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Abstract—The objective is to determine how close an Artificial
Intelligence agent is, in comparison to a human player, using
only game play images. Identifying Artificial Intelligence agents
during game play is typically done through the analysis and
collection of bio-metric data, such as keyboard, mouse and other
controller interfaces. This document presents a model of an Auto
Encoder architecture, with Long Short Term Memory layers.
Gradient and Non-Augmented Images have been evaluated and
compared. Three distinct personalities of agents are evaluated,
human players, a trained Artificial Intelligence agent, and a basic
Artificial Intelligence agent. Through testing the Gradient Image
augmentation sets present promising results, with the model
successfully identifying the human as the closest similarity to
the baseline, followed by the trained Artificial Intelligence agent.

Index Terms—artificial intelligence, auto encoder, motion his-
tory image, similarity metric, anomaly detection

I. INTRODUCTION

Artificial Intelligence (AI) can not only successfully com-
pete against some of the top players in the world, in some
cases the AI outperforms its human counterpart [1].

This paper seeks to determine how similar an AI agents
actions are, to that of a human player. Having a metric that
can distinguish or conceal an AI agents presence, has many
applications depending on user requirements. Determining
such a metric could help create an AI that equally matched
its human counterpart, thus creating fairer gameplay and
minimising player frustration, especially for those with health
conditions. The same metric could also be used in conjunction
with bio-metric data to minimise the use of AI agents to cheat
in online games.

This main points of contribution are as follows:
• Pre-processing component for manipulation of the image

augmentations.
• Introduction of the novel model for determining the

similarity of the input sequences, based on a training
scenario.

• Evaluation of the model, using three types of agents and
how Gradient Images effect the model performance.

Related Works are discussed in Section II. Followed by the
Methodology used, in Section III. This section covers the pre-
processing component, the similarity model, training, and the
evaluation process. Next is the Evaluation and Results Section

in IV. Here the two games selected to use in this research are
discussed, followed by the particulars of the collected datasets
used for this research. Finally Section V concludes the paper.

II. RELATED WORKS

From reviewing the literature, much work has been con-
ducted in the area of comparing AI agents to humans, with
the objective of detection for anti-cheat systems. A common
approach to determining AI behaviour, is analysing bio-metric
input actions to determine how human-like the subject is, this
can include mouse movements [2], [3], keyboard keystrokes
[4], [5] and other user interfaces [6], [7].

This research uncovered a proposal to use a Convolutional
Neural Network (CNN) classification model, to determine
if mouse operation is consistent with that of a human, by
generating an image from mouse movement data containing
additional spatial and kinematic information [2]. Similarly,
[3] proposes a CNN model with joint multi-label training
for mouse-based user authentication, using pre-processing to
convert the mouse movement sequences into an image.

For image sequences from video footage, both [8] and
[9] make use of an Auto Encoder (AE) with both spatial
convolution and temporal Long Short Term Memory (LSTM)
layers. The purpose of which is to identify irregularities within
the video footage, through the reconstruction of the input
sequences. The reconstructed sequences are evaluated using a
regularity score, to determine if the current sequence possesses
any abnormalities.

For observation of visual data only, the Turing’s Test [10]
is still a valid method to determine if an AI or a human [11]
is being observed.

III. METHODOLOGY

This section presents the pipeline of the methodologies
used; including the pre-processing component, the similarity
model architecture, training methods used, and a process for
evaluation of the outputs.

In this approach an AE is utilised to predict the next frame in
the sequence of game-play images. For pre-processing we have
implemented different augmentations of the images, in order to
determine which performed the best. All images are converted
to a grey scale and resized to fit the input to the network, one



set is kept as is, and the other is augmented. For each of the
augmentations an AE model is trained, using human played
image sequences. For testing, AI controlled sequences, with
a subset of human controlled sequences not previously seen
during training, were utilised.
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Fig. 1: Pipeline of proposed methodology.

A. Pre-Processing Component

Pre-processing is a phase that controls the format and
structure of the input that is passed to the model, prior to
training and inference.

