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Simple Summary: All cells within tissues and organ systems must communicate with each other to 
ensure they function in a coordinated manner. One form of communication is signalling mediated 
by small proteins (for example fibroblast growth factors; FGFs) that are secreted by one cell and 
bind to specialised receptors (for example FGF receptors) on nearby cells. These receptors propagate 
the signal to the nucleus of the receiving cell, which in turn dictates to the cell how it should react. 
FGFR signalling is versatile, tightly controlled and important for normal body homeostasis, facili-
tating growth, healing and replacing old cells. However, cancer cells can take command of this path-
way and use it to their advantage. This review will first explain the biology of FGFR signalling and 
then describe how it can be corrupted, the implications in cancer, and how it can be targeted to 
improve cancer therapy. 

Abstract: The pleiotropic effects of fibroblast growth factors (FGFs), the widespread expression of 
all seven signalling FGF receptors (FGFRs) throughout the body, and the dramatic phenotypes 
shown by many FGF/R knockout mice, highlight the diversity, complexity and functional im-
portance of FGFR signalling. The FGF/R axis is critical during normal tissue development, homeo-
stasis and repair. Therefore, it is not surprising that substantial evidence also pinpoints the involve-
ment of aberrant FGFR signalling in disease, including tumourigenesis. FGFR aberrations in cancer 
include mutations, gene fusions, and amplifications as well as corrupted autocrine/paracrine loops. 
Indeed, many clinical trials on cancer are focusing on targeting the FGF/FGFR axis, using selective 
FGFR inhibitors, nonselective FGFR tyrosine kinase inhibitors, ligand traps, and monoclonal anti-
bodies and some have already been approved for the treatment of cancer patients. The heterogene-
ous tumour microenvironment and complexity of FGFR signalling may be some of the factors re-
sponsible for the resistance or poor response to therapy with FGFR axis-directed therapeutic agents. 
In the present review we will focus on the structure and function of FGF(R)s, their common irregu-
larities in cancer and the therapeutic value of targeting their function in cancer. 

Keywords: fibroblast growth factor; cancer; FGFR inhibitors; FGFR mutations; FGFR signalling; tar-
geting FGFR 
 

1. Introduction 
Cancer is a disease of cells, starting with genetic alterations in one cell or a small 

group of cells. If the repair machinery of the cells fails, then accumulation of genetic alter-
ations will lead to cancer and with time to metastasis. In order for cells to become cancer-
ous, they need to adopt behavioural changes outlined as the “hallmarks of cancer” [1]. Of 
course, besides the classical hallmarks of cancers, many years of research from different 
angles has shed light onto novel emerging hallmarks of cancer, such as an altered micro-
biome, neuronal signalling, epigenetic dysregulation and transdifferentiation [2]. There 
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are many targeted therapies that inhibit and block each of the developed competencies 
necessary for the growth and progression of tumour development. A number of these 
approaches target tyrosine kinase receptors, such as the human epidermal growth factor 
receptor 2 (HER2), epidermal growth factor receptor (EGFR), vascular endothelial growth 
factor receptor 2 (VEGFR2), platelet derived growth factor receptor (PDGFR) and FGFR, 
in various ways. Acknowledging that many other tyrosine kinase receptors merit thera-
peutic targeting, this review will focus and discuss further the importance and different 
ways of targeting the FGF/FGFR axis. 

Fibroblast growth factor receptor (FGFR) signalling plays a pivotal role in a myriad 
of processes including embryonic development, cell differentiation, proliferation, wound 
healing, cell migration, angiogenesis and various endocrine signalling pathways [3]. 
Dysregulation of FGFR signalling can lead to an antiapoptotic, mutagenic and angiogenic 
response in cells, all of which are cancer hallmarks [4]. The oncogenic potential of FGFR 
signalling also lies in its potential to serve as an escape mechanism for acquired resistance 
to cancer therapy. To appreciate the therapeutic value of targeting FGFR signalling in can-
cer, we will first consider normal structure and function, then discuss how aberrant FGFR 
signalling can influence cancer progression and, finally, describe how it can be targeted. 

2. FGF(R) Structure 
In humans, the fibroblast growth factor (FGF) family comprises 22 members classi-

fied into seven subfamilies based on similarities in coding sequence, protein structure and 
biochemical function: FGF1 (FGF1 and FGF2), FGF4 (FGF4, -5, -6), FGF7 (FGF3, -7, -10, -
22), FGF8 (FGF8, -17, -18), FGF9 (FGF9, -16, -20), FGF19 (FGF19, -21, -23) and FGF11 
(FGF11, -12, -13, -14) [5–7]. Each FGF ligand comprises a conserved core region of 120 
amino acids and shares between 35% and 50% sequence homology[6] . Despite being sim-
ilar in structure, only eighteen FGFs are reported to signal via FGFR, namely FGF1 to 
FGF10 and FGF16 to FGF23 [8]. Other FGF ligands, such as FGF11 to FGF14, which also 
share a similar structure to other ligands, do not bind to these receptors but instead can 
function via voltage-gated sodium channels [9], although recent work casts doubt on this 
dogma [10]. Five FGF subfamilies (FGF1, -4, -7, -8, -9) are characterised as paracrine sig-
nalling molecules that signal by forming a three-way complex with FGFR and heparan 
sulphate proteoglycans (HSPGs). The other two subfamilies (FGF11 and FGF19) act dif-
ferently; the FGF11 subfamily act intracellularly, while FGF19 have a reduced HSPG bind-
ing affinity and bind to αKlotho and βKlotho cofactors to function in an endocrine manner 
to have an impact on adult homeostasis and metabolism [8,11]. 

FGFRs have extracellular immunoglobulin-like (Ig) domains 1–3 (D1–D3), a trans-
membrane (TM) domain, tyrosine kinase I, and II domains, a carboxyl-terminal, and an 
acidic box [12] (Figure 1). The D2 and D3 regions form a ligand-binding pocket for two 
FGF ligands and two heparin molecules [13]. The acidic box is responsible for the auto-
inhibition and regulation of optimal interactions from bivalent cations (Figure 1). The in-
teraction between the acidic box and the heparan sulphate-binding site inhibits activation 
of the receptor when FGF is absent [8,14–16]. FGF binds in the Ig2 and Ig3 domains, where 
HSPGs protect FGFs from protease-mediated degradation, thus stabilising the FGF–FGFR 
complex (Figures 1 and 2A) [17]. Hence, high-affinity FGFRs are activated upon FGF lig-
and binding. Paracrine FGFs bind strongly to HSPGs, which possess cofactor functions to 
prevent the FGFs from diffusing through the extracellular matrix (ECM) as well as regu-
lating the FGFR specificity [11,18]. 

