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ABSTRACT The multimedia delivery chain consists of multiple stages such as content preparation, content
delivery via Over-The-Top delivery network and Internet Service Providers network. Within the multimedia
service chain, each stage influences the Quality of Experience (QoE) of the end user. The objective of this
work is to provide a comprehensive literature survey with future research challenges and opportunities in the
field of time-varying video quality in multimedia service delivery. The contribution of this work is two fold:
1) Survey – we provide a review of state-of-the-art works for video quality models to quantify multiple
artifacts into a single QoE metric, pooling strategies for global quality measurements, and Continuous
Time-Varying Quality (CTVQ) models; 2) Future Challenges and Directions – we investigate ten major
research challenges and future directions based on the state-of-the-art for QoE modelling, QoE-aware
encoding/decoding and QoEmonitoring/management of multimedia streaming in next-generation networks.

INDEX TERMS Time-varying video quality, Quality of Experience (QoE), quality models, video
streaming, continuous time-varying quality, video compression, QoE-aware video encoding and decoding,
QoE monitoring, QoE-aware network and service management.

I. INTRODUCTION
High resolution multimedia contents and applications are
proliferating due to the advancements in consumer elec-
tronics, communication and compression technologies. It is
expected that over 80% of the Internet data traffic will consist
of video data, and over 66% of the connected TV sets will
support 4K [1]. This exorbitant increase in video contents
in communication networks will demand extortionate band-
width requirements. To this end, it is envisaged that 10% of
the global mobile devices connected to the network will be
5G capable (13.1 billion) by 2023. The enormous growth
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of multimedia content in communication networks makes it
crucial for service providers, content distributors and creators
to monitor and measure the Quality of Experience (QoE)
for the content transmitted over unreliable and time-varying
channels. More importantly, QoE modelling, measuring and
monitoring should take place within different stages of the
multimedia service delivery chain. Thus, having an in-depth
understanding of the elements in end-to-end multimedia
service delivery chain, mechanisms for QoE modelling,
measuring andmonitoring, andQoE-aware operations at each
stage in the service delivery chain is important for improving
end-user experience in multimedia applications.

To this end, Fig. 1 shows the End-to-End (E2E) multi-
media service delivery chain with the development of the
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FIGURE 1. An illustration of the 1) End-to-End multimedia service delivery chain, 2) elements and the process involved in QoE model creation and 3)
areas where QoE model can be integrated for QoE-aware operations at each stage of the multimedia service delivery chain.

QoE model and model integration in the multimedia service
pipeline. As illustrated in Fig. 1, the End-to-End multi-
media service delivery chain for video streaming consists
of multiple stages including content generation, content
compression (encoding), content distribution through media
servers, content delivery over the Internet, and content
consumption by users using the client-side implementation
of the service applications. The process of development
and integration of the QoE model into the service delivery
chain contains three-phases that include: 1) multimedia
service delivery to end-users; 2) development of the QoE
model using subjective assessments; and 3)Model integration
for QoE-aware multimedia service delivery on different
stages of the multimedia service [2]–[5]. To develop a
quality (QoE) prediction model for a video streaming service,
subjective assessments are performed to collect feedback
from multiple users and Key Performance Indicators (KPI)
which are further analyzed to develop aQoE predictionmodel
[6]–[9]. Thereafter, the developed QoE model is integrated
in several stages in the multimedia service delivery chain
[10]–[13]. Such an integration facilitates converting a tradi-
tional multimedia service delivery chain into a QoE-aware
multimedia service delivery. As illustrated in Fig. 1, this can
lead to 1) QoE-aware client-side content adaption, 2) QoE-
aware content generation, 3) QoE-aware video encoding and
4) decoding, and 5) QoE-aware network service monitoring
and management [14].

A. BACKGROUND AND MOTIVATION
Adaptive streaming has become the norm (as opposed to
progressive streaming with a constant bit rate) when deliv-
ering multimedia contents to end users through unreliable

and time-varying channels. This is typically achieved through
the use of 1) scalable video streams or 2) bitstreams with
multiple bit rates coded into layers of contents such that they
are adapted according to the network bandwidth available
for the end-user. The scalable video streams [15], [16]
are generally used with Media Aware Network Elements
(MANE) [17] that operate on the server-side (or in edge
network nodes). MANEs are capable of adjusting the quality
of the video stream by removing or compounding different
layers in the bitstream depending on the available net-
work bandwidth [18]. Hypertext Transfer Protocol (HTTP)
Adaptive Streaming (HAS) on the other hand operates on
the client-side [19] and facilitates adapting the bit rate of
the content dynamically to suit the network capacity at a
given time [19]. The HAS is now supported by major
vendors such as Apple [20], Adobe [21], and Microsoft [22]
with their proprietary streaming protocols. Furthermore, the
Dynamic Adaptive Streaming over HTTP (DASH) standard
introduced by ISO MPEG [19] has made adaptive streaming
ubiquitous in the OTT streaming market. In addition, the
recent developments in Scalable High Efficiency Video
Coding (SHVC) have promoted the use of Scalable Video
Coding (SVC) together with HTTP adaptive streaming
[23]–[25] to provide further adaptation capabilities.

Even though the existing HAS solutions are promising,
maintaining a high consistent end-user QoE is a compelling
challenge. For example, the frequency of the dynamic rate
adaptation during a media playback has a significant impact
on the user experience. Furthermore, associative memory
conditions such as primacy, recency, and hysteresis [26] of
end-users should be carefully considered when designing
effective adaptation algorithms [27]. For example, the impact
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FIGURE 2. Organization and structure of the paper.

of a poor quality video segment will affect user perception
of the overall video quality up to a certain duration [28].
In addition, the work in [29] discusses the prospect theory
which states that quality loss carries more weight than
gain in terms of human visual perception. The awareness
of these behaviors of our Human Visual System (HVS) is
important when designing efficient rate adaptation algorithms
[30], [31].

One of the important elements that enable effective rate
adaptation is the ability to accurately predict the time-varying
user‘s QoE. Such prediction algorithms should operate
in real-time, account for primacy / recency properties as
well as the nonlinear behavior of the HVS [32]. Another
factor that impacts end user QoE is the underlying video
encoding and decoding algorithms. The modern video coding
standards such as High Efficiency Video Coding (HEVC)
and Versatile Video Coding (VVC) demonstrate significant
coding efficiency improvements over their predecessors.
However, the complexity of the algorithms demands exces-
sive use of computational and energy resources at both
ends of the multimedia service delivery chain. Hence,
certain optimization strategies are carried out both at
the encoders and decoders to reduce the energy/compute
resource requirements while keeping the user QoE intact.
In addition, QoE-aware video compression, bit allocation and
rate control, QoE-aware error resilience and concealment,
and QoE monitoring and management in communica-
tion networks contribute immensely towards maintaining
a high end-user QoE in multimedia applications, yet at
the same time present compelling research and engineering
challenges.

In this context, engineering solutions for measuring
modelling and integrating time-varying video quality in
E2E multimedia delivery requires an in depth holistic
understanding of key parameters that operate in all stages of
the multimedia service delivery chain illustrated in the Fig. 1.

B. RELATED WORK
To this end, a number of recent surveys and reviews
have been conducted to analyze the state-of-the-art as well
as the challenges and opportunities for QoE measuring,

modelling and integration. However, these surveys typically
overlook the time-varying aspects of QoE and other stages
in the E2E multimedia service delivery chain. These related
surveys, their focus areas, and properties that are overlooked
compared to this review are summarised in the Table 1.
More importantly, as illustrated in Table 1, there is a gap
in surveys and reviews that discuss the challenges in QoE
management in 5G/6G networks, and the impact on QoE due
to the complexity & energy consumption of encoding and
decoding algorithms that play a significant role in multimedia
service delivery chain. In addition, the application layer
techniques such as QoE-aware video encoding, and QoE
monitoring in next-generation communication networks have
been overlooked in recent surveys and tutorials that discuss
QoE modelling.

C. SCOPE AND CONTRIBUTION
Therefore, the objective of this work is to equip the reader
with a comprehensive survey of state-of-the-art works and
with the future directions in the domain of the time-varying
video quality in E2E multimedia service delivery chain.
The contribution of the work consists of the following two
parts:

1) Survey: We present a detailed review of existing
quality models for quantifying different artifacts into a
single QoE metric, pooling strategies employed to obtain
global quality measures, and CTVQmodels. We also provide
the standardization efforts related to time-varying quality
estimation.

2) Future challenges and directions: Based on state-of-
the-art works, we provide the ten major future challenges and
research directions in the following categories:

• QoE modelling – The challenges and opportunities
for measuring time-varying video quality modelling
and prediction are investigated including 1) Real-time
CTVQ prediction – limitations related to real-time
utilization of dynamic CTVQ prediction model are
discussed; 2) Datasets and Tools – challenges and
limitations of available databases/tools are highlighted
and future research directions are investigated; 3) Stan-
dardization – challenges and future directions associated
with the existing standardization activities of HTTP
streaming are discussed.

