applicability of the model is the far field of the jet, which starts
from the continuity boundary and extends downstream, where the gas velocity approaches
the limiting value, and the streamlines remain rectilinear.

In the works [18,19], the finite volume method and the marching method are applied to
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numerical simulation of stationary supersonic flows of an ideal compressible gas in curvilinear
channels and nozzles with various nozzle pressure ratios. The flow patterns in supersonic
jets that arise when a uniform velocity distribution and a velocity distribution corresponding
to a free vortex are realized at the nozzle outlet are compared.

As a model problem, which has the characteristic features of supersonic jets expanding
into a low-pressure medium, the Prandtl–Meyer flow (flow near the expansion corner) is
considered. Particle trajectories in the Prandtl–Meyer flow are calculated in [20] for various
initial flow parameters, and the effect of particles on the structure of the rarefaction fan is
discussed in [21, 22]. To find particle trajectories, the equations of motion are written in
the polar coordinates. For simplicity, the Stokes drag law is used for particles [20]. The
transition of the gas-particle flow from the equilibrium regime far from the corner to the
frozen regime after the expansion of the flow is considered in [21]. The influence of particles
on various flow regimes that occur during shock wave diffraction is discussed in [23]. The
influence of rarefaction of the medium on the motion of particles in a jet expanding into
vacuum is considered in [24].

A model of a two-phase flow, which takes into account the possibility of flow around
particles at arbitrary Knudsen numbers (from the continuum to free molecular flow), was
constructed in [25]. In the supersonic part of the nozzle, the particles do not have time to
turn around together with the expanding gas and form a cumulated bundle, the narrower,
the denser the material of the particle [26]. The optical characteristics of the compressed
layer formed when a poly-dispersed jet impinges on a blunt body are studied in [27].

With the free expansion of a supersonic jet of a gas into vacuum, conditions appear
for condensation and further formation of clusters [28]. Condensation of the gas with the
formation of clusters occurs both in the nozzle and behind its critical section. The nozzle
geometry determines the main parameters associated with the cluster size, beam intensity,
beam divergence and temperature. The formation and growth of clusters in gas jets occur
more efficiently with increasing stagnation pressure, decreasing stagnation temperature, and
increasing nozzle diameter [29,30].

The influence of the angle of a conical nozzle on the structure of the formed jet is studied
in [31, 32]. Near the edge of the nozzle, there is a reversed flow and reversed movement of
drops in the direction opposite to the direction of flow in the central part of the jet [33–35].
In the reversed flow, individual particles leaving the nozzle turn by more than 90 degrees and
begin to move towards the central part of the jet [36]. Study of [37] uses a hybrid method to
simulate the flow in various modes (from the flow of a continuous medium inside a nozzle to
the free molecular mode in the reversed flow region), which combines the simulation of the
Navier–Stokes equations with direct simulation of Monte Carlo. The reversed flow is only a
small part of the total mass flow in the jet. The aerodynamic forces are not strong enough
to wrap the droplets around the edge of the nozzle. The droplets present in the reversed
flow the cooling film, which breaks down at the edge of the nozzle.

The expansion of a supersonic jet into a medium with low pressure is characterized by
large gradients of density, velocity, pressure and temperature. Even in the case of stationary
problems, these flows exhibit an extremely wide range of thermodynamic parameters, which
creates difficulties for numerical methods [38,39].

In this study, numerical simulation of supersonic jets expanding into a medium with low
pressure and transport of particles by flows, the parameters of which are typical for elements
of space systems, are considered. Estimates are given and questions of the influence of
rarefaction of the medium on the transport of particles of the dispersed phase are discussed.
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Both the features of the motion of individual particles in a centered rarefaction wave and
their influence on the parameters of the carrier flow are considered. Calculations are carried
out for various particle sizes and coordinates of the points of their injection into the carrier
flow. The results of calculations of nozzle flows and jets expanding into a medium with
low pressure are presented. The effect of corrections for the particle inertia and rarefaction
of the gas flow to the drag coefficient of an individual particle on the results of numerical
simulation is discussed.

2 Flow pattern

It is assumed that the gas is at rest in the nozzle reservoir, and its density is determined by
the total pressure, p0, and the total temperature, T0. The gas expands into atmosphere with
pressure p∞. The model of inviscid compressible gas is used for calculations. The effects of
viscosity and rarefaction of the gas flow are taken into account only when the gas interacts
with particles.