Aside from the four main FGFR family members (FGFR1–4), there is an additional 
receptor, fibroblast growth factor receptor like 1 (FGFRL1 or FGFR5), that can bind to 
FGFs and heparin, but lacks the tyrosine kinase domain and therefore cannot signal via 
transphosphorylation [19]. FGFR1L is believed to negatively regulate FGFR signalling by 
acting as a decoy receptor that neutralises FGFs by binding to them without activating 
any downstream signalling cascade [20]. FGFRL1 is expressed mainly in musculoskeletal 
tissues and the kidney and its main function is to control the growth of the metanephric 
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kidney [21]. It is hypothesised that its function depends on Ig2 and Ig3 domains interact-
ing together with an FGF ligand and another molecule from the surface of other cells from 
their microenvironment [21]. In fact binding of FGF8 to FGFRL1 plays an important role 
in developing kidneys by driving the formation of nephrons [22]. 

 
Figure 1. Fibroblast growth factor receptor (FGFR) structure and function. FGFR possesses three immunoglobulin-like 
domains (Ig1–3), an acid box (AB), a transmembrane domain (TM), and an intracellular tyrosine kinase domain that is 
split into two (TK1 and TK2). The FGF–FGFR complex is composed by two FGFs, two FGFRs and one heparin sulphate 
proteoglycan (HSPG). The TK domains are transphosphorylated upon ligand binding between Ig2-Ig3 and receptor di-
merisation. This initiates the interaction between a network of downstream signalling molecules that can activate key 
pathways, such as MAPK, AKT, PLCγ, STAT1 and in turn regulate target genes involved in cell proliferation, migration, 
differentiation, survival, resistance to anticancer agents and neoangiogenesis. Signalling can be negatively regulated by 
SEF, FGFR-like 1 (FGFRL1), sprouty (SPRY) and MAPK phosphatase 1 and 3 (MKP1 and MKP3) at different levels. Created 
with BioRender.com (26 September 21). 
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Figure 2. Key FGFR splice variants and ligand specificity. (A) A generalised diagram representing 
the key FGFR features. (B) Splice variant at the Ig3 loop occurs in FGFR1–3. This splice variant is 
responsible for ligand binding specificity and is generated by alternative splicing at the Ig3. The first 
portion of the Ig3 is the exon “a” (exon 7) that is spliced to either exon “b” (exon 8) or exon “c” (exon 
9) and then to the exon that encodes the TM domain. The “b” isoform is mainly expressed by epi-
thelial tissues/cells, whereas the “c” isoform is expressed by mesenchymal tissues. FGFs have dif-
ferential specificity to different isoforms. (C) Splice variants can generate soluble variants without 
TK activity, truncated to one or more Ig domains and missing the TM domain. Variants lacking the 
TK domain can heterodimerise with full length FGFRs to generate nonfunctional dimers and there-
fore act as down regulators [24]. (D) FGFR4 can generate a single isoform containing the “c” exon 
(exon 9) in the Ig3 domain. (E) FGFR2 can generate a splice variant missing Ig1 and Ig3 containing 
the “b” exon (exon 8). (F) FGFR1 and FGFR2 can also generate a splice variant with truncated Ig1 
and Ig3 containing the “c” exon (exon 9). SP: signal peptide, Ig: Immunoglobulin, AB: acid box; TM: 
transmembrane domain, UTR: untranslated region. Created with BioRender.com (accessed on 26 
September 21). 
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3. FGFR Splicing 
Despite the high sequence homology between FGFR family members (55%–72%) and 

their similar structural characteristics, there are a variety of isoforms (Figure 2) [23]. FGFR 
diversity is not only attributed to the different genes that can encode FGFR1–4 and the 
multiple FGFs that can activate them, but also to the fact that FGFR genes can be alterna-
tively spliced (Figure 2). 

FGFR genes consists of 18 exons (Figure 2A). Each gene can be alternatively spliced 
and produce different mRNAs that consequently will result in FGFR protein diversity 
[25,26]. FGFRs 1–3 each can generate two splice variants of the immunoglobulin (Ig)-like 
domain 3b and 3c, which are fundamental to ligand-binding specificity during develop-
ment and are often mis-spliced in cancer [5,8,11]. Hence, there are seven main signalling 
FGFRs, FGFR1b, FGFR1c, FGFR2b, FGFR2c, FGFR3b, FGFR3c and FGFR4, encoded by 
four genes. Each specific FGFR binds to specific FGFs and most FGF ligands can bind to 
several different variants of FGFRs. The FGF binding specificity to FGFRs is regulated by 
two distinct splice variants of exon 8 and exon 9 of domain 3 (D3) [6] (Figure 2A,B). The 
splicing variant of exon 7/8 and exon 7/9 encodes the carboxyl-terminal of the domain D3, 
resulting in the -b or -c isoform [27–31]. In human tissues, the -b isoforms are confined to 
epithelial cells, with the -c isoform predominating in mesenchymal lineages [6]. The spec-
ificity of the ligand binding to FGFRs differs amongst isoforms -b and -c (Figure 2B) [6]. 
For instance, FGF4 binds to the FGFR1-3c isoform, while FGF7 binds specifically to the 
FGFR1b and -2b isoforms (Figure 2B). In conclusion, the exon rearrangement at the Ig3 
loop (D3) has a profound effect on the FGF spectrum for each receptor, with the FGFR1-
3b isoforms having a more limited binding affinity with FGFs compared to the FGFR1-3c 
isoforms (Figure 2B) [6]. 

Interestingly, it has been reported that reversible switching of the FGFR2-3b isoform 
to the -c isoform was induced by exogenous and endogenous FGF1 and FGF2. This switch 
was confluence and cell cycle dependent [32]. Altered splicing has been associated with 
cancer progression [33–35], for example during EMT [33,36]. 

FGFR1 and -2 also have another isoform -a, in which exon 7 joins directly with exon 
10, the TM domain. This truncated variant is a secreted protein that is incapable of signal 
transduction and has an autoinhibitory role [37]. In bladder cancer, the switch from the 
FGFR1a to the FGFR1b isoform increased FGF1-induced activation of the latter and was 
associated with the tumour grade and stage, likely due to it giving a proliferation ad-
vantage [38]. 