• QoE-aware encoding/decoding – We investigate the
challenges and research directions related to QoE-
aware encoder/decoder optimization that includes:
1) QoE-aware image/video compression – challenges
related to effective rate controlling with emerging stan-
dards are discussed; 2) QoE-aware encoder optimiza-
tion – open challenges regarding reduction in encoding
complexity, transcoding between different standards
and use of machine learning for video coding are
investigated; 3) QoE-aware decoder optimization – open
research challenges such as embedding decoding com-
plexity data in bit stream and energy consumption are
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TABLE 1. Related surveys, their focus areas and limitations.

discussed; 4) Error concealment and resilience-aware
video coding – future research direction and challenges
associated with intelligent concealment-aware picture
partitioning schemes and communication channel-aware
encoding strategies are investigated.

• QoE monitoring and management – We discuss
open research challenges and future directions regard-
ing the integration of the QoE model for QoE-
aware network/service monitoring and management in
next-generation networks including 1) QoE manage-
ment in 5G/6G networks – where network enabling
technologies can provide an opportunity for deployment
and automation of QoE-aware resource optimization
in future networks. The challenges related to net-
work/service automation, information exchange among
service and network providers, secure and standardized
interfaces for QoE KPIs extractions and QoE-aware
business model are investigated; 2) QoE Monitoring –
active/passive multi-layer QoE monitoring solutions are
discussed where issues related to user privacy, extension
of existing interfaces/data representation and trade-off
between monitoring frequency and control plane traffic
are highlighted; 3) QoE model integration & QoE
measurement – challenges and future research regarding
development and deployment of long-term and more
accurate cross layer QoE measurement models are
discussed.

D. PAPER STRUCTURE
In this regard, this article is organized as follows: Section II
discusses the primacy and recency effects of users during
viewing. The global quality models based on different
pooling strategies are discussed in Section III. This section
also elaborates on different temporal, spatial, and hybrid
pooling strategies. Section IV presents the CTVQ models.
A generic CTVQ model is introduced in Section V. This
section also elaborates the existing challenges in designing
CTVQ models and standardization efforts. Sections VI and
VII illustrate the challenges in QoE-aware video encoding
strategies & encoder, decoder optimization challenges, and
QoE-aware network and service monitoring & management
in 5G/6G networks, respectively. Fig. 2 represents an
overview of the organization and structure of this paper, and
a list of abbreviations used in this article is provided in the
Table 2.

II. EFFECTS OF SERIAL POSITION OF
ARTEFACTS/QUALITY CHANGES
In order to model the QoE for a particular application, user
experience over time has to be considered. The effect of
memory in assessing the impact of service interruptions,
delay, jitter on QoE has been studied for instance in [38].
In general, it has been observed that the same quality values
for a frame or portion of a video sequence have a different
impact on the global perception of quality depending on the

60270 VOLUME 10, 2022



C. T. E. R. Hewage et al.: Measuring, Modeling and Integrating Time-Varying Video Quality

TABLE 2. List of acronym used in this article.

position at the time of the corresponding frame / portion of the
video. This is due to the features of HVS, including recency,
primacy, and the asymmetrical response to quality variations
of the HVS. These major features contributing to the HVS
([26], [38], [39]) are highlighted and represented in Fig. 3 and
the rest of the section discusses each of these key features in
details.

A. RECENCY, PRIMACY AND HYSTERESIS EFFECTS
Recency is a characteristic of human subjects and the
exploration of recency can reveal the true nature of human
perception and behavior. Based on the serial position effect,
a viewer tends to remember the last and first items from
a series. Previous research [26] suggests that the recall
accuracy varies as a function of time. The ability to recall
previous experiences which occurred recently is called the
‘‘recency effect’’, whereas the ability to recall the data from
the very beginning of the content is called the ‘‘primacy
effect’’. These effects are said to be caused by the storage of
serial information in long-term memory (primacy effect) and
working memory (recency effect). The influence of primacy
and recency effects on identifying/memorizing certain stimuli
is studied in Short Term Memory (STM) research presented
in [40]. Studies in particular, in the context of audio and
video quality degradations and improvements are reported
in [41], [42] and [28], [39], respectively. For instance, the
study described in [39] observes that global quality ratings
are reduced when a worst-quality video segment occurs
at the end sequence compared to the beginning of a 30s
video sequence. Furthermore, the authors claimed that the

effect of recency was eliminated when subjects were asked
to continuously evaluate picture quality. The duration of
the impairment was found to have little impact on quality
ratings. A regression analysis carried out in this study also
found that quality ratings are best predicted by the peak
impairment intensity. These models have been integrated into
QoE prediction models which mimic the exponential decay
or rise of user QoE over time (e.g., [43], [44]). An audio
quality model ITU-R BS.1387 based on recency has been
standardized [45]. Not all studies have shown a significant
effect of recency. For instance, the time-varying speech
quality study described in [42] states that no significant effect
is observed during quality switching under the considered
experimental conditions. The authors, therefore, concluded
that the fundamental human integration operation is not
cofounded by speech quality history [42]. Even though these
claims depend on the setup and the environment of the tests,
similar studies are necessary to clearly understand the true
effects of recency for time-varying quality adaptations. The
memory of poor quality elements in the past causes subjects
to provide lower quality scores immediately afterward, even
after the time-varying video quality returns to acceptable
levels. This has been denoted as the ‘‘hysteresis’’ effect [32].

B. FREQUENCY OF QUALITY SWITCHING
Due to the increase in multimedia delivery over time-varying
channels, audio-visual QoE fluctuations over time have
become one of the main focal points in recent research
and development in this field. In recent studies, it has been
found that temporal fluctuations of media quality taking place
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FIGURE 3. Key features contributing to HVS.

within a time scale between 15 secs up to several minutes
are governed by the short-term or working memory [41],
[46]. The memory effect is linked to the adaptation frequency
of the multimedia service. For instance, if the services
are frequently adapted (e.g., Adaptive HTTP live streaming
enables choosing up to a second long video segment) the
effect could be much worse compared to the effect when the
service degradation/improvement frequency is significantly
low. For instance, if the quality of a media stream changes
rapidly, the users do not have enough time to settle for a
particular viewing condition, which could lead to discomfort
due to the high cognitive load associated with switching.
In the case of slow media adaptations, the HVS system
may get a considerable amount of time to adjust to the
current viewing experience. Therefore, it is important to
study the memory effect on both fast and slow quality
rise/fall situations. Studies in the literature have found some
optimum perceptual bounds for the frequency of adaptation
for certain applications. For example, perceptual bounds for
segmentation sizes for adaptive HTTP streaming are studied
in [31], [47].

C. ASYMMETRIC RESPONSE OF HVS TO QUALITY
VARIATIONS
The asymmetric nature of users’ responses to quality
improvements and degradations are explored and discussed
as a mechanism to model the HVS response for time-varying
video quality. For instance, users respond more adversely to
a drop in quality compared to a quality improvement at a
similar degree.

This phenomenon is described by the prospect theory
introduced by Kahneman and Tversky in 1979 [29]. Fig. 4
illustrates the dynamics of user response according to the
prospect theory. This concept is applied in [30], [31] and [48]
to model time-varying quality of rate adaptive video. The
detailed subjective studies conducted in these tests show
high correlation with Mean Opinion Scores (MOS) for rate
adaptive video applications.

FIGURE 4. Asymmetric response of HVS.

D. PERCEPTUAL SATURATION EFFECT
Perceptual saturation effects also affect time-varying quality.
For instance, the quality improvements or degradations after
a certain threshold will not be uniquely distinguished by the
end-users (due to the masking effect at these extreme quality
levels). As illustrated in Fig. 4, after a certain threshold,
users won’t be able to differentiate quality changes and their
QoE is saturated after these limits. Therefore, when designing
quality models, these effects can be taken into account. This
will also enable us to fully optimize the usage of system
resources. For instance, if the user QoE has passed the
saturated level, there won’t be any improvement of user QoE
even thoughwe allocatemore resources. Themodel described
in [49] applied a predetermined threshold to account for these
perceptual saturation effects.

E. SUMMARY
As discussed in this section, it is observed that a number of
factors (i.e., hysteresis, the asymmetric response of our HVS,
perceptual saturation, etc.) are influencing our HVS when
perceiving time-varying quality video. It is paramount to
understand these effects and emulate them in CTVQ models.
It will be challenging to capture all these perceptual aspects
of HVS within a single model. As an alternative, further
research can be conducted to evaluate and prioritize these
effects, so that new quality models can at least integrate more
prominent features.

