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Abstract 18 

Circulating microRNAs (miRNA) can serve as key biomarkers for early diagnose of 19 

cholangiocarcinoma. Herein, an assay that uses circulating miRNA to trigger strand 20 

displacement amplification (SDA) and a CRISPR-Cas14a system to report the SDA 21 

process has been developed. In the proposed method, SDA directly amplifies miRNAs 22 

without reverse transcription. The reporter, CRISPR-Cas14a, can reduce the risks of 23 

non-specific amplification and offers a sequential amplification that improves the 24 

sensitivity for miRNA detection. The assay, termed Cas14SDA, can discriminate 25 

miRNAs with similar sequences and can detect as low as 680 fM miR-21 (miRNAs 26 

overexpressed in cholangiocarcinoma) within 1 h. In particular, Cas14a was efficiently 27 

activated by a single-stranded SDA amplicon which improved the sensitivity by 2.86 28 

times compared to that using Cas12a. This research has demonstrated that the 29 

Cas14SDA assay can discriminate cholangiocarcinoma patients from healthy donors by 30 

testing miR-21 in their blood samples. The Cas14SDA assay developed broadens the 31 

toolbox for miRNA biomarker analysis. 32 
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1. Introduction 37 

Cholangiocarcinoma is one of the most common hepatic diseases [1]. It is a type of 38 

aggressive tumor that is difficult to diagnose, and when found in patients, they are 39 

usually at an advanced stage of the pathology [2]. Circulating microRNAs (miRNAs) 40 

are short RNA sequences that modulate the expression of proteins by interacting with 41 

mRNAs [3]. Thus, miRNAs are associated with main processes in cells, such as growth, 42 

division and canceration [4], and they can be frequently found circulating in blood. The 43 

level of miRNAs, such as miR-21, has been associated with the occurrence of 44 

cholangiocarcinoma [5-8]. Thus, circulating miRNAs are now recognized as promising 45 

biomarkers for diagnosing cholangiocarcinoma. 46 

The analysis of miRNAs is challenging because they are short (about ~20 nt). This 47 

makes it harder to detect than other nucleic acid biomarkers such as genes, mRNAs, 48 

and long non-coding RNA. Currently, the most frequently used methods for miRNA 49 

detection are northern blotting, microarray analysis and real time polymerase chain 50 

reaction (qPCR) [9,10]. Northern blotting is the gold standard method for miRNA 51 

detection. This microassay can be highly multiplexed, however, it usually has 52 

insufficient sensitivity for detecting low levels of miRNAs in blood. In contrast, qPCR 53 

can be highly sensitive. However, the short sequence of features in miRNAs makes the 54 

design of primers for qPCR complex. Besides, the high cost of the instruments for 55 

qPCR analysis hinders the use of the assay.  56 

Isothermal amplification strategies have been studied for detecting miRNA and they 57 
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have become and advanced tool for profiling miRNA [11,12]. Rolling circle 58 

amplification (RCA) [13], loop-mediated isothermal amplification (LAMP) [14], 59 

strand-displacement amplification (SDA) and exponential amplification reaction 60 

(EXPER) [15] have been designed to detect miRNAs by using miRNAs as primers or 61 

templates. These platforms are coupled with fluorescent, electrochemical, and 62 

electrochemiluminescence sensing platforms, which lead to highly sensitive detection 63 

of miRNAs. However, amplification processes may contribute to non-specific 64 

amplification of miRNAs due to the lack of procedures for accurate identification of 65 

the desired amplicons [16-18]. 66 

CRISPR-Cas systems, evolved from bacterial immunity, have been developed for 67 

nucleic acid tests [19,20]. CRISPR-Cas system, such as Cas12a and Cas13a can be 68 

specifically activated via binding with target genes or RNAs [21-24]. The activation of 69 

