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Abstract  
 
Where did the national U.S. house price boom-bust that triggered the Global 
Financial Crisis come from? In this thesis I show that approaching U.S. housing 
as a network of sub-national markets with their own non-trivial intrinsic 
dynamics helps us to understand the character and timing of housing market 
instability, both at the sub-national and national levels.  

A detailed empirical analysis of U.S. house prices across historical time (Jan 
1975 - Jun 2020) and geographical space reveals striking spatio-temporal 
patterns in the data. I argue these empirical results are hard to account for 
within existing theoretical frameworks (idiosyncratic shocks or bubbles), but 
are consistent with the intrinsic cyclicality of local markets combined with local 
spatial dependence between cycles in neighbouring markets. I show that a 
simple model based implementation of this hypothesis is able to easily replicate 
my key empirical results. 

My first thesis paper shows, using wavelet spectra of state level price series, 
that state level markets exhibit evidence of a permanent c.10 year cycle 
component over the entire historical sample period. My next two papers 
introduce instantaneous phase based methods as a spectrally focussed dynamic 
framework within which to study the relative timing of these cycles. I show that 
permanent cycles at the state level, whilst asynchronous during earlier periods, 
synchronised dramatically from the mid 1990s (coinciding with important 
shifts in housing finance in the U.S.), and that this synchronisation of cycles 
contributed significantly to the historically unprecedented national house price 
boom-bust of the 2000s. Moreover my analysis shows a clear and stable 
“traveling-wave” pattern in the relative timing of local cycles across markets 
over the entire historical sample period. My fourth paper investigates the 
relationship between the timing of “bubbles” and of cycles: combining bubble 
date-stamping strategies employed in the empirical bubble literature with 
instantaneous phase information obtained via complex wavelet analysis, I show 
a systematic relationship between the phase of the permanent cycle component 
and the timing of explosive bubble and collapse episodes. This result suggests 
that the underlying price cycles influence the likelihood a bubble may emerge 
or burst.  In my fifth paper I show that both the synchronisation of cycles over 
time and the specific spatial patterns documented by my empirical analysis are 
easily reproduced in a simple model of endogenous local speculative house 
price cycle dynamics extended to a spatial network setting – in which price 
expectations are partly influenced by neighbouring markets. I argue, 
nevertheless, that my empirical results suggest shifts in housing finance may 
have played an important role in the synchronisation of U.S. housing cycles that 
I document. 

Taken together these different empirical and theoretical contributions 
suggest a possible significant paradigm level re-interpretation of U.S. housing 
market instability, with distinctive implications for theory, methods, policy and 
finance. 
 
JEL Classification: C33, E32, R30 
Keywords: housing cycles; synchronisation; ripple effect/spatial diffusion; housing 
bubbles. 
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1 Introduction 
 
 
1.1 Overview 
 

This thesis presents a series of empirical and theoretical contributions on the 
dynamic character of U.S. housing market instability. 

The U.S. experienced a dramatic national housing boom-bust during the 2000s 
(widely believed to have triggered the Global Financial Crisis) and has a long 
history of housing boom-bust at the sub-national level. The type of forces and 
mechanisms driving this has been and remains the subject of intense debate. A 
key question has been whether fluctuations are principally driven by shocks or 
exhibit temporary bubble dynamics. In either case, this leads to a view of housing 
market fluctuations as irregular and episodic. This view has implications for how 
we interpret and analyse housing cyclicality at different spatial scales of 
aggregation, as well as spatial dynamics in housing market data. In particular, 
under this view of housing fluctuations as irregular and episodic, what does not 
average out is assumed to reflect some common national shock or bubble 
component1 - thus the national boom-bust of the 2000s has motivated huge 
interest in aggregate factors that could potentially explain house prices over this 
period. 

In this thesis, I make a detailed empirical analysis of U.S. house prices across 
historical time (Jan 1975 - Jun 2020) and geographical space, revealing: a 
periodic component to state level house price dynamics; the synchronisation of 
cycles over time; and striking spatio-temporal patterns in the relative timing of 
cycles in different markets. I argue these empirical results are hard to account for 
with standard irregular shock or bubble hypotheses, but are consistent with the 
intrinsic cyclicality of local markets combined with local spatial dependence 
between cycles in neighbouring markets. I show that the key empirical results I 
obtain are easily reproduced in a simple model of endogenous local speculative 
house price cycle dynamics extended to a spatial network setting. 

Together, these contributions re-conceptualise the local vs. national 
character of housing market dynamics such that national housing fluctuations 
emerge (endogenously or under common or local shocks) out of the intrinsic 
local dynamics of individual markets. This offers a novel conceptual framework 
within which to interpret, analyse and model housing market fluctuations, with 
distinctive implications for theory, methods, policy and finance. 
 
1.2 Motivation and context 
 
Fluctuations in national house prices and housing aggregates have come to be 
widely considered as a source of macroeconomic fluctuations (see for example 
Leamer (2007), Cesa-Bianchi (2013), Iacoviello (2005), Liu et al. (2013)). In 
particular, the central role the historically unprecedented national U.S. housing 
market boom-bust of the 2000s seemed to play in the Global Financial Crisis and 

 
1 Since idiosyncratic local shock or bubble driven fluctuations should be expected to average out at the 
national level. 
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Great Recession, has motivated huge and on-going research and policy interest 
in the dynamics of house prices and the sources and propagation of housing 
market instability (Ben S Bernanke, 2010).  

While the national boom-bust of the 2000s is unprecedented since the Great 
Depression era, at the sub-national level the U.S. has a long history of housing 
boom-bust (Glaeser, 2013). Evidence of sub-national house price cycles goes 
back at least to Homer Hoyt’s classic study of Chicago land prices (Hoyt, 1933) in 
which he documented real estate cycles between 1830-1933 with a 17-20 year 
periodicity. Moreover regional boom-bust episodes were not uncommon in the 
decades immediately preceding the national boom of the 2000s and had been 
widely documented in the literature (Karl E Case, 1992; Karl E Case & Shiller, 
1993; Riddel, 1999; Shiller, 1990; Wheelock, 2006). 

A key debate in the real estate literature even before the Global Financial 
Crisis therefore, has been whether house prices are stable but subject to shocks; 
or can exhibit temporary bubble episodes, uncoupling from fundamentals over 
extended periods (Abraham & Hendershott, 1996; Clark & Coggin, 2011; Mikhed 
& Zem, 2009; Shiller, 1990). In the more recent literature, evidence of 
temporarily explosive dynamics (Greenaway-mcgrevy & Phillips, 2015; Hu & 
Oxley, 2018a; Efthymios Pavlidis, Martínez-García, & Grossman, 2018; Shi, 2017) 
- the time series signature of an unstable bubble process2 - provides empirical 
support for the bubble hypothesis. 

In either case however, both the shock and bubble hypotheses lead to a view 
of housing boom-bust as idiosyncratic.  

Consistent with this view, historically the boom-bust that characterised sub-
national markets, largely averaged out at the national level, supporting the 
natural conclusion that the volatility of local markets reflected idiosyncratic 
local shocks or bubbles. 

This view had important implications for housing finance (leading to a 
perceived risk diversification opportunity from the pooling of mortgages from 
different parts of the country – helping first to motivate interstate banking 
reforms (Amel, 2000; Rice & Johnson, 2007) then providing the logic for the 
development and pricing of structured products such as mortgage backed 
securities (BIS Committee on the Global Financial System, 2005; Cotter, Gabriel, 
& Roll, 2015; Coval, Jurek, & Stafford, 2009)); and for monetary policy (since the 
effects of a policy shock depend on the initial distribution of regional housing 
market conditions; moreover heterogeneous regional shocks are outside of the 
scope of monetary policy making (Del Negro & Otrok, 2007; Fratantoni & Schuh, 
2003)). 

Meanwhile the national boom-bust of the 2000s is generally assumed to 
reflect the emergence of significant common national factors, or perhaps some 
national “mania” resulting in a national housing bubble. A wide range of possible 
explanations have been put forward including interest rates; subprime lending; 
speculation and irrationality; and international capital flows.3 While the causes 

 
2 See Phillips (2015a) for an overview. 
3  Interest rates (Campbell et al., 2009; Glaeser et al., 2013; Himmelberg et al., 2005); mortgage credit and 
subprime lending (Dell’Ariccia, Igan, Laeven, et al., 2012; Favilukis et al., 2016; Levitin & Wachter, 2012; 
Mian & Sufi, 2009; Pavlov & Wachter, 2009; C. W. Wheaton & Nechayev, 2008); speculation and 
irrationality (Barlevy & Fisher, 2011; Bayer, Geissler, Mangum, & Roberts, 2011; Bayer, Mangum, & 
Roberts, 2016; Burnside, Eichenbaum, & Rebelo, 2016; K E Case, Quigley, & Shiller, 2005; Karl E Case & 
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of the national boom-bust of the 2000s continue to be debated, a view widely 
shared among academics and policymakers is that this period saw U.S. house 
prices temporarily depart from their fundamental values, ending in the price 
correction that eventually precipitated the crisis (Ben S Bernanke, 2010). 

Spatial patterns, such as the so called “ripple effects” observed or 
hypothesised in some markets (Meen, 1999) are also interpreted and analysed 
within the same frameworks - either in terms of the spatial diffusion of random 
local shocks (Barros, Gil-Alana, & Payne, 2012; Holmes, Otero, & Panagiotidis, 
2011)); or (less often) contagion of bubbles between spatially adjacent markets 
(DeFusco, Ding, & Ferreira, 2013; Nneji, Brooks, & Ward, 2015; Riddel, 2011). 

 
 

Figure 1: This chart plots log-differences of monthly house price index for the 
states of Utah (black) and Pennsylvania (Green) since January 1975. 

 
It is interesting to notice however, that not only had many regional markets 

experienced similarly dramatic boom-bust episode prior to the 2000s, but also 
that the succession of boom-bust in some markets seems to much more 
resemble an on-going cycle than isolated events (Figure 1 shows two example 
price series illustrating the sort of repeated cycles experienced in many states). 

This apparent continuity in house price dynamics when observed at a sub-
national level, seems to raise the question whether local cycles are best 
understood - as has been widely assumed - as an irregular episodic process 
(mainly a response to persistent exogenous shocks, or else temporary bubble 
dynamics), or could they instead reflect an endogenous mechanism, which 
produces recurrent boom-bust phenomena? 

Intrinsic cyclicality in local markets would have potentially wide ranging 
consequences for our understanding and interpretation of housing instability 
not just at the local level, but at wider spatial scales including national house 
price developments. For one thing, in the presence of permanent cycles a 
temporary global shock can potentially have a permanent impact on the degree 
of co-movement among cycles (thus aggregate volatility) meaning the impact of 

 
Shiller, 2003; J. M. Lee & Choi, 2011; Shiller, 2005); and international capital flows (Favilukis, Kohn, 
Ludvigson, & Nieuwerburgh, 2013; Favilukis et al., 2016). 
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a succession of common shocks could plausibly accumulate over time resulting 
in a national cycle. What is more even weak local interactions between cyclical 
markets could give rise to local synchronisation of clusters of markets, or 
traveling-wave patterns across markets (similar to the ripple-effects that have 
been widely studied in the real estate literature where they are interpreted in 
terms of the spatial diffusion of local shocks); or even the emergence of a 
national cycle via the local endogenous synchronisation of locally interacting 
cycles. 

While not widely considered, the possibility of endogenous house price 
cyclicality has been shown to arise in a number of theoretical housing market 
model settings, especially a recent but growing ‘behavioural’ housing market 
literature (Baptista et al., 2016; Defusco, Nathanson, & Zwick, 2017; Dieci & 
Westerhoff, 2012a, 2016; He, Wright, & Zhu, 2015; Ryoo, 2015; Sommervoll, 
Borgersen, & Wennemo, 2010; Uluc & Bank of England, 2015; W. C. Wheaton, 
1990)). The empirical relevance of models of endogenous house price cyclicality 
however, hardly seems to have been empirically motivated or validated at all in 
the previous literature. Meanwhile the possibility and implications from the 
interaction among multiple intrinsically cyclical markets seems not to have been 
previously considered, either as a theoretical possibility, or empirically. 

 
 
1.3 Research 
 
In this thesis I make both an empirical (Phase 1) and a theoretical (Phase 2) 
exploration and development of these issues and questions.  
 
Phase 1: Empirical analysis  
 

In the empirical phase of the thesis I first take a data driven approach to the 
following series of interlinked questions: 
 
⚫ What is the dynamic character of local housing cycles in U.S. markets? Are 

they best understood as an irregular episodic process, or do they instead 
reflect an endogenous mechanism, which produces recurrent boom-bust 
phenomena? 

⚫ What is the dynamic character of national house price cycles? To what 
extent can the national boom-bust of the 2000s be understood as arising 
from the intrinsic cyclicality of local markets vs. (as is generally assumed) 
directly reflecting some temporary aggregate shock or temporary national 
bubble? 

⚫ What is the role of spatial links between markets in local and national 
housing cycle comovement? Can the spatio-temporal patterns in house 
price cyclicality help provide evidence on my first two research questions 
(the dynamic character of housing instability at the local and national 
level)? 

 
Regarding the dynamic character of local house price cycles: a series of random 
shocks could generate a ‘cycle’ in the sense of successive periods of expansion 
and contraction (analogous to modern business cycle theory) (Bracke, 2013); 
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alternatively if markets are ‘bubbly’ enough (i.e. if bubbles easily emerge but 
eventually burst) this explosiveness could be the engine behind a cycle formed 
by a sequence of bursting bubbles (Evans, 1991; Shi, 2007, 2017). 

Whether driven by successive shocks or bubbles, under this episodic view, 
housing cycles might recur, but would in either case be fundamentally irregular 
and unpredictable. However (as recently argued in a business cycle context by 
Beaudry et al. (2020)) irregular fluctuations may also emerge as the interplay 
between exogenous shocks and endogenous cycles (wherein the system is 
buffeted by exogenous shocks, but where the deterministic part of the system 
admits a limit cycle). Distinguishing between these alternative dynamic 
possibilities is thus not necessarily straightforward. 

One common approach (suitable for stationary time series) to distinguishing 
between these alternative interpretations is to inspect the spectral density. This 
of course depicts the importance of cycles of different frequencies in explaining 
the data over some given sample period (which should be sufficiently long) and 
can reveal the periodic component of a noisy cycle process (B. P. Beaudry et al., 
2020).4 In a noisy limit-cycle setting, fluctuations whilst irregular, would 
nevertheless exhibit some preferred period (something the other hypothesised 
processes do not have).5 

However cycle episodes may be transient (if their amplitude quickly decays); 
or the onset of cyclicality may occur at a particular time (in response to a 
structural change); or cycle characteristics (duration, magnitude) may change 
over time. Indeed the possible emergence of a national cycle from the intrinsic 
cyclicality of local markets that I set out to investigate, would imply a dynamic 
process in which the phase and perhaps frequencies of local cycles adjust 
towards each other over time (Pimenova, Goldobin, Rosenblum, & Pikovsky, 
2016). If spatial dependencies play a role in this convergence process, then 
spatial clusters of synchronised markets may also develop and merge over time; 
or traveling-wave patterns may form and evolve over time. 

To investigate whether there is any empirical evidence of these sorts of 
phenomena, thus calls for methods able to capture not only the spectral, but also 
time-evolving character of house price dynamics individually and as a system. In 
this thesis I introduce and deploy methods based on the complex continuous 
wavelet transform, which performs the estimation of the spectral characteristics 
of a signal as a function of time, revealing how the different periodic components 
of a time series (if any) change over time (Aguiar-Conraria & Soares, 2014) with 
the ability to identify trends or abrupt shifts in cyclic dynamics. The complex 
wavelet transform also provides the phase-amplitude decomposition of a signal.  

As I will show, this combined time-frequency and phase-amplitude 
decomposition provides a basis for methods that are uniquely suited to my 
research problem and provide a number of significant advantages over other 
available methodological strategies.  