III. GLOBAL OBJECTIVE QUALITY MODELS BASED ON
POOLING
The overall experience or QoE of users is affected by
several factors which include capturing artifacts (e.g., lens
distortions), compression artifacts, transmission and decod-
ing artifacts. Some of these distortions are spatial artifacts
and some are temporal artifacts. The integration of these
artifacts into a single quality model is challenging due to
their distinguishable and independent characteristics and
to how they affect our HVS. Several quality metrics for
objective quality assessment exist, such asMean Square Error
(MSE), Structural Similarity (SSIM), Peak Signal to Noise
Ratio (PSNR), MOtion-based Video Integrity Evaluation
(MOVIE), etc. Most of the metrics, such as MSE, PSNR,
and SSIM, were developed for still images and do not
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TABLE 3. Objective quality assessment metrics.

necessarily capture temporal distortions in the video, hence
the need for sophisticated temporal pooling methods. For
example, the SSIM metric developed for images takes into
account image degradation, luminance masking and contrast
masking. In the MOVIE index, a family of bandpass Gabor
filters is used to filter both the reference and distorted
videos and the output is then used to measure spatial quality
degradation. The output of the spatio-temporal Gabor filters
family is then used to calculate the spatial MOVIE index
which primarily captures spatial distortions such as blur,
ringing, etc. The temporal MOVIE index then captures
temporal distortions (e.g., motion compensation mismatch)
in the video by tracking video quality along the motion
trajectories of the reference video. The spatial and temporal
indices are then pooled to obtain a final MOVIE index
representing the visual quality of the entire video. Some video
quality assessment metrics such as MOVIE correlate quite
well with human subjective judgment by evaluating video
quality not only in space and time separately but also spatio-
temporally. Table 3 provides a summary of the objective
quality assessment metrics proposed in the literature and
the reader is referred to [50] for a more detailed discussion
on the basics of popular terms, metrics, and other related
literature.

Pooling can be used to predict the subjective quality of
a video using objective metrics by combining the separate
effects of spatial and temporal artifacts to obtain a global
quality score. Hence a proper choice of the pooling method
is crucial for improving the prediction capability of a video
quality metric. Pooling can be performed spatially or tem-
porally or in a combined fashion (known as spatio-temporal
pooling). Spatial pooling computes the space-varying quality
parameters of a video sequence at a single time instant
and pools them to obtain a single quality index for that
particular time instant. Most of the approaches perform
spatial pooling at the frame-level. Temporal pooling then is
used to combine these periodical measures over time to get
a final measurement for the whole video sequence. Fig. 5

FIGURE 5. Illustration of temporal pooling performed on objective scores
obtained by spatial pooling on individual frame.

illustrates a general temporal pooling algorithm to combine
periodical quality measures obtained using Spatial Pooling.

A. SPATIAL POOLING
Common spatial pooling methods include simple spatial
averaging, Minkowski pooling, Local Quality/Distortion-
Weighted Pooling, Information Content-Weighted Pool-
ing [63], Content Adaptive Spatial Pooling [64] andAttention
Model (detection of the attention regions in every video
frame and average over the distortion map in attention
regions only [65]). Spatial pooling methods usually consist
of two stages. In the first stage, image quality is evaluated
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within local regions (resulting in a quality/distortion map).
In the second stage, the spatial pooling algorithm combines
the quality/distortion map into a single quality score. For
example, Minkowski Pooling for a given quality/distortion
map can be defined as D = (1/K )

∑K
i=1m

p
i , where mi is

the quality/distortion value at the i-th spatial location, K is
the number of samples and p is the Minkowski power. As p
increases it will put more emphasis on image regions with
high distortions. A suitable value of p should provide a good
approximation of human quality perception. Details on other
spatial pooling techniques can be found in [63]–[65].

B. TEMPORAL POOLING
A review of early temporal pooling techniques is presented
in [66]. The authors compare the performance of six basic
pooling methods applied to five different objective quality
metrics using the Pearson Linear Correlation Coefficient
(PLCC). Out of the six temporal pooling methods tested in
the study (histogram, Minkowski summation, exponentially-
weighted Minkowski summation, mean value across a
sequence, mean value of scores in the last F frames and
local maximum or minimum of mean values of scores in L
successive frames), the exponentially-weighted Minkowski
summation and the mean value of the last F frames are found
to have the best correlation with the subjective ratings. It is
observed that the best performing pooling methods are those
taking into account the recency effect and the influence of the
worst quality section.

All works mentioned so far evaluate the final video quality
using local quality information and then combining this
temporally, trying to match subjective human scores. In [32]
the authors propose a hysteresis based temporal pooling
strategy for Quality Assessment (QA) algorithms. In their
model they use the average of frame-level quality scores
obtained from objective QA algorithms while also taking into
account the memory effect of the users (by modelling the
quality scores over a certain time duration) as well as the
fact that users respond sharply to drops in quality (by sorting
the quality scores in ascending order and combining them
using a Gaussian weighting function).Some of the latest work
on temporal pooling based quality predictions can be found
in [67]–[69], and [70].

C. SPATIO-TEMPORAL POOLING
The spatio-temporal approaches allow us to combine both
local spatial and temporal image/video features into a single
quality metric. The work presented in [77] uses eleven
Image Quality Metrics (IQM) for quality assessment on
lossy video sequences using temporal pooling methods
such as Minkowski summation with different exponents and
averaging over distorted frames. Regardless of the IQMs
and exponents used, the latter is found to be better than
the former. The authors further evaluate different spatial
pooling methods such as Minkowski summation over all
pixels, averaging over distorted regions and averaging over
attention region using average over all the frames as the

temporal pooling method [65]. Furthermore, they evaluate
a spatio-temporal scheme using averaging over different
distorted spatial regions and frames. Using temporal pooling,
spatial pooling and spatio-temporal pooling methods, it is
observed that users are more sensitive to distorted spatial
regions and temporal segments.

In [75], the authors propose a video quality assessment
model which determines the overall quality of a distorted
video as a weighted average between global quality and local
quality. The global quality is calculated using IQM and direct
spatio-temporal averaging method, while the local quality
method takes into account visual attention and frequency
of quality variations over video frames. Three temporal
pooling methods evaluated in this work includes Minkowski
summation with exponent 2, direct average of quality values
over all frames and a new proposed temporal pooling function
which is the filtered result of a function defined as

F(k) =



1
L
, k ≤

L
3

(k : frame index)

1
2L
,
L
3
< k <

2L
3

(L : video length)

3
2L
, k ≥

2L
3

by the Gaussian filter for several times (typically 8). The
proposed scheme is proved to be better than the other two for
all four IQM that were evaluated (PSNR, SSIM, multi-scale
SSIM [78] and PSNR-HVS-M [79]).

The model proposed in [76] first calculates the fidelity
scores for the video sequence and then pools them to
a representative quality score using perceptual motion
models. The fidelity measurements discriminate similarity of
pixel values between two images. Pooling is performed at
frame-level and sequence level using user-defined perceptual
weights. The weights are calculated based on the frame type,
moving or stationary. The proposed strategy is proved to
outperform other VQA algorithms except for MOVIE.

The authors of [64] propose a new content-adaptive
pooling strategy called Video Quality Pooling (VQPooling)
based on the distribution of local spatio-temporal quality
scores from objective VQA algorithms and effects on the
perception of large motion, cohesive motion fields such as
egomotion (presence of optical flow or motion fields induced
by camera motion). Taking into account the slope of the
SSIM curve sorted in rank order (steep increasing sections
of the curve indicate severely degraded quality section) and
presence (or absence) of egomotion, a frame-level quality
index is computed in a content adaptive manner. Temporal
pooling is then performed by performing low and high quality
classification using the K-means clustering method. The
scores are then used to calculate the global quality using a
weighting function (ratio of low and high quality scores).

The main drawbacks common to the schemes discussed so
far are:
• The test video sequences are of very short duration
(usually 10-15s)
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TABLE 4. Different pooling strategies adopted on time varying quality models.

• Only classical approach of video streaming (no quality
adaptation over time) is taken into consideration.

All the mentioned temporal pooling schemes so far
were evaluated using classical streaming (fixed-bit rate
applications) and for short duration videos (typically less
than 15s). With the advancement of streaming technologies
such as HAS, it is necessary to validate the pooling
methods and possibly develop new ones for these latest
technologies. The work in [80] evaluates and compares
the performance of different temporal pooling mechanisms
to validate their application for the recent HAS protocol
while also considering long duration video sequences (100s).
Based on the results, the authors advocate the use of the
simple mean of objective metrics over complicated pooling
mechanisms given that the simple mean performs quite well
for longer duration sequences. Authors in [81] performed an
evaluation of eight different temporal pooling strategies for
various objective Video Quality Assessment (VQA) metrics
for gaming video streaming applications. Similar to [80], they
also observed that no temporal pooling strategy provided a
considerable gain over the simple averaging across different
VQA metrics. Similar results are also reported by Netflix
in [82] where their results suggest that simple arithmetic
mean is the best method of averaging per-frame quality scores
resulting in a high correlation with the subjective scores.
They also observe that Harmonic Mean (HM) produces
similar results as simple arithmetic mean but helps to
emphasize the impact of small values in the presence of
outliers.

D. SUMMARY
This section first describes the objective image and video
quality assessment metrics available in the state-of-the-
art, then summarised in Table 3. We also highlight the
need for global quality models based on pooling. In this
regard, state-of-the-art methods based on either spatial or
temporal pooling approaches, which yield a global quality
value for the whole video segment, are discussed. The
strategies discussed above are mainly tested on the LIVE
and EPFL-PoliMI databases. Thus, an interesting future work
can be to test the performance of all pooling methods for
different objective metrics, for both classical and modern
streaming technologies, using a single database with various
distortions and content types. However, the reported methods
(which are summarized in Table 4) are not capable of
predicting instantaneous quality values (i.e., CTVQ). In this
context, Sec. IV provides an overview of the need and
use of Continuous Time-Varying Quality models and their
state-of-the-art.