In addition, there are secreted FGFR isoforms that lack the TM domain and the entire 
cytoplasmic region [23,39,40] (Figure 2C). There are also reports of truncated FGFR 
isoforms lacking Ig1 [39–42] (Figure 2E). The truncated Ig1 isoform is known to be a high 
affinity oncogenic variant that can activate various downstream signalling pathways, due 
to the Ig1 region performing an autoinhibitory role [6,24,43,44]. Interestingly, there are 
also isoforms missing the acid box between the Ig1 and Ig2 loops (i.e., truncated Ig1 
FGFR2b and FGFR3c) [45] and other isoforms missing the carboxyl terminal [13]. In fact, 
such a variant missing the inhibitory carboxyl terminal portion of FGFR2 was expressed 
in a breast cancer cell line (SUM-52PE), along with other splice variants, with the different 
splice variants having different transforming activities [43]. Variants expressing the C3 
carboxyl terminus resulted in more autonomous signalling, cell growth, and invasion [43]. 
Recently, a novel FGFR3 splice variant was reported in African American prostate cancer 
(FGFR3-S) that was associated with a poor prognosis and increased cell proliferation and 
motility [44]. The FGFR3-S variant lacked exon 14, comprising 123 nucleotides that en-
code the activation loop in the split kinase domain [44]. FGFR4 is well defined as it is 
only produced in a single isoform homologous to the FGFR1-3c splice variant [46] (Figure 
2D). Although their properties are not well understood at present, there are also reports 
of FGFRL1 isoforms with an absent Ig1 domain with and without the acid box [47]. 
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4. FGFR Signalling 
The multiple possibilities of FGFR activation, due to the wide range of FGFs and 

FGFR isoforms, drives several oncogenic signalling pathways. Typically, two FGF mole-
cules are needed to bind to the Ig2 (D2) and Ig3 (D3) extracellular domains in the FGFR to 
drive dimerisation and activation (Figure 1). Studies on the structure of FGFR revealed 
that a 2:2 FGF–FGFR complex is formed between the FGF, D2 and D3 of the FGFR. Under 
physiological conditions FGF–FGFR interactions are not sufficient to stabilise FGFR di-
mers [14], with HSPG acting as a linker to stabilise the HSPG–FGF–FGFR complex 
[6,36,48,49]. The FGF–FGFR–HSPG complexes induce activation of downstream signal-
ling cascades; mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase 
(PI3K), phospholipase Cγ (PLCγ) and signal tranducer and activator of transcription 1 
(STAT 1) (Figure 1) [50]. 

As discussed, the specificity of FGF–FGFR binding is determined by alternative splic-
ing, ligand specificity and tissue specific expression of both FGF ligands and receptors 
[5,6]. Further control of the FGF–FGFR coupling is provided by the interaction with se-
creted proteins and plasma membrane bound receptors, such as α and β Klotho proteins 
[5,51,52], and a single-pass transmembrane Klotho-related protein (KLPH). These act as 
cofactors for the endocrine FGFs by forming an FGF–FGFR–Klotho ternary complex 
[53,54]. 

Dimerisation of the FGFR causes a conformational shift in the receptor’s structure, 
leading to a 50- to 100-fold increase in the receptor kinase activity, resulting in the phos-
phorylation through mutual transphosphorylation of numerous tyrosine residues in the 
intracellular domain. Subsequently, various protein complexes are formed to initiate 
downstream signalling transduction [4,9,11,12,55,56]. One of the adaptor proteins that 
governs the downstream signalling cascade is the v-crk sarcoma virus CT10 oncogene 
homolog (Crk) (Figure 1) [48]. Upon FGFR phosphorylation, Crk gets transiently phos-
phorylated and can be associated with son of sevenless (SOS), that in turns activates small 
GTPases [49,51,52,57]. 

Furthermore, FGFR activation can trigger the phosphorylation of the docking protein 
FGFR substrate 2 (FRS2), accompanied by the recruitment of shp2 tyrosine phosphatase. 
Phosphorylation of shp2 facilities its link with growth factor receptor-bound 2 (GRB2) and 
SOS [55,56,58–60]. The recruitment of GRB2 associated binding protein 1 (GAB1) forming 
the FRS2 complex leads to the activation of the PI3K-Ak strain transforming (AKT) path-
way, which regulates cell survival and fate [61–63] (Figure 1). Several other signalling 
molecules have also been reported to be activated by FGFRs, STATs, p90 ribosomal pro-
tein S6 kinase 2 (RSK2) and the nonreceptor tyrosine kinase Src [64–67]. The phospho-
tyrosine residues in FGFR carboxyl terminal regions confer strong and selective binding 
to src homology two (SH2) domains accommodating proteins such as PLCγ. These inter-
actions result in phosphatidylinositol 4, 5-bisphosphate (PIP2) hydrolysis to produce ino-
sitol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) [68–70]. IP3 accumulation stimu-
lates Ca2+ release from internal stores, while activation of protein kinase C (PKC) and 
MAPK pathways are facilitated by DAG [71] (Figure 1). 

With the inherent complexity of the modes of activation, transduction and biological 
output, it is not surprising that the orchestration of FGFR signalling is tightly regulated. 
We previously discussed the FGFR autoregulation via the acid box in Ig1 and its associa-
tion with ligand binding Ig2 and Ig3 domains (Figure 1). However, there are several me-
diators associated with controlling the signalling output from activated FGFRs. Some of 
the known negative regulators are sprouty proteins that are induced by FGF signalling 
(Figure 1) [72,73]. Furthermore, FRS2 can be phosphorylated by MAPK on serine and thre-
onine residues, inhibiting GRB2 recruitment and producing a negative feedback loop 
[74,75]. Other negative modulators of the FGF signalling pathway are the transmembrane 
proteins, similar expression to FGF genes (SEF), anosmin-1, fibronectin-leucine-rich trans-
membrane protein 3 (FLRT3), FGFRL1 and MAPK phosphatases (MKP) that can also in-
terfere with the activation of downstream signalling pathways [76–79] (Figure 1). In 
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addition to the above, the stimulated FGF–FGFR complex can be completely blocked by 
internalisation and subsequent lysosomal degradation. The E3 ubiquitin ligase Cbl binds 
to activated FRS2 and facilitates FGFR ubiquitination by acting as a signal for receptor 
degradation [80]. 

FGFR signalling clearly has profound direct effects on cancer cells. However, the 
FGFR axis also impacts on angiogenesis and this is an emerging field of translational med-
icine [81]. FGF2 has been heavily implicated as a proangiogenic factor, promoting endo-
thelial proliferation and migration following FGFR1/2 signalling and VEGF/angiopoietin 
2 secretion [82], and has been shown to mediate resistance to VEGFR targeted therapy in 
cancer [83]. In addition, other FGFs, such as FGF5 and FGF18, can promote angiogenesis 
through endothelial FGFR activation [84,85]. Interestingly, a recent study revealed an as-
sociation of an FGFR1 mutation with spontaneous haemorrhage in paediatric and young 
adult low grade glioma, though the specific mechanism remains unclear [86]. In urothelial 
carcinomas, FGFR3 was able to induce a proangiogenic phenotype, suggesting that con-
stitutive activation of FGFR3 may be able to potentiate growth factor signalling in the tu-
mour microenvironment and implicating FGFR3 as a potential therapeutic target from an 
antiangiogenic perspective [87]. As with other behaviours, the effects of FGFR signalling 
can be context specific. In an embryoid body model, FGFR1 negatively regulated angio-
genesis by altering the balance of cytokines, such as interleukin-4 and pleiotrophin [88]. 