I exploit the combined time-frequency and phase-amplitude decomposition 
applied to spatially granular (state level) monthly house price data since January 

 
4 It is well known that if the spectral density of a time series displays a significant peak at a given 

frequency, this is an indication of recurrent cyclical phenomena at that frequency. 
5 This approach has been used recently by Gray (2013, 2015) although the periodic tendency implied by a 
non-zero frequency spectral peak in the spectral density is not explicitly developed. 
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1975 (c.50 years of data) in order to study U.S. housing cycle dynamics over time 
and space: I assess the existence, historical timing and dynamic character of 
cyclical episodes; compare the characteristics of cycles in different markets over 
time; quantify the time-evolving overall synchronisation among cycles across 
the U.S.; and finally study - within the same spectrally focussed dynamic 
framework -  spatial patterns in the relative timing of state level cycles.  
 
Key results include:  
 
(i) Evidence of persistent cycle components with a similar preferred period 

of c.10 years in markets across the U.S. over the entire historical sample 
period. 

(ii) The contribution from these state level cycles to mean house price 
variation at the national level was significantly moderated prior to the 
2000s by the phase shifts between markets, but a dramatic increase in 
synchronisation after 1995 contributed to the subsequent national boom-
bust. 

(iii) The phase-shifts between markets for this common cycle component 
describe a clear spatial pattern (over the entire sample period and 
multiple cycles) resembling a traveling-wave. 

 
Having obtained these results, indicating the presence of permanent cycle 
components and spatial dependencies between these cycles, I make a follow up 
investigation of the relationship between the permanent cycles I document, and 
the temporary bubble episodes studied in the existing empirical housing bubble 
literature in order to understand whether these are connected or independent 
phenomena.  

I find a systematic relationship between the timing of the onset of explosive 
bubbles (as dated in the empirical bubble identification literature based on 
econometric tests for time-localised explosive dynamics) and the timing of the 
permanent cycle components (as measured by the instantaneous-phase of these 
cycles) documented in the first phase of my analysis. 

 
 

Phase 2: Dynamical model 
 
Taken together the empirical phenomena I document seem to suggest a novel 
hypothesis that the interaction among intrinsically cyclical markets may help us 
to explain and interpret U.S. housing market instability. What is more they 
suggest some rather strong restrictions on any model of house price cycles, and 
are not easily accounted for within standard stochastic shock or bubble 
frameworks in the existing literature.  

Motivated by these empirical results obtained in Phase 1, in the second phase 
of the thesis, I develop a simple theoretical model of spatially coupled 
endogenous house price cycles.  

Simulation of this model based on the spatial adjacency pattern (based on 
spatial contiguity) for U.S. states, shows that this simple framework of locally 
coupled housing cycles is able to simultaneously explain: repeating local boom-
busts; their synchronisation over time; and (perhaps most interestingly) neatly 
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reproduces the east-west traveling spatial waves I empirically documented in 
the first empirical phase of the thesis. 
 
1.4 Significance 
 

This systematic spatio-temporal pattern, and the continuity between the 
historical period of "local" and "national" housing market instability that I 
document in the empirical phase of this thesis, at once challenge both the view 
that housing market instability was idiosyncratic prior to the national boom-
bust; and the subsequent emphasis (following the national boom-bust of the 
2000s) on the search for an aggregate explanation for the simultaneous run up 
and collapse of prices in markets across the country.  

Taken together evidence of a cycle component with a preferred period, and of 
persistent traveling-wave spatial pattern in the timing of cycles across different 
markets suggest U.S. housing market dynamics might be understood in terms of 
a system of spatial coupled intrinsically cyclical markets. 

Moreover the systematic relationship I identify between the phase of 
permanent cycle components and the timing of temporary explosive bubble 
episodes further suggests low frequency housing fluctuations may play an 
important role in the occurrence and timing of housing bubbles shedding new 
light on a problem we have so far made little progress on: how can we explain 
where and when bubbles occur? At the same time it also suggests slow 
fluctuations may have significance for housing market dynamics beyond their 
own amplitude contribution since the slow cycle seems to modulate shorter-run 
housing market volatility.  

Finally the ability of the simple model of coupled speculative house price 
cycles that I introduce, to provide a unified explanation and reproduce not only 
the key stylised empirical facts, but also the specific spatial pattern observed in 
the data, supports and reinforces the idea that this may provide a useful new 
paradigm for understanding and interpreting U.S. housing market data. This is to 
the best of my knowledge the first model of its kind and provides both further 
support for this interpretation of the data, and a first contribution towards the 
theoretical work my empirical results suggest may be needed. 

Taken together these results thus suggest a possible significant re-
interpretation of U.S. housing market instability, leading to a novel alternative 
conceptual framework – offering nothing short of a new paradigm - within 
which to interpret, analyse and model U.S. housing market cyclicality. This 
framework generates a range of distinctive implications, more readily 
accounting for a rich set of empirical features of the historical data than existing 
frameworks can.  

The work I present clears the path for a number of new research programs in 
housing economics, the housing-macro-finance nexus and beyond. Indeed, while 
my focus and contribution here is entirely on understanding U.S. housing market 
dynamics, both the conceptual frameworks and the empirical methods I develop 
here seem likely to have wider relevance for a range of other problems and 
applications in economics, such as perhaps sectoral or international business 
cycle comovement. 
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1.5 Detailed overall outline 
 
This thesis is organised as five independent but closely linked substantive 
chapters (each could be a stand-alone paper, but each successive chapter builds 
on the results of, and addresses questions raised or motivated by the preceding 
ones) followed by an overall discussion of the significance of results over all five 
chapters for economic theory and policy (thus the overall contribution of the 
thesis). In this section (Section 1.5) I provide a brief summary of each section. 
 
 
1.5.1 Essay 1 
 
In Essay 1 (Section 2) I study the character of house price dynamics at the local 
level. I introduce the continuous complex wavelet transform. The time-frequency 
and phase-amplitude decomposition provided by this transform is the 
fundamental methodological basis not only for my analysis in this chapter, but 
for the range of different time-frequency methods derived from this transform 
that I will introduce and employ in subsequent empirical chapters. I then 
introduce the wavelet power spectrum (widely employed in the analysis of noisy 
dynamical systems, but still little known in economics) and use this to analyse 
monthly state level house price data since Jan 1975. This allows me to study the 
spectral characteristics/frequency components of state level housing cycles in 
different markets over time, allowing me to observe and distinguish between 
transient and/or permanent cycles in these markets and assess time variation in 
cycle frequency and amplitude. This analysis thus provides a first and direct test 
of one of my central research questions: are local cycles best understood as an 
irregular episodic process, or do they instead reflect an endogenous mechanism, 
which produces recurrent boom-bust phenomena? I find surprisingly striking 
evidence of persistent or permanent cycles (with fairly stable frequency) over 
the entire historical sample period (1975:01-2020:06) for the majority of U.S. 
states, consistent with significant intrinsic cyclic dynamics in these markets. 
These recurrent cycles have not been previously documented. They are not 
consistent with the widely accepted view that local housing boom-bust was 
idiosyncratic prior to the national episode of the 2000s. Meanwhile, evidence of 
permanent cycles spanning both local and national housing instability eras 
suggests a surprising continuity of dynamics between these periods begging the 
question whether the intrinsic cyclicality of local markets played a central role 
in the national boom-bust episode. This challenges the widely accepted view 
that the national boom-bust reflected some sort of temporary national bubble. 
 
 
1.5.2 Essay 2 
 
In Essay 2 (Section 3) I study the co-cyclicality of U.S. state level housing cycles 
over time. I introduce the average wavelet power spectrum in order to assess the 
phase-adjusted similarity of cycles across markets. This reveals a common cycle 
frequency of 10-12 years over the entire sample period as well as an important 
higher frequency common shock in the early 1980s that average out in the time 
domain due to phase differences. I introduce instantaneous phase (obtained via 
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continuous complex wavelet transform), and a multivariate measure of 
synchronisation based on instantaneous phase information that allows me to 
study how the synchronisation among cycles in different markets has evolved 
over time with good temporal resolution. These methods are widely used in the 
study of dynamic synchronisation phenomena, but apparently unknown in the 
economics literature, where the business cycle literature relies on “concordance 
index” approaches – a time-averaged measure of phase-synchronisation 
quantified as the fraction of time both series are simultaneously in the same 
binary (expansion or contraction) ‘phase’ state, using turning points identified in 
the time-domain. Using my multivariate instantaneous phase based approach I 
show that a marked de-synchronisation between 1984 and 1995 significantly 
moderates aggregate house price volatility over this period; but that after 1995 
a dramatic synchronisation of existing cycles contributed to the national housing 
boom-bust over the subsequent period. I discuss the possible connections 
between these important shifts in synchronisation of local markets and 
historical context and events. These results suggest the possible need for a 
significant re-interpretation of the national “bubble period” and the local vs. 
national distinction common in the literature. 
 
 
1.5.3 Essay 3 
 
In Essay 3 (Section 3) I study local synchronisation of state level housing cycles 
and spatial patterns in the lead-lag relationships between cycles across the U.S. 
(focussing on the cycle components identified in Section 2  (Essay 1)). I 
introduce pairwise instantaneous phase-difference (obtained via continuous 
wavelet transform) and an instantaneous measure of local synchronisation 
based on pairwise differences. This multivariate measure of local phase-
synchronisation is new for economics. I use it to quantify the time varying 
average level of synchronisation among cycles in spatially adjacent markets. I 
find adjacent markets are well synchronised over the entire sample period (but 
increases after 1995). While spatial correlation among house prices is well 
documented, the question of what frequency components matter has not been 
addressed and I specifically study the 9-12 year periodicity band associated with 
the common c.10 year cycle component. I then introduce relative phase analysis 
(also new for economics) and employ the spatial projection both of the phase 
series (introduced in Essay 2), and of relative phase relationships (also a novel 
methodological approach), in order to assess (possibly time varying) spatial 
patterns in the relative timing of cycles across U.S. states. While the empirical 
literature is inconclusive on the evidence for a spatial “ripple-effect” in U.S. 
markets (Barros et al., 2012; Clark & Coggin, 2009; Gil-Alana, Barros, & Peypoch, 
2014; Gupta & Miller, 2012; S Holly, Pesaran, & Yamagata, 2010; Pollakowski & 
Ray, 1997; Zohrabyan, Leatham, & Bessler, 2008), I document a striking ripple 
pattern in the development of state level cycles, resembling a traveling wave. 
This spatial pattern has not been previously documented – indeed a number of 
recent studies find no particular spatial pattern in the timing of boom-bust, 
moreover a number of studies have argued that other forms of economic 
links/distance are (more) important than spatial links (Hernández-Murillo, 
Owyang, & Rubio, 2017; Malone, 2017; Zhu, Füss, & Rottke, 2013). The 
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particular pattern I document, and its stability over time, are more consistent 
with the local interaction of intrinsically cyclical markets, than with either the 
spatial diffusion of random local shocks, or contagious bubbles hypothesised 
within the existing literatures. This suggests a new paradigm within which to 
interpret empirical ripple-effect phenomena. It also further reinforces evidence 
of permanent cycle dynamics presented in Section 2 (Essay 1). One implication 
is the plausible possibility that a national cycle could have emerged as the result 
of the endogenous synchronisation of cycles via weak local interdependencies. 
 
 
1.5.4 Essay 4 
 
In Essay 4 (Section 5) I investigate the relationship between two important 
empirical features of U.S. state level house price fluctuations: (i) occasional 
extreme explosive “bubble” episodes (documented in the existing literature); 
and (ii) the permanent cycle components (documented in section 3). I review 
the econometric bubble identification literature for dating the onset and 
termination of “bubble episodes” and introduce the PSY test by Phillips, Shi and 
Yu (2015a, 2015b) now popular in the literature. I then develop a novel 
methodological strategy for assessing the relationship between the timing of 
bubble episodes - dated using the PSY test - and the timing of underlying cycles - 
captured by the instantaneous phase-angle (introduced in Section 3). I find a 
systematic relationship between the timing of the onset of explosive bubbles 
and the instantaneous phase of the underlying permanent cycles suggesting this 
low frequency cycle may play an important role in the occurrence and timing of 
housing bubbles. This result sheds new light on a problem we have so far made 
little progress on: how can we explain where and when bubbles occur? Various 
studies have failed to find any particular spatial pattern in the timing of bubbles, 
others interpret spatial patterns in the timing of cycles as contagion dynamics. 
Given the traveling-wave phenomena documented in Section 4, the systematic 
relationship between cycle phase and bubble timing suggests that there is an 
underlying spatial process to housing bubbles, but that this spatial pattern in 
bubbles should not be interpreted as contagion. It also suggests slow 
fluctuations may have significance for housing market dynamics beyond their 
own amplitude contribution since the slow cycle seems to modulate shorter-run 
housing market volatility. It also suggests there is an underlying spatial process 
to housing bubbles, though this is less easily observed in studying spatial 
distribution of the timing of bubbles. 
 
1.5.5 Essay 5 
 
In Essay 5 (Section 6) I develop a simple model of spatially coupled endogenous 
housing cycles. I argue that the existing theoretical frameworks within which 
housing market instability is interpreted in the literature are unable to provide a 
satisfactory account of the spatio-temporal patterns that I document in the 
empirical phase of this thesis (Essay 1-4/Sections 2-5). What is more that 
collectively, these key features of the spatio-temporal dynamics of these markets 
can provide some rather strong restrictions on any theory of U.S. housing 
market cyclicality. I then take a model and simulation based approach to 
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exploring a novel hypothesis: that wide scale spatial patterns, and national 
housing fluctuations of the sort I document in the data, may emerge out of the 
interaction of interconnected cyclical local markets. Concretely I extend the 
workhorse housing cycle framework of Dieci and Westerhoff (2012b) to model a 
network of 49 identical housing cycles locally bi-directionally coupled according 
to the spatial adjacency matrix for the 49 spatially contiguous U.S. states. I show 
that this simple framework of locally coupled housing cycles is able to 
simultaneously explain: repeating local boom busts; their synchronisation over 
time; and not only generates travelling-wave patterns, but - most strikingly - 
neatly reproduces the specific spatial pattern that I document in the historical 
data (Essay 3 (Section 5)). That this simple framework is sufficient to provide a 
unified explanation for these key spatio-temporal features of empirical house 
price dynamics suggests that the local coupling of intrinsically cyclical markets 
may offer a useful new framework within which to interpret and analyse U.S. 
housing market instability, and provide a departure point for further empirical 
and theoretical work.  
 
 
1.5.6 Discussion and concluding sections 
 
In Section 7, reflecting jointly on the results presented over the preceding five 
substantive chapters, I first discuss their significance and relation to key 
relevant existing literatures (Section 7.1) with an emphasis on: our 
understanding of housing instability (Section 7.1.1 - 7.1.2); and how my work 
relates to previous work using wavelet based methods in the study of housing 
and other applications in economics (Section 7.1.3). I then discuss the policy 
implications from my work (Section 7.2). Section 8 provides a summary of the 
overall contribution made by this thesis and concludes. 
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2 Essay 1: The dynamic character of local 
housing market instability: evidence of 
permanent cycles in most sub-national 
markets 

 
Summary: In this essay I use time-frequency methods to re-examine the 
cyclical properties of US house prices over time and across different markets 
based on monthly state level data covering the entire available historical 
sample period 1975:01-2020:06. While the national U.S. housing boom-bust of 
the 2000s is unprecedented since the Great Depression era, at the sub-national 
level the U.S. has a long history of housing market instability. Indeed the 
succession of boom and bust in some markets more resembles a repeating cycle 
than independent isolated episodes. One possible explanation for these 
recurrent fluctuations is that they represent the equilibrium adjusting 
responses to a series of random shocks; another that they represent a succession 
of temporary bubbles - in either case transient dynamics implying an irregular 
and unpredictable cycle. Another possibility (that has been shown to arise in 
various theoretical housing market settings but not studied empirically) is 
simple limit-cycle or near limit-cycle dynamics. In this Essay I use wavelet power 
spectrum analysis (which can determine not only all the frequencies present in 
a signal, but also when they are present) of state level house price data since 
Jan 1975, to study the spectral characteristics of state level housing cycles over 
time. I find surprisingly striking evidence of persistent or permanent cycles over 
the entire c.50 year historical sample period for the majority of US states. 
Moreover an analysis of the distribution of instantaneous frequencies of cycles 
in different states suggests that most states share cycles with similar 
periodicity with both a cycle in the 8-10 year band and a cycle in the 12-15 year 
band. Moreover these have been fairly stable over time. The existence of these 
clear cyclical components with fairly stable preferred periodicity provides 
evidence consistent with a significant intrinsic component to housing 
instability, motivating further work to distinguishing between e.g. limit-cycle 
and noise driven oscillations, as well as to discriminate between competing 
hypotheses regarding the underlying cycle mechanisms. 