IV. CONTINUOUS TIME-VARYING QUALITY MODELS
This section first discusses the importance and difficulty of
modelling continuous QoE in a time-varying image/video
streaming application. This allows us to not only anticipate
the video’s global quality but also to derive QoE parameters at
various time intervals. The presence of such models aids us in
making image/video stream adaptation decisions. In adaptive
HTTP streaming, for example, a choice is made on which
segment should be requested for delivery next. Because of
memory effects, it’s best to pick the highest-quality segment
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for the next slot. If we can model the time-varying quality
with the hysteresis effect and other non-linearities, we can
answer this question. Since the inception of video trans-
mission through unreliable communication channels such as
wireless channels, the research of time-varying quality has
been pursued [28]. The early research was on forecasting
overall quality based on quality measurements taken at
various points in time. In this scenario, the total quality is
predicted using a temporal pooling technique, as explained in
Section III [32], [83]. In [32], for example, a temporal pooling
method is used to transfer instantaneous objective quality
measures to overall video quality using amodel that takes into
consideration the HVS’s recency effect. Even though several
of these methods anticipate instantaneous video quality as
an intermediate step in calculating overall video quality, the
results have not been confirmed against recorded subjective
Time-Varying Subjective Quality (TVSQ).

The second generation of continuous quality prediction
models can anticipate the rate-adaptive video’s instantaneous
quality. At the moment, few metrics can model ongoing
user responses. The studies in [84]–[87] describe models
that incorporate complex low-level vision models. These
models are intended to produce a single quality metric for
a video stream. Although these algorithms may give frame-
by-frame estimates, their temporal summation approaches are
not intended to imitate a human subject’s continuous quality
estimation process.However, the time-varying QoE Indexer
proposed by [88] manages to capture interactions between
stalling events and then analyze the spatial and temporal
content of a video to predicts the perceptual video quality.
It has also been identified that QoE of an IP transmission can
change according to the usage situations. The work presented
in [89] suggest that priors related to user attributes can be used
to trade-off spatial and temporal quality of an IP stream.Other
ways are discussed in [30] and [90]. The method described
in [30] combines an objective quality evaluation model at the
frame level with a cognitive emulator to account for human
viewers’ slow temporal responses to image quality changes as
well as asymmetric behaviour when picture quality changes
from bad to good and vice versa. The distortion masking
effect, perceptual saturation effect, and our HVS liking
for poor quality experiences over good quality experiences
are all modelled in the suggested cognitive model [29].
These methods, however, have drawbacks. Some of these
measurements, for example, are designed for slow-changing
videos (e.g., video segments lasting 30s or 40s) and so are not
ideal for frequent rate modifications [30], [91]. For example,
existing HTTP streaming portions could alter in as little
as 1-second [92]. Some of the proposed measures are only
applicable to low-bitrate videos and do not account for a wide
variety of bitrates [85], [92], and [95].

The prospective continuous time-varying quality model
predictors, on the other hand, must be simple to deploy in
real-time for ‘‘on the fly’’ quality prediction. If the algorithm
is too complicated, it will not be able to respond as quickly as
needed to adjust the bitrates [91]. As a result, new methods

for TVSQ must be more responsive and comprise basic
computations that can be executed on the fly. To consider
the hysteresis impact of HVS, the methodologies available
in the literature use a variety of approaches. To predict time-
varying quality, most techniques use Infinite IIR filter time
series. They can often forecast quality, but the complexity of
the procedures prevents them from being used in real-time
rate adaption approaches in new technologies like HTTP
based streaming. For example, [49] proposes an approach
that includes an IIR filter as well as two non-linear filters
before and after the IIR filter. To account for the perceptual
saturation effects and non-linear response of HVS, two
non-linear filters are used at both the input and output stages
in this method. If the rate of adaptation is high, this may
make a real-time prediction of TVSQ difficult. Hewage
and Maria provide a time-varying quality metric based on
a moving average filter that accounts for the recency and
primacy effects of our HVS in [95]. In comparison to the
state of the art, the results of this method indicate good
performance. In comparison to other approaches proposed in
the literature, the suggested method’s easy computations and
accuracy allow it to be employed in real-time HTTP based
streaming applications. Using a sliding window method, the
Cumulative Quality Model (CQM) proposed in [96] predicts
the cumulative quality of streaming sessions based on the last
window quality, the average window quality, the minimum
window quality, and the maximum window quality.

Table 5 summarizes the continuous time-varying quality
models reported in the literature to date. The basic building
blocks used by the proposed CTVQ models in the literature
mimic the hysteresis effect and other HVS responses in
addition to the main approach in chronological order. It can
be observed that most of the proposed models rely on a
dynamic system model and an objective quality model to
predict the time-varying quality. This leads the authors to
present a generic representation for continuous time-varying
quality measurement, which is discussed in Section V.

V. GENERIC MODEL FOR CONTINUOUS TIME-VARYING
QoE MODEL, CHALLENGES AND STANDARDIZATION
EFFORTS
The analysis of continuous time-varying quality models
(in Sec. IV), and pooling-based global objective quality
modelling (Sec. III) enabled authors to identify key building
blocks for such a model. Based on this, we advocate that
a generic CTVQ model should account for spatial/temporal
artifacts, perceptual saturation/smoothing and hysteresis
effects. Fig. 6 illustrates the proposed conceptual quality
model for predicting CTVQ. This model reflects the main
concepts (building blocks) employed in the relevant literature
discussed in previous sections.

The first module in this model in Fig 6 quantifies the
short term quality (i.e., instantaneous video quality) based
on both spatial and temporal distortion measures. The
objective of this module could be achieved by employing an
accurate image/video quality metric that could account for
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TABLE 5. Continuous time-varying quality models.

FIGURE 6. Generic continuous time-varying quality model.

both spatial and temporal distortions. This module measures
instantaneous video quality in given time intervals. The
second module is responsible for the perceptual saturation
of the short term quality ratings [49]. Our HVS would not
be able to recognize quality gains or drops after a certain
threshold (as discussed in Section II.D). Therefore, this
module will perform distortion averaging and thresholding
to account for perceptual saturation.

Finally, the dynamic systemmodule in the proposed model
is responsible to mimic the hysteresis or the memory effect of
HVS. In most cases, the dynamic system model could be a
Finite Impulse Response (FIR) or Infinite Impulse Response
(IIR) filter to perform the temporal decomposition. Pros and
cons of using FIR and IIR filters to model hysteresis effects of
time-varying video are discussed in [93]. The selection of a
particular type of filter could be down to other operational
parameters such as delay and complexity. To obtain true
user perception under different applications and parameter
settings, individual parameters of these components may
need fine-tuning.

A. CTVQ MODELLING CHALLENGES
Over the past few years, there have been quite a few
models proposed for HAS based applications that tried to
predict the continuous time-varying quality and in most cases
also the overall QoE score for the whole media session.
A review of HAS models provided by the authors in [37]
highlights such models. The review paper also highlights
various open-source datasets which tried to model such
time-varying subjective quality. Also, it is not always possible
to obtain short term or long term quality by comparing the
processed video with the original content. Especially in real-
time applications, the gatewaywhich processes the adaptation
may not have access to the original content. In these

scenarios, other approaches such as Reduced Reference (RR)
or No-Reference (NR) metrics based on scene characteristics
and network characteristics could be used [91], [102]. For
instance, the method described in [103] tries to predict
quality based on the bitrate. Recently proposed ITU-T Rec.
P.1203 also predicts the quality scores on a per-second basis
but its performance is not evaluated on a continuous time
scale. An interesting future work would be the performance
evaluation of such time-varying quality estimation models on
a comprehensive dataset.

To build these databases and establish ground truth data,
there should be good quality evaluation tools to capture the
input of human observers at each time interval. The existing
quality evaluation tools for conventional video are neither
user friendly nor with enough fidelity to record user inputs at
a fast rate. A multimodal interface to obtain 2D/3D quality
inputs from the user over time is described in [104]. This
tool utilizes external stimuli such as vibration, flickering and
sound to improve human concentration during 2D/3D QoE
evaluation. The EU FP7 CONCERTO project proposed a
comprehensive CTVQ evaluation application interface to be
used in mobile phones and tablet computers [105] to measure
CTVQ. This tool can be used to evaluate the quality of
the stored video as well as with real-time video streaming
applications over awired/wireless network. A snapshot of this
APP interface is shown in Figure 7. The application enables
to control video playout and the collection of quality scores
(from 1 to 5) by every second via a smartphone/tablet. This
is done via a slider positioned horizontally on the device’s
display. A plot of the provided scores over time is visualised
above on the display. A Psychology-based subjective inter-
face is provided by the Bampis et al. in [106] which can
generate and record visual stimuli with high precision for the
collection of continuous, per-frame subjective data. Further
research and development should be undertaken to design
similar and effective CTVQmeasurement tools as mentioned
above to duly capture human visual response in future efforts
on quality/bitrate adaptation over time.

B. STANDARDIZATION
There are many standardization activities taking place
around adaptive bitrate video streaming. For HTTP Adaptive
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TABLE 6. Databases for measuring time-varying image quality.

TABLE 7. Summary of research challenges and future direction in measuring CTVQ.