The presence of a pressure gradient leads to gas expansion through the nozzle throat,
where its velocity reaches the speed of sound, and then expands in the supersonic part of
the nozzle (Figure 1). As the gas expands, the density and temperature of the gas decrease.
A decrease in density also leads to a decrease in the number of inter-molecular collisions,
which prevents instantaneous energy exchange between molecules and thermodynamic non-
equilibrium. The rarefaction and the subsequent establishment of non-equilibrium lead to
the violation of the assumption about the continuum of gas flow from the nozzle.
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Figure 1. Scheme of jet flow from the nozzle into vacuum

The flowfield of a jet of an ideal perfect gas expanding into a vacuum, is divided into three
characteristic regions. Region 1 is bounded by the nozzle outlet and the first characteristics
of the AB. The flow in region 1 is a continuation of the flow in the nozzle. Region 2,
bounded by the characteristics AB and the jet boundary, is a rarefaction flow. In the
plane case, the Prandtl–Meyer flow occurs in region 2. Flow in the region 3 is formed
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as a result of the interaction of the characteristics of the first and second families and, in
the first approximation, has the character of an expansion in a supersonic source. At the
boundaries of the regions, the gas-dynamic quantities remain continuous, and their normal
derivatives suffer a discontinuity. The jet boundary is rectilinear both in the plane and in
the axisymmetric case.

3 Mathematical model

The temperature dependence of the thermophysical properties of the particle material affects
its transport by the carrier flow. A decrease in the speed of sound in the carrier gas leads to
supersonic values of the relative Mach number (even at a small difference in the velocities of
the gas and particles). Expansion of the carrier gas and an increase in the mean free path
of molecules leads to a free molecular flow around individual particle, when a correction for
the rarefaction of the flow is taken into account [4, 5].

3.1 Gas

In the two-dimensional case, the equation describing the steady-state flow of an inviscid
compressible gas has the conservative form

∂F

∂x
+

∂G

∂y
= 0. (1)

The equation (1) is supplemented by the equation of state for a perfect gas

p = (γ − 1)ρε.

The total energy per unit volume is found from the relation

e = ρε+
1

2
ρ(u2 + v2).

The vector of conservative variables U and the flux vectors F and G have the following form

U =


ρ
ρu
ρv
e

 , F =


ρu

ρuu+ p
ρuv

(e+ p)u

 , G =


ρv
ρuv

ρvv + p
(e+ p)v

 .

Here, ρ is density; u and v are velocity components in coordinate directions x and y; p is
pressure; e is total energy per unit volume; ε is specific internal energy; γ is ratio of specific
heat capacities at constant pressure and constant volume. It is assumed that the flow is
supersonic along one of the spatial coordinates. Then, the equation (1) is hyperbolic along
this coordinate. In particular, the equation (1) is hyperbolic if u2+v2 > c2. Hyperbolicity in
the direction of the x direction takes place if u2 > c2, and hyperbolicity along the y direction
takes place if v2 > c2. For clearance, the case of x-hyperbolicity (the projection of the flow
velocity onto the x direction is supersonic) is considered.

The equation (1) is solved by the marching method, which involves step-by-step inte-
gration along the x coordinate. A two-dimensional mesh with uniform steps ∆x and ∆y
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in the coordinate directions x and y is constructed. Let’s assume that the mesh functions
take constant values inside the cells. For the cell interface with number i + 1/2, at each
step along the x coordinate, the Riemann problem for the equation (1) is solved with the
following initial data: U k

i = const if y 6 yi+1/2 and U k
i+1 = const if y > yi+1/2. The solution

of this problem is denoted by U i+1/2. In the same way, the solution vector U i−1/2 is found
for the interface of the cell with the number i− 1/2. The finite volume Godunov scheme for
the equations of stationary gas dynamics written in the form (1) has the form

F k+1
i − F k

i

∆x
+

Gi+1/2 −Gi−1/2

∆y
= 0, (2)

where Gi±1/2 = G(U i±1/2). The superscript k = 0, 1, . . . denotes the values of the mesh
function at step k in x direction. For simplicity, the equation (2) uses the explicit Euler
scheme to discretize the derivative with respect to the marching coordinate.

The flow calculation procedure includes the reconstruction of the values of the flow
quantities on the faces of the control volumes from the average values over the control
volumes and the solution of the Riemann problem. The reconstruction procedure is applied
to primitive variables.