 
 
 
2.1 Introduction 
 
The central role the U.S. housing market price run-up and collapse seem to have 
played in the global financial crisis and recession, have generated huge renewed 
interest in the dynamics of house prices. A view widely shared among academics 
and policymakers is that the 2000s boom period saw US house prices depart 
from their fundamental values, ending in the price correction that eventually 
precipitated the crisis (Ben S Bernanke, 2010). 

While the national scale of this episode may have been unprecedented since 
the Great Depression era and brought housing market dynamics to a new 
prominence, the US has a long history of house price instability (Glaeser, 2013). 
Evidence of sub-national house price cycles goes back at least to Homer Hoyt’s 
classic study of Chicago land prices (Hoyt, 1933) in which Hoyt documented city 
level real estate cycles within a 17-20 year periodicity band between 1830-
1933.  Regional  boom-bust episodes were not uncommon in the decades 
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preceding the national boom of the 2000s and had been widely documented 
(Karl E Case, 1992; Karl E Case & Shiller, 1988, 1993; Riddel, 1999; Shiller, 1990; 
Wheelock, 2006). 

Indeed not only had many regional markets experienced similarly dramatic 
boom-bust episode prior to the 2000s, but the succession of boom-bust episodes 
in some markets more resemble a repeating cycle than isolated episodes (Figure 

2 plots historical price series for house an example).  
In this essay I study the dynamic character and historical and geographical 

prevalence of U.S. house price cyclicality. 
The character and causes of house price cyclicality have been and remain 

hotly debated. A key question has been whether house prices are locally stable 
but subject to shocks;6 or can exhibit temporary bubble episodes, uncoupling 
from fundamentals over extended periods (Abraham & Hendershoti, 1994; Clark 
& Coggin, 2011; Mikhed & Zem, 2009; Shiller, 1990). 

While few now would argue that house price movements are orderly and 
driven entirely by obvious changes in fundamentals,7 nevertheless economic 
theory suggests a variety of market imperfections and/or ‘alternative’ 8 
behavioural assumptions that may amplify fundamental shocks – key examples 
are credit-constraints (Ortalo-magné, 2006; Stein, 1995), 9  search market 
externalities (Diaz & Jerez, 2013; W. C. Wheaton, 1990), (policy) constraints on 
the elasticity of supply (Glaeser & Gyourko, 2007), and e.g. backward-looking 
expectations schemes (Capozza, Hendershott, & Mayer, 2002; Karl E Case & 
Shiller, 1988).10   

While economic theory suggests many reasons housing markets may 
generate larger swings in house prices than seem justified by fundamentals, the 
enormous increases and subsequent crashes in house prices during the 2000s 
boom-bust, as well as the range of evidence on the role of speculation during 
this time,11 have led many to argue that housing cycles are driven not by 
fundamental shocks, but by psychological factors – an argument that has 

 
6 Can housing market fluctuations be explained as the adjustment process of house prices and stocks 

towards a new stable equilibrium following an exogenous shock to fundamentals (real and/or financial 
such as e.g. population, real income, interest rates and credit markets etc.)? 
7 It has long been widely documented in the literature that models based on equilibrium adjustment of 
prices in response to fundamental shocks in perfect foresight rational expectations setting do a poor job 
empirically of explaining housing market boom-bust in terms of observed fundamentals (see e.g. surveys of 
the literature going back at least to the 1980s by Gatzlaff and Tirtiroglu (1995), and Maier and Herath 
(2009) as well as more recent studies such as Schindler (2013)). 
8 I.e. ‘deviations’ from perfect foresight rational expectations setting. 
9 Also macroeconomic models which e.g. following Iacoviello (2005) introduce a housing based collateral 
constraint into New Keynesian financial-accelerator models (B S Bernanke, Gertler, & Gilchrist, 1999) 
generating pro-cyclicality among house prices, and household borrowing and spending. 
10 Where households are credit constrained, the capital gains resulting from price increases may relax 
borrowing constraints generating momentum on the way up, and visa versa on the way down; if increasing 
house prices bring more homes onto the market this increases available choice, reduces search time and 
improves match quality (potentially increasing prices) in a search and matching markets; planning and 
zoning policies restrict the elasticity of supply leading to larger price adjustments to positive and negative 
shocks. 
11Just some examples of analyses that have emphasized and presented evidence of the important role of 
speculation in observed house price boom-bust (Albanesi, DeGiorgi, & Nosal, 2017; Barlevy & Fisher, 2011; 
Bayer et al., 2011; Bayer, Geissler, Mangum, & Roberts, 2015; Karl E Case, Shiller, & Thompson, 2014, 2012; 
Chinco & Mayer, 2012, 2016; Defusco et al., 2017; Gao, Sockin, & Xiong, 2017; Haughwout, 2011; Riddel, 
1999). 
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featured prominently in popular financial and academic debate. Robert Shiller 
for example has long argued that irrational exuberance and unrealistic 
expectations of future price appreciation have played a defining role in housing 
market dynamics both at a metropolitan area level and in the national US boom-
bust of the 2000s (see e.g. Shiller (2005); Ackerloff and Shiller (2009)). 

Both equilibrium adjustment in response to a one-time fundamental (or non-
fundamental) shock; and explosive bubble dynamics as a result of e.g. an episode 
of irrational exuberance, describe temporary phenomena.  

Nevertheless either process could provide an episodic explanation for the 
sort of repeating boom-bust cycles that many local housing market price series 
seem to exhibit: a series of random shocks could generate a ‘cycle’ in the sense of 
successive periods of expansion and contraction (closely analogous to modern 
business cycle theory) (Bracke, 2013); alternatively if markets are “bubbly” 
enough (i.e. if bubbles easily emerge but inevitably burst) this explosiveness 
could be the engine behind a cycle formed by a sequence of bursting bubbles 
(Evans, 1991; Shi, 2007).12  

Under this episodic view of housing cycles - with each cycle being driven by 
different shocks or bubbles and limited dependence between one episode and 
the next - housing cycles might recur, but would be fundamentally irregular and 
unpredictable (although they may have distinct time series signatures, with 
temporarily explosive dynamics the hallmark of a bubble process (Greenaway-
mcgrevy & Phillips, 2015; Hu & Oxley, 2018a; Efthymios Pavlidis et al., 2018; Shi, 
2017)). 
 
 

Figure 2: This chart plots log-differences of monthly house price indices for the 
states of Pennsylvania and Utah since Jan 1975, illustrating the sort of repeated 
boom-bust historically experienced in many markets. 

 
A further dynamic possibility, that has been shown theoretically to arise in 
various (especially heterogeneous agent) settings (e.g. Baptista et al. (2016), 
Defusco et al. (2017), Dieci and Westerhoff (2012a, 2016), He et al. (2015), 

 
12 In extreme the price formation process does no temporarily destabilise, but always explosive, 
however bubbles cannot grow forever so eventually collapse. 
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Sommervoll et al. (2010), Ryoo (2015), Ulc (2015) are some examples),13 is that 
repeating boom-bust house price cycles could be the result of limit-cycle (i.e. on-
going fluctuations around a locally unstable equilibrium meaning cycles occur 
even in the absence of shocks) or near limit-cycle dynamics (i.e. shocks may give 
rise to repeating cycles with a stable frequency but decaying amplitude thus the 
amplitude of cycles depends on perturbations). 

In either case cycles would not only recur, but recur with some predictability 
(although if such intrinsic cyclic dynamics existed they would of course also be 
altered by external perturbations and irregular cycles can emerge from the 
regular forces of a limit cycle setting when combined with shocks that move the 
system away from an attracting orbit (P. Beaudry, Galizia, & Portier, 2016b)). 

In the empirical literature on housing market instability, some strands focus 
specifically on extreme or “pathological” episodes consistent with the idea of 
occasional discrete sub-periods of instability, while others have been more 
interested in housing “cycles”.  

In particular the empirical “bubble” literature seeks to identify discrete 
bubble episodes based on their time series signature (generally tests for 
explosive behaviour) (see e.g. (Freese, 2015; Hu & Oxley, 2018a; Kivedal, 2013; 
Efthymios Pavlidis et al., 2018; Phillips & Yu, 2011; W. Zhou & Sornette, 2005)); 
while a more macro-financial literature studies the occurrence, causes and 
economic impact of occasional “boom” and “bust” episodes (which tend to be 
identified in terms of prices considerably and persistently out of line with an 
estimated historical reference level (Bordo & Jeanne, 2002) or trend (Agnello & 
Schuknecht, 2011; Borio & Lowe, 2002)). 

Meanwhile a large, macro motivated literature relying mostly (though not 
exclusively)14 on aggregate national level time series, studies housing cycles in 
the traditional business cycle sense of alternate phases of expansions and 
contractions (generally identified through turning points analysis) and their 
relationship to other variables (such as credit and GDP) ((Bracke, 2013; 
Claessens, Kose, & Terrones, 2011; Girouard, Kennedy, van den Noord, & André, 
2006; Leamer, 2007) are just some examples). 

While the interesting theoretical possibility of endogenous housing market 
cycles seems to have become increasingly considered in recent years (Baptista 
et al., 2016; Dieci & Westerhoff, 2012a, 2016; He et al., 2015; Ryoo, 2015; 
Sommervoll et al., 2010), to the best of my knowledge the empirical motivation 
and validation for these models is often rather cursory and hand-waving. I am 
unaware of any serious empirical work testing for permanent house price cycles 
and good methods for studying this problem may not have been readily 
available to the literature.  

Econometric methods employed in empirical housing cycle research may 
either fail to identify or even miss-characterise permanent cycles in the data:  

Beaudry, Galizia and Portier (2016a) show that standard unit root-tests 
systematically fail to identify local instability in data generated by a limit-cycle 

 
13 Wheaton (1999) is an unusual early example of consideration and modeling of endogenous cycles as a 

relevant possibility and characterizing some markets. 
14 Some exceptions are Ghent et al. (2010) who studies whether the results of Leamer (2007) on housing 
as a leading business cycle indicator hold a the sub-national level; of Akimov et al. (2015) apply turning 
point and concordance index based methods to the study of metropolitan Australian house price series. 
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process, mistaking non-explosive (globally stable) dynamics for equilibrium 
reverting (locally stable) behaviour.  

Similarly Evans (1991) shows standard unit root tests mistake periodically 
collapsing bubbles (a non-equilibrium process) for a mean reverting time 
series.15 

Moving window (Chong & Hurn, 2017; Shi, 2007) and recursive (Phillips, Shi, 
& Yu, 2015b, 2015a; Phillips, Wu, & Yu, 2006) unit-root tests subsequently 
introduced in response to Evans (1991) and now widely applied in the 
econometric bubble identification literature, are designed to identify time 
localised explosive autoregressive behaviour in a non-stationary signal (test for 
explosive real root) and do not provide a test for or characterisation of 
sinusoidal components in a time-series. They may thus miss linear cycles and 
potentially miss-characterise explosive phases in a nonlinear limit-cycle process 
as a series of temporary bubbles.  

Meanwhile turning-point based methods widely applied in business cycle 
literature may struggle to parse noisy data (e.g. in the sort of stochastic limit 
cycle setting considered by Beaudry et al. (2016b)) or make sense of complex 
spectral structure (where more than one sinusoidal component is present in a 
signal).16 

Methods that are designed for testing for the presence of sinusoidal 
components to time series dynamics sometimes employed in the business 
cycle/economics literature include Fourier based methods (it is well known that 
an oscillation contributes a non-zero frequency spectral peak to the Fourier 
spectrum)17 and explicit time series tests for complex unit roots (it is well 
known that each pair of complex roots in an autoregressive process contribute 
and oscillation). Unfortunately both suffer from important limitations.  

Fourier based methods employed in the business cycle literature (and 
employed by Beaudry et al. (2016b) in specifically this context), whilst model 
and assumption free and providing spectral detail, since the transform 
aggregates across time, are unsuitable for non-stationary signals and shed no 
light on time varying aspects of dynamics (e.g. transient dynamics may generate 
a spectral peak, meanwhile time-evolving frequency of a well defined cycle can 
result in a broad spectrum).  

Meanwhile a drawback of methods used to test for complex unit roots 
(Bierens, 2001; Gil-Alana, 2007; Gil-Alana & Gupta, 2014) is that the parameter 
estimates are sensitive to the class of models considered and may be misleading 
because of misspecification. While methods have been introduced to identify 
multiple cycle components (Gil-Alana, 2007), similarly to Fourier transform 
these are obtained over the entire sample window, and model estimation may 
be hampered by nonstationarities. 

 
15 Note Evans periodically bursting bubbles come very close to a limit cycle process, except that the bubble 

is not contained by deterministic dynamics, but rather bursts randomly (with probability in every period).  
16 Some of these issues for turning-point methods may be mitigated by filtering. However filtering 
introduces its own problems such as the need for a priori choice of bands, and potential distortions (E.g. 
Cogley & Nason (1995) have shown that the HP filter can induce cycles into filtered data). By contrast the 
wavelet based analysis which I employ provides a time-frequency expansion of the signal, and is a 
reversible transformation – no information is thrown away. The time-frequency decomposition means no 
filtering is required in order to makes scale specific analysis. 
17 Gray (2013, 2015) are rare examples of Fourier methods applied in housing market analysis. 
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In this paper, I use wavelet power spectrum analysis – which has been shown 
to be useful in distinguishing periodic signals in data generated by noisy 
dynamical systems, and analysing time varying oscillatory data - as a simple 
method by which to study whether regional house price dynamics exhibit any 
evidence of persistent or permanent cyclicality; in which markets; and over 
what historical period.  

This is based on the projection of house price series into the time-frequency 
plane where its spectral content can be followed over time. 

Where the bubble identification literature employs time-localised tests for 
zero-frequency unit roots to date the onset of bubble episodes; I use the time-
frequency localised wavelet power spectrum to assess whether there is any 
evidence of non-zero frequency spectral ridges - the time series signature of a 
cyclical process - and date the onset of any such cycles. 18   

Concretely I study the wavelet power spectra of monthly state level house 
price series from when data becomes available in Jan 1975 to the present time.  
Stochastic shocks and measurement error undoubtedly play a role in house 
price series. The question is whether some regularities are also empirically 
observable in the data. The answer is yes: I find surprisingly striking evidence of 
persistent or permanent cycle components with stable cycle frequency 
(estimated based on the local peak of spectral ridge in time-frequency plane) 
over the entire historical sample period for the majority of US states.  

What is more an analysis of the distribution of instantaneous frequencies of 
state level cycles, suggests that most states share cycles with similar 
periodicities of c.10 years. 

The existence of these clear longstanding cyclical components with fairly 
stable periodicity provides evidence consistent with a significant 
deterministic/intrinsic component to housing cycle dynamics, motivating 
further work to distinguishing between e.g. limit-cycle and noise driven 
oscillations; as well as to discriminate between competing hypotheses regarding 
the likely underlying cycle mechanism. 