FIGURE 7. A snapshot of the authors’ mobile APP for evaluating CTVQ.

streaming DASH is the main standardization effort to
date [19]. MPEG-DASH was developed by MPEG and
became an International Standard in November 2011. Since
then MPEG-DASH has been revised as MPEG-DASH
ISO/IEC 23009-1:2019 in 2019. This standard defines a
media representation framework for dynamic adaptation of
media content in an encoder agnostic manner. However, this
standard does not address the QoE or time-varying quality
of the video. In 2017, Server and Network assisted DASH

(SAND) was published as an extension of the MPEG-DASH
standard [107]. This standard focuses on content-awareness
and QoE-service-awareness through server/network assis-
tance, analytics and monitoring of DASH-based services, and
unidirectional/bidirectional, point-to-point/multipoint com-
munication with and without a session (management)
between servers/CDNs and DASH clients. It is observed
that even though there are standardization efforts on media
representation and reference decoders, no standardization
effort is on monitoring and measuring the quality of video
delivered using adaptive streaming. The standards such
as ITU-R Recommendation ITU-R BT.500-14 [108] also
required to revisit to measure the quality of time-varying
video quality. For instance, ITU-R Recommendation ITU-R
BT.500-14 recommends video segments to be 10s long
or use compositions of segments to make a longer video
for subjective quality evaluation tests. Similarly, there is a
clear lack of open reference video datasets for conducting
TVSQ evaluations. In addition, there are no standard tools or
procedures to evaluate subjective opinions for time-varying
quality videos. Often custom made tools are used to
evaluate the quality (e.g. Joystick). These limitations hinder
the progress of research in this domain. There are also
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TABLE 8. Summary of standardization in HTTP adaptive video streaming.

standardization activities in study group 12 at ITU-T such as
ITU-T P.1203 for HD HTTP adaptive video streaming [109]
and ITU-T P.1204 for 4K video streaming [110]. The ITU-T
P.1203 is a parametric bit-stream model with four different
modes of operation where each model utilizes different
application layer Key Quality Indicators (KQIs). The works
in [111], [112] provided an open-source Python language-
based implementation of ITU-T P.1203. Table 8 shows the
summary of the standardization efforts in the domain of
HTTP adaptive video streaming.

C. SUMMARY
As discussed in this section, even though the basic building
blocks for the generic continuous time-varying QoE model
can be envisaged, there are many challenges to be addressed
in the future. Some of the key challenges and future research
directions are discussed in Table 7. It is also important to
deploy these CTVQ models in the end-to-end multimedia
QoE pipeline that spans from encoding to delivery. Therefore,
it is important to discuss the methodologies followed to
integrate these QoE models with the networking infrastruc-
ture and the challenges associated with QoE monitoring
and management. Similarly, the distortions introduced at the
video compression, and optimizations at the encoder and
decoder have a significant impact on the overall end-user
QoE. Hence, QoE modelling should consider the impact of
compression and other application-layer processes. In this
regard, Section VI elaborates on compression artefacts,
the impact of the encoder, decoder optimizations on the
QoE and QoE-aware encoding strategies. To this end,
Section VII discusses QoE model integration and monitoring
and management challenges in 5G/6G. The following two
sections combine the CTVQ modelling and deployment
within content creation and communication infrastructure in
end-to-end multimedia delivery chain illustrated in Fig. 1.

VI. QoE-AWARE ENCODER AND DECODER
OPTIMIZATION, AND VIDEO ENCODING STRATEGIES
The QoE modelling aspects discussed in Sections III-V
can be applied within the communication infrastructure

(discussed in Sec. VII as well as within the content
creation stages (as defined in Fig. 1). For instance, the
knowledge and understanding of end-user QoE at the
content generation influence the video compression and
multimedia adaptation techniques. As such, the QoE-aware
multimedia adaption techniques can be broadly categorized
into application layer adaptations andmethods that operate on
the network layer. Network layer-based techniques constitute
a range of sophisticated approaches such as network resource
allocation [113], and QoE management methods using
SDNs, and NFV, which are discussed in Section VII.
Application layer methodologies can also be categorized
into adaptations within the media distribution chain, encoder
level, and decoder (andmedia playback device’s) adaptations.
Multimedia content adaptation within the media service
delivery chain typically focuses on selecting the most
suitable video segment with a bit rate that matches the
prevailing network bandwidth. These techniques discussed
in [114]–[116] work well with HTTP adaptive media
streaming technologies such as MPEG-DASH to improve
the end-user’s QoE in fluctuating network conditions [70].
However, these methods do not consider the algorithms that
operate at the encoder and decoder level and their impact
on the end-user QoE. These aspects are of prime importance
when designing theory, technologies, and applications for 5G
multimedia communications [117]. Compressing the raw
image and video contents leads to compression artifacts and
visual quality degradation. This is evident, especially in low
bit rate transmission cases. As the number of bits per frame
decreases, both the objective and subjective quality of the
image sequence will decrease. On the other hand, another
major challenge when working with modern video coding
standards is their exorbitant increase in the encoding and
decoding time complexity. Yet, the adaptation techniques
that operate on the distribution pipeline do not address the
QoE implications of the optimization strategies undertaken
at the modern encoder and decoder implementations. This
section provides an overview of the encoding and decoding
complexity of modern video coding standards, optimization
strategies proposed in the literature, and their impact on the
end-user QoE. Furthermore, QoE-aware encoding techniques
proposed in the literature to generate bitstreams that can
potentially improve end-user QoE in lossy communication
channels are also discussed.

A. IMPACT OF IMAGE/VIDEO COMPRESSION ON QoE
It is estimated that over 80% of the internet traffic will consist
of video data by 2023 [118] and efficient video compression
and communication strategies must be continued to be
investigated. The challenge for any video and image encoding
algorithm is to compress the visual data while maintaining
a target quality level [119]. Modern hybrid video coding
standards achieve this by reducing the redundancies seen in
the video signals: namely the spatial, temporal redundancies
and entropy coding to reduce the redundancies between data
symbols (achieved through variable length coding) [120]. The
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recent video coding standards are proving to bemore efficient
compared to their predecessors. For instance, HEVC which
was standardized in 2013 shows 40-50% coding efficiency
improvement compared to H.264 [121], [122]. The demand
for coding efficiencies beyond HEVC was immediately felt
with the exponential increase in UHD, HDR video contents,
and immersive media applications [123]. Thus, the collab-
oration of the Joint Video Experts Team (JVET) composed
of ITU-T and MPEG members introduced Versatile Video
Coding (VVC), in 2020 [124] which demonstrates 30-40%
bit rate reduction for the same quality level compared to
HEVC. In addition, the popularity of open-source, royalty-
free codecs such as VP9 [125] and AV1 [126] has seen
an increase in the recent past. Experimental data between
different standards reveal comparable compression efficiency
performance between VP9/AV1 and their MPEG counter-
parts. In any case, the aforementioned standards are all based
on the hybrid block-based video encoding approach. Hence,
the Discrete Cosine Transform (DCT) based compression
in block-based video coding achieved through quantization
of transformed coefficients generally results in compression
artifacts such as blurring, ringing distortions, and boundary
artifacts (blockiness) [127]. The degree of visibility of
these artifacts affects the end-user’s QoE. Hence, reducing
the bit rate to cater to the increasing demands in video
communications without significant impacts on the perceived
visual quality [128] is a compelling research challenge that
will continue to dominate this space for the foreseeable
future.

Under this umbrella of research, Region of Interest (ROI)
based video coding and efficient rate controlling algorithms
are seeing an interest in the research community. The
proliferation of machine learning algorithms and emerging
low complex neural network architectures are facilitating new
research avenues over the traditional rule-based algorithms.
Rate controlling deals with a complex problem especially
in real-time communication and any inaccurate bit rate
estimation or allocation coupled with a sub-optimal coding
parameter selection can lead to unacceptable QoE issues in
multimedia applications. The λ domain rate control algorithm
proposed in [129] and adopted in the HM Test Model
reference encoder [130] is attempting to dynamically model
the RD relationship using a Least Mean Squares (LMS)
based adaptation model. A rate controlling algorithm requires
1) allocation of certain amount bits to a frame or a CTU
based on the overall bit rate and 2) selecting the appropriate
coding parameters to meet the bit rate constraint set at the
beginning of the encoding process. The dynamic nature of
the content, and the fact that bit allocation takes place at an
early stage of the encoding pipeline makes it difficult for
the encoders to simultaneously achieve both tasks. Hence,
advanced CTU level and frame-level bit allocation methods
have been proposed in the recent literature using a range
of techniques. Game theory-based methods are presented
in [131]–[133] targeting video conferencing applications.
If the rate estimation is incorrect for a particular frame or

a CTU, the overall rate control performance is degraded
impacting the end-user QoE. Hence, the adoption of machine
learning models, Bayesian estimation methods is prominent
in recent rate controlling algorithms [134]. The use of
Convolutional Neural Network (CNN) for extracting spatial
and temporal saliency features, and perceptual priority-based
QP selection algorithms are becoming popular within the
video coding domain [135]. Identifying ROI areas through
a saliency map is important in this regard, as it facilitates
the bit allocation algorithms to allocate more bits into
these regions of the frame compared to static regions. Deep
CNNs are utilized to generate saliency maps to identify
ROIs in a frame in [136], [137] and the algorithm is then
extended to introduce a modified RDO process to perform
an optimum bit allocation based on the importance of the
region. Machine learning-based ROI extraction is proven to
be more consistent with the HVS compared to the traditional
texture based extraction techniques. This is attributed to the
fact that these predictionmodels are specifically trained using
large datasets to recognize areas with objects as regions of
interests within a video frame. The popularity of machine
learning technologies has given rise to a range of deep
learning-based image and video coding solutions where the
encoder and decoder are composed of neural networks. It has
been identified that learning-based image coding solutions
offer significant compression performance, yet the decoded
images are affected by compression artifacts that are typically
not seen with DCT-based coding methods [138]. Therefore,
further investigations are needed in assessing the overall QoE
impact of compression algorithms, rate controlling methods,
and ROI-based coding techniques with state-of-the-art video
coding standards.