The fluxes through the faces of the control volume are found from the relation

Fm+1/2 =
1

2

(
Gk

m +Gk
m+1

)
+

1

2
|A|km+1/2

(
F k

m − F k
m+1

)
,

where A = (∂G/∂U)(∂F /∂U )−1.
A spectral method of the stability of the linearized equation (1) leads to the following

condition

C = max |λ±|
∆x

∆y
6 1,

where

λ± =
uv ± c(u2 + v2 − c2)1/2

u2 − c2
.

The speed of sound is found from the relation

c =

[
(γ − 1)h− 1

2
(γ − 1)(u2 + v2)

]1/2
,

where h is total enthalpy.
The implementation of the scheme (2) is reduced to solving a system of non-linear

equations. Godunov’s method is based on the exact solution of the Riemann problem. The
exact solution of the general Riemann problem consists of two waves (a shock wave or a
simple rarefaction wave) with a tangential discontinuity between them, which are separated
from each other by regions of uniform flow. The solution is a stationary flow pattern that
arises in the region x > 0 during the interaction of two uniform semi-unlimited supersonic
gas flows meeting on a straight line y = 0.

The difference scheme (2) has the first order of accuracy. Higher-order schemes are
constructed using the same methods as for the case of unsteady equations. For integration
over the marching direction, the three-step Runge–Kutta method is used.



7

3.2 Particles

The motion of a spherical particle with a diameter of dp, which is affected only by the drag
force, is described by the equation

mp
dvp

dt
=

1

2
CDρ |v − vp| (v − vp)Sp, (3)

where mp is particle mass, Sp is particle midsection area (for a sphere, mp = πρpd
3
p/6 and

Sp = πd2p/4). The drag coefficient is represented as

CD =
24

Rep
fD(Rep,Mp,Knp).

The function fD takes into account the correction for the inertia of the particle, the com-
pressibility and rarefaction of the carrier flow. The Reynolds, Mach and Knudsen numbers
are calculated from the relative velocity of the gas and particle

Rep =
ρ |v − vp| dp

µ
, Mp =

|v − vp|
c

, Knp =
l

dp
,

where µ is dynamic viscosity, c is speed of sound, l is mean free path of molecules.
Taking into account the representation of the drag force, the particle motion equation

(3) is written as

mp
dvp

dt
= 3πdpµfD (v − vp) . (4)

A kinematic relation is added to the equation (4), which makes it possible to calculate the
radius vector of the particle’s center of mass

drp

dt
= vp. (5)

The temperature equation describing the convective heat transfer between a spherical
particle and a gas is written as

cmp mp
dTp

dt
=

Nupλ

2rp
Sp (T − Tp) , (6)

where cmp is specific heat capacity of particle material, Sp is particle surface area, T and Tp

are temperature of gas and temperature of particle, respectively. To calculate the Nusselt
number, the following formula is used

Nup = Nup0f(Rep,Mp,Knp,Pr),

where the value Nup0 = 2 corresponds to the Stokes flow around a rigid sphere. The function
fT takes into account the correction for particle inertia, gas compressibility and rarefaction.
The temperature of a particle affects its motion through a correction to the drag coefficient.
In many flow regimes, this correction is small and is not taken into account.

At low Reynolds numbers, the drag of a spherical particle is determined in the Stokes
approximation. With an increase in the flow velocity, effects associated with the influence
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of viscosity and the deviation of drag from the Stokes law begin to appear. In addition to
viscosity, there are other factors that affect the drag coefficient. These factors include the
influence of the effect of the compressibility, which manifests itself at a significant value of
the Mach number, and the effect of the rarefaction of gas, which is estimated by the value
of the Knudsen number.

The flow around a particle is characterized by the Knudsen number Knp ∼ γ1/2Mp/Rep.
If Mp/Rep ≪ 1, the continuous flow regime is realized. If Mp/Rep ≫ 1, free molecular flow
around the particle is realized. A transitional flow regime takes place between continuous
and free molecular regimes.

The most common of the numerous dependencies for the drag coefficient available in the
literature are the Henderson relationships [40]. The experimental data used in [40] have an
accuracy of ±2%. The relationships consist of a relation describing subsonic flow regimes, a
relationship describing supersonic flow regimes at M > 1.75, and a linear interpolation rela-
tionship for transition flow regimes. The Henderson formula is applicable to Mach numbers
M 6 6, any Knudsen numbers, and subcritical Reynolds numbers 0 < Re < 105, leading
to the Stokes and Oseen solutions. Despite the complex nature and various regimes of flow
around a sphere, the Henderson relations make it possible to calculate the drag coefficient
with a high accuracy (about 10%), which is acceptable for practical calculations.