The geographically widespread incidence of permanent cycles spanning both 
the local and national housing instability eras, suggests a surprising continuity of 
dynamics between these periods as observed at the state level and raises the 
important question why the long history of cycles observable at the state level, 
does not show up at the national level – especially given the similarity of cycle 
periods - and contribution (if any) these existing persistent cycle components 
played in the national boom-bust of the 2000s. 

Indeed, besides changing our understanding of house price dynamics at the 
individual market level, evidence of some periodic tendency to house price 
dynamics in state level data may also have wide ranging implications for our 
understanding of housing market dynamics at the national level. 

In what follows I first introduce the wavelet methods employed in this study 
(Section 2.2) and briefly discuss their advantages over traditional and other 
available techniques, also providing some simulation based demonstration of 
these capabilities (Section 2.2.4). Section 2.3 presents my analysis and results, of 
which I make some discussion in Section 2.4. Section 3.6 concludes. 

 
18 Distinct from the flat spectrum of pure noise, or increasing power with decreasing frequency that 
characterises auto-correlated noise. 
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2.2 Methods 
 
Methods describing the cyclical properties of economic data widely employed in 
business cycle analysis, and likewise housing cycle studies, include the analysis 
of turning points (e.g. Claessens et al. (2012)), frequency-based filter methods 
(e.g. Drehmann et al. (2012)), and also traditional Fourier analysis (e.g. Strohsal 
et al. (2015)).  

The frequency domain representation of a time-series allows observation of 
several characteristics that may be difficult to see, or not visible at all in the 
time-domain or based on other available methods. The spectrum quantifies the 
importance of cycles of different frequencies in explaining the data. As is well 
known, if the spectrum of a time series displays a substantial peak at a given 
frequency, this is an indication of recurrent cyclical phenomena at that 
frequency (P. Beaudry et al., 2016b). 

Wavelets transform based time-frequency methods provide another less 
well-known (anyway in economics) approach with a number of distinct 
advantages over traditional Fourier methods: where the Fourier transform 
decomposes a time series into a sum of sine and cosine functions (thus not time-
localised), wavelet analysis uses a set of functions locally defined in both time 
and frequency domains. As a result wavelet based methods are suitable for 
studying time varying or transient dynamics and for analysing non-stationary 
time series, leading them to be widely used in many fields of research,19 and 
increasingly adopted within economics since Crowley (2007), Soares & Aguiar-
Conraria (2011), and Aguiar-Conraria & Soares (2014) especially in studying 
cyclical properties of economic and financial time series, and their cyclical 
comovements. 

With the wavelet transform no information is thrown away and all scales20 
are considered, but the separation of scales by the time-frequency 
decomposition provided allows scale specific features in the data to be identified 
and studied. One key advantage of wavelets transform based methods is thus 
that they allow scale-specific analysis without requiring any prior assumptions 
on cycle frequencies or prior filtering of the data, avoiding the risk of missing 
relevant features or introducing distortions/artificial features.21 
 
 
2.2.1 Continuous wavelet transform 
 
The continuous wavelet transform, decomposes a time series into “stretched” 
and “translated” versions of an analysing function – “mother wavelet” 𝜓 - that is 
well-localized in both time and in frequency domains, in order to obtain an 
expanded time-frequency space representation of the original signal. 

Given a time series 𝑥(𝑡), its continuous wavelet transform (CWT), with 
respect to the analysing wavelet 𝜓 (Eq.1), is a function of two variables (𝑎 and 𝜏) 
defined as 

 
19 Wavelets analysis is widely employed in a range of applied sciences (it is extensively used in physics, 
neuroscience, epidemiology, ecology, climate science, seismology, signal processing, etc.). 
20 All scales meaningful given the length and sampling rate of the time series. 
21 E.g. Cogley & Nason (1995) have shown that the HP filter can induce cycles into filtered data. 
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∞
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                                  (1) 

 
where the over-bar denotes complex conjugation; 𝑎 is a “scaling” factor that 
controls the width of the mother wavelet; and 𝜏 is a “translation” parameter 
controlling its temporal location. ‘Scaling’ a wavelet means to stretch or 
compress it, and ‘translating’ means to shift its position in time. 

Obtaining the CWT can be thought of as a “template-matching” procedure, in 
which each time point in the signal is compared against a template (the 
stretched/dilated wavelet). By considering each time point and continuously 
varying22 the scaling factor 𝑎 (which can be easily translated into frequency – 
see 10.1.1), the result is a matrix of wavelet coefficients (“similarities” between 
the time-series and the wavelet), with elements each corresponding to a scale 𝑎 
and time location 𝜏. By mapping the original time series into a function of 𝑎 and 
𝜏 the CWT simultaneously gives us information on both the time and frequency 
distribution of variation in the time series. 

When the wavelet 𝜓 is complex-valued (see also Section 2.2.3 below), the 
corresponding wavelet transform 𝑊𝑥;𝜓(𝑎, 𝜏) is also a complex-valued function of 

scale and position and may be separated into its real part ℜ{𝑊𝑥;𝜓(𝑎, 𝜏)} and 

imaginary part, ℑ{𝑊𝑥;𝜓(𝑎, 𝜏)}, thus yields time-frequency localised information 

about both the amplitude and phase of a time series. 
 

 
2.2.2 (Scale normalised) wavelet power spectrum 
 
The local wavelet power spectrum (WPS) is computed by 
 

(𝑊𝑃𝑆)𝑥(𝑎, 𝜏) = |𝑊𝑥;𝜓(𝑎, 𝜏)|
2

                                    (2) 

 
This gives us a measure of the variance distribution of the time-series in the 
time-scale plane (where scale relates to frequency see 10.1.1).  

This usual power spectrum (Eq.2) is biased toward low frequencies. In order 
to allow for a comparison of the spectral peaks across different scales, in the 
following analysis each energy value of the power spectrum is divided by the 
scale to which it corresponds, following Liu et al. (2007) who demonstrate that 

 
22 Of course in practice for the purpose of data analysis we must make a discretization of the scale 
parameter 𝑎, and need to choose how finely to discretize/sample it (how smoothly to vary 𝑎 between 
minimum and maximum scales – lower and upper periods - of analysis) i.e. choose a frequency resolution of 
the decomposition. The cost to higher resolution is only computational. A key choice of course is the lower 
and upper period of the decomposition. The lower period has a minimum feasible at 2𝑑𝑡 where 𝑑𝑡 is the 
sampling rate (studying oscillations with a higher frequency than this would require a more granular 
sampling rate). Because my data is monthly this would correspond to fluctuations with a 2-month period. 
Because I am only interested in explaining variation of periodicities beyond seasonal variation, I choose 1-
year as my lower period (but still benefit from the improved resolution provided by monthly sampling rate 
of the house price data). The upper period of the decomposition has a maximum feasible upper limit of 
𝑙𝑒𝑛𝑔𝑡ℎ(𝑥)𝑑𝑡 (which corresponds to a cycle period equal to the length of the entire time-series). However 
edge effects make it pointless to analyze periods that approach this limit. I present analysis for an upper 
period of 20 years and clearly mark areas where edge effects may be distorting results. 
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this normalization provides a simple and effective solution to the bias problem 
in the estimate of wavelet power spectra.  

The global wavelet power spectrum is defined as the average energy (average 
variance) contained in all wavelet coefficients of the same scale, 𝑎, over all time 
(thus may be compared to the Fourier spectrum of a signal). 
 

(𝐺𝑊𝑃𝑆)𝑥(𝑎) = ∫ |𝑊𝑥;𝜓(𝑎, 𝜏)|
2∞

−∞
𝑑𝜏                               (3) 

 
 
2.2.3 Choice of wavelet function 
 
There are several wavelet functions available with differing characteristics and 
the appropriate choice of analysing function depends on the application. For this 
application (and throughout the thesis) I employ the widely used Morlet wavelet 
(Goupillaud, Grossmann, & Morlet, 1984). 23   This wavelet is a complex 
exponential modulated by a Gaussian (see Figure 3 for a visualisation) 
 

𝜓𝜔0
(𝑡) = 𝐾𝑒𝑖𝜔0𝑡𝑒−

𝑡2

2 ,   𝐾 = 𝜋−
1

4                                      (4) 

 
My interest not only in the frequency and historic timing of important shocks or 
cyclical episodes in house price dynamics, but also to analyse the temporal 
relationship between house price fluctuations in different regions (later sections 
3-0), requires the application of a complex-valued wavelet - in order to obtain an 
estimate of local24 instantaneous phase as well as amplitude (see Section 2.2.1 
above)25. Among complex-valued wavelets, the Morlet provides optimal joint 
time–frequency resolution;26 and under certain parameterisation27 allows easy 
interpretation of scales 𝑎  in terms of Fourier frequencies 28  𝑓  (thus also 

periodicity (
1

𝑓
), which may be far more intuitive in economic applications) 

simplify interpretation of results (see 10.1.1 for a more detailed explanation of 
this relation). 
 

 
23 First introduced by Goupillaud, Grossman, and Morlet (1984) this wavelet is a complex exponential 

modulated by a Gaussian and its simplified version can be represented as: 𝜓(𝑡) = 𝜋−1/4𝑒−𝑖𝜔0𝑡𝑒−𝑡2/2. 
24 In the vicinity of each time/scale location (𝜏, 𝑎). 
25 Phase is undefined for real-valued wavelets. The useful features of analytic wavelets are sited by Olhede 
& Walden (2002) and covered in depth by Lilly & Olhee (2009), Aguiar-Conraria et al.  (2008, p. 2868) and 
Hudgins et al. (1993). 
26 In the sense that the Heisenberg uncertainty attains the minimum possible value. 
27 If the dimensionless frequency 𝜔0 is set to 6. 
28 See Torrence & Compo (1998). 
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Figure 3: (a) Morlet wavelet of arbitrary width and amplitude, with time along the 
x-axis. (b) Construction of the Morlet wavelet (blue dashed) as a Sine curve 
(green) modulated by a Gaussian (red). 

 
 
2.2.4 Demonstration of wavelet power spectrum 
 
The continuous wavelets transform, only recently introduced to economics but 
increasingly widely employed (Aguiar-Conraria & Soares, 2011; Aloui & Hkiri, 
2014; Crowley & Mayes, 2008; ECB, 2018; Flor & Klarl, 2017; Klarl, 2016; Li, 
Chang, Miller, Balcilar, & Gupta, 2015; Reboredo, Rivera-castro, & Ugolini, 2017), 
offers a number of key advantages well known in other literatures that make it 
useful in this application. 

These include (i) their ability to reveal cyclical components even in noisy 
dynamical systems;29 (ii) parse complex spectral content (e.g. multiple cycle 
components); and crucially (iii) optimisation of the   uncertainty principal trade-
off between temporal and spectral resolution - thus usefulness for studying time 
varying or transient dynamics and suitability for analysing non-stationary time 
series (useful for long historical analyses where the probability of finding 
marked non-stationarities/interesting shifts and structural breaks increases 
with the length of the time series). 

As recently argued by Beaudry et al. (2016b)  irregular fluctuations may 
emerge as the interplay between exogenous shocks and endogenous cycles. In 
this sort of setting wavelets analysis should have some power to distinguish the 
signature of the cycle dynamics in the signal from the spectrum of the stochastic 
environment in which it is embedded (which will depend on the specific process 
but will not have a preferred period). 
 

 
29 See e.g. Mallat (1998) . 
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Figure 4: This chart plots (b) the wavelet power spectrum, (c) the global wavelet 
power spectrum, (d) the Fourier spectrum, and (e) a histogram of the cycle durations 
(peak-to-peak) as calculated based on turning points (obtained using the widely 
employed Bry-Boshan (1971) method), for the same time series which was simulated 
as two periodic cycle components, one with some transient dynamics (a temporary 
shift from periodicity of 3 to 4), and some auto-correlated noise. 

 
Wavelets have a number of distinct advantages over the better known Fourier 
spectrum – in practice even transient dynamic may generate a spectral peak in 
the Fourier spectrum; meanwhile an abrupt shift in the frequency of well 
defined cycle may generate a broad spectrum. The wavelet based time-
frequency projection by contrast allows the stability of a spectral peak to be 
assessed over time, where stability provides evidence of a preferred period 
(something an auto-correlated noise process does not have). 

Some of these (relative) capabilities/properties of the wavelet power 
spectrum are briefly demonstrated/illustrated based on the following two 
applications to simulated data: Figure 4 (a) presents the scale normalised 
wavelet power spectrum for a time series simulated as two periodic cycle 
components with the same amplitude but different periodicity, one with some 
transient dynamics (a temporary shift from periodicity of 3 to 4), and some 
auto-correlated noise.   

We see that the power spectrum does a good job of distinguishing the two 
periodic components, and the temporary frequency shift against the background 
noise spectrum. (b) Shows the effectiveness of the normalisation procedure in 
facilitating the comparison between spectral peaks at different frequencies, with 
GWPS showing two peaks of similar magnitude centred at relevant periodicities. 
(d) The Fourier spectrum picks up the first peak but the second is obscured by 
spectrum of the auto-correlated noise, meanwhile transient dynamics and other 
temporal information are entirely lost. (e) Presents a histogram of cycle 
durations based on turning points obtained via commonly used Bry-Boshan 
(1971) algorithm. 
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Figure 5: This figure presents (a) a time series simulated as a combination of a 
periodic cycle process (of 50 quarters so c.12 years) and a random walk process, 
with a single ‘explosive episode’/’collapsing bubble’, the true onset and 
termination dates for which are marked by vertical red lines. Meanwhile the green 
shading indicates the “explosive episodes” as identified by applying the PSY 
procedure (Phillips et al., 2015b) (95% level) to the simulated data – we see the 
procedure dates the single explosive episode almost exactly (as well as suggests 
two extremely short false positives). Meanwhile (b) presents the wavelet power 
spectrum for the same simulated series. This change of perspective via 
transformation very clearly highlights the 12-year cycle - this shows up clearly in 
time-frequency representation as a spectral ridge, the peak of which - white line in 
the centre of the area of high power - identifies the true cycle periodicity almost 
exactly (something obscured in visual inspection of the time series plot by the 
martingale and explosive dynamics). 

 
Figure 5 presents (a) a time series simulated as a combination of a periodic cycle 
process (of 50 quarters so c.12 years) and a random walk process, with a single 
‘explosive episode’/’collapsing bubble’ of the sort studied by the a number of 
studies of US and other housing markets which report evidence of temporary 
bubble periods (Hu & Oxley, 2018a; Efthymios Pavlidis et al., 2018; Shi, 2017) 
(the data generating process is set out in detail in Section 5.3.3.1.1). The true 
onset and termination dates for the bubble episode are marked by vertical red 
lines, meanwhile the green shading indicates the “explosive episodes” as 
identified by applying the procedure introduced by Phillips, Shi and Yu (2015a, 
2015b) (95% level) which is employed by these empirical studies (I introduce 
this literature in more detail in Section 5.3.1). 

This simulated example illustrates: (i) the usefulness of the PSY procedure for 
identifying temporary explosive dynamics; (ii) the usefulness of time-frequency 
methods for identifying cyclical components that may be obscured by other 
processes. While the bubble is clearly visible on inspection of the time-series 
plot, the PSY test provides an objective, consistent and accurate dating 
strategy.30 Meanwhile the change of perspective provided by the wavelet 

 
30 Note one might e.g. easily (and incorrectly) have dated bubble onset earlier based on visual inspection. 
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transform of the series reveals the stable underlying periodic component (the 50 
quarter or 12.5 year cycle) very clearly – something otherwise obscure in the 
combined signal and in fact making only a limited contribution to the overall 
variation in the series given its amplitude. 