B. IMPACT OF THE ENCODER OPTIMIZATION ON QoE
Modern video coding standards such as High Efficiency
Video Coding (HEVC) [122], Versatile Video Coding
(VVC) [139], VP9 [125], and AV1 [140] have shown
significant coding efficiency improvements compared to their
predominant predecessors such as H.264, and VP8 video
coding standards. For instance, HEVC which was introduced
in 2013 shows 50% [141] coding efficiency improvement
compared to its predecessor H.264. Similarly, VVC which
was standardized in 2020 [142] demonstrates 30-35% [143],
[144] bit rate reduction compared to HEVC for a similar
video quality level. However, these improvements in the
bit rate reduction arrive with a greater increase in the
encoding complexity which demands a significant amount
of computational and energy resources at the encoding
servers/devices [144]–[146]. For example, the use of larger
coding blocks (64 × 64 in HEVC, and 128 × 128 in VVC),
increased intra- and inter-prediction modes, cross-component
prediction, advanced motion compensation and estimation
methods, and improvements in transform coding have
resulted in a ≈250-400% encoding time increase compared
to its predecessor HEVC [144]. In this context, a significant
amount of research effort is dedicated to optimizing the
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FIGURE 8. An illustration of the RD curve in a typical encoder. The
‘‘Benchmark encoder’’ curve represents the coding performance of an
encoder that achieves the best coding efficiency performance. The
‘‘Optimized encoder’’ curve represents the RD performance of an encoder
that skips the computationally intensive RD optimization to select the
coding modes for a given content.

encoders to reduce the encoding time complexity with
minimal impact on the coding efficiency.

Encoders typically follow a Rate-Distortion (RD) opti-
mization using a Lagrangian cost function and go through all
possible encoding parameter combinations in a brute force
fashion to determine the optimal encoder parameter combi-
nation (that minimizes the RD cost) for a given content [147].
Therefore, state-of-the-art methods that focus on encoder
complexity reduction attempt to skip all or certain stages in
the compute intensive RD optimization when determining
the best possible encoding parameter combinations for a
given content. In this regard, the majority of the encoder
complexity reduction methods can be categorized into two
approaches; statistical feature-based methods and learning-
based approaches [148]. Statistical feature-based methods
attempt to use texture complexity [146], [149], motion
complexity details [150], [151], combinedwith statistics from
previously encoded blocks [152] to generate probabilistic
models (e.g., Naive-Bayes) to early determine the best coding
structure/parameters for a given image segment. On the other
hand, learning-based approaches use data sets composed of
previously encoded image segments and associated encoding
parameters to train machine learning models which can
then be used to predict the coding structures/parameters for
a given arbitrary content. Supervised learning algorithms
such as Support Vector Machines (SVM) have been used
predominantly in recent literature due to their less complexity
and ability to handle binary classification effectively [148],
[153]. In addition, techniques such as random forests [154],
decision trees for data mining [155], and various deep
learning-based methods [156], [157] have been attempted to
predict coding parameters at various stages in the encoding
toolchain.

The main challenge that presents with any encoder
optimization algorithm is to achieve a significant encoding
complexity reductionwhilemaintaining the coding efficiency
achieved by the benchmark encoding algorithms presented

in reference implementations [130], [158]. Any optimization
strategy that attempts to reduce the encoding complexity
by skipping the exhaustive RD optimization tends to select
a certain number of less optimum coding parameters for
a given image segment [146], [150], [155]. These less
optimum selections cause the encoder to operate slightly
below the benchmark RD curve as illustrated in Fig. 8
As a result, a bitstream generated at a particular rate by
such an encoder will have a lesser objective (as well as
subjective) quality level. In such cases, the encoder will
have to generate a bitstream at a higher bit rate to achieve
a similar visual quality (Fig. 8). These scenarios either
result in low quality video streams or will demand a higher
network bandwidth that ultimately impacts the end-user
QoE. Hence, some of the proposed encoder optimization
algorithms tend to provide engineering design parameters to
trade-off the coding efficiency to the encoding complexity
depending on the end-user’s QoE requirements, network
conditions, and computational resource constraints of the
encoding servers [148], [150].

C. IMPACT OF DECODER OPTIMIZATIONS ON THE QoE
The assortment of new coding tools and features in novel
video coding standards increase the complexity of the
resulting bitstreams. Complex bitstreams increase the time
complexity of the decoders and demand more computational
and energy resources to achieve real-time decoding for
smooth video playback. For example, decoding time for
VVC bitstreams has increased by ≈130-170% compared to
HEVC bitstreams [144] making decoding of these bitstreams
amajor source of energy consumption in resource constrained
consumer electronic devices. This is further compounded
by the ever-increasing resolution of the video frames (e.g.,
HD, 4K, and 8K), and novel media formats such as High
Dynamic Range (HDR), 360 degree videos, etc. [159],
[160]. Thus, the overall energy consumption at the decoder
(particularly in the case ofmobile devices), has become a vital
parameter that affects the overall end-user QoE in multimedia
applications [161], [162].

Reducing the energy consumption of resource constrained
consumer electronic devices during media playback is a
compelling research and engineering challenge. This is
typically attended across all layers of the TCIP/IP stack
(physical layer, link layer, network layer, and application
layer) [163], [164]. Physical layer approaches mainly focus
on the changes to the modulation scheme or dynamic mod-
ulation scaling techniques [165], whereas the link layer and
network layer techniques operate on managing the wireless
interface and energy-aware scheduling algorithms [166]–
[168]. The application layer techniques on the other hand use
a range of approaches to manipulate the decoder operations
(changes to the loop filtering and motion compensation)
[169], change the video stream (by manipulating coding
parameters such as resolution, frame rate, and Quantization
Parameter (QP)) [170], and also by considering decoding
complexity-aware video coding at the content preparation
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stage at the encoders [159]. It has been identified that
changes to the video resolution, and frame rate can result in
sever perceived video quality degradation in mobile video
broadcasting [171]. However, in the case of the latter,
encoders can be designed to consider the corresponding
decoding complexity (or energy consumption) associated
with a particular coding mode, or coding block size for a
given content. For example, the decoding energy parameter
is considered within the RD optimization to jointly select the
coding modes that attain a minimum distortion for a given
bit rate, and decoding energy constraint. This is particularly
important as any attempt to reduce the decoding energy
consumption results in impacting the coding efficiency and
is eventually impacting the QoE. Furthermore, the use
of Dynamic Voltage and Frequency Scaling (DVFS) in
both software and hardware decoders is evident in modern
mobile devices to manage the device’s power consumption.
For example, the CPU’s operating frequency and voltage
level are adjusted depending on the complexity of the
bitstream [172], [173].

Application layer methods that alter the decoding process
to reduce the energy consumption typically skip certain
operations within the decoding process. For example, Green-
MPEG (a standardization effort from MPEG to reduce
the energy consumption of the decoders) proposes to send
metadata specifying decoding-complexity requirements for a
video frame(or a video segment) [174], [175]. This allows the
decoders to skip certain high complex steps in the decoding
pipeline to reduce the overall energy consumption [176].
However, it is reported that such alterations (especially within
the motion compensation phase) severely affect the video
quality, hence the QoE [159].

DVFS on the other hand attempts to reduce the decoding
energy consumption by altering the operating CPU frequency
and voltage levels depending on the complexity of the
current video frame [172], [177]. The main challenge
with DVFS is to estimate the decoding complexity of
subsequent video frames to set the appropriate CPU fre-
quency level. In accurate estimates lead to frame drops, and
sub-optimal CPU frequency/voltage levels adversely affect
the overall system performance degrading the end-user’s QoE
in multimedia consumption. The emerging Green-MPEG
specifications such as C-DVFS attempts to mitigate these
challenges by incorporating decoding complexity/energy
requirement metadata into the bitstreams to assist accurate
frequency/voltage scaling [178].