5. Examples of the Involvement of FGFR Signalling in Development 
Before discussing how FGFR signalling can drive cancer, it is important to under-

stand how it is involved in development and why such a pleiotropic and dynamic path-
way can be key in disease development. FGFR signalling plays a fundamental role in cell 
proliferation and migration. However, during embryonic development, FGF signalling 
regulates differentiation and the cell cycle. FGF signalling is important as early as in the 
preimplantation of embryos in mammals. For example, FGF4 is expressed in the morula 
and then in epiblast cells of the inner cell mass [89] and facilitates cell proliferation and 
the formation of the ectoderm [90,91]. There are reports of FGFR1 and FGFR2 in the inner 
cell mass and FGFR2 also in the embryonic ectoderm [92]. Later in development it has a 
vital role in organogenesis, particularly regulating the reciprocal crosstalk between epi-
thelial and mesenchymal cells [93,94]. For example, FGFR2 plays an important function in 
both the ectoderm and mesenchyme during limb development [7]. More broadly, mesen-
chymal cells express FGFs, such as FGF4, 7, and 10, leading to downstream signalling 
activation through the epithelial 3b splice variant of FGFR1 and -2 in the epithelium and 
as a result, facilitate lung, salivary gland, intestine and limb development [95–97]. In con-
trast, epithelial tissue can secret FGFs 8 and 9 that activate FGFR1 and FGFR2-3c isoforms 
in the mesenchymal tissue [98,99]. However, organogenesis is not always driven exclu-
sively via paracrine loops [11]. During development of the central nervous system, FGF8 
signals in the anterior neural primordium by acting as an autocrine/paracrine factor in the 
development of the inner ear [100]. The differentiation of the cochlear sensory epithelium 
is regulated by autocrine/paracrine FGF signalling [101]. More recently it was found that 
FGFR can interact with N-Cadherin and activated FGFR that in turn facilitates migration 
of neocortical projection neurons [102]. FGFRs could regulate multipolar neuronal orien-
tation and change them into bipolar cells to enter the cortical plate [102]. 

Given the importance of FGF signalling to development, it is unsurprising that mal-
function can lead to developmental defects. The absence of FGFR1 in genetically modified 
mice leads to early growth defects [103]. Activated FGFR germline mutations can lead to 
skeletal disorders, such as a mutation in FGFR3 which can lead to growth defects and 
human dwarfism achondroplasia (ACH) [104,105]. A variety of inherited syndromes are 
caused by germline irregularities in FGFR [106]. Furthermore, mutations, especially in 
FGFR2, can lead to craniofacial malformation syndromes [107]. 
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6. Aberrant FGFR Signalling in Cancer 
The pleiotropic function of FGFR and its involvement in crucial physiological pro-

cesses makes the FGFR signalling pathway a good candidate for facilitating cancer pro-
gression. In this section we will highlight the different ways FGFR signalling can be in-
volved in the pathogenesis of cancer (Figure 3) and briefly give examples of FGFRs’ ge-
netic alterations in different cancers (Figure 4). 

One way of facilitating malignant progression via FGFR signalling is via a corrupted 
autocrine/paracrine loop and exon switching. Dysregulation of FGF secretion and FGFR 
expression in stromal and cancer cells can be a driving force in cancer progression. Many 
FGFs and their elevated levels are associated with cancer progression, for example FGF1, 
-2, -6, -8, -10, -19 and -23 [108–118]. Interestingly, FGFs are implicated in EMT in cancer by 
attributing mesenchymal characteristics in epithelial cells [119–121]. In some cases, 
growth factors (e.g., FGFs) are produced and secreted by one type of cell (for example 
stromal cells) and stimulate via paracrine signalling another type of cell to signal cell func-
tions, such as proliferation, differentiation and migration [1]. 

 
Figure 3. FGFR dysregulations. There are several mechanisms of oncogenic FGFR function. (A) Gene amplification results 
in accumulation of FGFRs that usually translate into protein overexpression and activation of the FGFR axis. (B) Gain of 
function mutations can lead to constitutive FGFR activation with or without FGF binding. (C) Corrupted autocrine and 
paracrine loops, either via alternative splicing affecting ligand binding specificity or FGFRs getting overstimulated by 
FGFs produced in an autocrine fashion, by the cancer cells themselves, or by the tumour microenvironment, in a paracrine 
fashion. (D) Chromosomal rearrangements can lead to the creation of hybrid oncogenic FGFRs by fusing with binding 
partners at the carboxyl or amino termini. Created with BioRender.com (accessed on 07 November 2021). 
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Figure 4. FGFR1–4 genetic alteration in cancer. Genetic alterations by cancer type and mutations of FGFR1 (A), FGFR2 (B), 
FGFR3 (C) and FGFR4 (D) were found in 662 (~6%), 360 (~3%), 351 (~3%) and 285 (~3%) patients, respectively out of 10,953 
in total using cBioPortal. Mutation diagram circles and histograms are coloured with respect to the corresponding muta-
tion types: Green = gene mutations; purple = structural variants; blue = deep deletions; grey = multiple alterations; red = 
gene amplifications. The lollipop diagrams of each FGF receptor (FGFR1–4), below each histogram, represent the mutation 
types in relation to the gene location (i.e., missense, truncating, in-frame, splice, SV/fusion). In the case of different muta-
tion types at a single position, the colour of the circle is determined with respect to the most frequent mutation type. 

However, cancer cells can synthesise FGFs and create a positive feedback loop via 
autocrine signalling. For example, in breast and non-small cell lung carcinomas, FGF2 and 
FGF9 are expressed and activate their respective FGFRs in the same cells [122,123]. Fur-
thermore, FGF10 has been implicated as a key paracrine signal in breast, pancreatic, stom-
ach, skin, lung and prostate cancer [108,124]. 

The specificity of FGF ligands can be altered through isoform switching and alterna-
tive splicing of FGFRs, thereby increasing the range of FGFs that can stimulate cancer cells, 
depending on the FGFR isoforms they express [8,35]. For example, alternative splicing of 
FGFR1 is associated with a high tumour grade and stage in bladder cancer [38]. Similarly, 
FGFR1 alternative FGFR1α/FGFR1β splicing was found to play a key role in breast cancer 
[34] and FGFR3 splicing promoted aggressiveness in prostate cancer [125]. 