In addition to determining the drag force, there is a need to describe the heat flux
between a particle and surrounding. For small particles, Newton’s law of cooling is applied.
To determine the heat transfer coefficient, the Nusselt number is calculated taking into
account the influence of the effects of viscosity, compressibility and rarefaction.

Integration of the equations (4)–(6) requires setting initial conditions at time t = 0. In
an undisturbed flow, a particle moves along streamlines with velocity and temperature equal
to flow.

4 Computational domain and boundary conditions

The computational domain consists of the supersonic part of the nozzle and the space into
which the jet flows. The nozzle has a cylindrical inlet section. The geometric configuration
of the nozzle is schematically shown in Figure 2 (the parameters with the dimension of length
are normalized to the radius of the throat of the nozzle rc). The radii of the inlet and outlet
sections of the nozzle are assumed to be equal to ri = 3 and ro = 5, the lengths of the inlet
cylindrical section (the length of the combustion chamber) and the expanding socket of the
nozzle is li = 5 and lo = 10, the radius rounding at the inlet to the subsonic part of the
nozzle and rounding radius at the critical point are r1 = 5 and r2 = 7.5.

l

rc

ri

ro
r

r
1

2
r
3

i

Figure 2. Geometry of nozzle

Calculations are carried out at various nozzle pressure ratios. The parameter n = pa/p∞
is defined as the ratio of the static pressure at the nozzle outlet to the atmospheric pressure.
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It varies due to variation in the atmospheric pressure, which corresponds to different flight
altitudes. The air quantities at a given altitude correspond to the standard atmosphere
model.

In the case when a rarefaction flow of a plane supersonic flow occurs, the Prandtl–Meyer
flow is realized with a fan of the characteristics of the first family and the constancy of the
flow quantities on them. There is a smooth expansion of the flow, in which there are no
shock-wave structures. The Prandtl–Meyer flow is realized as long as the flow quantities
are not affected by the characteristic reflected from the symmetry plane. In the case when
the expansion flow is realized in an axisymmetric uniform flow, the flow pattern differs from
the Prandtl–Meyer flow. In the region where the expansion of the nozzle flow begins, the
axisymmetric flow causes a noticeable deviation from the Prandtl–Meyer expansion. The jet
boundary is bent, and conditions are created for the formation of a shock wave.

5 Numerical method

The flow of an ideal gas is described by the Euler equations written in a conservative form.
The boundary conditions for governing equations are the no-penetration conditions on the
nozzle wall, the condition for the formation of a flow with a given pressure on the free
streamline, and the conditions on the centerline.

For calculations, the marching method is used, which is based on a finite volume ap-
proach to the discretization of the governing equations with the construction of the faces of
the control volume along the streamlines. The local problem of constructing a face and de-
termining the flows on it is solved on the basis of the Riemann problem. Its implementation
for calculating supersonic stationary ideal gas flows are discussed in [18,19]. A non-uniform
initial mesh with thickening near the nozzle outlet is set. Local adaptation of the mesh is
carried out in the region of jet formation [41].

There are two approaches to constructing distributions of flow quantities in the inlet
section of the computational domain. In one of the approaches, the flow in the subsonic
part of the nozzle and some part of the transonic region is preliminarily constructed on
the basis of the Godunov method for calculation. The final section of this region, in which
the supersonic flow is realized, is taken as the initial section of the combustion chamber.
This approach is workable, but demanding on computing resources. To conduct parametric
studies, a simplified approach is applied, in which the throat of the nozzle is taken as the
initial section, in which the condition of a parallel uniform flow with a small supersonic speed
is set. It is usually sufficient to take the Mach number in the inlet section equal to 1.05.

6 Prandtl–Meyer flow

To clarify the details of formation of a reversed flow near the edge of the nozzle, a study of
the flow around the corner element at the edge of the nozzle is carried out. The expansion of
the flow in supersonic flow around an external corner occurs with the formation of a centered
rarefaction wave defined by a fan of straight Mach lines emanating from the corner (Figure 3).
Three flow regions are formed: an uniform inlet flow with Mach number M1 (region 1), a
plane-parallel supersonic flow with Mach number M2 > M1 along the wall, located at an
angle δ to the inlet flow (region 3), and the region of a centered rarefaction wave, in which
the flow turns and isentropically expands (region 2). The flow expansion region is located
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between two Mach lines forming an angle µ = µ1 − µ2. The slope of the first characteristic
(on the side of the inlet flow) µ1 corresponds to the Mach number of the inlet flow M1, and
the slope of the last characteristic µ2 corresponds to the Mach number M2. The slope of the
characteristic i is related to the Mach number by the relation µi = arcsin(1/Mi).