D. ERROR RESILIENCE AND CONCEALMENT-AWARE
VIDEO ENCODING
Video transmission over a lossy channel is a compelling
challenge and requires cross-layer approaches to protect the
media streams against network vulnerabilities. In this context,
QoE-aware media protection strategies such as forward error
correction should be supported by both the encoder and
decoder that operate in the application layer to recover
the lost information [179]. The authors in [180] classify

the transmission challenges on DCT compressed images as
bit-error, desynchronization, packet loss, packet delay, and
packet intrusion. In these cases, the encoder incorporates
additional information into the bitstream to support error
resiliency whereas the decoder utilizes a range of error
concealment strategies to recover or conceal the lost data
from the reconstructed video frame. The frame or slice copy
is the simplest error concealment strategy supported by the
majority of the video decoders [181]. However, reconstruct-
ing a video frame with a lost video slice in a static, low
textured background section of the frame has a low impact on
the QoE, compared to a case where the lost video frame slice
in a highly textured, motion rich section of a video frame.
In the case of latter, the degradation of the visual quality is
easily noticeable to the users and has a high impact on the
end-user QoE [182]. As a result, strategies such as Boundary
Matching Algorithm (BMA) are adopted to estimate the
motion vectors for the pixels of the lost slice from the motion
information available in the neighboring slices [183]–[185].
Recovery of full lost frames through texture analysis and
motion vector extrapolation is also attempted as decoder-side
error concealment techniques [186]. However, handling and
reducing the error propagation remains a crucial challenge.

The focus has also been directed towards priority-based
slice protection schemes to improve the error correction
capability of the decoders. For example, non-Video Coding
Layer (VCL) Network Abstraction Layer (NAL) units such
as Video Parameter Set (VPS), Sequence Parameter Set
(SPS), and Picture Parameter Set (PPS) NAL units are
given additional protection within the lower layers of the
TCP/IP [187], [188]. One of the prominent application layer
strategies to obstruct error propagation in the decoders is the
use of intra-predicted blocks or intra-coded frames within
the encoded bitstreams. Intra-coding involves predicting
the current coding block using the previously encoded
spatially adjacent pixels as opposed to the inter-coded frames
that predict from previously encoded temporally adjacent
video frames. Three approaches have been identified to
use intra-coding within a sequence. These include intra
coding of several blocks selected randomly or regularly, intra
coding of some specific blocks selected by an appropriate
cost function, or intra coding of a whole frame. Intra-
coding increases the bit rate impacting the compression
ratio, but the experimental results demonstrate periodical
I-frame coding is preferred over coding only several blocks
as intra mode in P-frames [186]. Encoders can configure the
number of intra-frames within the Group of Pictures using
the configuration parameters such as intra-refresh interval.
However, frequent injection of intra-frames increases the bit
rate of the encoded stream. Hence, dynamic and intelligent
model-based methods to adjust the intra-frame frequency is
heavily investigated in the literature [189], [190]. Duplication
of macroblocks inside Regions of Interest (ROI) within a
video frame introduces additional redundancies yielding high
quality reconstruction of frames with lost data packets [191].
These attempts are further extended by Flexible Macroblock
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TABLE 9. Research challenges and recommendations in QoE-aware video encoding and decoding.

Ordering (FMO) and ROI-based rate controlling to improve
the error resiliency against bursty packet losses and end-user
QoE in lossy channels [192]–[194]. Modern video coding
standards such as HEVC and VVC introduces features such
as Temporal Motion Vector Prediction (TMVP) to improve
their coding efficiency performance [122]. However, TMVP
is amajor source of error propagation in lossy communication
channels and research such as [195], [196] attempt to address
this by intelligently turning on and off TMVP depending on
the channel conditions and content being encoded.

In this context, QoE-aware encoding parameter selection
at the encoder can play a vital role in supporting the decoders
in reconstructing the encoded bitstreams such that end-user
QoE is maximized. For instance, probabilistic models that
predict the overall distortion at the decoder based on the
impact on motion vectors, the pixels in the reference frames,
and the clipping operations. The predicted error is used in
the encoders to select the optimum coding parameters to
facilitate robust video transmission in lossy channels [197].
A similar approach is undertaken in [198] where the optimal
error concealment strategies at the decoder are identified in
the encoder by simulating the transmission errors. These are
then signaled to the decoder as supplemental enhancement
information messages. Two-pass coding strategies are also
considered to determine the motion vectors, coding modes
such that both source coding, channel propagation errors are
reduced while improving the error concealment capabilities
of the decoders [199].

E. SUMMARY
This section describes the challenges and potential research
directions in the application layer compression domain
techniques for QoE-awaremultimedia adaptation, and the key
challenges and potential research directions are summarized
in Table 9. The QoE impact of the image/video compression
and potential strategies to improve the end-user QoE
during compression are discussed in Section. VI-A. These
include the use of ROI-based bit allocation, and intelligent
rate controlling algorithms using state-of-the-art machine

learning models. Section VI-B discusses the impact of the
complexity of modern video coding standards on the end-
user QoE. The encoder optimization strategies to reduce the
complexity impacts the coding efficiency of the encoders.
In this case, the resultant bitstreams produce low quality
video contents, or will demand higher bit rates. In this
context, effectively trading off the complexity to the coding
efficiency, and producing bitstreams with low visual quality
impact is a compelling challenge. Similarly, the impact
of decoder energy optimization strategies are discussed
in Section VI-B. In this case, various application layer
methods, DVFS strategies and decoding complexity-aware
encoding algorithms and their challenges are discussed.
The increasing complexity of the encoded streams demands
additional computing and energy resources; a scarce resource
for mobile handheld consumer electronic devices. Hence,
energy consumption during multimedia consumption is a
crucial element that affects the overall end-user QoE in future
multimedia applications. Section VI-C discusses the error
resilient and concealment-aware video coding methodologies
available in the state-of-the-art. In this regard, modelling the
quality of the reconstructed video sequence of a bitstream
transmitted over a lossy channel is important to determine the
optimum coding parameters to be used in the encoder. This
can assist the encoder to generate a bitstream that is more
resilient in the error prone channel and can support decoder’s
error concealment strategies in order to maximize the
end-user QoE.

VII. QoE-AWARE NETWORK AND SERVICE
MONITORING/MANAGEMENT IN 5G/6G NETWORKS
Once the QoE prediction model is developed by following
the considerations discussed in Section III-VI, it can be inte-
grated into the multimedia service delivery over the Internet
for QoE-aware network and servicemanagement/monitoring.
The QoE-aware multimedia streaming service delivery in
the next-generation networks relies on novel solutions for
the integration of the QoE models in the future internet
architecture and network and service management chain [12],
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[13], [200]–[202]. The effective QoE model integration in
the 5G/6G networks for the video streaming requires a QoE
monitoring solution to be deployed to monitor Key Quality
Indicators (KQIs) based on the features/parameters con-
tributing to the QoE model [161], [203]–[205]. Furthermore,
the monitored KQIs are then utilized by the QoE models
for the measurement of the user-perceived quality leading
to QoE-aware management of the network and service
resources [10], [206]–[209]. This section provides the future
challenges and research directions with the perspective of the
QoE-aware network/service management and monitoring in
the 6G and beyond networks by integration of the QoE model
in the service chain and future internet architecture.

A. QoE MANAGEMENT IN 5G/6G NETWORKS
The network enablers including Software-Defined Network-
ing (SDN), Network Function Virtualization (NFV), Mobile
Edge Computing (MEC) can play an important role in
the QoE-aware network management [14], [210]–[212].
The QoE management in 6G and beyond networks using net-
work enabling technologies promises network programma-
bility, scalability, agility, distributive computing, dynamic
resource optimization and automation which will allow next-
generation networks to fulfil the user-perceived quality for
emerging video streaming applications while being cost-
effective [12], [208], [213], [214]. The QoE management
of the softwarized and virtualized next-generation networks
requires the deployment of QoE monitoring and measure-
ment solution on top of SDN controller/NFV Management
and Orchestration (MANO) [215]–[218]. Moreover, the
deployment of QoE-aware management approaches in 6G
networks requires information exchange among the major
players in multimedia streaming which includes Internet
Service Providers (ISP) and Over-The-Top service providers
(OTTs) [13], [208]. The ISP and OTT have different
roles in multimedia service delivery and both have access
and control of different information and resources. For
example, an ISP has control over network infrastructure
and access to network-level information based on which
ISP can perform optimization of the network resources.
While OTTs being service provider has the access to
application-level KQIs and can optimize the video streaming
delivery at client and server-side. To date, the multimedia
services are encrypted by OTTs leading to no retrieval of
OTT’s application KQIs in the hand of ISP [219]–[221].
The exchange of application-level KQIs among OTTs and
ISPs stands important for QoE management of the video
streaming services as QoE is a multidisciplinary concept
and most of the QoE models are mainly composed of the
applicationKQIs such as video quality layers, average bitrate,
stalling events, duration of the stalling event. Being blind to
these KQIs, the ISPs cannot effectively perform QoE-aware
network management [11], [222], [223]. The exchange of
information among OTTs and ISP will require Service
Level Agreements (SLAs) or Experience Level Agreements
(ELA) [5]. Also, ELAs based on QoE Model will be needed

for offering services to the end customers [203], [224].
Furthermore, the E2E QoE management in the future
networks will require a collaborative network and service
management by both ISP and OTT provider based on the
agreed QoE model and integration of the QoE model in the
whole network and service delivery/optimization [11], [12],
[224]. In the literature, several state-of-the-art works have
been proposed for the collaborative QoE-aware network and
service management where different business-centric QoE
management strategies such as joint-venture, QoE-fairness
based on fairness metric defined in [225], Customer Lifetime
Value (CLV) and Zero-rated QoE has been proposed [11],
[203], [208], [222], [224]. However, more future research
work in the direction of the E2E collaborative QoE man-
agement of multimedia services by OTT-ISP collaboration is
needed. The ongoing OTT-ISP collaboration in the industry
can be seen in industrial projects such as T-Mobile Binge
On where ISP limit the data rate of the OTT application
and provide zero-rated data of the collaborating OTTs to
its customers [226]. The Google Global Cache [227] and
Netflix [228] Open Connects are other examples from indus-
trial OTT-ISP provider collaborative service management
where Google and Netflix allow collaborating ISP to host
OTT’s surrogate servers at the network edge to reduce
content retrieval latency and unnecessary traffic from the
core network of ISP. However, these approaches are not
QoE-aware. One can argue upon the Network Neutrality on
the formulation of the collaborative E2E QoE management
approach which stands important in some geographical
locations such as Europe [229]. Since June 2018, in United
States Network Neutrality has been repealed [230] as it
hinders the basic concepts of application-aware network
slicing in 5G [231]. Therefore, a better definition of Network
Neutrality in terms of QoE is required in the geographical
location where it has been enforced [208].