Deregulation of negative regulators of the FGFR axis can also contribute to aberrant 
FGFR signalling in cancer. For example, SEF and SPRY expression levels are associated 
with breast, prostate, ovarian and thyroid cancer progression, with high grade carcinomas 
expressing lower levels of these negative FGFR regulators [126–128]. In contrast, a recent 
study reported that loss of SPRY1 improved the response to targeted therapy in melanoma 
[129] and suppression of SPRY1 inhibited triple-negative breast cancer malignancy via 
enhancing the estrogen growth factor and its receptor (EGF/EGFR) mediated mesenchy-
mal phenotype [130]. 

Genetic alterations of FGFR can also dysregulate signalling and contribute towards 
malignant progression. Next-Generation Sequencing (NGS) analysis of 4853 tumours re-
vealed FGFR aberrations in 7.1% of cancers [131]. More specifically, 66% of the aberrations 
were gene amplification, 26% were gene mutations and 8% were rearrangements [131]. A 
recent study on advanced urothelial cancer using NGS to analyze cell-free DNA from the 
plasma of 997 patients, revealed that 20% had FGFR2 and FGFR3 genomic alterations, of 
which 14% were activating mutations [132]. 

6.1. Activating Mutations 
The most common types of genetic variation are single nucleotide polymorphisms 

(SNPs). FGFR2 harbours one of the first SNPs to be identified as a breast cancer suscepti-
bility locus by Genome-Wide association studies (GWAS) [133,134]. Risk alleles of various 
SNPs found in FGFR2, they are associated with ER-positive cancers [135], increased 
FGFR2 expression [136], lymph node metastasis in breast cancer [137] and radiation-in-
duced breast cancer risk [138]. More recently another study identified an FGFR2 SNP that 
was linked with susceptibility to breast cancer in a Chinese population [139]. However, 
only a few SNP loci are confirmed in FGFR1 that correlate significantly with a breast can-
cer predisposition [140]. In contrast, a more recent study correlated three FGFR1 SNPs to 
reduced breast cancer risk [141]. SNPs in FGFR4 but not in FGFR3 were strongly correlated 
with breast cancer [142]. In breast cancer patients, FGFR4 and FGFR2 SNPs were previ-
ously suggested to be candidate pharmacogenomic factors to predict the response to 
chemotherapy [143]. Notably, SNPs in the FGF/FGFR axis (FGF1, FG18, FGF7, FGF23 and 
FGF5) were also associated with an increased risk of ovarian cancer [144]. 

A number of germ line activating point mutations in FGFR1, -2 and -3 are found in 
prostate, breast, bladder, endometrial, brain, lung, uterus, cervical, stomach, head and 
neck, colon and melanoma cancers (as reviewed by [145]). These mutations can alter the 
ligand binding, juxtamembrane and kinase domains and constitutively activate FGFR or 
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impair FGFR degradation, leading to increased FGFR signalling (as reviewed by [111,145–
147]. FGFR4 activating mutations are not detected very often, apart from in rhabdomyo-
sarcoma [148] and gastric cancer [149]. Interestingly, some of the activating mutations can 
result in changes in the efficacy of several inhibitors that can target FGFR, such as 
AZD4547, BGJ-398, KTI258, AP24534 and JNJ42756493 [150]. 

6.2. FGFR Gene Amplification and Overexpression 
Elevated FGFR levels can be achieved either via chromosomal amplification or aber-

rant transcription (Figure 3). In cancer, distinctive FGFR abnormalities are known such as 
the amplification of genes or post-transcriptional regulation, contributing to overexpres-
sion of the receptor. Mutations in FGFRs could generate receptors that are either consist-
ently active or may demonstrate a reduced necessity of activation through ligand binding 
[11]. The most common abnormalities in malignancies are due to gene amplification of 
FGFR1, -2 and -3, as well as FGF ligands. Several studies have highlighted that FGFR is 
amplified in various cancers. For example, FGFR1 expression is amplified in bladder, oral, 
oesophageal squamous, NSCLC, prostate and ovarian cancers [151–154]. FGFR1 amplifi-
cation and overexpression was observed in some patients with lymph node metastasis 
and advanced pathological stages of hypopharyngeal and laryngeal squamous cell carci-
noma [155]. In addition, hormone receptor positive breast cancer patients with metastatic 
disease had FGFR1 amplification that was associated with a shorter time to progression 
on first line endocrine therapy [156]. Furthermore, it was suggested that FGFR1 amplifi-
cation grants resistance to estrogen receptor (ER), PI3K, mammalian target of rapamycin 
(mTOR) and cyclin-dependent kinase (CDK)4/6 inhibitors [157]. FGFR2 amplification in 
gastric cancer is associated with a poor prognosis and response to chemotherapy [158]. 

6.3. Chromosomal Translocation 
The exchange of chromosomal arms (or segments) between heterologous chromo-

somes, known as chromosomal translocation, is a type of structural chromosomal abnor-
mality that results in fusion genes/proteins. The generated fusion proteins can have onco-
genic properties. Chromosomal translocations in FGFRs have about an 8% incidence rate 
[131]. There are two types of FGFR gene fusions: (1) when only the FGFR tyrosine kinase 
domain is fused to the 5′ end of the fusion protein (the extracellular and transmembrane 
domain portion of the FGFR is missing from the fusion protein), therefore is constitutively 
dimerised and active; (2) when the whole FGFR remains intact and acts as the 5′ fusion 
gene that will bind to its partner at the 3′ end of the FGFR [147]. 

The first reports of FGFR fusion genes were in haematological malignancies. The 
FGFR kinase domain was fused with the N terminus of transcription factors such as ETV6, 
ZNF198 and BCR in lymphoma/leukaemia patients with myeloproliferative disorder stem 
cell syndrome [159–162]. A recent study reported EVT6-FGFR2 fusion protein in a mixed 
phenotype (T-myeloid/lymphoid) acute leukaemia, that resulted in aberrant FGFR2 tyro-
sine kinase expression and was correlated with aggressive clinical behaviour and a poor 
response to therapy [163]. FGFR1, FGFR2 and FGFR3 fusions are also identified in solid 
tumours, such as lung, colorectal, glioblastoma, breast, head and neck, bladder, cervical 
cancer and cholangiocarcinoma (as reviewed by [164]). A common fusion is FGFR3 with 
transforming acidic coiled-coil 3 (TACC3) that induces a constitutive phosphorylation of 
the tyrosine kinase domain and therefore activation of downstream MAPK and STAT1 
pathways that further leads to increased metastatic cell behaviour (e.g., cell proliferation) 
[165–167]. There are several identified binding partners for FGFR2, some of them are 
TACC3 and CCDC6 in cholangiocarcinoma [166,168] and BICC1 in hepatocarcinoma and 
colorectal cancer [169]. Examples of FGFR1 fusion partners are HOOK3 in gastrointestinal 
stromal tumour, TACC1 in glioblastoma and ZNF703 in breast cancer [167,170–172]. A 
recent genomic profiling study identified ANO3 and NSD1 as fusion partners for FGFR4 
in non-small cell lung cancer [173]. Although FGFR fusions are relatively rare in human 
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cancers it might be of interest to identify how patients with FGFR fusions respond to ther-
apy targeting the tyrosine kinase (TK) domain of FGFR. 