Cas protein can cleave single stranded RNA or DNA sequences: termed trans-cleavage 70 

process [25-27]. By labeling short DNA/RNA sequences with fluorophores and 71 

quencher groups, CRISPR-Cas systems can serve as reporters for nucleic acid 72 

amplification, such as PCR, or isothermal amplification including recombinase 73 

polymerase amplification (RPA) and LAMP [25,28-30]. Besides, the integration of 74 

nanomaterials in the system facilitates the creation of rapid, sensitive and equipment-75 

free biosensors for detecting biomolecules of interest [31-34]. The Hou group advanced 76 

the use of CRISPR/Cas system in isothermal amplification such as EXPAR [27], SDA 77 

[24] and RCA [35], and based on the same principle, they constructed assays for ssRNA, 78 
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ssDNA[36], glycosylase [37,38], alkaline phosphatase [27] and ATP[24]. Cas12a and 79 

Cas13a usually require the target sequences with defined nucleotides, for example, 80 

Cas12a need a protospacer adjacent motif (PAM), TTTV [19]. Besides, a number of 81 

isothermal amplification methods such as RCA, SDA and EXPER, produce single-82 

stranded DNA products [39,40]. The trans-cleavage activity of Cas12a can be reduced 83 

using single-stranded DNAs as the activator compared to double-stranded DNAs [41]. 84 

Recently, it was reported that Cas14a could be used to identify sequences without 85 

nucleotide restriction [42-45]. Cas14a is particularly favorable to be activated by single-86 

stranded DNA. In addition, Cas14a is small and compact [19], which makes it a 87 

competitive reporter for the nucleic acid amplification that produces single-stranded 88 

DNA amplicons. 89 

In this work, for the first time, we introduce CRISPR-Cas14a as reporter of 90 

isothermal amplification, SDA [46-48], to develop and propose a rapid and isothermal 91 

assay for detecting the cholangiocarcinoma cancer biomarker miR-21The design of 92 

SDA is very simple, and only involved a single DNA sequence to serve as the template. 93 

The amplification triggered by target miRNAs can be strictly checked by CRISPR-94 

Cas14a. The detection of miRNAs can be finished within 1 h. We used the Cas14SDA 95 

assay to test blood samples from cholangiocarcinoma patients and heathy ones. The 96 

rapid and simple Cas14SDA assay may facilitate the transition of miRNA for clinical 97 

diagnosis. 98 
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2. Materials and Methods 99 

2.1. Reagents 100 

The DNA sequences used in the proposed method are listed in Table S1. They were 101 

synthesized by Sangon Biotech (Shanghai, China). The 5’- and 3’- terminals of the 102 

reporter were modified with 6-carboxyfluorescein (FAM) fluorophores and black hole 103 

quencher 1 (BHQ1), respectively, and they were purified by high performance liquid 104 

chromatography. Other sequences were purified by polyacrylamide gel electrophoresis. 105 

Two Easy PCR SuperMix were purchased from Transgen (Beijing, China). T7 RNA 106 

polymerase (20 U/µL) with five T7 RNA polymerase buffers, RevertAid™ Master Mix 107 

and PlatinumTM SYBRTM Green qPCR SuperMix-UDG w/ROX were obtained from 108 

Thermo Fisher Scientific. (Waltham, USA). Nt.BstNBI, Bst DNA polymerase with 10109 

× Isothermal Amp Buffer, DNase І with 10× reaction buffers, ribonucleotide solution 110 

mix (rNTPs) and deoxynucleotide solution mix (dNTPs) were bought from New 111 

England Biolabs (Beijing, China). Cas14a and Cas12a proteins were obtained from 112 

Tolo Biotech. (Shanghai, China). Molecular biology grade H2O was provided by 113 

Corning Incorporated (New York, USA).  114 

2.2. Sample preparations and miRNA extraction 115 

Samples were collected from 4 patients with histologically proven diagnosis of 116 

cholangiocarcinoma (labelled as C) and 4 healthy participants (labelled as A) from 117 

Fujian Medical University Union Hospital (Ethical Approval no. 2021KJCX026). 118 

Samples were stored at -80 °C until analysis. Briefly, blood samples (100 µL) were 119 
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added Trizol (1 mL). The homogenate specimens were transferred to 1.5 mL- tubesand 120 

placed at room temperature for 5 min to completely isolate the nucleoprotein complex. 121 