1) Non-Augmented Image Sets: Before using the images in
the Similarity Model, the images are processed to be a uniform
size of w, h. Once resized the images are converted to a grey
scale. giving the final dimensions of (w, h, c).

Each set of images is split into sequences of seq images,
more sequences can be created by skipping over images with a
pre-determined clip stride. On the first run, all the images are
taken sequentially and then iterated through again, this time
incremented by a clip stride as shown in Fig. 2. This is useful
for the learning process, especially if the captured images run
at a high frames per second rate, as there will be a lot of
identical images.
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Fig. 2: Example of Clip Stride.

The result process provides an array of sequences, each
containing other arrays of seq sequential images, resulting in
dimensions of (X, seq, w, h, c).

2) Gradient Image Sets: To potentially improve on the
Non-Augmented Image (NAI) Sets, an augmentation of the
image can be applied which changes the way the image data is
represented. In this example, prior to the images being placed
sequentially, each image is converted to a Gradient Image (GI).
Important features are extracted from the images, with a focus
on the edges within the scene.

To compile the GIs, the Laplacian of the image is calculated
by adding up the second x and y derivatives which are
calculated using the Sobel operator [12], as seen in equation
1.

I = ∆src =
∂2src

∂x2
+

∂2src

∂y2
(1)

Once all images have been converted, they are then split
into sequence arrays using the method described within the
NAI Sets.

B. Similarity Model

The architecture for the Machine Learning (ML) method,
chosen to perform the comparison, is an Auto Encoder (AE).
Consisting of two internal models, referred to as the encoder
and decoder. The encoder takes in a sequence of input images.
The output of which becomes the input for the decoder. A
reconstruction of the image sequence, based on the human
learnt sequences, is then attempted.

The similarity model uses various layering techniques, in-
cluding Convolutional 2D, Convolutional 2D Transpose, Time
Distribution, Layer Normalisation, and Convolution 2D Long
Short Term Memory (LSTM), as presented in Fig. 3. The final
layer of the decoder, is a Convolutional 2D with single channel
output, this results in dimensions of (seq, w, h, c) which use
the Sigmoid activation function. The full breakdown of the
architecture is available in table I.
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Fig. 3: Similarity model

As previously discussed, the model takes in a sequence
of input images that have been through the pre-processing
component modifications. The images are then made into
training and validation sets. Starting with the second image in
the sequence, the regression problem is x = [i0, i1..., iN−t],
where an attempt is made to predict the next frame in the N
time instances Y = [it, it+1..., iN ].



TABLE I: The proposed Auto Encoder architecture for the
prediction of similarity in image sequences.

Type Strides Activation Filter
Spatial Encoder

TimeDist(Conv 2D) 4 TanH 128
Layer Normalization
TimeDist(Conv 2D) 2 TanH 64
Layer Normalization
Temporal Encoder

Conv LSTM 2D 1 TanH 64
Bottleneck

Conv LSTM 2D 1 TanH 32
Temporal Decoder

Conv LSTM 2D 1 TanH 64
Spatial Encoder

TimeDist(Conv 2D Trans) 2 TanH 64
Layer Normalization

TimeDist(Conv 2D Trans) 4 TanH 128
Layer Normalization

Output
TimeDist(Conv 2D) Sigmoid 1

C. Training Models

The Adam optimiser with a learning rate of 0.0001, is used
for training. The loss metric used, as shown in equation 2, is
a measurement of reconstruction error is Mean Square Error
(MSE):

mse =
1

n

n∑
i=1

(Yi − Ŷi)
2 (2)

Two models can be trained for each type of image input.
The process can be repeated for each experiment performed:

• Non-Augmented Image Model
• Gradient Image Model
Each model is trained for a maximum of 50 epochs, or stops

early if the loss metric converges for a period of three epochs.
The training process occurred on a computing spec of; CPU:
Intel i9-10900K, RAM: 64GB, GPU: Nvidia GeForce RTX
2080 Ti 11GB.