M >11

M >M2 1δ

ϕ

OA

B

µ1

µ2
r

C

D1

2

3

Figure 3. Supersonic flow around expansion corner

Calculations are carried out for aluminum oxide particles with density ρp = 3600 kg/m3

and specific heat capacity cmp = 880 J/(kg·K). In an undisturbed flow, the Mach number,
density and temperature of the gas (ρ0 = 0.221 kg/m3, T0 = 1570 K) are specified. Work-
ing environment is air (γ = 1.4). The viscosity and thermal conductivity of the gas are
neglected, except for the interaction of gas with particles. Thermophysical parameters of
air are reference, taking into account their dependence on temperature. The dependence of
viscosity on temperature is taken into account using the dependence µ/µ∗ = (T/T∗)

n, where
n = 0.5, µ∗ = 1.71 × 10−5 Pa·s at a reference temperature T∗ = 293 K. It is assumed that
the relative velocity of the gas and the particle is zero until the particle reaches the first
characteristic (the two-phase flow is in equilibrium). The slope of the first characteristic is
determined by the Mach number of the undisturbed flow.

The motion of a particle is determined by a dimensionless parameter that depends on
the initial radial coordinate of the particle r0, the thermophysical properties of the gas,
determined by the adiabatic exponent γ, and the conditions in the undisturbed flow [20]

R0 =
γ + 1

γ − 1

r0
τpM0c

.

The theoretical maximum flow expansion speed is found from the relationship

c2 = 2cpT0

(
1 +

γ − 1

2
M2

0

)
.

Index 0 corresponds to the parameters of the gas and particles before they enter the disturbed
flow region. The particle relaxation time is found as τp = ρpd

2
p/(18µ).

It should be noted that the conditions in the undisturbed flow have a relatively weak
effect on the parameter R0. The parameter R0 depends mainly on the particle size dp and
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the initial radial coordinate of the particle r0. For particles of micron diameter located at a
distance of several centimeters from the corner point, R0 > 10.

In the calculations, the value of the angle of deviation of the flow (from 0 to 60 degrees),
the diameter of the particles, and the coordinates of the point where the particles enter the
flow vary. The deflection angle of the flow is related to the Mach number of the undisturbed
flow using the Prandtl–Meyer relations. The parameter R0 varies from 0.01 to 50 by changing
the particle diameter and the initial radial coordinate of the particle. The particle diameter
is assumed to be 1 and 4 m.

The trajectories of Stokes particles are shown in Figure 4 at M0 = 1.4. When moving
around the expansion corner, the particles deviate from the streamlines of the carrier flow,
and this deviation increases with an increase in the size of the particles and their initial radial
coordinate. In particular, for R0 > 50 the particles follow the streamlines of the carrier flow
(line 6), and the relative velocity of the gas and the particle is equal to zero. Reducing
the parameter to R0 < 1 leads to the deviation of the particles from the streamlines and a
significant velocity lag (lines 1–3).

1

2

3

4

6

5

y

x

Initial

charateristic

Figure 4. Particle trajectories in the flow around the ex-
pansion corner at R0 = 0.01 (1); 0.1 (2); 1 (3); 5 (4); 10
(5); 50 (6). The dashed line corresponds to the streamline,
and the dotted line corresponds to the zero flow deflection

angle

The flow in the radial and tangential directions is characterized by the relative velocities
vsr/vr = (vr − vpr)/vr and vsφ/v = (vφ − vpφ)/vφ. Figure 5 shows the change in the relative
velocity of gas and particles depending on the angle of flow deflection at a fixed Mach num-
ber (M0 = 1.4). The non-equilibrium flow velocity in the tangential direction significantly
exceeds the flow velocity in the radial direction. At R0 = 0.01 (line 1) there is a significant
velocity lag in the tangential direction, and the particles deviate relatively weakly from the
direction of the undisturbed flow. The maximum relative velocity of the gas and particles
in the radial direction reaches 0.162 at θ = 25◦. Near this point, the relative Mach number
is about 0.002, and the relative Reynolds number is 8 for particles with a diameter of 4 µm.
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At R0 = 10 (line 5), the maximum relative velocity in the radial direction is less than 1%,
and the relative Mach number and relative Reynolds number are 0.152 and 2 for particles
with a diameter of 4 µm.
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Figure 5. Distributions of relative radial (a) and tangential (b) velocities of gas and
particles at R0 = 0.01 (1, •); 0.1 (2); 1 (3, ◦); 5 (4); 10(5); 50(6). The symbols • and ◦