B. QoE MONITORING
In the literature, many state-of-the-art works propose differ-
ent passive and active QoE monitoring solutions based on
user-end probes for the collection of the application-level
QoE KQI at the user-end [232]–[240]. However, few works
consider a cross/multi-layer model approach towards the
QoE monitoring [232], [233]. Therefore, future research
works for the cross/multi-layer QoE monitoring solutions
are needed. The collection of the QoE related KQIs from
the customer premises/user-device/terminal also triggers
concerns about user privacy and security which needs further
research in the domain of the QoE monitoring [2], [219],
[241]. There are few efforts in the state-of-the-art where
QoE KQIs are extracted from the encrypted OTT video
streaming session [241]–[246]. However, further research in
this direction in line with user privacy and security for QoE
monitoring is needed.

The deployment of the QoE-aware network management
approaches using network enabling technologies requires
the standardized secure interfaces for QoE monitoring and
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TABLE 10. Summary of research challenges and future direction in QoE model integration and QoE monitoring/management.

the exchange of information from the end-user equip-
ment, among Virtual Network Functions (VNFs), among
inter/intra slice SDN controllers, and among ISP/MNOs and
OTT providers [208], [247], [248]. The extension of web
socket-based interfaces and Remote Procedure Calls (RPC)
protocols can leverage the development of new standardized
interfaces for data monitoring and information exchange
to deploy data-driven network management. Additionally,
finding the optimal trade-off between the control plane traffic
and QoE monitoring frequency for optimization in 6G and
beyond remains an open challenge. Future research in the
direction of ultra compressed data representation formats
can decrease the volume of control data [234], [249]. The
QoE monitoring frequency depends on the time interval
of optimization, accuracy/data requirements of optimization
algorithm(s), and time-period for the optimization [250]. For
example, if the optimization is being performed at O-RAN
near-real-time RIC then extremely low latency is required
which needs secure fast information retrieval as compared to
the optimization being performed at O-RAN non-real-time
RIC [251], [252].

The virtualized and softwarized network infrastructure in
5G/6G networks allows flexible deployment of the QoE
monitoring solution using SDN and NFV but security,
reliability, scalability and placement of the QoE monitoring
solutions remain open questions for the research commu-
nity [219], [253]–[255]. Furthermore, the cost-effectiveness
such OPerational Expenditures (OPEX) and CAPital EXpen-
ditures (CAPEX) for deploying QoE monitoring solu-
tions in the next-generation 5G/6G networks using soft-
warized/virtualized probes remains an open challenge and
question [12], [211], [256]–[258].

C. QoE MODEL INTEGRATION & QoE MEASUREMENTS
The QoE model integration is one of the most crucial parts
for QoE-aware multimedia service delivery in the future
Internet as QoE monitoring, measurement, management and
optimization completely depends on it. For example, the
QoE KQIs to be monitored by QoE monitoring solutions
highly depends on the parameters of the QoE model that is
being used. Mostly, QoE models in the literature consider

only application-level KQIs while ignoring the fact that
QoE is a cross-disciplinary field that also includes multiple
influencing factors such as network, business and system
(end-user) devices [259], [260]. Therefore, future research
is required for developing a cross-layer QoE model to cover
most of the influencing factors on the user-perceived quality.
Moreover, the video streaming QoE model found in the
state-of-the-art works are mainly developed for the short
time scale leading to less accurate QoE prediction for the
long video streaming sessions. Hence, long/multi-time scale
QoE model development for long video streaming session
requires future research [261]–[263]. The deployment of
the QoE models on top of SDN controller/NFV MANO
is another open issue when it comes to network resource
management of 5G/6G networks as monitoring QoE to
effectively predicts may require additional interfaces in the
future network architecture and it may create unnecessary
overhead of control traffic in the control plane [208], [234],
[264]. Future research should consider the time-varying
nature of the QoE and time scale of different network
resource optimization for developing new QoE models to be
integrated into next-generation networks for QoEmonitoring,
measurement and management purposes leading to E2E
QoE-aware multimedia service delivery.

D. SUMMARY
This section discusses the research challenges and future
research directions for QoE-aware network and service
management of multimedia streaming in the 5G/6G net-
works. Section VII-A highlights the major research chal-
lenges and opportunities related to QoE management of
the video streaming application in 5G/6G networks includ-
ing QoE-aware network management using SDN/NFV,
deployment options for QoE-aware network optimization,
collaborative network and service management by ISP and
OTT, ELAs and QoE KQIs information exchange among
OTT and ISP, ELAs based service agreements, and network
neutrality and beyond. Section VII-B investigates the QoE
monitoring challenges and future research directions in
the next-generation networks such as multi-layer user-end
probe-based QoE monitoring solutions, QoE monitoring
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from encrypted OTT services and user privacy, secure
interfaces for KQIs information retrieval, optimization/trade-
off between control traffic and monitoring frequency and
deployment of QoEmonitoring solution in the virtualized and
softwarized 5G/6G networks considering CAPEX/OPEX.
Section VII-C discusses the QoE model integration chal-
lenges in the future networks including the development
of the cross/multi-layer and long/multi time scale model
considering different optimization intervals and different
layers of network/radio protocol stack for network resource
management in the 5G/6G networks. Table 10 provides the
summary of the research challenges and future research
direction of this section.

VIII. CONCLUSION
With the advancement of technologies such as adaptiveHTTP
streaming, the time dynamics of user QoE has become a
crucial issue. In this paper, we provided a survey on video
quality models and state-of-the-art works for global video
quality measurement and CTVQmodels. In addition, we also
highlight ten research challenges and future directions
that impact QoE modelling, monitoring, optimization, and
management in the end-to-end multimedia service delivery
chain involving next generation networks. These research
challenges are grouped under three categories-1) Continuous
Time-Varying QoE modelling, 2) QoE-aware video encoding
and decoder optimization, and 3) QoE-aware network
monitoring and service management.

Unlike predicting the overall quality of an image sequence,
measuring time-varying subjective quality is a significant
challenge. However, such a quality model is a must to achieve
maximum QoE for end-users with emerging adaptive HTTP
streaming applications. To create a predictive quality model
considering the time-varying nature of the user-perceived
quality, this paper first provides a discussion on state-of-the-
art works considering spatial/temporal distortions, memory
effect of HVS, effects of hysteresis for QoE, and use
of pooling methods to combine spatial-temporal distortion
measures.Moreover, a generic qualitymodel is also presented
to account for main factors affecting the user QoE in
time-varying application scenarios followed by the research
challenges for time-varying quality model development.

Next we discuss research challenges and future direc-
tions in QoE-aware multimedia creation, encoding and
decoder optimization. We identify image/video compres-
sion, encoder/decoder optimization, error resilience, and
concealment-aware video encoding as major factors that
affect end user QoE in multimedia applications. With the
emergence of novel video coding standards and multimedia
technologies, their compression capabilities, complexity, and
energy consumption have a significant impact on the end-
user QoE. Hence, the adoption of machine learning tech-
nologies towards QoE-aware video coding, green multimedia
technologies that reduce overall energy consumption in
the multimedia delivery chain are discussed. Furthermore,
we also emphasize the importance of QoE modelling and

its integration in the application layer at the content creation
stage. This facilitates compressed video signals to become
resilient to severe quality degradation due to transmission
errors.

Finally, state-of-the-art works on QoE management, QoE
monitoring and measurement, and model integration in
5G/6G networks are discussed followed by their respective
research challenges and future directions. We emphasize the
importance of QoE-aware network optimization, collabora-
tive network, and service management in 5G/6G networks.
We also discuss probe-based QoEmonitoring, and cross layer
model integration challenges in next generation networks.

Thus, this paper presents a comprehensive review of
state-of-the-art works on time-varying user-perceived qual-
ity (QoE) modelling for video streaming applications and
covers the full spectrum of QoEmodelling across all stages of
multimedia service delivery chain from the content creation,
encoding, decoding, network and service management where
the future research challenges and directions are discussed.
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