 
 
2.2.5 Statistical significance 
 
The wavelet transform (from which the power spectrum is derived) is merely a 
transformation (projecting the signal onto the time–frequency plane). It is a 
useful transform because it can help to clarify certain structures in a signal - 
including periodic components - that may be obscured by noise, or the existence 
of multiple periodic or other dynamic components at different frequencies, and 
nonstationarities. As a mere transform no statistical test on the power spectrum 
is necessary as such - a spectral ridge in the time-scale plane is a spectral ridge 
in the time-scale plane. It is interesting nevertheless to ask whether the 
observed power spectra at a particular position on the time-scale plane are not 
due to a random process. The significance of a wavelet power spectrum is 
assessed by comparison with simulated or theoretical spectra representing a 
null hypothesis.31 

In this study I use Monte Carlo methods (i.e. simulated spectra). Under this 
approach one starts with the observed time series, which are to be tested 
against the hypothesis of surrogate data generated in order to share some 
statistical properties with the original series, but which are generated by 
different random processes.  

The choice of the null model is of course central and can affect the potential 
conclusions. While many studies assess against the null of a white noise process, 
this is inappropriate for house price (or other economic) time series given 
commonly observed persistence. In this study, I am interested in particular, in 
the question whether or not the cyclical fluctuations U.S. house price series 
exhibit are consistent with a random process – house prices may be susceptible 
to appearing to vary over long time periods solely owing to their stability over 
short time periods. 

I test cycles in the wavelet spectrum against a null hypothesis that takes 
account of the highly auto-correlated character of house price series. Statistical 
significance is assessed with Monte Carlo simulations - the distribution of the 
wavelet power spectrum under the null hypothesis is constructed based on the 
wavelet power spectrum of 𝑁𝑠𝑢𝑟 surrogates, and the 95th percentile of this 
distribution extracted. Surrogates are obtained by fitting an ARMA(p,q) model to 
the series and constructing new samples by drawing errors from a Gaussian 
distribution.  

The null hypothesis tested thus states that the significant periodic 
characteristics of house price series studied are identical to those of an ARMA(p,q) 
process. The synthetic series generated have the same mean, the same variance, 

 
31 In existing wavelets studies in the economics literature e.g. Crowley et al. (2010) assess the power 

spectrum against theoretical spectrum of an AR(1), and white noise background; Verona et al. (2016) do 
not explain significance test used. 
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a Gaussian distribution of their values and similar ARMA structure to the 
original series – obtained by fitting ARMA(p,q) model (which provides a flexible 
model structure) to each time series.32 
 
 
2.3 Analysis and results 
 
2.3.1 Assessing cyclicality of state level markets over sample period 
 
In order to assess the time-frequency characteristics of state level house price 
dynamics, I obtain the local wavelet power spectrum (Eq.2) of seasonally log-
differenced monthly house price indices for each of 50 U.S. states and the 
District of Columbia, 1975:01-2020:06.33 Figure 6 presents the results of this 
analysis for a selection of states and the interested reader is invited to inspect 
Appendix section 12.1 where (in the interests of space) the local power spectra 
for all 51 series are exhaustively presented. 

In these charts, hot colours represent areas of high power (and cool colours 
areas of low power). Periodic components thus show up as ‘spectral ridges’ 
(narrow bands of high power over time).  The white lines show the local maxima 
of the wavelet power spectrum undulations, providing an estimate of the cycle 
period. Black contour lines mark areas of statistical significance (95% level). 
Statistical significance has been assessed here with Monte Carlo simulations: in 
each case 2,000 surrogates are obtained by fitting an ARMA(1,1) model to the 
price series and constructing new samples by drawing errors from a Gaussian 
distribution. The surrogate series generated have the same mean and variance 
as the original series. 
The null hypothesis tested thus states that the significant periodic characteristics 
of the house price series studied are identical to those of an ARMA(1,1) process, 
taking into account the highly auto-correlated nature of house price series - 
which could cause them to appear to vary over long time periods owing to their 
stability over short time periods (see methods 2.2.5). The black parabola marks 
the cone of influence (outside of which edge effects may distort results – see 
methods appendix 10.1.2).   

Strikingly, while a small minority of states show no significant evidence of a 
periodic component to house price dynamics (Alaska, Mississippi, West 
Virginia);34 most exhibit evidence of well-defined permanent cycles - these show 

 
32 Since I want to test for cycles, in order to rule out complex roots in the null, I use ARMA(1,1) process. 
33 I use seasonally adjusted monthly Freddie Mac House Price Index data. The availability of monthly data 

(unlike widely used FHFA data which is available on a quarterly basis) improves temporal but also spectral 
resolution. I take seasonal log-differences of the data before obtaining wavelet transform and power 
spectrum. However using other standard price indices yields very much the same results. See appendix 
section 11.1 on house price data. The Freddie Mac House Price Index data employed in analysis presented 
here can be found at the following link: 

 http://www.freddiemac.com/research/indices/house-price-index.page  
34 It is interesting to ask why these specific states do not exhibit evidence of periodic components to house 
price fluctuations. Notably, from the 1970s through to the present decade West Virginia and Mississippi 
have the smallest shares of urban dwelling population (U.S. decennial census data the 1970-2010).  Alaska is 
of course also a rather rural state with a lot of pace. This may suggest an explanation: metropolitan housing 
markets behave differently than rural housing markets, among other things being subject to greater supply 
constraints (in cities that lack construction land, urbanisation leads to price increases (Hilber & Vermeulen, 
2012; Saiz, 2010)), and higher levels of housing transactions and churn. Glaeser et al. (2008) for example 

http://www.freddiemac.com/research/indices/house-price-index.page
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up as clear spectral ridges over the entire sample period. In many cases these 
periodic components are statistically significant under the testing procedure 
employed (e.g. California, DC, Oregon, Washington), in others a spectral ridge, 
whilst not statistically significant, is nevertheless clearly visible in the power 
spectrum (e.g. Nebraska, Ohio, Texas). 

 
 

 
Figure 6: This figure presents example wavelet power spectra obtained for state 
level US house price series (transform obtained for seasonal log differences of 
monthly data – see footnote 33). Hot colours indicate areas of high power thus 
cycles show up as ‘spectral ridges’ (narrow bands of high power over time). The 
local maxima of spectral ridges are marked by white lines, providing 
instantaneous estimates of cycle periods. Black contour lines mark areas of 
statistical significance in the local power spectrum, assessed using Monte Carlo 
methods (based on 2,000 surrogate series) against null of ARMA(1,1) process. The 
parabola marks the ‘cone of influence’ outside of which edge effects may influence 
the spectrum. 

 
Most states exhibit some evidence of two cycle components – in particular 

ridges are observed in the power spectra roughly around 9-10-year periodicity 

 
illustrate that house prices in the U.S. grow much more strongly in metro areas with inelastic supply during 
boom phases and Huang & Tang (2012) found that supply constraints amplified the fall in house prices in 
U.S. cities from 2006 to 2009. Moreover supply elasticity has been widely argued to play a crucial role in 
both the onset and amplitude of speculative house price cycles (see e.g. from Malpezzi & Wachter (2005) to 
Dieci & Westerhoff (2016)). Future work might look at the empirical variation in cycle characteristics (such 
as cycle amplitudes) vs. market characteristics including supply constraints. 
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(implying c.5 cycles over the sample period spanned by the data) and roughly 
around 12-14-year periodicity (implying c.3.5 cycles over the sample period 
spanned by the data). This detail can be observed thanks to the effective 
separation of scales achieved by the wavelet transform of the data. 
 

 
 
2.3.2 Comparing state level cycle periodicity across states and over time 
 
In order to obtain a more precise assessment of relevant frequency bands and 
assess variation in cycle frequencies across different markets, I look at the 
distribution across all 51 series, of estimated instantaneous cycle periodicity 
(given by the local maxima of the wavelet power spectrum (Ramirez & Montejo, 
2015). For an individual state these are the white lines visible in Figure 6).  

The results of this analysis are presented in Figure 7 where I aggregate (a) 
across all U.S. states (but retain time-frequency dimensions) and (b) across both 
states and time.  
 

 
Figure 7: This figure presents the distribution of estimates of instantaneous cycle 
periodicity (given for individual states by the white lines in Figure 6), aggregated (a) 
across all U.S. states (colour represents the density, with hotter colours indicating 
higher density) and (b) across both states and time, from 1975 to 2020. This analysis 
reveals that the cycles exhibited by different states have remarkably similar 
periodicities with cycle components of between 8 and 10, and between 12 and 15 
years. This is clearly indicated by the two sharp peaks in the density in figure (b) and 
the time-frequency information provided by chart (a) (where the cycles show up as 
narrow and clearly separated bands) makes clear that these common cycles are not 
only a feature of the national bubble episode, but have existed across the entire 
sample period. The crisis shows up clearly however as a well-defined area of density 
around the 3 year periodicity band between 2006 and 2014.   

 
In Figure 7 (a) hotter colours indicate regions of higher density (i.e. multiple 
different markets with spectral peaks at the same frequency) - white areas are 
not associated with local spectral peaks. 

This analysis reveals that the cycles exhibited by different states have 
remarkably similar (narrow distribution in frequency domain at each time step) 
and stable (limited temporal variation in the estimated instantaneous 
frequencies over time) preferred periodicities with cycle components of 

Housing and financial 
crisis 

Local volatility, 
or nonlinearities 

in cycle 

Periodic components 
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between 8 and 10 (c.5 cycles over sample period), and between 12 and 15 years 
(c.3 cycles over the sample period). This is clearly indicated by the two sharp 
peaks in the density in figure (b) meanwhile the time-frequency information 
provided by chart (a) (where the cycles show up as narrow and clearly 
separated bands) makes clear that these common cycles are not only a feature 
e.g. of the national bubble episode, but have been a national phenomena across 
the entire sample period – a particularly interesting result in the case of the 8-10 
year periodic component given the longer time series dimension relative to cycle 
period.  

Note that – as can be seen from inspection of individual power spectra in 
Figure 6 – it is not the case that some markets have an 8-10 year cycle and some a 
12-15 year cycle, but rather most states tend to exhibit evidence of both. 

Transient dynamics associated with the crisis do clearly show up in the form 
of a well-defined area of time-frequency localised density around the 3-year 
periodicity band between 2006 and 2014.  Meanwhile the scattered local peaks 
over a similar frequency band during the 1980s suggest more local volatility 
operating at higher frequencies, or local nonlinearities in the cycle over this 
period. The “whitespace” between 1990 and 2005 at periodicities less than 8 
years is consistent with reduced contribution to house price variation from 
these higher frequency bands over this period. 
 
2.3.3 How geographically widespread has cyclicality been over sample period? 
 

 
Figure 8: This presents a summary of which states exhibit cyclicality in 8-15 year 
periodicity band over the 1975:01-2020:06 sample period. In (a) each row represents 
a state over time: black represents a cycle episode, while white indicates the absence 
of a statistically significant peak in the power spectrum over the periodicity band. (b) 
plots the percentage of US states classified as exhibiting a cycle episode at each time 
step. 

 
Given that many states exhibit evidence of permanent cycles (Figure 6) with very 
similar periodicities (Figure 7) it is interesting to assess in a systematic and 
quantitative way, the geographical prevalence of cyclical episodes across US 
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states over time. To do this I define a binary state variable at each time step for 
each market, equal to one if that market has a spectral ridge within the relevant 
9-14 year periodicity band and zero otherwise (choice of periodicity band is 
based on analysis presented in Figure 6 and in particular Figure 7 above in order 
to both capture the variation in cycle frequencies between markets and be 
robust to some drift in dominant frequency within this band over time).  Figure 
8 visualises this analysis: here each row represents a single state (see y-axis 
labels) and each column a month. Strikingly the majority of states exhibit 
periodic components in this frequency band over the entire sample period – 
permanent cycles. Note the percentage of states exhibiting cycle episodes at 
each time step is summarized at the bottom of Figure 8. 
 
 
2.4 Relevant literature 
 
The literature on house price instability is vast, and I have provided in the 
introduction a general review in order to contextualise this study. The question 
of endogenous cyclicality does not appear to have been empirically studied in 
the literature, although a small handful of studies attempt to estimate the 
behavioural parameters of agent-based housing market models based on 
national house price data (Bolt, Demertzis, Diks, Hommes, & van der Leij, 2014; 
Chia, Li, & Zheng, 2017; Kouwenberg & Zwinkels, 2015). 

Wavelets analysis is widely employed in a range of applied sciences (physics, 
neuroscience, epidemiology, ecology, climate science, seismology, signal 
processing, etc.), and has become increasingly employed in economics since 
Soares & Aguiar-Conraria  (2011) and Aguiar-Conraria & Soares (2014), 
especially in studying cyclical properties of economic and financial time series, 
and their cyclical comovements. 

This work adds to a growing number of studies that have employed the 
wavelet power spectrum in order to assess the cyclical properties of economic 
and financial time-series (Aguiar-Conraria & Soares, 2011; Poměnková, 
Klejmová, & Kučerová, 2019; Verona, 2016).  

Only a handful study house price cyclicality: Li et al. (2015) look at the 
wavelet power spectrum of the national annual transaction-based Shiller 
housing returns data for the U.S. from 1890 to 2012.35 Verona (2016) looks at 
the wavelet power spectrum of national U.S. house price series since 1975 (data 
taken fro OECD.stat). Mandler & Scharnagl (2019) present the wavelet power 
spectra of national house price series for G7 economies. Zhou (2010) uses 
wavelet coherence to study the comovement between publicly traded real estate 
securities in different countries. 

Only Flor & Karol (2017) use wavelet analysis to study sub-national house 
price cycles. They study MSA level data between 2001 and 2013 - c.10 years of 
data compared to the c.50 years of data I study here). A sample of this length of 
course makes it impossible for them to study lower frequency dynamics, and is 
only really suitable for analysis of variance in a 2-3 year periodicity band. As a 
result the c.10 year cycles I identify and study here is out side the scope of their 
analysis. It is not clear why they do not use the full historical time-series 

 
35 This data is available at: http://www.econ.yale.edu/~shiller/data.htm 

http://www.econ.yale.edu/~shiller/data.htm
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dimension that was available to them given on the one hand the problem of edge 
effects (see methods appendix 10.1.2), and on the other hand the good temporal 
resolution provided by the transform.36 

 
 
2.5 Discussion 
 

Many sub-national housing markets in the U.S. exhibit a long history of 
repeated boom-bust. The dynamic character of these cycles represents an 
important question. A key debate in the literature has been whether house 
prices are stable but subject to shocks; or exhibit bubble episodes. A series of 
random shocks could generate a ‘cycle’ in the sense of successive periods of 
expansion and contraction (closely analogous to modern business cycle theory) 
(Bracke, 2013); alternatively if markets are ‘bubbly’ enough (i.e. if bubbles easily 
emerge but inevitably burst) this explosiveness could be the engine behind a 
cycle formed by a sequence of bursting bubbles (Evans, 1991; Shi, 2007, 2017). 
Indeed the multiple bubbles hypothesis is empirically supported by evidence of 
temporarily explosive dynamics (Hu & Oxley, 2018a; Efthymios Pavlidis et al., 
2018; Shi, 2017) - the time series signature of an unstable bubble process (see 
Phillips (2015a) for an overview). 

Whether cycles are being driven by successive shocks or bubbles, under this 
episodic view housing cycles might recur, but would be fundamentally irregular 
and unpredictable.  

On the contrary the stable spectral ridges exhibited by the majority of sub-
national markets suggest that housing cycles - while they may be subject to 
shocks thus exhibit some noisy behaviour and/or exhibit 'bubbly' behaviour - 
also have a cycle component with a preferred period, consistent with significant 
intrinsic cycle dynamics (i.e. persistent fluctuations around an either unstable or 
only weakly stable equilibrium).  

This feature has not been previously documented and suggests a potential 
empirical relevance for models of endogenous house price cycles, which have up 
to now, received only limited theoretical attention and even less serious 
empirical motivation. This calls for further empirical work to further qualify and 
diagnose the cyclic dynamics in the data – e.g. to try and distinguish between 
limit-cycle and noise driven oscillations. It also calls for effort to develop 
theoretical models able to explain observed cyclicality, and strategies by which 
to test and empirically discriminate between alternative hypotheses regarding 
the underlying cycle mechanism. 