correspond to data from [20] for the conditions described by lines 1 and 3

A change in the exponent as a function of viscosity from temperature from 0.5 to 1 leads
to a slight perturbation of the particle trajectories. In this case, the change in the velocity of
the particle relative to the gas in the tangential direction changes by several percent, while
the sliding velocity in the radial direction remains unchanged.

A change in the thermophysical parameters of the gas, characterized by the adiabatic
exponent, has a more significant effect on the particle trajectory and velocity lag. As the
adiabatic index decreases from 1.4 to 1.2, the relative velocity of the particle in the tangential
direction increases, which is expressed in an increase in the deviation of the particle trajectory
from the streamline. A decrease in the adiabatic index has a relatively weak effect on the
change in the relative velocity of the particle in the radial direction.

During the Prandtl–Meyer flow, the Knudsen number for micron-sized particles varies
over a wide range, which should be taken into account in calculating the correction for
the rarefaction to the drag coefficient. As the particle diameter decreases, the role of the
correction to the Stokes drag law increases.

Figure 6 shows the influence of the correction to the drag law at M0 = 3 for particles
with a diameter of 1 and 4 µm. In contrast to the motion of Stokes particles, when the
correction to the drag coefficient is taken into account, particles with a diameter of 1 µm at
R0 = 50 (line 3) do not follow the streamlines, and at R0 = 0.1 (line 1) there is a significant
deviation of particle trajectories from undisturbed flow direction. In particular, at R0 = 0.1
for particles with a diameter of 4 µm, whose drag deviates from the Stokes law, the maximum
relative Mach number and Reynolds number are 0.922 and 6.68, while for Stokes particles
these values decrease to 0.852 and 6.49, respectively. A significant effect of the correction to
the Stokes drag law on the relative velocity of particles and gas is also observed (Figure 7).

The effect of particles on the ratio of pressures and temperatures in a rarefaction wave
is shown in Figure 8. The angle varies from 0 to 60 degrees. The mass concentration of the
dispersed phase is κp = 0.25. The presence of particles of the dispersed phase leads to a
slower decrease in pressure and temperature (dashed lines) compared to the flow of pure gas
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at R0 = 0.1 (1); 50(2). The solid lines correspond to Stokes particles, the dotted and
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µm, calculated taking into account the correction to the drag law

(solid lines).
When a two-phase flow interacts with the expansion corner, a particle-free flow zone is

formed. A similar flow structure is observed when the two-phase flow expands in the nozzle.
The influence of particles leads to an increase in the deflection angle of the flow compared
to pure gas (Table 1). When the Mach number of the undisturbed flow changes in the range
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from 1 to 3, the maximum deviation angle of the flow increases by approximately 15 degrees
as compared to the pure gas flow.

Table 1. Influence of particles on the maximum deflection angle of
the flow

Parameter Pure gas Gas with particles

M1 1 2 3 1 2 3

θmax, deg 130.45 104.69 80.70 145.55 120.65 94.88

It follows from the Prandtl–Meyer solution that for an inviscid flow there is a limiting
deflection angle at which the internal energy of the gas is converted into the kinetic energy of
motion, as a result of which the flow temperature vanishes and the Mach number increases to
infinity. Viscous effects can significantly change the flow and, in particular, contribute to the
vortical flow at large angles and the formation of a reversed flow. The role of viscous forces
increases as the flow expands and begins to prevail over the rarefied regime. In contrast to
the Prandtl–Meyer solution for an inviscid gas, the effect of viscosity leads to a decrease in
the Mach number and an increase in temperature.

