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ABSTRACT

The reconstruction of high dynamic range (HDR) images from

low dynamic range (LDR) images is a challenging task. Mul-

tiple algorithms are implemented to perform the reconstruc-

tion process for HDR images and videos. These techniques

include, but are not limited to reverse tone mapping, computa-

tional photography and convolutional neural networks (CNNs).

From the aforementioned techniques, CNNs have proven to

be the most efficient when tested against conventional 2D

images and videos. However, at the time of this paper, ap-

plying such CNNs to light field contents have not yet been

performed. Light field images impose more challenges and

difficulties to the proposed CNNs, as there are multiple im-

ages for the creation of a single light field scene. In this pa-

per, we test some of the existing HDR CNNs (ExpandNet,

HDR-DeepCNN and DeepHDRVideo) on the Teddy light field

image dataset and evaluate their performance using PSNR,

SSIM and HDR-VDP 2.2.1. Our work addresses both im-

age and video reconstruction techniques in the context of light

field imaging. The results indicate that further modifications

to the state-of-the-art reconstruction techniques are required

to efficiently accommodate the spatial coherence in light field

images.

Index Terms— HDR image, HDR video, light field imag-

ing, convolutional neural network.
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1. INTRODUCTION

High dynamic range (HDR) images are created with more lu-

minance levels than conventional low dynamic range (LDR)

images. In other words, HDR images represent the bright

and the dark regions of the content with more realism [1].

HDR images have proven their importance in numerous ap-

plications, including but not limited to global illumination in

physical based rendering, digital photography, remote sensing

and image editing [2].

HDR imaging can be classified into two main categories:

single-camera and multi-camera techniques. For single-camera

techniques, capturing is done by means of one camera as the

name implies. Sequential capturing is carried out for the ex-

posure stack, which is the main disadvantage of the single-

camera technique. This drawback is significant for time-critical

tasks. Following the capture process, the inverse camera re-

sponse function is then reconstructed in order to approximately

evaluate the radiance mapping to the scene. Finally, a tone

mapper is applied. On the other hand, the exposure stack is

captured simultaneously, using the multi-camera technique.

Although this technique is efficient in terms of capture time,

there still remains the issue of stereo view correspondence

since the images resulting from the different cameras have

different luminance values [1].

For both methods, however, multiple LDR images are re-

quired, from which the HDR image is recovered. Accord-

ingly, for single-camera approaches, a tripod is required to

capture the same static scene multiple times with different

exposures. Hence, these methods will not work with hand-



held cameras. Neither will they work with dynamic scenes,

and therefore, ghosting effects may appear in the final HDR

image [3].

Since using multiple cameras to capture a single HDR im-

age is more expensive and requires more calibration, there-

fore, single-camera techniques appear to be better. More-

over, to overcome the drawback concerning the time limita-

tion previously introduced, as well as fixing the camera po-

sition, single-shot capturing can be applied instead of taking

multiple shots. However, this comes with an adjustment of

multiplexing different exposure patterns on the sensor. In or-

der to reconstruct the HDR image from the LDR single-shot

images, many methods have been devised, including reverse

tone mapping, computational photography and convolutional

neural networks (CNNs). Among those approaches, CNNs

have proven to be the best.

In addition to HDR image reconstruction, HDR video re-

construction has also emerged. Since videos are composed

of multiple frames, challenges arise in their process of HDR

reconstruction. However, due to the temporal coherence be-

tween the consecutive frames, common information can be

used for reconstructing HDR videos to boost the results com-

pared to single HDR images. In this paper, we address the dif-

ferent techniques used to reconstruct HDR images from LDR

images, as well as HDR video reconstruction [4].

Although research on the LDR to HDR single-shot im-

age reconstruction is still ongoing, the feasibility of the im-

plemented techniques are not yet tested for light field (LF)

images. The term “light field” was first introduced by Ger-

shun in 1936 [5]. Light fields define the world as light rays

filling up the 3D space under representation. In order to dis-

play light fields, light field displays (LFDs) were invented,

providing spectators 3D experience without the need for addi-

tional visual gears. We can classify two main types of LFDs:

horizontal-only parallax (HOP) and full-parallax (FP) displays

[6]. In order to create the 3D visual experience, multiple light

field images are required for a single scene. In this paper, we

introduce the concept of LDR to HDR light field image recon-

struction. Although no research in this area has been done so

far, similarities can be detected with HDR video reconstruc-

tion on 2D displays. HDR video reconstruction exploit the

temporal coherence between the neighboring frames. This is

analogous to LF images where similarities exist between the

adjacent views, since the scene is depicted via multiple LF

images in order to achieve 3D visualization. As one of the

primary scientific contributions of this paper, we test some of

the HDR reconstruction CNNs – for images and videos – on

an LF dataset and measure the quality of the achieved results

against a set of metrics.