These results thus suggest a possible need for a significant shift in our 
understanding of U.S. housing market instability at the local level. Perhaps even 
more importantly however, evidence of persistent cyclicality in sub-national 
markets also has a range of significant consequences for the sorts of dynamics 
that may potentially arise at a wider spatial scale with implications for the 

 
36 There are other important differences in their procedure (they employ MSA level data, first perform a 

clustering routine, then look at the power spectrum of the average price series for each cluster). However 
the simplest and most important reason why they failed to identify the cyclic behaviour I document, is that 
they only study data between 2001-2013 (c.10 years of data compared to the c.50 years of data I study 
here). They also study synchronisation of regional markets, something I will study in subsequent chapters 
obtaining, again, to very different results. 
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relevant theoretical framework within which to think about national house price 
(in)stability, and also e.g. spatial “ripple effects” widely studied in the real estate 
literature.  

For one thing, in the presence of permanent cycles a temporary global shock 
can potentially have a permanent impact on the degree of co-movement among 
cycles - thus aggregate volatility – meaning the impact of a succession of 
common shocks could plausibly accumulate over time. What is more, local links 
between cyclical markets could give rise to local synchronisation and e.g. 
spatial-pattern formations across markets; or even the emergence of a national 
cycle via the endogenous synchronisation of cycles across different markets. 

These interesting dynamic phenomena/possibilities have not, to the best of 
my knowledge, been considered in the real estate (or indeed wider economics) 
literature, not least because house price fluctuations have been assumed to 
reflect either idiosyncratic shocks or non-stationary bubble processes. They 
become relevant however, in the context of the evidence I present of widespread 
cyclical dynamics in markets across the U.S.  

The presence of a permanent cycle component in sub-national markets thus 
implies nothing less than a need potentially to radically re-think our view of U.S. 
housing market instability and the conceptual and theoretical frameworks 
through which we approach it. 
 
 
2.6 Conclusion 
 
In this essay I used time-frequency methods to re-examine the cyclical 
properties of US house prices over time and across different markets based on 
monthly state level data covering the period 1975:01-2020:06.  

While methods widely employed to characterise cyclicality in economic 
variables are not able to distinguish stochastic from regular, or episodic from 
permanent cycle dynamics, wavelets have been shown to be useful in this 
respect. 

The time-frequency decomposition of house price variation provided by the 
wavelet power spectrum allows me to study the evolution of the spectral 
structure of house price cyclicality over time, thus assess whether and over what 
historical periods state level markets exhibit evidence of transient/episodic or 
permanent/persistent cycles.  

I find surprisingly striking evidence of persistent or permanent cycles 
spanning the entire historical sample period 1975:01-2020:06 for the majority 
of U.Ss states. An analysis of the distribution of instantaneous frequencies for 
state level cycles suggests that most states share cycles with a similar periodicity 
(both 8-10 and 12-14 year fluctuations).  

The existence of these clear cyclical components with fairly stable preferred 
periodicity provides evidence consistent with a significant 
deterministic/intrinsic component to housing instability, motivating further 
work to distinguishing between e.g. limit-cycle and noise driven oscillations, as 
well as to discriminate between competing hypotheses regarding underlying 
cycle mechanism.  

The geographically widespread incidence of permanent cycles spanning both 
the local and national housing instability eras, also suggests a surprising 
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continuity of dynamics between these periods as observed at the state level, and 
raises the important question why cyclical instability has not featured more 
prominently at the national level. 
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3 Essay 2: Co-movement of permanent cycle 
components: evidence of dramatic phase 
synchronisation across sub-national markets 

 
Summary: In this chapter I study developments in the co-cyclicality of U.S. state 
level housing cycles over time. House price comovement across markets is an 
important issue for portfolio risk and for macro-financial stability. In Essay 1 
(Section 2) I show using monthly state level data from 1975:01-2020:06, that the 
majority of subnational markets across the U.S. exhibit evidence of permanent 
cycle components of similar periodicities (in the 8-10 and 12-15 year periodicity 
range). In this chapter I study the extent and evolution of overall comovements 
among these cycles. For this purpose I introduce multivariate statistics based on 
an instantaneous phase and amplitude decomposition of the data (obtained here 
via complex continuous wavelet transform). These methods allow me to assess 
the contribution to average U.S. house price fluctuations from time-varying 
phase-synchronisation (ignoring magnitudes) vs. time varying similarities in the 
amplitude-envelopes of cycles across local markets.  A comparison of (i) the mean 
of the power spectra of state level price series and (ii) the power spectrum of the 
mean of state level price series (providing a time-frequency decomposition of 
mean variance vs. variance of the mean), shows states across the US shared a 
common cycle component over the entire sample period, however this cycle only 
shows up as a significant feature of the national price index (based on simple 
mean) after 1995. My analysis of overall phase synchronisation across markets 
shows a dramatic transition from low to high phase-synchronisation of cycles 
occurred in the mid 1990s. I thus show that prior to the mid 1990s anti-phase 
relationships moderated the impact of common cycle components on aggregate 
house price volatility, but that after 1995 (coinciding with changes in mortgage 
finance) a dramatic phase synchronisation of existing cycles made a significant 
contribution to the national housing boom-bust over the subsequent period. 
There is also evidence of a marked de-synchronisation after the early 1980s, 
following a significant common shock in the early 1980s (that entirely averages 
out in national price index but is clearly revealed by the mean power spectrum 
analysis). The de-synchronisation between 1984 and 1995 coincides with on-
going Savings and Loans company failures over this period, and the period over 
which de-synchronisation significantly moderates aggregate house price 
volatility (1984-2000), coincides closely with the “Great Moderation” period. 
These results provide rich new insight into the dramatic housing market 
gyrations of the 2000s, and the debate over the localness vs. national character 
of house price instability. 

 
 
3.1 Introduction 
 
Motivation 
 
In this essay I study the extent and evolution of overall co-cyclicality of state level 
house price cycles across the U.S., over the available sample period 1975:01-
2020:06. The covariation of regional housing markets is of course an issue of 
great importance:  it is central to diversification opportunities, rating and 
pricing in mortgage lending and derivatives and housing investment portfolios 
(BIS Committee on the Global Financial System, 2005; Cotter et al., 2015; Cotter, 
Gabriel, & Roll, 2018; Coval et al., 2009; Sanders, 2008; Zimmer, 2012); and 
assumes particular significance given that aggregate house price fluctuations 
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have come to be widely considered as a source of macroeconomic fluctuations 
(the empirical literature on housing spillovers and housing in the business cycle 
is very extensive. Some relevant examples are e.g. Leamer (2007), Cesa-Bianchi 
(2013), Iacoviello (2005), Liu et al. (2013)). 

The widespread run-up and subsequent near simultaneous collapse of house 
prices in markets across the U.S. during the 2000s is well known. While the 
synchronicity of housing market gyrations during this period was 
unprecedented perhaps since the Great Depression era, periods of dramatic 
housing boom-bust have been far from uncommon at the sub-national level 
(Karl E Case, 1992; Karl E Case & Shiller, 1993; Riddel, 1999; Shiller, 1990).   

It has been previously documented in the literature (see e.g. Del Negro and 
Otrok (2007) for an early study), that prior to the “national bubble” period of the 
2000s, house price variation was dominated by idiosyncratic movements 
(consistent with local shocks or local bubbles), but that a common component 
dominated house price movements from the mid-2000s (consistent with the 
significant influence of a global/national shock or bubble during this period).  

Similarly systematic studies by a recent empirical literature that employs 
time-localised tests for explosive dynamics (argued to be the hallmark of an 
unstable bubble - rather than equilibrium adjustment - process) find evidence of 
a history of bubbles in most markets prior to the national boom-bust, but finds 
bubbles arose simultaneously across the US during the 2000s, and burst even 
more synchronously in 2006-7 (Hu & Oxley, 2018a)37. 

The apparently idiosyncratic character of housing market instability before 
the 2000s and a traditional acceptance in the literature that idiosyncratic factors 
are the primary sources of shocks is in line with the apparently local character of 
housing supply and demand/as a non-tradable asset.  

Meanwhile the national boom-bust of the 2000s is widely believed to reflect 
the emergence of significant common national drivers in house price formation 
during this period – a wide range of factors have been put forward including 
interest rates; mortgage credit and subprime lending; speculation and 
irrationality; and international capital flows.38 

 However in Essay 1 I have presented evidence that house price series for 
most states across the US exhibit striking evidence of a highly persistent or 
permanent cycle component of 8-10 year periodicity over the entire available 
sample period 1975:01-2020:06 (see analysis and results presented in Section 
2).  

 
37 Hu and Oxley (2018a) are surprisingly one of the few existing studies to make a formal comparison 
between the regional housing boom-busts of the 1980s - as studied in e.g. (Karl E Case & Shiller, 1993; 
Shiller, 1990)) - with regional bubbles during the 2000s (as has been widely documented there was 
significant regional heterogeneity in the magnitude and timing of regional house price movements over the 
national bubble period. See e.g. Sinai (2012)). Hu and Oxley (2018a) apply the univariate right-tailed unit 
root test procedure of Phillips et al. (2015b, 2015a) to state level data. This test was explicitly designed to 
capture forming and bursting bubbles and to “date-stamp” the beginning and end of the bubble to state 
level time series data for all US states and the District of Columbia. 
38 Interest rates (Campbell et al., 2009; Glaeser et al., 2013; Himmelberg et al., 2005); mortgage 
credit/market “innovations” and subprime lending (Dell’Ariccia, Igan, & Laeven, 2012; Favilukis et al., 
2016; Levitin & Wachter, 2012; Mian & Sufi, 2009; Pavlov & Wachter, 2009; C. W. Wheaton & Nechayev, 
2008); speculation and irrational bubbles (Barlevy & Fisher, 2011; Bayer et al., 2011, 2016; K E Case et al., 
2005; Karl E Case & Shiller, 2003; J. M. Lee & Choi, 2011; Shiller, 2005; C. W. Wheaton & Nechayev, 2008); 
contagion and “fads” (Bayer et al., 2016; Burnside et al., 2016); and international capital flows (Favilukis et 
al., 2013, 2016). 
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This evidence of permanent cycles in state level data suggests a surprising 
continuity in house price dynamics as observed at the state level across the 
“local” and “national” instability eras. This sinusoidal component (non-zero 
frequency spectral ridge) to price movements is at odds with the irregular 
fluctuations implied by random shocks or the irregular boom-bust implied by 
occasional temporary bubble episodes; and distinct from the time localised 
(temporary) zero-frequency explosive root that is the time series signature of an 
explosive bubble process (Hu & Oxley, 2018a; Efthymios Pavlidis et al., 2018; Shi, 

2017). 
Moreover - and seemingly at odds with the common view that the shift from 

local to national instability in the 2000s reflected a shift from the dominance of 
idiosyncratic local, to common national factors in driving house price variation - 
there is strong evidence that the permanent cycle in state level data has been a 
national phenomenon (in the sense of a common feature: cycle periodicities are 
remarkably similar across different states (See Figure 7 in section 2.3)) not just 
during the national boom-bust episode of the 2000s but over the entire sample 
period.  

Taken together the combined continuity of cycle dynamics as observed at the 
state level; and the similarity of cycle periodicities across different geographical 
markets, raises interesting questions regarding the relationship between state 
level cycles and their contribution to national house price movements: if states 
across the U.S. shared a similar cycle since the early 1970s, why was this not a 
source of national boom-bust over this entire period?  

One obvious possibility is that while states share cycles of similar periodicity, 
there may be significant phase shifts between these cycles (after all, in a stylized 

example, two identical signals with a phase-shift of ±
𝝅

𝟐
 will be 

contemporaneously uncorrelated with each other, or given a phase shift of 𝜋 
(anti-phase relationship) will not generate a mean cycle).  

Moreover, what (if any) contribution did these cycles make to the national 
boom-bust of the 2000s? 
 
 
Research questions and methods 
 
In this essay I do not attempt to answer the question what factors can explain 
the similar periodicity permanent cycles observed in the data, but rather I study 
their co-cyclicality and how this may have varied or changed over time.  

To address this problem I introduce multivariate statistics based on an 
instantaneous phase and amplitude decomposition of the data, obtained here via 
the continuous wavelet transform recently introduced to the economics 
literature (Aguiar-Conraria & Soares, 2014).  

Wavelets analysis has the ability to identify not only time variation, but also 
abrupt shifts in the cyclic dynamics of population.  

These allow me to identify common cycle components across state level 
markets and disentangle and quantify the contribution to aggregate house price 
variance from the time-varying amplitude envelope and time varying phase-
synchronisation of these cycles as observed at the state level.  
 



 

 44 

 
Existing literature 
 
The question of how the co-movement of US markets has changed over time has 
been previously addressed in the literature, based on a variety of different 
methods, datasets, and sample periods. Methodologically these studies rely 
variously on: simple correlation analysis (Kallberg, Liu, & Pasquariello, 2014; 
Landier, Sraer, & Thesmar, 2017)39 quantifying the tendency of prices across 
different markets to co-move from one time-step to the next; cointegration and 
error correction methods (Yunus & Swanson, 2013)40 to test whether price 
differences between markets are mean reverting - thus whether regional 
housing cycles move around/share a common stochastic trend in the ‘long-run’; 
latent factor models (Del Negro & Otrok, 2007)41 or simple multivariate 
regression frameworks (Cotter, Gabriel, & Roll, 2011)42 as a way to try and 
estimate the relative importance of common (respectively latent or observed) 
national (vs. idiosyncratic local) factors in house price movements; and spatial 
econometric models (Abate & Anselin, 2016)43 in order to assess the co-
movement of contiguous markets. In all cases these methods are made dynamic 
through the use of rolling-windows or recursive estimation.  

All these studies seem to report a trend to increasing co-movement across 
subnational markets starting well before the housing and sub-prime crisis of 
2006-8.44 However  
 
(1) The time-domain methods on which these studies rely are uninformative 

with regard to the character of common price dynamics driving these results 
- co-movement may vary across frequencies as well as over time thus it is 
important, in general, to question whether the trend to increased 
comovement is driven by long-run trend, cycles, or short-run volatility 
components of the data - here I am specifically interested to study the 
comovement of the 8-9 year cycles identified in Essay 1 (see Section 2);  

(2) Correlation based methods are sensitive to both phase and amplitude 
variation, moreover rolling window based methods employed to make 
correlations dynamic are subject to a number of problems or biases in the 

 
39 Kallberg et al. (2014) using monthly data from Case-Shiller Home Price Indices for 14 MSAs between 

1992 and 2008, find mean pairwise correlations (based on 30 month rolling window) experienced a sharp 
increase over this period; Landier et al. (2017) using state level data find the mean of pairwise correlations 
have increased between 1976–1996  (based on five-year-forward rolling window correlations with 
quarterly data). 
40 Yunus and Swanson (2013) 
41 Del Negro et al. (2007) estimate a dynamic factor model for state-level data 1986-2005 in order to 
disentangle the relative importance of the “common component” in house price movements from “local 
shocks” and report increased importance of the common component in the 2001-2005 period. 
42 Cotter et al. (2011) evaluate the average level of regional housing market integration over time by the R-
squares from a multi-factor model fitted for a moving window and find an upward trend over the 2000s in 
the proportion of variance in house prices explained by “national factors”. 
43 Abate and Anselin (2016) use the recursive estimation of a house price spatial econometric model for 

373 MSAs during 1987:Q1 to 2014:Q3, find their spatial correlation coefficient has increased over time, 
indicating an increasing synchronization of house prices. 
44 Although I focus here on more dynamic methods, further evidence of increased co-movement also comes 
from other studies using a non-overlapping window/sub-sampling approach. 
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presence of cyclical dynamics [ref], and/or time varying volatility [refs] or 
phase-differences [refs] (as will often be the case) (see Section 3.2.2). 