7. Nuclear FGFR in Cancer 
FGFRs have been shown to signal via the cell membrane and endosomal compart-

ments via downstream signalling pathways. However, studies have suggested that other 
TK receptors as well as FGFRs and FGFs, can target the nucleus and carry out functions 
that might not be dependent on tyrosine kinase activity [174–182]. Examples of nuclear 
FGFs are FGF1, that stimulated DNA synthesis, and FGF2 that was associated with in-
creased cell proliferation in glioma cells and invasion in pancreatic cancer [11,183,184]. 
Both FGFR1 and FGFR2 have been reported to function in the nucleus [183,185,186]. Nu-
clear FGFR2 was recently found to negatively regulate hypoxia-induced cell invasion in 
prostate cancer [187] and nuclear FGFR1 was positively corelated with pancreatic and 
breast cancer progression [178,179]. 

Although there are strong indications, it is still not fully understood how FGF(R)s 
travel to the nucleus and what their mode of action is once there. Several researchers have 
highlighted the mechanisms by which full length TK receptors translocate via the cell 
membrane to the nucleus. For example, upon binding of the ligands, the activated recep-
tors get internalised to the early endosomal compartments either via the vesicular path-
way or after retro-translocation from the endoplasmic reticulum (ER) to the cytosol 
[181,188–190]. The molecular mechanism by which the receptor escapes the endosomal 
pathway to travel to the nucleus remains elusive and conflicting data point to different 
trafficking possibilities. One of the possible mechanisms for nuclear translocation of full 
length FGFR involves retro-translocation of FGFR from the ER/Golgi apparatus [183]. 
Typically, after co-translational insertion into the ER membranes, FGFR1 traffics via the 
vesicular transport systems through the Golgi apparatus to reach the plasma membrane 
[185,191]. This process may be accompanied by retro-translocation of the pool of FGFR 
into the cytosol, with FGFR1 undergoing retrograde transport via the sec61 channel, sim-
ilarly to ER-associated protein degradation [183]. Once in the cytosol, FGFRs interact with 
ribosomal S6-kinase 1 and FGF2 which facilitates receptor transport to the nucleus to di-
rectly regulate gene expression [185,191]. Full length FGFR is a molecule too large to pass 
through the nuclear membrane via diffusion, and another mechanism involves the full-
length receptor in the cytoplasm activating the importin beta pathway to enter the nucleus 
[176]. The nuclear receptor can then interact with other nuclear proteins to control tran-
scription [185,192,193]. 

An alternative is that the nuclear trafficking of the receptor is dependent on proteo-
lytic cleavage of the intracellular domain allowing translocation to the nucleus of the un-
restricted cytoplasmic portion [179,194]. There are several mechanisms utilised by tyro-
sine kinase receptors to reach the nucleus, but generation of nuclear RTK fragments via 
alternative splicing of the receptor or proteolytic cleavage of FGFRs/RTK with caspases, 
secretases, granzymes and other proteases (e.g., ADAM10/15/17) [179,184,186,188], are in-
creasingly reported. The FGF receptor can be present in a cleaved form before trafficking 
to the nucleus, and there are indications suggesting this proteolytic pathway might be 
FGFR kinase activity-dependent [179]. Previous studies indicated that Notch1 and FGFR1 
can be cleaved by Granzyme B (GrB) [189]. In breast cancer cells, FGFR activation-depend-
ent cleavage of FGFR1 generates a C-terminal fragment that can translocate to the nucleus 
and control the expression of target genes [179]. Nuclear FGFR1 could control the onco-
genic networks involved in organ development, tissue and cell pluripotency, cell cycle, 
cancer related TP53 pathway, neuroectodermal and mesodermal programming networks, 
axonal growth and synaptic plasticity pathways [190]. 

Therefore, there might be a novel mechanism by which FGFR signalling can control 
metastatic cancer cell behaviour. This further suggests a potentially novel therapeutic tar-
get for invasive cancer treatment. 
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8. Targeting FGFR Signalling in Cancer 
One of the main obstacles in cancer therapy is chemoresistance and radioresistance. 

There is evidence highlighting the possible role of the FGFR axis in the development of 
drug resistance. For example, overexpression of FGF2 and FGF1 are linked with both in 
vivo and in vitro resistance to cancer drugs such as doxorubicin, 5-fluorouracil and 
paclitaxel [195]. Interestingly, a pan-FGFR inhibitor (BGJ398) was able to overcome 
paclitaxel resistance in FGFR1 expressing urothelial carcinoma [192]. Another study iden-
tified FGFR4 as a targetable element of drug resistance in colorectal cancer [193]. Increased 
FGFR1 and FGF3 expression was correlated with a poor response to anti-HER2 treatment 
in breast cancer patients, and this was overcome using a combination therapy of FGFR 
inhibitors together with lapatinib and trastuzumab [196]. Overexpression of FGFR3 was 
also linked with tamoxifen resistant breast cancer [197]. In afatinib-resistant non-small cell 
lung cancer cells, overexpression of FGFR1 and FGF2 played a role in overcoming cell 
survival by compensating the loss of the estrogen growth factor receptor (EGFR)-driven 
signalling pathway [198]. In addition, gefitinib sensitivity was also restored in non-small 
cell lung cancer cells when FGF2 and FGFR1 were inhibited via siRNA and treatment with 
a small molecule inhibitor, PD173074, suggesting FGFR activation as a potential mecha-
nism of acquired resistance to EGFR-TKs [199]. In FGFR1 amplified lung cancer, a combi-
nation therapy approach overcame resistance to treatment with an FGFR inhibitor [200]. 
In EGFR-dependent cancers of multiple cell lineages, FGFR3-TACC3 fusion proteins are 
also characterised as “naturally occurring drivers of tumour resistance” by reactivating 
EGFR/ERK signalling [201]. Considering all the evidence together, this highlights the im-
portance of targeting the FGFR axis in combination therapies tailored for different cohorts 
of patients. 

Therapeutic targeting of FGFs and their receptors is a key area of drug development. 
Several drugs targeting FGF pathways are currently under clinical investigation (Table 1). 
However, abrogating FGFR signalling can be accomplished by targeting the diverse com-
ponents present in the pathway, which include the ligands, receptors as well as the prod-
ucts of the downstream signalling pathway [61] (Figure 5). Nevertheless, converting 
knowledge into a treatment for patients has proven challenging as even specific inhibitors 
targeting FGFR have off-target effects [202–204]. Hence, further research is necessary to 
determine the mechanisms of effective targeting of FGFR signalling in cancer without ob-
structing its fundamental functions in healthy cells. 