The wave pattern in a viscous flow past an external corner is complicated by the inter-
action of rarefaction waves with the boundary layer. In a rarefaction wave passing through
the boundary layer in the zone of its turn, the flow is not isentropic. The consequence of this
interaction is the misalignment of the characteristics of the Prandtl–Meyer wave, a change
in the angle of their inclination in the external flow, as well as the formation of a shock wave
and a tangential discontinuity located below the shock. The lines of constant pressure in
the region of flow expansion are not straight, and the angle of flow direction is less than the
total angle of the Prandtl–Meyer flow required to achieve the same pressure. Comparison of
the results with experimental data shows that the effect of reduced pressure upstream from
the expansion corner affects the distance on the order of the boundary layer thickness. The
pressure on the inclined wall decreases to a value corresponding to an inviscid flow.
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7 Nozzle flow

The nozzle has a critical section diameter of 250 mm. The diameter of the outlet section is
5 times larger. The pressure and temperature in the combustion chamber are 80 atm and
3851 K. A gas with a ratio of specific heat capacities of 1.2 and a gas constant of 336.9 J/kg
is used. The gas expands to the space with a pressure of 1600 Pa and a density of 0.0179
kg/m3, which corresponds to altitude of 30,000 m.

The distribution of flow quantities along the nozzle centerline is shown in Figure 9. The
obtained distributions of the Mach number and temperature are in good agreement with the
data obtained from the theory of isentropic flow of an inviscid compressible gas in a Laval
nozzle.
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Figure 9. Distributions of Mach number (a) and temperature (b) along the nozzle cen-
terline

The results of flow calculations in the nozzle and jet, processed as Mach number level
lines, are shown in Figure 10 (transonic, supersonic part of the nozzle and jet). The cal-
culations use two methods of setting the boundary conditions at the jet boundary. In one
approach, a static pressure is specified at the jet boundary, while in the other, the boundary
conditions are formulated according to Newton method. The results of calculations obtained
with different methods of setting the boundary conditions at the jet boundary are in good
agreement with each other. Although Newton’s method is less accurate, its advantage is that
there are no restrictions on the co-flow velocity. In particular, at low atmospheric pressures
(of the order of 1600 Pa), a zone with subsonic velocities appears in the co-current near the
jet boundary, which makes it impossible to use the marching method with strict boundary
conditions.

Particles of different sizes are introduced into the flow at the throat of the nozzle or in a
cross section near the nozzle exit. Figure 11 shows the distributions of velocity and particles
of various sizes along the nozzle centerline.

The results of numerical simulation of two-phase flows, processed as dependencies of
the Mach number and pressure on the axial coordinate, are shown in Figure 12 for n = 0.6.
The mass concentration of the dispersed phase is κp = 0.2. The particle density is ρp = 2800
kg/m3, their diameter is dp = 5 µm. The solid line corresponds to the flow of pure gas,
and the symbols � correspond to particles. The results presented show that the difference
scheme smears the discontinuity into 1–2 computational cells, while the monotonic nature
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of the solution is preserved (there are no computational oscillations).
Another calculated flow regime corresponds to the case when the flow is continuously

expands along the nozzle centerline. The results obtained are shown in Figure 13 for a
pressure drop of n = 0.2. The mass concentration of the dispersed phase is κp = 0.2.

When a mixture of gas with particles moves in a nozzle, two-dimensional effects play a
significant role both because of the uneven distribution of particles in different sections of
the nozzle and because of the possible deposition of particles on the walls in the subsonic
and supersonic parts of the nozzle. As a result, the particle trajectories differ from the gas
streamlines, and the particle velocity and their temperature in the trans- and supersonic
parts depend on the flow quantities in the subsonic region.
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8 Jet flow

The marching calculations of jets start from the nozzle outlet, where two flows are specified,
an internal flow of combustion products and an external air flow (if any).

When the ratio of pressures is less than critical, the gas flow expires at subsonic speed,
and further expansion of the flow is impossible. When the pressure ratio exceeds the critical
value, the flow becomes supersonic, and with increasing distance from the nozzle, the Mach
number increases. The expansion of the gas occurs outside the nozzle and in the initial
section propagates along a rarefaction wave centered at the nozzle outlet. The flow in this
region is overexpanded with respect to the external pressure and is limited by oblique shock
waves. The jet flow consists of compression and rarefaction regions. As the pressure ratio
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pa/p∞ increases, the characteristic dimensions of an axisymmetric jet of an ideal gas increase
proportionally to (pa/p∞)1/2. A characteristic feature of the flow in a strongly underexpanded
ideal gas jet is the presence in its initial section of a region that does not depend on external
conditions and corresponds to the flow expansion into vacuum. The flow asymptotically
tends to flow from a source with a variable critical section radius.