 
By contrast the phase-amplitude decomposition and time-frequency localisation 
made possible by the complex wavelet transform (Eq.1), provides the basis for a 
scale-specific analysis of time-varying co-movement that distinguishes phase 
and amplitude contributions and is robust to non-stationarity.  

This also both provides the basis for a much more continuous measure, and is 
more robust to noise, than methods for quantifying phase-synchronisation 
based on the joint distribution of binary state variables (such as 
expansion/contraction (Harding & Pagan, 2003, 2006); or sign based deviations 
from trend (Bordon & Reade, 2013; Gogas & Kothroulas, 2009; Mink, Jacobs, & 
Haan, 2012))45 widely employed in the existing business cycle literature (indeed 
I would go as far as to suggest they come close to the ‘ideal’ measure of cycle 
synchronisation the literature has sought (Bordon & Reade, 2013; W. Miles, 
2015a; Mink et al., 2012) but not yet found). 
 
Results 
 
A comparison of (i) the mean of the power spectra of state level price series and 
(ii) the power spectrum of the mean of state level price series (providing a time-
frequency decomposition of mean variance vs. variance of the mean), shows 
states across the U.S. shared a common cycle component over the entire sample 
period (1975:01-2020:06) however this cycle only shows up as a significant 
feature of the mean price index after 1995. These results are clarified by an 
instantaneous phase-based analysis, which reveals a dramatic phase 
synchronisation - starting in 1995 - of the common cycle component across state 
level markets. I also find evidence of a marked de-synchronisation starting in the 
early 1980s, coinciding with a significant common shock at this time that 
entirely averages out when price movements across different markets are 
aggregated, but is clearly revealed by the mean power spectrum of state level 
data. 
 
 
Contribution and significance 
 
With this analysis I am thus able to show that:  

State level markets shared a common cycle component over the entire sample 
period, although prior to the mid 1990s the contribution from this common 
cycle component to aggregate house price variation was strongly moderated by 
anti-phase relationships among cycles in different markets.  

 
45 Mink et al. (2012) introduce a statistic to quantify synchronisation among trend-deviation 
cycles (when cycles are defined as difference from trend) based on their sign concordance – the 
fraction of time movements in both series have the same signs (negative or positive output gaps). 
This sort of approach has in fact been used in other applications and was previously introduced 
in business cycle analysis by other authors e.g. Gogas and Kothroulas (2009)). They also 
introduce a statistic to quantify the similarity in the size of the output gap between one series 
and a reference series. These methods are applied for example in a recent paper from ECB 
working group on econometric modelling (ECB, 2018); and in a housing study by Miles (2015a). 
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After 1995 however, a dramatic phase synchronisation of this common cycle 
component across markets made a significant contribution to the aggregate 
housing boom-bust over the subsequent period.  

These results provide rich new insight into the dramatic housing market 
gyrations of the 2000s and the trend to increased comovement across U.S. 
markets documented in the existing literature.  

The existence of a significant common cycle component over the entire 
sample period is in contrast to the widely established result that a significant 
common component only emerged during the period associated with the 
national housing boom-bust and the idea that housing market instability was 
essentially a local phenomenon prior to the 2000s.  

Meanwhile the synchronisation of the existing common cycle component 
raises interesting questions for analyses that look to explain the national boom-
bust episode entirely in terms of the emergence of some important national 
factor as a common driver of house prices across markets over this period.  

These results beg interesting questions regarding (i) the source of the 
cyclicality of sate level data; (ii) the cause of the de-synchronisation from the 
mid 1980s and (iii) the cause of the dramatic re-synchronisation starting in 
1995.  

While I do not draw any conclusions, it is interesting to note that the 
significant common shock indicated by the mean power spectrum in the early 
1980s coincides with the introduction at this time of a whole raft of regulatory 
changes aimed at boosting savings and loans (S&L) companies resulting in a 
dramatic S&L expansion over this period (Chaudhuri, 2014; Federal Reserve 
Hisotry, 2013)) Meanwhile the entire de-synchronisation period from the mid 
1980s-1995, coincides with the period of S&L failures not wrapped up until 
1995 (Green & Wachter, 2005; Snowden, 1997). 

Meanwhile the beginning of dramatic phase synchronisation from 1995 
coincides not only with end of S&L failures but also with the Interstate Banking 
act of 1995 (e.g. Landier (2017) has linked housing market comovement to 
interstate banking) and a fundamental restructuring following the Savings and 
Loan crisis with mortgage finance shifting from being dominated by local 
‘balance sheet lending’ by depositories, to a national market based system of 
securitized mortgage finance (Schnure, 2005).  

It is also notable that the period 1985-2000 over which de-synchronisation of 
local markets significantly moderates aggregate house price volatility, coincides 
closely with the “Great Moderation” period. Whether or not there may be any 
causal links behind these associations, and the direction of influence, begs 
further study. 

My results also seem to raise the question whether we should expect on-
going cyclicality of U.S. house prices at the aggregate level given that phase 
synchronisation across state level markets remains as high today as it was 
during the last national boom-bust, meanwhile house prices and housing market 
liquidity have largely recovered or exceeded their pre-crisis levels, with some 
areas “running hotter” now than during the 2002-06 boom (Famiglietti, Garriga, 
& Hedlund, 2019). 

The mean phase-angle as at June 2020 implies the current growth cycle in U.S. 
markets has peaked. However the power spectrum analysis in Section 2 
suggests a moderation of cycle amplitude since the Global Financial Crisis, as 
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well as a possible convergence of 9-12 year cycle components towards the 12-15 
year cycles in the data. The presence of edge effects also mean we should be 
cautious in our interpretation of recent data at these frequencies. 
 
Organisation of chapter 
 
The chapter is structured as follows. In Section 3.2 I review existing empirical 
literatures relating to housing cycle synchronisation with an emphasis on the 
U.S.; then in Section 3.3 I separately review methods for studying 
synchronisation available in the wider economics literature (section 3.2.2) 
before introducing in detail, the novel methods and definitions I introduce for 
use in my analysis for this study (Section 3.3). Section 3.4 presents my analysis 
and results, which I discuss in section 3.5. Section 3.6 concludes. 
 
 
3.2 Relevant literature 
 
3.2.1 U.S. housing market co-cyclicality with an emphasis on methods 
 
A common and natural hypothesis is that housing market fluctuations may 
reflect both national and local factors. Spatial dependence and spillovers, or 
other local links between markets may also be a source of co-movement across 
markets and are well-established themes in real estate economics. 

Some studies attempt to estimate unobserved common factors using a latent 
factor decomposition approach (Del Negro & Otrok, 2007; Vansteenkiste, 2007) 
- a panel of price growth rates is decomposed into loadings on a low-
dimensional vector of latent factors, and a vector of market-specific variation 
(satisfying weak cross-sectional dependence).46 

This latent factor model approach typically does not allow for phase-shifts 
between common components (that may e.g. naturally arise as a result of local 
propagation), and by assuming local components are independent from each 
other, preclude the meaningful study of bilateral linkages between markets as a 
source of co-movement across all markets. 

While such a variance decomposition is always possible, care must thus be 
taken in its interpretation as common shocks, rather than the result of 
endogenous co-movement generated by the interactions between different 
markets (a concern raised for example by Carvalho (2019) in the analogous 
context of production networks). 

Investigating the role of local links in co-movement presents some 
methodological challenges. Local dependencies between markets - especially 
spatial dependence - are well-established themes in real estate economics. 
However standard spatial econometric models may fail in the presence of strong 
cross-sectional dependence (generally requiring weak forms of cross-sectional 
dependence, in the sense that dependence decreases sufficiently quickly along 
the spatial dimension (Chudik, Pesaran, & Tosetti, 2011; Pesaran & Tosetti, 
2011)).  

 
46 This approach is also widely employed in the study of international house price cycles. E.g. Hirata 
(2013), Cesa-Bianchi (2013), Igan et al. (2009)  are just some examples. 
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What is more, the spatial coefficients yielded by these models provide only a 
measure of contemporaneous local correlation averaged across links (adjacent 
pairs based on the introduction of a spatial adjacency matrix) and across the 
sample period or window.  

Even where dynamic spatial effects are considered through the inclusion of a 
time-lagged spatial correlation (Baltagi & Li, 2014; DeFusco et al., 2013), the 
resulting spatial coefficients in either case provide only a measure of average 
spatial dependence, and do not provide any information on spatial patterns.  

Some studies employ methods designed to accommodate both common 
factors and local links between markets as a sources of correlation (Pesaran, 
2006; Pesaran & Tosetti, 2011): first using variation that can be captured by a 
common component to control for strong cross-sectional dependence, then 
studying residual spatial dependence across the idiosyncratic components using 
a standard spatial econometric model (e.g. spatial autoregressive model) 
(applications in U.S. housing market context include (Baltagi & Li, 2014; S Holly 
et al., 2010)).  

Although studies employing this approach still find significant spatial 
dependence (Baltagi & Li, 2014; S Holly et al., 2010), this methodology also 
starts from the assumption that covariance that can be captured by common 
components is driven by common factors. What is more, the standard spatial 
model estimated based on residual covariance, again only provides a test of 
spatial dependence based on average correlations.  

The considerable existing empirical “ripple-effect” literature - which 
researches spatial propagation of house prices - has mostly relied on 
cointegration tests for convergence (Meen, 1999), asking whether markets move 
around/share a common stochastic trend in the ‘long-run’ (whether they move 
together over time exhibiting mean-revering “spreads”) and rely on restrictive 
assumptions on the order of integration of time series.  

The existence of a “ripple-effect” (in the simple sense of spatial propagation of 
disturbances) might occur however even in the absence of long-run 
convergence; what is more even where convergence occurs cointegration tests 
do not measure the synchronisation or reveal the spatio-temporal pattern of 
short run adjustments or provide a dynamic view of the data. 

Indeed studies for the U.S. in fact report mixed but limited evidence of 
convergence for U.S. markets and this has been argued to cast doubt on the 
existence of a ripple-effect (Clark & Coggin, 2009; Gil-Alana et al., 2014; S Holly 
et al., 2010; Pollakowski & Ray, 1997).47 

While these methods all provide time-averaged estimates of co-movement, 
some studies have employed rolling-windows or recursive estimations in order 
to address the question of how the co-movement of U.S. markets has changed 
over time.48 

 
47 By far the largest literature on the ”ripple-effect” is for the U.K. (Meen, 1996, 1999), but ripple-effects 
have been tested for in many countries. 
48 Simple correlation analysis (Kallberg et al., 2014; Landier et al., 2017); cointegration and error 
correction methods (Yunus & Swanson, 2013); latent factor models (Del Negro & Otrok, 2007) or simple 
multivariate regression frameworks (Cotter et al., 2011) as a way to try and estimate the relative 
importance of common (respectively latent or observed) national (vs. idiosyncratic local) factors in house 
price movements; and spatial econometric models (Abate & Anselin, 2016) in order to assess the co-
movement of contiguous markets. 
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However, not only are there a number of potential issues with employing 
rolling-windows with many of these approaches,49 but also none of these time 
domain methods provide the spectral information or phase-amplitude 
decomposition possible with wavelet analysis. 

By contrast with a latent factor model approach, I study the phase-adjusted 
similarity between cycles in different markets (given by the wavelet power 
spectra in Essay 1/Section 2 and the mean wavelet power spectra presented in 
Section 3.4.1 above); then study the phase synchronisation (this Essay) and 
pattern of phase-differences between markets (Essay 3/Section 4) for an 
empirically identified cycle component50 associated with a common frequency 
band across markets. I am thus able to study the role of amplitude vs. phase in 
changing correlation among markets over time. 

Given my focus on the pattern of phase-lead lags, strong cross-sectional 
dependence does not pose a problem (as it does for spatial econometric models) 
and the simple spatial projection of the instantaneous phase of the common 
cycle component that I introduce allows a rich elucidation of the exact pattern of 
relationships.51 

Unlike the existing ripple-effect literature that has focused on convergence of 
house price levels, I thus directly study the temporal pattern in house price 
fluctuations. 

What is more, the instantaneous phase based approach that I introduce 
allows me to study the development of overall synchrony and of spatial patterns 
with good temporal resolution (thanks to the optimal time-frequency resolution 
provided by the adaptive windowing of the continuous wavelet transform (see 
methods Section 2.2)). 
 
 
3.2.2 Methods for measuring cycle synchronisation in economics literature 
 
Co-cyclicality has been widely studied in the business cycle and other related 
literatures in economics where a range of different methods for quantifying 
synchronisation are in use. Here I will focus on methods for quantifying 
variation in co-cyclicality over time, and across different frequencies. 

Correlations have been widely relied upon as a measure of ‘synchronisation’ 
in the existing literature (not just in the study of housing market 
synchronisation but by the business cycle synchronisation literature)52 and 
made dynamic through the use of rolling-window approach. However rolling 
correlations based methods may generate nonsense results in the presence of 

 
49 Rolling correlations based methods may generate nonsense results in the presence of persistent cycle 
components (oscillate even for stationary data and vary as a function of choice of window length relative to 
cycle period - see e.g. Yule (1926) on problems with rolling window correlations of oscillatory signals. 
50 Note no assumptions are required as for turning point based methods widely used in the business cycle 
literature, and to some extent housing cycle analysis. 
51 Although I also consider the phase-coherence of adjacent markets which provides an amplitude 
independent measure of spatial correlation. 
52 “The business cycle synchronisation literature has widely relied on the pairwise correlation 
(of e.g. GDP growth or de-trended GDP) between countries as a measure of “synchronization” 
and employed in cross-section analysis to assess its main determinants.” (Ductor & Leiva-leon, 
2016) 
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persistent cycle components (oscillate even for stationary data and vary as a 
function of choice of window length relative to cycle period - see e.g. Yule (1926) 
on problems with rolling window correlations of oscillatory signals and Figure 9 
for a simple illustration).  

Moreover there is a problem that contemporaneous correlation based 
methods are sensitive to both amplitude and phase relationships, thus 
heteroskedasticity can generate varying correlations even for variables with a 
stable phase relationship (in the contagion literature Forbes and Rigobon 
(2002) identifies that this analysis is subject to heteroskedasticity/volatility 
bias); and shifts in the phase-relationship between variables can generate 
varying correlations even for a stable amplitude envelope.  

Finally co-movement may vary not only over time, but also across different 
frequencies, however standard correlation methods are not able to provide any 
information on this. 
 
 

Figure 9: Nonsense correlations from rolling correlation analysis of two 
identical cycles with constant phase-difference. 

 
These different issues have motivated the use and introduction of methods that 
attempt to separate phase and amplitude information or adjust correlation 
coefficient values for possible phase shifts, as well as to provide spectral 
information.  

Croux et al. (2001) introduce a ‘coherence’ measure obtained as the averaged 
all-to-all pairwise ‘dynamic correlations’ - where ‘dynamic correlations’ are 
equivalent to ordinary correlations for band-pass filtered time series. This 
provides spectral information, but throws away temporal information and 
suffers from the drawback of assuming constant phase-differences within the 
entire sample period studied.  

Azevedo & Koopman (2008) decompose contemporaneous correlation into a 
part due to differences in the timing of two cycles (their “phase shift”) and a 
“phase adjusted correlation”.  They allow for time variation in the phase 
differences and phase-adjusted correlation between series, but also make the 
overly restrictive assumption that they are a monotonic function of time 
(correlation can either go up or down over the sample period).  
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Another widely employed method is simply the maximum correlation 
coefficient (i.e. using the lag time/length that maximises correlation between 
two cycles/signals to identify time-lag and time-lag adjusted correlation - 
Kovacic and Vilotic (2017) are some recent examples). Though widely employed 
in the business cycle literature, these methods are not, as far as I am aware, used 
in studying the synchronisation or integration of regional housing market cycles. 
 

 
Figure 10: Phase-difference vs. correlation and suppression of variance of 
mean relative to mean variance. 