After the separating phases following the addition of chloroform (0.2 mL) and 122 

centrifugation (12,000× g, 15 min), the aqueous phase was transferred to a separate EP 123 

tube, where RNA was precipitated by adding isopropyl (0.5 mL). The RNA precipitate 124 

was washed with 75% ethanol (1 mL) in water. The washed RNA was dissolved in H2O 125 

(30 µL). The extracted RNA can be used immediately or be preserved at -80 °C. 126 

2.3. Preparation of sgRNA 127 

PCR was used to amplify Cas14a plasmid (16 ng/µL) using primers of Cas14a-128 

sgRNA-F (0.4 µM) and Cas14a-sgRNA-R (0.4 µM) to obtain the DNA template of 129 

Cas14a-sgRNA. Following, 5 × Transcription buffer (16 µL), T7 RNA polymerase (2 130 

µL, 20 U/µL), rNTPs (3 µL of 25 mM each for ATP, GTP, CTP, and TTP) and H2O (51 131 

µL) were added to PCR( 8 µL) products and they were let to react at 37 °C for 12 h. 132 

Subsequently, the residual DNA template was removed by replenishing DNase I (4 µL) 133 

for 3 h at 37 °C. The DNase I was inactivated by heating at 85 °C for 15 min. 134 

2.4. miRNA detection 135 

The SDA reaction was carried out by mixing of the SDA template (4 μL, 1 μM), 4 136 

μL from different concentrations of miR-21, 2 μL Isothermal Amp Buffer, 1 µL dNTPs 137 

(10 mM each for dATP, dGTP, dCTP, and dTTP), 0.5 μL Nt.BstNBI (10 U/µL),  0.5 138 

μL Bst DNA polymerase (10 U/µL) and 14 μL H2O. The mixture was left to react at 139 

55 °C for 30 min. Then, NEB buffer 3.1 (4 µL), Cas14a (4 µL, 1 µM), synthesized sg-140 
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RNA (4 µL, 2 µM) and reporter (4 µL , 5 µM) were added to the above mentioned 141 

mixture. The mixture was then incubated at 37 °C for 40 min. A microplate reader 142 

Synergy H1 was used to measure fluorescent emission at 510 nm when the samples 143 

were excited at 480 nm. All samples were analyzed in triplicate. 144 

2.5. Gel electrophoresis 145 

Each step of the SDA reaction was analyzed using 3 % (w/v) agarose gel. Gel-loading 146 

solution had a final reaction volume of 6 μL (including 5 μL of oligonucleotides and 1 147 

μL of gel loading buffer). The gel had 3 % agarose, 1× TAE buffer and 0.4× Gelred. 148 

The process was accomplished in 1× TBE buffer at 150 V for 30 min. Gel images were 149 

observed using Gel Doc XR+ system (Bio-Rad, USA). 150 

2.6. Reverse transcription and Real-time PCR detection of miRNA 151 

Total extracted RNAs from blood samples were analyzed by Cas14SDA and RT-152 

qPCR. Thes solution containing RNA was diluted to 100 ng/µL with H2O. The 153 

sequence of the stem-loop RT primer, real-time PCR primers and the procedure of 154 

qPCR were constructed in accordance with the reported miR-21 RT-qPCR assay. 155 

Firstly, the RT process of the miRNA21 was carried out with a volume containing 1 156 

µL of total extracted RNA (100 ng/µL), 0.5 µL RT probe, 0.5 µL enzyme mix 157 

(RevertAid Master Mix), 5 µL RT buffer mix (RevertAid Master Mix) and 3 µL of 158 

H2O. The mixture was incubated at 42 ℃ for 30 min, 95 ℃ for 5 min and finally 159 

preserved at 4 ℃. Next, the qPCR detection reaction was carried out by adding 2 µL 160 

RT products to the qPCR reaction mixture with 4 µL RT-qPCR-F (2.5 µM), 4 µL RT-161 
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qPCR-R (2.5 µM), 10 µL PlatinumTM SYBRTM Green qPCR SuperMix-UDG w/ROX. 162 