The paper is structured as follows: Section 2 discusses the

related work on the different CNNs used for image and video

HDR reconstruction. Section 3 elaborates the experimental

setup for LDR to HDR light field image reconstruction, in-

cluding the dataset and the metrics required for quality mea-

surements. The achieved results are presented in Section 4.

Finally, the work is concluded in Section 5, providing poten-

tial future continuations of this work.

2. RELATED WORK

2.1. HDR image reconstruction

Much work has been carried out concerning HDR image re-

construction via CNNs. In this section, we discuss some of

those works. For single-shot single-camera approaches, mul-

tiplexing the exposure for the sensor is carried out in order

to hold more information about the HDR image. However,

this is not always the case. The work of Eilertsen et al. [7]

provides a method to reconstruct HDR images from single-

exposure LDRs. However, the approach is to recover infor-

mation concerning the saturated pixels, and not those pixels

in the lower part of the dynamic range. The idea is based

on a CNN acting as an autoencoder with a hybrid dynamic

range. The primary concept is to convert the input LDR im-

age by means of an LDR encoder into a set of spatial feature

representations to be used later by the HDR decoder in log

domain, resulting a recovered HDR image. In addition to the

encoder-decoder pipeline and the aim to efficiently exploit the

high-resolution details of the HDR image, skip connections

are available all the way between both the LDR encoder and

the HDR decoder.

Other HDR reconstruction techniques are based on re-

versing the camera pipeline used to create LDR images [8].

The camera pipeline for LDR image formation is composed

of three main steps:

1. Clipping of the dynamic range: First, the values of the

HDR image created by the camera are clipped to a lim-

ited range. This leads to information loss in the over-

exposed (i.e., very bright) regions.

2. Non-linear mapping: This step performs non-linear map-

ping to the camera response function (CRF) in order to

adjust the contrast. Thus, matching the human visual

system (HVS) of scenes.

3. Quantization: As the RGB channels in an LDR image

have 8 bits each, this step ensures that the pixels are

quantized to 8 bits. Quantization, however, leads to

the loss of information in the under-exposed (i.e., very

dark) regions of the image, as well as in the gradient-

smooth regions.

Looking at the LDR image formation pipeline, the idea is

to create a pipeline for HDR image reconstruction, reversing

that of the LDR. Hence, the HDR pipeline is composed of

three steps as well, each reversing its corresponding step in

the LDR pipeline. For each of these phases, a CNN network

with a specific training is built. The three steps composing

the HDR image reconstruction pipeline are the following:



1. Dequantization: The dequantization process aims to re-

move the contouring artefacts and the noise generated

in the smooth regions due to the quantization process

in the LDR image generation pipeline. Training for the

dequantization CNN is carried out such that the loss is

minimized between the dequantized image (Îdeq) and

its respective ground truth image (In), where In =
F (C(H)). In other words, In is the image resulting

from the clipping of the dynamic range, followed by

non-linear mapping with CRF. The loss – which is re-

quired to be minimized – can be described as follows:

Ldeq = ‖Îdeq − In‖
2
2.

2. Linearization: This step aims to convert the LDR non-

linear image into a linear radiance via CRF. The CRF

is estimated in this step with certain constraints: mono-

tonically increasing function and mapping of the mini-

mum and maximum values of the function to their cor-

responding minimum and maximum values in the out-

put. These constraints are taken into account when de-

signing the CNN network for the linearization process.

3. Hallucination: This step aims to recover the informa-

tion lost in the over-exposed regions due to the dynamic

range clipping step. Training for the CNN hallucina-

tion step is done by minimizing the log loss: Lhal =
‖log(Ĥ) − log(H)‖22 where Ĥ is the image resulting

from the hallucination step and H is the HDR ground

truth image. Since hallucination is used to limit the

artefacts arising from the clipping dynamic range step,

therefore, the loss is measured in the log domain since

the over-exposed regions have extremely high values

that may easily produce errors in the linear domain.