D. Evaluation process

The trained model, produces a reconstruction based on
the sequence of images received. A regularity score is then
calculated using this reconstruction [8]. Within equation 3, t
defines the time step, v is the validation sequences over a time
series, and r represents the reconstructed sequence; which is
the result of the output from the similarity model;

e(t) = ||v(t)− r(v(t))||2 (3)

where e provides a reconstruction error as the Euclidean
distance between the v frame and the r frame, for all time
steps.

sa(t) =
e(t)− e(t)min

e(t)max
(4)

Scaling to between 0 and 1 sa calculates an abnormality
score.

sr(t) = 1− sa(t) (5)

Finally, the regularity score sr can be calculated by sub-
tracting the result sa from 1.

IV. EVALUATION AND RESULTS

This section discusses the games chosen for the experi-
ments, how the datasets were collected and received from the
game play, and the level of data samples available for training
and testing.

Two experiments were conducted using the chosen games;
with two distinct sets of images being passed to the model.
The results of all experiments are then presented.

A. Selected Games

Two games were chosen for this experiment. The first
game was Pacman (PM), due to its unique AI concepts and
simple game mechanics. Each ghost hosted a different distinct
personality, as well as different game states. This made it
an interesting starting point. During game play, the aim is
to navigate the grid while collecting pellets and avoiding
ghosts. Control decisions for both ghosts and PM, are typically
made and executed at certain nodes within the grid, the only
exception to this is if PM changes direction mid-journey. At
these nodes, the aim is to determine how likely, or human-like,
a given action is.

The second game and level used is Sonic the Hedgehog
(StH) Green Hill Zone - Act 1 [13]. This game has more
complex visuals and core control mechanics. StH is a 2D
platform type game, where StH needs to navigate obstacles,
avoid bad objects and collect good objects, until the end of
the level is reached.

B. Datasets and Collection Methods

For training and testing, a significant amount of image
data is required. Table II shows the spread of image samples
collected from both games.

TABLE II: Data Samples Collected

Training Testing
Type Human Human AI Agent Basic Total

PM Sets 104 8 8 8 128
PM Images 70,680 5,335 5,266 5,536 86,817

StH Sets 24 8 8 8 48
StH Images 99,162 21,013 26,198 288,752 435,125

Human data was collected for both games, from multiple
participants, using a PC keyboard as the control input. Each
set consists of a single level, without any progress to the next
level. In the testing sets, with the exception of the basic agent,
all single runs are completed to the end of the level.



The AI agent used to collect the data samples, was trained
enough to effectively complete the target level. For PM this is
a State Machine (SM) AI algorithm, that reacts to the current
state of the grid; for example where the closest pellet is and
where the ghosts are situated. This allows PM to complete the
level. For StH, the NeuroEvolution of Augmenting Topologies
(NEAT) algorithm was used to train the AI agent, using the
neat-python library [14].

Lastly the basic agent is a part trained AI that can stay
alive long enough to collect sufficient data, whilst not being
able to complete the level. This provides a very different style
of play than when the AI is focused on winning. This set is
considerably larger per set, than other agents, due to game
play lasting 10 minutes in real time. For testing during the
experiments, frames were limited to a maximum of 10,000.

For the PM samples, the full Red, Green and Blue (RGB)
image was converted into a single colour pixel per grid space.
The colour of the pixel, depends on what game object exists
within the corresponding grid cell, at the captured time. This
is managed from within the game engine and converted at
run-time. This results in a sequence of images at (28,31,3), as
shown in Fig. 1.

The StH samples where taken using the Gym Retro library
[13]. This allows game play sequences to be recorded and
playback data to be recovered. The output of these sequences,
provides the full RGB image at (320,224,3), which is used for
the second experiment.

C. Experiments

Here we discuss the experiments performed on the two
datasets previously presented for training and testing.

All training models were subject to the following param-
eters; learning rate of 0.0001, decay of 0.00001, an epsilon
of 0.000001, and a batch size set to 64. Further to this, for
the datasets loaded into memory, the clip stride was set to 5,
sequence size set to 10, with the images resized to 64x64 and
grey scaled.

The results of the human training sets were calculated, this
provided a Baseline (BL) for each of the four models, whilst
also validating that no over or under fitting has occurred during
the training process. The Human Player, AI agent and Basic
agent, testing sets were then evaluated. With the individual
scores delimiting the mean average of a complete set.