The qPCR reaction was carried out using QuantStudio®3 Real-Time PCR Instrument 163 

(Thermo Fisher Scientific Inc., Waltham, MA, USA). The qPCR reaction was set 95 ℃ 164 

for 10 min, followed by 40 cycles of 95 ℃ for 15 s and 60 ℃ for 1 min. 165 

 166 

3. Results and Discussion 167 

3.1. Design and working principle of the Cas14SDA assay 168 

The Cas14SDA assay uses CRISPR-Cas14a to report the SDA reaction triggered by 169 

target miRNAs These steps have been illustrated in Fig. 1. The SDA only involves a 170 

single DNA strand serving as the template. The template contains three modules: the 171 

miRNA recognition site, the Cas14a activation site and a nicking site. The target 172 

miRNA can be identified with the template, resulting in an extension of the template 173 

with the involvement of Bst DNA polymerase. Following the polymerization, a DNA 174 

duplex which contained sequence-specific nicking sites of the nicking endonuclease, 175 

Nt.BstNBI was produced. The Nt.BstNBI cleaved the nicking sites of the DNA duplex, 176 

Cas14a activation sequences (termed activators) were then released from the template 177 

via the strand-displacement process induced by the polymerase. Then, the obtained 178 

activators can activate the trans-cleavage activity of Cas14a via specific hybridization 179 

with sgRNA, triggering the cleavage of the ssDNA reporter. The reporter ssDNA was 180 

terminally labeled with 6-FAM (F) fluorophore and BHQ1 (B) quencher. Once the 6-181 

FAM-BHQ1 donor-quencher pair was destructed via Cas14a cleavage, the fluorescence 182 



10 
 

of 6-FAM fluorophore would restore. In this way, the presence of target miRNA was 183 

transformed into fluorescence change which was measured using fluorometers. Hence, 184 

using of Cas14a can identify SDA amplicon, thus increasing the specificity of SDA and 185 

reducing the non-specific signal output. 186 

We chose as biomarker of cholangiocarcinoma miR-21 as the target miRNAs for the 187 

Cas14SDA assay. To confirm the working principle of the Cas14SDA assay for miRNA 188 

detection, fluorescence measurement and gel electrophoresis analysis of its each step 189 

were performed. The activation process of Cas14a was first tested.. In the absence of 190 

activator, the fluorescence of the reporter remained low (Fig. 2B) because fluorescence 191 

of 6-FAM was quenched by BHQ1 group. The addition of activator dramatically 192 

increased fluorescence, indicating that the trans-cleavage activity of Cas14a was 193 

activated to cleave the single-stranded reporter. For the SDA reaction, neither the 194 

absence of Nt.BstNBI enzymes nor Bst DNA polymerase led to remarkable 195 

fluorescence enhancement compared the absence of target of miR-21 (Fig. 2A). The 196 

presence of miR-21 with Nt.BstNBI enzymes and Bst DNA polymerase contributed to 197 

marked enhancement of fluorescence signal (from 2015 to 12881 emission intensities). 198 

The SDA process was confirmed with electrophoresis analysis (Fig. 2C). The 199 

reaction was initiated by miR-21 (Lane 1). It was hybridized with the template (Lane 200 

2) to start the reaction. Incomplete double-stranded DNA/RNA duplex moved slowlier 201 

than miR-21 and the template was formed (Lane 3). Subsequently, the SDA reaction 202 

was carried out by the addition of Nt.BstNBI enzymes and Bst DNA polymerase (Lane 203 



11 
 

4 and Lane 5). The hybridization of miR-21 and the template could trigger the Bst DNA 204 

polymerase-mediated extension and there would appear a band lagging. Furthermore, 205 

the use of the nicking enzyme Nt.BstNBI made possible recognizing and cleaving DNA 206 

duplex at nicking sites to generate activators of Cas14a, which emerged as a band 207 

advancing. The bands of double-stranded template and activators were not formed in 208 

the absence of miR-21 (Lane 5). This result indicated that the miR-21 initiated the SDA 209 