Figure 1 shows both the LDR and the HDR pipelines with

elaboration on each step and their corresponding ones in the

other pipeline.

Another suggested method for HDR image reconstruc-

tion is the ExpandNet CNN [9]. This CNN takes an LDR

image and propagates it through three branches simultane-

ously: (i) local branch, (ii) dilation branch and (iii) global

branch. Each of the branches handles a respective level of de-

tail (low, medium and high details, respectively). For the first

two branches, the LDR image is passed without any sampling

– unlike the global branch, where the image is down-sampled.

Finally, the outputs from all branches are convoluted, result-

ing an estimated HDR image.

2.2. HDR video reconstruction

Unlike the previous methods, where the HDR image recon-

struction approaches are applied for single images, the works

of Kalantari and Ramamoorthi [3] [10] tackle the problem

of HDR video reconstruction from multi-exposure frame se-

quences. Considering videos, HDR image reconstruction is

usually carried out in the following two steps:

Fig. 1: Camera pipelines for LDR and HDR image recon-

struction.

1. The first step is to align consecutive frames with vari-

ous exposures to the current frame. Frames need to be

temporally coherent. Therefore, reconstructing frame

Zi is done via its neighboring frames Zi−1 and Zi+1.

The optical flow method proposed by Liu et al. [11]

is used for optical flow prediction [3]. This method is

carried out by aligning the images with extreme expo-

sures (low and high) to that with medium exposure. A

later work proposes a CNN to estimate the optical flow

in order to minimize the resulting error between the es-

timated HDR image and the ground truth image [10].

2. The second step is to fuse the aligned frames for HDR

image generation. The proposed CNN [3] [10] is uti-

lized to estimate the fusion weights used in the merging

process, hence improving the quality of the resulting

images.

Although this HDR video reconstruction method [3] [10]

achieves success, ghosting artefacts arise. This is because of

the noise and the missing information in the under- and over-

exposed regions, respectively. Accordingly, accurate image

alignment and fusion is not feasible, leading to ghosting [12].

In order to overcome the aforementioned issue, a coarse-to-

fine CNN was proposed for a more accurate image alignment

and HDR fusion. The proposed algorithm [12] consists of two

main steps:

1. The first step is to align and blend images. This is done

via CoarseNet CNN. This CNN has the same structure

as the CNN of Kalantari and Ramamoorthi [10], as it

estimates the optical flow (using the flow network) and

the blending weights (using the weight network). As



the name implies, this CNN results in coarse HDR re-

construction, since it uses a smaller number of feature

channels compared to the CNN of Kalantari and Ra-

mamoorthi [10]. Calculation of the loss function used

in network training is done via the computation of the

tonemapping loss in HDR space, using the µ-law func-

tion:

T c
i =

log(1 + µHc
i )

log(1 + µ)
(1)

where µ is the parameter used in controlling the level

of compression and it is set to 5000. T c
i is the HDR im-

age resulting from the tonemapping process. Accord-

ingly, the loss in the CoarseNet is calculated against the

ground truth HDR image (T̃i) as ‖T c
i −T̃i‖1. This CNN

succeeds at recovering some of the missing information

in the over-exposed regions, as well as removing some

noise from the under-exposed regions.

2. The second step is the alignment and fusion in feature

space. This is done via RefineNet CNN, which is ap-

plied in feature space while performing frame align-

ment and fusion. RefineNet starts by taking as input

three coarse HDR images, denoted as Hc
i−1, H

c
i , H

c
i+1

and producing the corresponding 64-channel feature out-

puts F c
i−1, F

c
i , F

c
i+1. Deformable convolution [13] is

then applied to perform feature alignment, resulting in
˜F c
i−1

, F̃ c
i ,

˜F c
i+1

. These features are then convoluted into

the center frame.

Finally, at the end of the pipeline, the reconstruction branch

applies regression to the input-fused feature image, resulting

in Hr
i , which is used to compute the final estimated HDR

image (Hi) as follows:

Hi = Mi

⊙

Hc
i + (1−Mi)

⊙

Hr
i (2)

where the element-wise product is denoted by
⊙

and Mi is

a mask used to define the well-exposed areas for reference

frame i. The following equations show how Mi is defined for

low- and high-exposure reference images Li, respectively.