Table 1. Phase 3 Interventional clinical studies targeting FGF receptors in cancer. Currently there are no phase 4 clinical 
trials, however, there are over 90 phase 1 and 2 clinical trials targeting FGFR in different types of cancers, and a number 
of phase 3 trials not yet recruiting. FGFR inhibitors are indicated in bold. 

NCT Number Title Conditions Interventions Enrolment 

NCT03390504 

A Study of Erdafitinib compared 
with Vinflunine or Docetaxel or 
Pembrolizumab in participants 
with advanced urothelial cancer 
and selected Fibroblast Growth 
Factor Receptor (FGFR) gene ab-

errations 

Urothelial Cancer 
Erdafitinib, Vinflunine, 

Docetaxel, Pembroli-
zumab 

631 

NCT04197986 

Study of oral Infigratinib for the 
adjuvant Treatment of subjects 
with invasive urothelial carci-

noma with susceptible FGFR3 ge-
netic alterations 

Upper Tract Urothelial 
Carcinomas, Urothelial 

Bladder Cancer 
Infigratinib 218 
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NCT04093362 

Futibatinib versus Gemcitabine-
Cisplatin chemotherapy as first-

line treatment of patients with ad-
vanced cholangiocarcinoma har-

boring FGFR2 gene rearrange-
ments 

Advanced Cholangiocar-
cinoma; FGFR2 Gene Re-

arrangements 

Futibatinib, Cispla-
tin/Gemcitabine 

216 

NCT03773302 

Phase 3 study of BGJ398 (Oral In-
figratinib) in first line cholangio-
carcinoma with FGFR2 gene fu-

sions/translocations 

Advanced Cholangiocar-
cinoma, FGFR2 Gene 

Mutation 

Infigratinib, Gemcitabine, 
Cisplatin 300 

NCT03656536 

A study to evaluate the efficacy 
and safety of Pemigatinib versus 
chemotherapy in unresectable or 
metastatic cholangiocarcinoma 

Unresectable Cholangio-
carcinoma, Metastatic 
Cholangiocarcinoma 

Pemigatinib, Gemcita-
bine, Cisplatin 432 

NCT03784014 Molecular profiling of advanced 
soft-tissue sarcomas Soft Tissue Sarcoma 

Nilotinib, Ceritinib, Cap-
matinib, Lapatinib, Tra-
metinib, Combination of 
Trametinib and Dabraf-

enib, Combination of 
Olaparib and Durval-
umab, Palbociclib, Fu-

tibatinib 

960 

 
Figure 5. Targeting the FGFR axis. Aberrant FGFR signalling can contribute to cancer progression and therefore targeting 
FP-1039. can also block the FGF–FGFR interaction and therefore prohibit FGFR activation. In addition, ligand binding 
inhibitors that act as antagonists (e.g., PI-88 and sm27) can prevent FGFR activation. Monoclonal antibodies targeting 
specific FGFR isoforms (e.g., MFGR1877s by Genentech) can also have anti-tumour activity. Created with BioRender.com 
(12 November 21). 

The FGFR targeting field has progressed significantly, as novel agents inhibiting FGF 
ligands or using monoclonal antibodies and FGF ligand traps have been developed as 
well as using FGFR non-selective and selective inhibitors (Figure 4). The ATP-competitive 
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small molecules were the first FGFR inhibitors [205,206]. PDGFR and VEGFR share com-
parable structural homology to FGFRs, hence these inhibitors can act as multitarget tyro-
sine kinase inhibitors (TKIs) as they also bind and act on the conserved ATP-binding re-
gions. 

One of the non-selective FGFR TKIs is dovitinib (TKI 258, Novartis, Basel, Switzer-
land), which is in phase II/III clinical trials, and this has been shown to have a strong af-
finity to FGFR3 resulting in the inhibition of downstream signalling, blocking cell prolif-
eration and promoting apoptosis [61,207]. Dovitinib likewise inhibits other members of 
the TK family due to a lack of drug specificity including FGFR1, PDGFR and VDGFR [208–
210]. A pilot study evaluated the efficacy of an orally bioavailable multitargeted tyrosine 
kinase inhibitor, ponatinib, that inhibits all FGFRs as well as other kinases (such as KIT, 
RET, SRC, VEGFR and PDGFR) [211,212]. Their findings demonstrated a clinical benefit 
response in over 45% of the patients, suggesting a potential antitumour activity of 
ponatinib in biliary tract cancer patients with altered FGFR2 [212]. AZD4547 (Astra-
Zeneca, Cambridge, UK) is a highly potent selective FGFR1-3 inhibitor. Phase I/II clinical 
trials have indicated that AZD4547 can target cancers, such as gastric/esophagogastric, 
bladder, gastric adenocarcinoma, lung and breast, with FGFR1 and -2 amplifications [213–
220]. A recent detailed literature review using a wide range of databases and utilising a 
systematic review approach, demonstrated that clinical trials using selective FGFR inhib-
itors (i.e., erdafitinib JNJ 42756493, Infigratinib BGJ398, Rogaritinib BAY 1163877, 
PD173074, BLU9931, AZD4547, Pemigatinib INCB54828, LY2874455, DEBIO 1347, Fu-
tibatinib TAS-120) in advanced urothelial cancer had significant antitumour activity [221]. 

Infigratinib (a pan-FGFR kinase inhibitor) was evaluated in a phase 2 study for biliary 
tract carcinoma with FGFR alterations, with all responsive tumours containing FGFR2 fu-
sions. The overall response rate for FGFR2 fusions was 18.8% and the disease control rate 
was 83.3% with an estimated median progression-free survival of 5.8 months [222]. Cur-
rently there are seven phase 1 and 2 clinical trials evaluating Infigratinib in gastric, ade-
nocarcinoma, breast, advanced malignant solid neoplasm, bladder, renal pelvis and ureter 
urothelial carcinoma, advanced cholangiocarcinoma and glioblastoma (NCT05019794, 
NCT04504331, NCT04233567, NCT04972253, NCT04197986, NCT04228042, 
NCT02150967, NCT04424966). Most importantly, there are two phase 3 clinical trials in-
vestigating Infigratinib as a possible cancer treatment for upper tract urothelial carci-
noma/urothelial bladder cancer (NCT04197986) and advanced cholangiocarcinoma 
(NCT03773302). 