reaction. 210 

3.2. Optimization of assaying conditions 211 

The cleavage time of the CRISPR-Cas14a system could substantially affect the 212 

fluorescence response of the Cas14SDA assay, thus it was optimized early in the 213 

development (Fig. 3A). The fluorescence intensity in the presence of miR-21 was 214 

significantly increasing with increasing the duration of the reaction until 40 min. The 215 

background fluorescence in absence of miR-21 only induced minor changes in when 216 

the duration of the cleavage was up to 80 min. Finally, 40 min was selected as the 217 

optimized CRISPR-Cas14a cleavage reaction time. Furthermore, fluorescence intensity 218 

also became affected by the concentration of reporter (Fig. 3B). Fluorescence intensities 219 

of both the negative group (absence of the miR-21) and the positive group (presence of 220 

miR-21) rose with an increased amount of reporter, and the maximum signal-to-221 

background (S/B) ratio reached 7.13 using a ratio of 1:5 (Cas14 to reporter). 222 

Subsequently, the fluorescence intensity of the positive group grew slightly, while that 223 

of the negative group dramatically increased, resulted in a reduction of S/B ratio. 224 
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Therefore, Cas14a-to-reporter ratio was chosen as 1:5 serving as the optimized 225 

experimental condition.  226 

3.3. Detection performance 227 

Different concentrations of miR-21 were  added to individual reaction mixtures to 228 

investigate the sensitivity of the proposed Cas14SDA assay under optimal experimental 229 

conditions. Resulting fluorescence emission spectra are shown in Fig. 4A. Fluorescence 230 

intensity gradually increased with increasing concentrations of miR-21. A good linear 231 

relationship between the fluorescence intensity and the logarithmic (lg) value of miR-232 

21 concentration was obtained in the range of 0.68–50 pM (Fig. 4B). The detection 233 

limit is estimated to be 680 fM based on 3σ/S calculation, where σ is the standard 234 

deviation for the blank solutionand S is the slope of the calibration curve. The 235 

regression equation was Y = 625.89X + 2205.7 (R2 = 0.9826), where X and Y were the 236 

logarithmic (lg) value of concentrations of miR-21 and the fluorescence intensity of the 237 

Cas14SDA assay, respectively. These results showed that the Cas14SDA assay can be 238 

a sensitive sensing platform for the detection of miR-21. The probe design was 239 

relatively simple, and the assaying time was short (40 min) compared to other reported 240 

methods for miRNA detection (Table S2). 241 

The substitution of Cas12a with Cas14a can improve the sensitivity for miR-21 242 

detection by 2.86 times (Fig. S1). This is because Cas14a can confer higher trans-243 

cleavage activity compared to Cas12a, by activating single-stranded DNA sequences. 244 

One-step assay can shorten the analysis time and reduce the complexity of miRNA 245 
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detection. The feasibility of one-step assay that integrates the amplification process and 246 

Cas12a cleavage was tested further. Positive samples resulted in lower fluorescence 247 

using the one-step protocol compared to that using the two-step protocol (Fig. S2). The 248 

one-step, mix-and-read assay can be optimized such as  buffer condition of SDA and 249 

Cas14a. 250 

Differentiating among miRNAs is momentous for exploring the relationship between 251 

human disease and miRNA biological functions. However, high similarity between 252 

miRNA sequences and their short nature, make it a great challenge. To evaluate the 253 

selectivity of the proposed method, the Cas14SDA system was exposed to different 254 

miRNAs (miR-21-mis-1, miR-21-mis-3, miR-24, miR-141, miR-155, miR-192, miR-255 

378, let-7a). Among these miRNAs, the test group that included miR-21 had marked 256 

fluorescence enhancement in contrast to the signal obtained with other interference 257 

groups (with presence of other miRNAs) (Fig. 4C). 258 

Following, the capacity of the Cas14SDA assay was tested for discriminating 259 

miRNAs with single-base variation (Fig. 4C and D). The miR-21-mis-3 differed with 260 

3-bases with respect to miR-21 and it yielded a signal within the background noise. 261 