Mi (low) =

{

1, if Li ≥ 0.15

(Li/0.15)
2, if Li < 0.15

(3)

Mi (high) =

{

1, if Li ≤ 0.9

(−Li

0.1
+ 10)2, if Li > 0.9

(4)

3. EXPERIMENTAL SETUP

Whereas the different HDR reconstruction CNNs were ap-

plied for either conventional images or videos, applying the

same CNNs for LF images still remains an open question.

In this section, we introduce the experimental setup of the

tests that addressed some of the implemented HDR image and

video reconstruction CNNs on LF images.

3.1. Dataset

Although LF has been an ongoing research area for some time

now, the availability of databases for LF images is sparse. In

the work of Gul et al. [14], Fraunhofer has managed – by

means of a high-quality digital camera – to capture a dataset

for LF images in HDR (named Teddy), in addition to ensuring

large spatial resolution. The dataset was captured by using

the exposure bracketing technique, resulting in four static LF

images. Accordingly, we used this dataset in our work for LF

HDR images reconstruction.

3.2. HDR Reconstruction for LF images

From Section 2, three CNN architectures are used for experi-

menting with HDR image generation: ExpandNet [9], HDR-

DeepCNN [7] and DeepHDRVideo [12]. We have considered

real-world HDR LF dataset Teddy [14] that contains geometry

and color-calibrated HDR LF images. This dataset consists

of 50×50 LF images with horizontal and vertical parallax.

From the original 50×50 LF images, we generated 36 non-

overlapping subsets of LFs, each containing 8×8 images. For

each algorithm, the average performance results are reported

over all the 36 LF sets.

For testing the HDR image reconstruction algorithms (Ex-

panNet and HDR-DeepCNN), we simulated constant-exposure

LDR images from the Teddy HDR images and fed each net-

work one image at a time. The performance is measured for

one image at a time and then averaged over a given LF subset.

For testing the DeepHDRVideo method, we considered three

alternating exposures version of this trained algorithm. Pre-

cisely, given a LF subset, we extracted three consecutive HDR

images at a time and generated three LDR images with vary-

ing exposures. The overview of the procedure is provided in

Section 2.2, in accordance with the work of Chen et al. [12].

Then, these multiple-exposure LF images are fed to this net-

work, three images at a time, for reconstructing HDR LFs.

After generating the corresponding HDR LF subset – sim-

ilarly to HDR image reconstruction methods – we measure

the performance for one image at a time and then average it

over a give LF subset.

3.3. Metrics used for evaluation

In order to test the efficiency of the produced results, quan-

titative analysis is carried out, where the generated HDR LF

images are compared against the ground truth images. In this

subsection, we discuss the metrics used in the comparison

process including:

• PSNR (Peak-Signal-to-Noise-Ratio): PSNR is calcu-

lated between two gray-scale images f and g, given that

their size is N ×M as follows [15]:

PSNR(f, g) = 10log10(255
2/MSE(f, g)) (5)
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Fig. 2: Original and predicted tonemapped HDR images from the considered algorithms for experiment.

Fig. 3: Boxplots showing the performance of the considered methods for experiment on the HDR light field dataset Teddy. Left:

box plot using the PSNR metric. Middle: box plot using the SSIM metric. Right: box plot using the HDR-VDP metric.

where

MSE(f, g) =
1

MN

M
∑

i=1

N
∑

j=1

(fij − gij)
2 (6)

• SSIM (Structured Similarity Index Measure):

SSIM(f, g) = l(f, g)c(f, g)s(f, g) (7)

where

l(f, g) =
2µfµg + C1

µ2
f + µ2

g + C1

,

c(f, g) =
2σfσg + C2

σ2
f + σ2

g + C2

,

s(f, g) =
σfg + C3

σfσg + C3

(8)



where l, c and s are the luminance, contrast and struc-

ture comparison functions, respectively. The terms µf

and µg are the luminance means for images f and g.

The standard deviation is denoted by σ, whereas σfg is

the correlation coefficient between both images (f and

g). Finally, C1, C2 and C3 are positive constants used

to ensure that the denominator is not null.

• HDR-VDP-2.2.1 (High Dynamic Range Visible Differ-

ence Predictor): This metric is an upgrade for the HDR-

VDP metric, which in turn is a modification to the VDP

metric. It takes two images as input: the original and

the distorted one. Both input images are transformed to

their luminance values used in the comparison process.