In trials using Erdafitinib (another a pan-FGFR kinase inhibitor), the rate of con-
firmed response in advanced metastatic urothelial carcinoma was 40%, with the median 
duration of progression-free survival at 5.5 months, and median duration of overall sur-
vival at 13.8 months [223]. In a phase 2 study on cholangiocarcinoma patients with FGFR 
alterations, it was reported that the disease control rate was 83.3% and median progres-
sion free survival was 5.59 months. In 10 evaluable FGFR2+ patients the disease control 
rate was 100% and the median progression-free survival was 12.35 months [224]. Cur-
rently, there are nineteen phase 1 and 2 clinical trials on Erdafitinib and cancers such as 
breast, bladder/urinary bladder, lung, advanced solid tumours, urothelial, prostate, and 
multiple myeloma (NCT03238196, NCT04917809, NCT04172675, NCT02699606, 
NCT04083976, NCT02365597, NCT03547037, NCT03999515, NCT04754425, 
NCT05052372, NCT03827850, NCT03210714, NCT03473743, NCT04963153, 
NCT03955913, NCT03088059 NCT02925234, NCT02465060, NCT03732703, 
NCT03155620). There is also a phase 3 clinical trial evaluating Erdafitinib in urothelial 
cancer (NCT03390504). 

Another pan-FGFR inhibitor, Rogaratinib, showed excellent in vivo efficacy in FGFR 
overexpressing preclinical cancer models [225]. There are five phase 1 and 3 clinical trials 
studying Rogaratinib in breast, lung, gastrointestinal stromal, urothelial, and squamous 
cell head and neck cancers (NCT04483505, NCT03762122, NCT04595747, NCT03473756, 
NCT03088059). 
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Therapeutic monoclonal antibodies have been established with the rationale that 
they could target FGF ligands and FGFR isoforms with a high specificity, hence offering 
an alternative to inhibitors that might have side effects [226,227]. Antibodies can compro-
mise the other benefit of employing the immune system to synergise with the antitumour 
activity via antibody-dependent cellular cytotoxicity or complement-dependent cytotoxi-
city. A number of anti-FGFR monoclonal antibodies have also been considered in preclin-
ical studies [228,229]. Human anti-FGFR3 mAb, MFGR1877S (Genentech), is a monoclonal 
antibody against FGFR3 and has been used against multiple myeloma and MFGR1877S 
and has also shown antitumour activity for overexpressed FGFR3 in preclinical models of 
bladder cancer [221,229–233]. Phase I clinical trials of MFGR187S have been carried out in 
t(4;14) translocated multiple myeloma patients [233]. Furthermore, GP369 is a specific and 
potent anti-FGFR2b monoclonal antibody that suppresses phosphorylation and the 
downstream signalling induced by ligand binding. FGFR2 activated signalling in mice 
significantly inhibited the growth of human cancer xenografts in the presence of GP369 
[234,235]. 

Antibodies against FGF2 and FGF8 have also shown promising results in inhibiting 
tumour progression and angiogenesis [236,237] A human single-chain variable fragment 
(ScFvs; 1A2) that binds to human FGF2 was identified via screening of a human scFv 
phage library [238]. This purified antibody inhibited various biological functions of FGF2, 
such as proliferation/growth, migration and tube formation of human umbilical vein en-
dothelial cells and apoptosis in glioma cells in vitro [238]. 

An alternative method of inhibiting FGFR signalling is via a ligand trap to isolate 
FGF ligands preventing them from binding to and activating FGFRs [112,239,240]. FP-1039 
(GlaxoSmithKline, GSK3052230) is a soluble fusion protein that consists of an extracellular 
FGFR1-IIIc domain fused to the Fc portion of IgG1 that inhibits the binding of FGF1, -2, 
and -4 to FGFR1 and has shown promising results in solid tumours [241–243]. Other FGF2 
antagonists are small molecules such as sm27, PI-88, pentosan and pentraxin-3 [8]. Be-
cause of the ability to bind to heparin/heparan sulphate, chemical compounds mimicking 
heparin (i.e., suramin) could antagonise FGF2 binding and inhibit its action [244]. Peg-
interferon alpha-2b was also able to suppress the plasma FGF2 level in melanoma patients 
with metastasis and gave a clinical response [245]. FGF2-induced angiogenesis was also 
inhibited by sulfonic acid polymers such as PAMPS, small molecules such as sirolimus, 
PI-88, thalidomide, suramin and platelet factor 4 protein (as reviewed by [246]). 

Not much is known about the mechanism by which FGFR inhibitors induce cell 
death. Recent work on endometrial cancer showed that FGFR inhibitors (Infigratinib, 
AZD4547 and PD173074) caused mitochondrial depolarisation, cytochrome c release and 
impaired mitochondrial respiration in two FGFR2-mutant endometrial cancer cell lines 
(AN3CA and JHUEM2). However, they did not detect caspase activation following FGFR 
inhibition. When they were treated with the pan-caspase inhibitor (Z-VAD-FMK) they did 
not prevent cell death, suggesting that the cell death was caspase-independent [247]. Bcl-
2 inhibitors enhanced FGFR inhibitor-induced mitochondrial-dependent endometrial 
cancer cell death [247]. Interestingly, in another study, Infigratinib induced cell death in 
non-small cell lung cancer cells (H1581) by activating the caspase-dependent mitochon-
drial and non-mitochondrial pathway [239]. In high-grade bladder cancer cells, a combi-
nation treatment with Infigratinib and a novel histone deacetylase inhibitor (OBP-
801/YM753/spiruchostatin A), inhibited cell growth and markedly induced apoptosis, by 
activating caspase-3, -8 and -9. Interestingly, a pan-caspase inhibitor (Z-VAD-FMK) sig-
nificantly reduced the apoptotic response to the combined treatment. The combination 
treatment was shown to be at least partially dependent on Bim [240]. 

9. Conclusions 
Even though drugs targeting tyrosine kinase activity (e.g., HER2, FGFR, EGFR, 

VEGFR2), can prolong survival by inducing cancer regression, the lack of selectivity to a 
single target and/or development of drug resistance remains a problem. The 
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heterogeneous nature of cancer, the involvement of the tumour microenvironment, to-
gether with the pleiotropic way FGFR signalling functions, highlights the need for a more 
personalised approach in cancer treatment and combination therapies. Experimental data 
and clinical trials focusing on targeting the FGFR axis have demonstrated positive out-
comes. An awareness of FGFR genetic alterations or the FGFR mode of action in cancer 
patients (e.g., whether FGFR acts via a paracrine or autocrine mechanism in a specific 
tumour) is important for tailoring combinations of targeted therapies aiming at the FGFR 
axis. For example, using small molecule FGFR inhibitors, RNA based drugs, FGF traps 
and humanised/human anti-FGFR monoclonal antibodies in combination with targeting 
the immune system and/or other signalling pathways. A better understanding of FGFR 
biology could also help in identifying the mechanisms of drug resistance to FGFR inhibi-
tors and facilitating their bypass. Developing diagnostic assays to screen patients for FGF 
and FGFR status for a targeted approach might help improve treatment efficacy. 
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