When the assay was carried out with miR-21-mis-1, which differs in 1-base with respect 262 

to miR-21, it resulted in a fluorescence intensity half of that yielded by miR-21. The 263 

linear template may not confer high capacity to resolve the base mutations just by the 264 

recognition of DNA polymerase. Therefore a strategy to improve the discrimination 265 

capacity of the assay for single-base variations in miRNA was attempted: we modified 266 
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the 3rd base from 3’ of the template to incorporate one-base mismatch when hybridized 267 

with miR-21. In the design, microRNAs differing one-base compared to miR-21 would 268 

result in two base-mismatch when hybridized with the template. The incorporation of 269 

one-base mismatch slightly reduced the fluorescence of the assay response to miR-21. 270 

Remarkably, it cause an important reduction in the assay fluorescent response to single-271 

base changed non-target microRNA (miR-21-mis-1(11)) (Fig. S3). Even the addition 272 

miR-21-mis-1(11) at 50 times the concentration of miR-21, the assay led to a 273 

fluorescence much lower than that in the presence of miR-21. These results indicate 274 

that the Cas14aSDA can be designed to discriminate miRNA family members differing 275 

with single-base via the optimization of the template. 276 

3.4. Detection of circulating miR-21 in clinical samples 277 

To further explore the potential of the Cas14SDA assay in detection of clinical 278 

samples and discriminate different expression levels of cholangiocarcinoma associated 279 

miRNAs, miR-21 was quantified in total RNA extracts from blood samples (Fig. 5). 280 

The samples containing total RNA were diluted to 100 ng/μL and used for their testing 281 

with the Cas14SDA assay. The fluorescence intensities are showed in Fig. 5A and Fig. 282 

S4A, and the samples were detected three times in parallel. These results indicated that 283 

miR-21 has different degrees of expression between healthy volunteers and patients 284 

with cholangiocarcinoma. The expression of miR-21 in the blood from 285 

cholangiocarcinoma patients was significantly higher than that from healthy volunteers. 286 

It is reported that miR-21 is overexpressed in cholangiocarcinoma[5,49]. In parallel, 287 
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the blood samples were analyzed by the RT-qPCR assay (Fig. 5B and Fig. S4B). The 288 

results of the Cas14SDA assay testing the eight samples were consistent with the results 289 

obtained from the RT-qPCR assay. The initial estimation of the Cas14SDA assay testing 290 

indicates its potential use for non-invade diagnosing cholangiocarcinoma. 291 

4. Conclusions 292 

A rapid, isothermal, and specific assay for detecting circulating miRNAs via integrating 293 

CRISPR-Cas14a with an isothermal amplification strategy has been developed. The 294 

assay termed, Cas14SDA, can detect miR-21 in one-test tube within 1 h, without 295 

needing reverse transcription process. Thus, the proposed assay is faster and simpler 296 

than the commonly used RT-qPCR method. CRISPR-Cas14a serves as the specific 297 

reporter of the SDA amplification of miRNAs, which makes it possible to identify 298 

miRNAs with similar sequences. This work has demonstrated that the Cas14SDA assay 299 

can detect miRNAs from blood samples and distinguish cholangiocarcinoma patients 300 

from healthy donors. Nevertheless, the potential use of the assay for early detection of 301 

cholangiocarcinoma occurrence should be tested with greater number of clinical 302 

samples. Considering its sensitivity, simplicity and rapidness, the Cas14SDA assay may 303 

facilitate the use of miRNAs for cholangiocarcinoma diagnosis. 304 
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Figure captions 456 

Fig. 1. Schematic illustration of the Cas14SDA assay for detecting miRNA. 457 

Fig. 2. Validation of the Cas14SDA assay for miR-21 detection. (A) Fluorescence 458 

analysis of miR-21 triggered SDA process; (B) Fluorescence analysis of activators 459 

triggered CRISPR-Cas14a activation; (C) Electrophoretic analysis of each step of the 460 

Cas14SDA assay. 461 

Fig. 3. Optimization of the Cas14SDA assay. (A) Monitoring the fluorescence of the 462 

Cas14SDA assay in the presence and absence of miR-21. (B) The effect of the molar 463 

ratio of Cas14 to reporter on the detection performance of the Cas14SDA assay. 464 