When the gas expands into vacuum, the pressure does not affect the jet, and the jet
expands freely. In the limiting case, when the gas flows into vacuum, shock waves do not
arise in the jet. At the edge of the nozzle, the flow turns to the maximum possible deflection
angle, and at distances exceeding the size of the outlet section of the nozzle, the jet acquires
the character of a flow with an intensity distributed over the polar angle. In this case, the
gas velocity reaches the limiting value vmax = (2H0)

1/2, where H0 is the total enthalpy, and
the streamlines approach straight lines.

The Mach number distributions at different altitudes are shown in Figures from 14 to
16. The Mach number in the initial section of the computational domain (it is located close
to the critical section of the nozzle) is assumed to be 1.05, and the pressure and density are
fixed at 4 MPa and 3.6 kg/m3. The ratio of specific heat capacities is 1.25. With an increase
in altitude (a decrease in atmospheric pressure), the flow reverses and a reversed flow is
formed. While the flow structure in the jet near the centerline changes relatively little, the
angle of flow reversal near the nozzle outlet depends on the atmospheric pressure.

At the edge of the nozzle, the flow makes a sharp turn, forming a reversed flow. The
streamlines in the reversed flow begin to diverge from one point at the edge of the nozzle.
Consideration of the streamlines inside the nozzle shows that the entire volume of gas in-
volved in the counterflow comes from a thin near-wall layer. In calculations, this layer is
located within one cell of the computational mesh closest to the wall. The gas flow in the
counterflow is quite small. In this case, the shape of the edge has a rather weak effect on
the flow.

Large particles interact more weakly with the gas phase, which is expressed in their
slower cooling when moving in the supersonic part of the nozzle. Lagging behind the gas
phase in velocity leads to the fact that the separatrix of this fraction of particles strongly
deviates from the contour of the nozzle. Large particles in the outlet section of the nozzle
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are in a liquid state. In the central part of the jet, they remain quite hot, but at the
periphery, falling into the cold external flow, they cool down. Intensive cooling of small
particles leads to their crystallization, accompanied by a sharp rise in temperature. The
influence of the condensed phase on the flow in the jet results in a decrease in the effective
value of the adiabatic index and a more intense turn of the streamlines (there is an increase
in the characteristic angle of expansion of the jet).

Unlike gas flow, the particles do not make a sharp turn at the edge of the nozzle, and
no signs of their movement in the opposite direction are observed. The aerodynamic forces
generated by the reversed flow are not sufficient for a sharp inversion of droplets around the
edge of the nozzle. The initial position of the droplets (in the throat or near the nozzle exit)
does not significantly affect the further movement. Even a small droplet initially placed in
the near-wall boundary layer near the nozzle outlet acquires moment components in the flow
direction, the value of which turns out to be large, as a result of which the direction of this
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moment vector cannot be changed sharply by the gas in a state of rapid flow around the
nozzle edge.

9 Conclusion

Numerical simulation tools have been developed for stationary supersonic flows of an ideal
compressible gas in nozzles and jets. The characteristic features of the gas jets expanded
into a rarefied atmosphere are considered. The developed tools make it possible to calculate
jets expending from nozzles of various shapes into atmosphere with low pressure (on the
order of several pascals). The possibilities of applying the developed numerical method to
the calculation of flows in nozzles and jets are limited by the condition of the absence of
subsonic zones in the flow, when the condition of hyperbolicity of the Euler equations in the
marching direction is violated.

A numerical simulation of a gas flow around an external corner containing particles of
a spherical shape is carried out. The size of the particles and the coordinates of the entry
point of the particle into the flow have a significant effect on the features of their transport
in the Prandtl–Meyer flow. When a two-phase flow interacts with an expansion corner, a
particle-free flow zone is formed. The presence of particles leads to an increase in the angle
of deflection of the flow compared to pure gas, as well as to a slower decrease in pressure
and temperature compared to the flow of pure gas.

In the flowfield of a jet expanding into a vacuum, due to gas expansion and a decrease
in density, at some distance from the nozzle outlet, the mean free path of molecules become
comparable with the characteristic flow dimensions, i.e. there is a violation of the continuity
of the flow. The flow passes through all flow regimes from continuous flow in the combustion
chamber and nozzle to free molecular flow in the jet at a large distance from the nozzle outlet
and is essentially non-equilibrium. At a certain distance from the nozzle outlet, the flow is
broken when the mean free path of molecules becomes comparable with the characteristic
size of a flow. This circumstance does not allow using continuum methods (Euler or Navier–
Stokes equations) to calculate the entire flowfield. In the transitional and free molecular
regimes, it is necessary to use the methods of molecular gas dynamics.
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