The metric results in a probability map, indicating the

differences between the input images [16]. The HDR-

VDP-2 [17] enhances the visibility metric, specially for

low conditions with regards to luminance.

4. RESULTS

Figure 2 shows the results of our experiments on the consid-

ered HDR LF dataset Teddy.

According to Figure 2, ExpandNet produces plausible re-

sults close to the ground truth images. However, visually

ghosting artifacts arise in the background on the images. Hence,

learning concatenated features from different branches – lo-

cal, dilation and global – seems to be a good direction for

generalizing to other datasets. On the other hand, in the HDR-

DeepCNN, we see inconsistencies in the colours in the recon-

structed textures. These inconsistencies could be the result

of using skip connections that include domain transformation

from LDR display values to logarithmic HDR. However, the

method should be thoroughly investigated further with more

LF datasets. Finally, in the DeepHDRVideo reconstruction

method, inconsistencies are quite visible in the shape and tex-

ture of the reconstructed images. The method uses sub net-

work that aligns the input images to a common frame and then

does HDR reconstruction using the aligned features. The ar-

tifacts seen in the reconstructed images show that there are

errors in the optical flow reconstruction due to complex pat-

terns in the scene which are carried forward to the next stage

where HDR reconstruction is done. Without a reliable method

for calculating accurate optical flow, such a direction for HDR

reconstruction does not seem valid for LF images.

As mentioned earlier, objective performance of the con-

sidered methods is measured using three traditional IQMs (Im-

age Quality Metrics): PSNR, SSIM and a perceptually-guided

HDR image quality metric HDR-VDP-2.2.1. Results are in-

terpreted by using box plots (see Figure 3), which show the

min and max scores together with the inter-quartile range (shown

in boxes). A larger inter-quartile range translates to more

global inconsistencies in the performance.

Our experimental results show that according to metrics

PSNR and SSIM, DeepHDRVideo method performs better than

other two. It is important to note that the inter-quartile range

in obtained PSNR values for the DeepHDRVideo method is

higher. Also the difference between observed minimum and

maximum PSNR values for this method is higher than other

two methods showing that there are greater deviations in the

performance of this method. In contrast, the SSIM results

show no such fluctuations in the performance of this method.

HDR-VDP scores show that HDR-DeepCNN performs better.

Assuming that HDR-VDP better correlates to the HVS

than the other two metrics, our experiments show that the

HDR-DeepCNN method achieves more consistent results than

the other two methods, and also achieves better visual qual-

ity of the reconstructed HDR images. Although, HDR video

reconstruction methods involve retrieving more scene infor-

mation than HDR image reconstruction methods, our results

indicate that given a properly color-calibrated set of single-

exposure LDR LF images of a scene – such as scene Teddy –

architectures like HDR-DeepCNN are capable of reconstruct-

ing more globally consistent HDR LFs. This direction is

particularly desirable since it only involves capturing single-

exposure LDR images, and therefore, also supports faster pro-

cessing times for HDR reconstruction than methods involving

multiple exposures. To further develop such architectures,

there is a demand for producing more LF HDR datasets for

fine tuning, which is currently lacking in the scientific litera-

ture. Furthermore, irregularities in the reported quality scores

of various metrics show that there is a great need for novel

quality metrics that are more suitable for LFs.

5. CONCLUSION AND FUTURE WORK

In conclusion, we have elaborated the different CNNs used

for LDR to HDR image and video reconstruction. Although

much work has already been done in this area, the application

of these algorithms to LF images has not yet been investi-

gated. In this paper, we have tested different HDR CNNs:

(i) ExpandNet, (ii) HDR-DeepCNN and (iii) DeepHDRVideo

for LF images. The first two networks are used for images,

whereas the third one is used for videos. Results were eval-

uated with various metrics. While expectations were in favor

of the video reconstruction techniques due to exploiting the

temporal coherence – which is in a way similar to the spa-

tial coherence in the LF images – results for HDR-DeepCNN

proved to be more plausible in terms of quality. Moreover, it

had the best value when evaluated against HDR-VDP.

In the future, we plan to generate a synthetic LF HDR

dataset and train/fine-tune the HDR-DeepCNN architecture

for experimenting HDR LF reconstruction. We also plan to

explore systems and methods to capture real-world HDR LF

content to further support such experiments.
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