Fig. 4. Quantification and discrimination performance of the Cas14SDA assay for miR-465 

21 detection. (A) Fluorescence curves of the Cas14SDA assay corresponding to the 466 

addition of the concentrations of miR-21 ranging from 0 to 10 nM (0, 500 fM, 1 pM, 5 467 

pM, 10 pM, 50 pM, 100 pM, 500 pM, 1 nM, 5 nM, 10 nM); (B) Relationship between 468 

the concentration of total miR-21 and the fluorescence intensity; (C) Fluorescence 469 

response of the Cas14SDA assay towards different miRNAs (miR-21, miR-21-mis-1(8) 470 

(have one mismatch base at the 8th site from 5’), miR-21-mis-1(11) (have one mismatch 471 

base at the 11th site from 5’), miR-24, miR-141, miR-155, miR-192, miR-378, let-7a 472 

and miR-21-mis-3 (have three mismatch basics)) with a concentration of 10 nM. 473 

Statistical significances tested were obtained by two-tailed unpaired Student’s t-test: 474 

****, P < 0.0001. Inset Fluorescence response of the Cas14SDA assay towards miR-21 475 

and miR-21-mis-1(11) using perfectly matched template and one base-mismatched 476 



25 
 

template. (D) The sequences of the tested miRNAs. 477 

Fig. 5. Detection of miR-21 in clinical samples. (A) The fluorescence intensity of the 478 

Cas14SDA assay responding to blood samples from healthy donors and patients with 479 

cholangiocarcinoma; (B) The CT value of qPCR corresponding to blood samples from 480 

healthy donors and patients with cholangiocarcinoma. 481 
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 482 

Fig. 1. Schematic illustration of the Cas14SDA assay for detecting miRNA.  483 
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 484 

Fig. 2. Validation of the Cas14SDA assay for miR-21 detection. (A) Fluorescence 485 

analysis of miR-21 triggered SDA process; (B) Fluorescence analysis of activators 486 

triggered CRISPR-Cas14a activation; (C) Electrophoretic analysis of each step of the 487 

Cas14SDA assay.  488 
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 489 

Fig. 3. Optimization of the Cas14SDA assay. (A) Monitoring the fluorescence of the 490 

Cas14SDA assay in the presence and absence of miR-21. (B) The effect of the molar 491 

ratio of Cas14 to reporter on the detection performance of the Cas14SDA assay.  492 
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 493 

Fig. 4. Quantification and discrimination performance of the Cas14SDA assay for miR-494 

21 detection. (A) Fluorescence curves of the Cas14SDA assay corresponding to the 495 

addition of the concentrations of miR-21 ranging from 0 to 10 nM (0, 500 fM, 1 pM, 5 496 

pM, 10 pM, 50 pM, 100 pM, 500 pM, 1 nM, 5 nM, 10 nM); (B) Relationship between 497 

the concentration of total miR-21 and the fluorescence intensity; (C) Fluorescence 498 

response of the Cas14SDA assay towards different miRNAs (miR-21, miR-21-mis-1(8) 499 

(have one mismatch base at the 8th site from 5’), miR-21-mis-1(11) (have one mismatch 500 

base at the 11th site from 5’), miR-24, miR-141, miR-155, miR-192, miR-378, let-7a 501 

and miR-21-mis-3 (have three mismatch basics)) with a concentration of 10 nM. 502 

Statistical significances tested were obtained by two-tailed unpaired Student’s t-test: 503 
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****, P < 0.0001. Inset Fluorescence response of the Cas14SDA assay towards miR-21 504 

and miR-21-mis-1(11) using perfectly matched template and one base-mismatched 505 

template. (D) The sequences of the tested miRNAs. 506 
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 508 

Fig. 5. Detection of miR-21 in clinical samples. (A) The fluorescence intensity of the 509 

Cas14SDA assay responding to blood samples from healthy donors and patients with 510 

cholangiocarcinoma; (B) The Ct value of qPCR corresponding to blood samples from 511 

healthy donors and patients with cholangiocarcinoma. 512 
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