The expected results for the trained models, was that the
human player would be the closest agent to the baseline,
followed by the AI agent, with the basic AI agent being the
furthest from the baseline.

1) Pacman Sets: The images passed to the pre-processing
component, were PNG files, the dimensions were (28,31,3)
grid images. The data samples used for training included 104
sets, consisting of 70,680 images, for the PM game.

As shown in the results table III, for the NAIs of PM, the
basic agent is highlighted as the most similar to the baseline
value, followed by the AI agent, leaving the human players as
the least similar.

However, for the GIs set of PM, the results were reversed.
With the human player agent being closer to the baseline,
followed by the basic agent as the second closest.

TABLE III: Overview Results of Pacman Sets

Set Baseline Human AI Agent Basic Agent
Non-Augmented Image 0.7824 0.7661 0.7754 0.7782

0.0163 0.0070 0.0042
Gradient Image 0.7898 0.7502 0.7634 0.9676

0.0218 0.0396 0.0264

(a) Original (b) Reconstruction (c) Target

Fig. 4: Pacman Non-Augmented Image Sample of Testing
Images

(a) Original (b) Reconstruction (c) Target

Fig. 5: PM Gradient Image Sample of Testing Images

The issue with the NAI images within the results, is likely
related to the number of pixels which do not change from one
frame to the next. This makes the model susceptible to learning
the layout, rather then identifying the individuals movements
within the game grid. Even for training sets with clip stride,
the grid remains similar throughout, this can be seen in Fig.
4b when compared closely to 4c. The results for the GI PM,
show a similar prediction score.

2) Sonic the Hedgehog Sets: The images passed to the pre-
processing component for StH, are in PNG file format; with
the dimensions of (320,224,3) images. The data samples used
for training, included 24 sets, consisting of 99,162 images for
the StH game.

Due to memory constraints, only the first 10,000 frames
were used for the StH basic AI testing set.

TABLE IV: Overview Results of Sonic the Hedgehog Sets

Set Baseline Human AI Agent Basic Agent
Non-Augmented Image 0.6616 0.6635 0.6305 0.6590

0.0019 0.0311 0.0026
Gradient Image 0.5686 0.5778 0.5479 0.5977

0.0092 0.0207 0.0291



(a) Original (b) Reconstruction (c) Target

Fig. 6: Sonic the Hedgehog Non-Augmented Image Sample
of Testing Images

(a) Original (b) Reconstruction (c) Target

Fig. 7: StH Gradient Image Sample of Testing Images

For the StH test agents, the results for both NAI and GI
showed the successful identification of the human players, as
being the most similar to the baseline value. However in the
NAI set, the basic AI was closer to the baseline then the AI
agent. Whilst the GI set, achieved the expected results.

V. CONCLUSION

This paper aimed to identify a similarity model, that could
determine if a set of time series images, were those of human
or AI players. It was expected that the human players would
be closer to the baseline target, than either a fully trained AI
agent, or a part trained basic AI agent.

An Auto Encoder was trained using human played game
play sequences, as images only. Two types of pre-processing
were used for the training and testing. The first phase con-
verted an image, to a grey scale, which was resized to
fit the network input. The images for training were split
into smaller sequences. A clip stride to skip x frames was
offset, to enlarged the data sets sample size and improved
learning outcomes. The second pre-processing phase, involved
converting the images into a Gradient Image. This allowed the
network to focus only on the edges within the scene.

The testing sets showed promising results; especially when
using the Gradient Image augmentation. In the first phase of
Non-Augmented Images, only the resized, grey scale images
were used. The successful identification of the human test
sets, being closest to the human trained baseline, was achieved
with the Sonic the Hedgehog sets. However, in the Gradient
Image augmentation phase, the Pacman game successfully
identified the human player as most similar. Whilst the Sonic
the Hedgehog game achieved the expected results, highlighting
that the human test sets were the closest to the human baseline,

followed by the AI agent, and finally the basic AI agent being
the furthest from the baseline.
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