 
While effort has been expended on methods for obtaining phase-adjusted 
correlations, synchronisation in the timing of cycles, or phase-synchronisation, 
has also received much interest.  

Here the business cycle literature has relied on measures based on the joint 
distribution of binary state variables encoding information on some definition of 
the phase of a cycle, such as expansion/contraction (Harding & Pagan, 2003, 
2006); or sign based deviations from trend (Bordon & Reade, 2013; Gogas & 
Kothroulas, 2009; Mink et al., 2012).53  

Particularly well known and widely employed, is the method introduced by 
Harding and Pagan who define the synchronisation of cycles (when these are 
defined through their turning points) based on the fraction of time that two 
series spend in the same binary (expansionary or contractionary) phase 
(Harding & Pagan, 2003). They also proposed statistical tests of the hypotheses 
that cycles are either unsynchronized or perfectly synchronized (Harding & 
Pagan, 2006). 

These methods have also been widely borrowed to study housing cycle 
synchronisation (Akimov, Stevenson, & Young, 2015; L J Álvarez, Bulligan, 
Cabrero, Ferrara, & Stahl, 2009; Luis J Álvarez & Cabrero, 2010; Hirata, Kose, 

 
53 Mink et al. (2012) introduce a statistic to quantify synchronisation among trend-deviation cycles (when 
cycles are defined as difference from trend) based on their sign concordance – the fraction of time 
movements in both series have the same signs (negative or positive output gaps). This sort of approach has 
in fact been used in other applications and was previously introduced in business cycle analysis by other 
authors e.g. Gogas and Kothroulas (2009)). They also introduce a statistic to quantify the similarity in the 
size of the output gap between one series and a reference series. These methods are applied for example in 
a recent paper from ECB working group on econometric modelling (ECB, 2018); and in a housing study by 
Miles (2015a). 
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Otrok, & Terrones, 2013; Jackson, Stevenson, & Watkins, 2008; Stevenson, 
Akimov, Hutson, & Krystalogianni, 2014).54 

 
 

Figure 11: Discrete distance approximation of phase. 

  
Since these “concordance index” type methods only employ information on 

the timing (and not magnitude) of cycles, they are not impacted by 
heteroskedasticity and provide a measure of phase-synchrony. While the 
Harding-Pagan index can in principal be computed recursively in order to study 
whether the degree of synchronization has changed over time (Harding & Pagan, 
2003),55 by only using discrete distances between turning points (or in the case 
of sign based indexes zero-crossings) to approximate the underlying phase and 
phase-differences (see Figure 11 for visual explanation of this), these methods 
throw away valuable information on phase dynamics making these indices 
rather crude from a dynamic perspective – this may explain why in practice the 
method tends to be employed based on an average over an entire sample period 
(Stevenson et al., 2014) or based on large non-overlapping sub-samples in order 
to study whether synchronisation has changed over time (Hirata et al., 2013).  

What is more, they suffer from all the limitations of turning point analysis 
(including sensitivity to noise, difficulty in parsing complex spectral structures, 
requirements for prior assumptions on relevant frequency bands etc. - see 
Section 2.2.4).56 
 

 
54 The Harding-Pagan index is used to study housing market synchronisation in for example: Jackson et al. 
(2008) for London-New York office markets; Álvarez et al. (2009) for national Euro area housing cycles;  
Hirata et al. (2013) for international housing market synchronisation; Stevenson et al. (2014) for 
international office market, and Akimov et al. (2015) for Australian cities.54 Other studies have looked at 
concordance between aggregate housing and cycle and other macro-variables - Álvarez and Carero (2010) 
for Spain. Ferrara & Vigna (2009) for France. Although curiously the Harding-Pagan method has not yet, to 
the best of my knowledge, been used to study sub-national markets for the US, Miles (2015a) uses the Mink 
index (Mink et al., 2012) to study house price convergence in US markets. In an earlier study Klyuev (2008) 
report a sign-based “diffusion index” for regional house price data (where the index equals the percentage 
of divisions in which house price growth is positive minus the percentage in which it is negative (thus 
100% if all rising, and -100% if all falling)) and reports increased synchronisation after 1990. 
55 In practice recursive implementation seems to be little used. Bovi (2003) is a rare exception. 
56 Although any method for detecting/defining/identifying turning points can be employed in 
order to calculate concordance, methods for detecting turning points may all share certain 
limitations. 
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3.3 Methods 
 
3.3.1 Instantaneous phase and multivariate phase-coherence 
 
Two cycles, whilst sharing exactly the same frequency, need not exactly overlap 
and may be shifted along the time axis. This shift in the time axis can be 
quantified by the phase-difference between the two cycles (this is illustrated by 
Figure 12 (a)). However the phase relationship between cycles need not be fixed 
(indeed a constant phase-difference between two series is strong evidence of 
interdependence), but may vary or change over time, either randomly or as a 
result of endogenous dynamics (this is illustrated by a stylized example in  Figure 

12 (b) which shows two otherwise identical cycles - here also sharing a common 
trend - that desynchronise over time). 

The business and credit cycle literature has taken much interest in phase 
synchronisation, but relied methodologically on the intuitive but crude 
measures provided by turning point based concordance indexes such as that 
introduced by (Harding & Pagan, 2003, 2006). These throw away valuable 
information on phase dynamics by only using discrete distances between 
turning points to approximate the underlying phase (thus equivalence with 
discrete distance approximation based phase estimates (Brouwer, Poel, & 
Hofmijster, 2013)). Multivariate measures are then based on average pairwise 
relationships. 
 
 

  
Figure 12: This figure illustrates (a) two cycles with a constant phase-difference 
between them (but otherwise identical) (b) Two cycles that start out identical (same 
frequency, amplitude, phase and sharing a common trend) but that desynchronise over 
time (here via a series of phase jumps by one of the cycles). 

 
 
3.3.1.1 Instantaneous phase 
 
Outside of economics, instantaneous phase based methods have been widely 
used.57  Instantaneous phase information may be obtained (frequency by 
frequency and time step by time step) using the Wavelet transform (Torrence & 
Compo, 1998) or from the Hilbert-Huang transforms (N. E. Huang et al., 1998, 

 
57 Instantaneous phase based methods have been widely used (Arenas & Albert, 2008; A S Pikovsky et al., 
2001; Rodrigues et al., 2015; Schroder et al., 2017). 
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2003, 2009) of available time series. Here I employ the continuous wavelet 
transform (Eq.1).58 As already noted (see Sections 2.2 and 2.2.3 above) for a 
complex-valued wavelet 𝜓, the corresponding wavelet transform 𝑊𝑥;𝜓(𝑎, 𝜏) 

(Eq.1) is also complex-valued (yields a complex scalar field), where the modulus 
and argument of 𝑊𝑥;𝜓(𝑎, 𝜏) represent, respectively, the instantaneous amplitude 

(Eq.5) and phase (Eq.6) of the signal 
 

𝑎𝑥(𝑎, 𝜏) =  |𝑊𝑥;𝜓(𝑎, 𝜏)|                                                      (5) 

 
 
휃𝑥(𝑎, 𝜏) = Arg (𝑊𝑥;𝜓(𝑎, 𝜏) )                                              (6) 

 
Phase for a particular frequency band are calculated as mean phase over that 
band using the circular mean of (Mardia & Jupp, 2000) phase angles. 
 
 
3.3.1.2 Multivariate phase coherence 
 
An intuitive and useful approach to quantifying the overall level of phase 
synchrony in a multivariate system is the so-called Kuramoto synchronization 
index or “order parameter” (Kuramoto, 1984). Given a collection of 𝑁 phase 
series (휃𝑥𝑖

, 𝑖 = 1, … , 𝑁) describing the evolution of phase over time, the phase 

positions on the unit circle at each time step are represented by the complex 

exponentials 𝑒𝑖𝜃𝑥𝑖
(𝑡). The complex order parameter 𝑅 is obtained simply as the 

average of these positions 
 

𝑅(𝑡) =
1

𝑁
∑ 𝑒𝑖𝜃𝑥𝑖

(𝑡)𝑁
𝑗=1                                                           (7) 

 
which may also be written as 
 

𝑅(𝑡) = 𝑟(𝑡)𝑒𝑖𝜙(𝑡) =
1

𝑁
∑ 𝑒𝑖𝜃𝑥𝑖

(𝑡)𝑁
𝑗=1                                   (8) 

 
Here the statistics 𝑟 and 𝜙 provide a quantification of the collective dynamics 
and current state of the whole population, where the modulus 𝑟 = |𝑅|,  0 ≤ 𝑟 ≤
1 measures the phase coherence of the population (achieving its maximum 𝑟 = 1 
when all phases are identical and its minimum 𝑟 = 0 when phases are balanced 
around the circle59), thus provides a measure of the overall phase-synchrony in 
the system (without the need to define a reference cycle), and 𝜙 is the average 

phase (i.e. the vector 𝑅 points in the average direction of all the 𝑒𝑖𝜃𝑥𝑖  vectors). 
Since the instantaneous phase is obtained scale-by-scale, these statistics can be 

 
58 The standard approach is the Hilbert transform for narrowband data, or the Morlet wavelet transform 
for broadband signals (Allefeld, Müller, & Kurths, 2007; Arkady S. Pikovsky, Rosenblum, Osipov, & Kurths, 
1997; M. G. Rosenblum, Pikovsky, & Kurths, 1996). See also Quyen et al. (2001) for a comparison of these 
methods in empirical phase synchronisation study applications. 
59 Such as evenly spread or in clusters that balance each other out. For a detailed discussion of the 
structure/local order that may be missed by Kuramoto order parameter see e.g. (Frank & Richardson, 
2010; Richardson et al., 2012). 
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calculated for every scale at every time step, or, by averaging over a specific 
scale band, it is possible to characterise overall phase relationships for differed 
frequency ranges and track the evolution of this over time. 
 
 

 

Figure 13: this chart illustrates the intuition behind 𝒓 obtained from Eq.8. 
Here each point on the phase-circle represents the phase of an individual 
variable, the red arrow the mean vector. 𝒓 is thus given by the magnitude of 
this arrow, and 𝝓 by its angle. This hopefully makes intuitive how 𝒓 achieves its 
maximum 𝒓 = 𝟏 when all phases are identical and its minimum 𝒓 = 𝟎 when 
phases are balanced around the circle. 

 
 
3.3.2 Power spectrum and mean power 
 
I will employ the average wavelet power spectrum in order to identify common 
areas of high power across different series (wavelet power spectra (Eq.2) (scale 
normalized following (Y. Liu et al., 2007) - these methods and definitions are 
introduced in Sections 2.2.1 and 2.2.2 above). 

The average wavelet spectrum provides a simple approach to studying the 
phase-independent similarity in cycle components over time. This will allow me 
to identify areas of common high power across all markets. 
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Figure 14: This illustrates the use of average wavelet power spectrum in order 
to assess common cycle components ignoring phase-differences between 
cycles, using the simple example of just two cycles (with the same amplitude 
and frequency) that synchronise over time. 

Other standard methods for comparing spectra of different signals are not 
useful in this context. For example wavelet coherence is a function of both phase 
and amplitude similarity between signals. What is more because it is a measure 
of similarity between spectra, areas of common low power can show up as areas 
of high-coherence and it does not provide information on the spectral 
distribution of power for the underlying signals. 

Figure 14 demonstrates in a stylized example of the synchronisation over time 
of just two simple cycles. This shows how the average spectrum is able to 
identify the common cycle component over the entire time period providing a 
phase-independent analysis.60 
 
 
3.4 Empirical analysis and results 
 
3.4.1 Mean amplitude envelope of state level cycles over time 
 
Figure 15 compares (a) the power spectrum (Eq.2) of the mean of state level 
house price series to (b) the mean power spectrum of state level house price 
series. In both cases the power spectra are scale normalized to allow cross scale 
comparisons of power (Y. Liu et al., 2007).  
 

 
60 Note that while these are narrow band signals, wavelet coherence would show strong coherence across 
the entire spectrum. 
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Figure 15: this chart presents  (a) the wavelet spectrum of average house prices 
across all 51 states and DC; (b) the average power spectrum of all 51 states and 
DC. This analysis clearly reveals common features of local house price series 
dynamics that are lost or obscured in the aggregated (average) time series. Of 
particular interest is the much more pronounced spectral ridge (cycle) that shows 
up in the mean spectrum (b) and narrower band of high power even during the 
national boom-bust period. Another striking feature of the mean spectrum in (b) 
is the very clear common shock showing up in the 2-4 year periodicity band 
during the early 1980s – something that entirely averages out according to the 
spectrum of mean house prices in (a). 

 
In both analyses the spectral ridges at 8-10 and the 12-14 year bands that 

were prominent in state level spectra are to some extent visible. However two 
striking differences stand out:  

In particular (i) The 12-14 year ridge is very clear and prominent over the 
entire sample period in (b) the mean spectrum, clearly identifying a common 
cycle component at this frequency across US markets. However this cycle only 
becomes distinct in (a) the spectrum of the man, after 1995.  

The second striking difference (ii) is the common shock apparent in the 2-4 
year periodicity band during the early 1980s (cantered on approximately 1982) 
that shows up very clearly in the mean spectrum, but not at all in the spectrum 
of the mean. 

Since these spectra reflect the real part of the wavelet transform, the 
difference between the two charts can be interpreted in terms of the 
contribution phase-relationships are making to average house prices suggesting 
differences in timing across different markets were such that the early 1980s 
shock entirely averaged out in aggregation, and sufficient to dramatically 
moderate the mean cycle for the 10-14 year cycle.  

More detailed investigation of the high frequency shock of the early 1980s I 
leave to future research, but overall phase relations for the 10-14 year cycle I 
will investigate further in following section based on phase coherence analysis. 
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3.4.2 Phase-coherence of state level housing cycles over time 
 
Figure 16 (b) Presents the raw phase series extracted for all 51 state level price 
indexes (as per Eq.5) for 8-15 year periodicity band. Figure 16 (a) presents the 
empirical phase coherence (Kuramoto’s r as per Eq.8) for all 50 US states plus 
the District of Columbia over the 8-15 year periodicity band (based on results in 
Section 2.3.2) from 1975:01-2020:06.  

These clearly show a dramatic de-synchronisation of this cycle component 
after 1984 (marked by first vertical dashed line), reaching a minimum in 1994 
(marked by the second vertical dashed line) after which cycles re-synchronised 
rapidly reaching a new high in 2000 (marked by the third vertical dashed line) 
since when phase synchronisation has remained extremely high up to the 
present time. 
 

 
Figure 16: this chart presents (a) the empirical phase coherence (Kuramoto’s r as per 
Eq.8) for 50 US states plus the District of Columbia over the 8-15 year periodicity 
band from Jan 1975 to Jun 2020. (b) The raw phase series extracted for all 51 state 
level price indexes (as per Eq.6). This clearly shows a dramatic de-synchronisation of 
this cycle component after 1984 (marked by first vertical dashed line), reaching a 
minimum in 1994 (marked by the second vertical dashed line) after which cycles re-
synchronised rapidly reaching a new high in 2000 (marked by the third vertical 
dashed line) since when phase synchronisation has remained extremely high up to 
the present time.  

 
As a further perspective/illustration, Figure 17 plots the individual phase angles 
(black dots) and mean vector (blue bar) (Eq.8) as at different points in time 
(1994, 2000 and 2010) on the phase/unit circle (this is thus an empirical 
version of Figure 13). 
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Figure 17: these charts show the distribution of phase-angles for all 50 states plus 
the District of Columbia at three different points in time. Here the black dots on the 
unit circle each represent the individual phase angle for a single market, and the 
blue bar the mean parameter (Eq.8) (Such that its magnitude/length corresponds to 
𝒓 and its angle is given by 𝝓). The phase angles rotate anti-clockwise around this 
circle (e.g. the aggregate cycle had already troughed in 2000). 

 
It is important for the purposes of this sort of phase analysis, to be extracting 
phase information from a meaningful signal component (Chavez, Cazelles, & Ird-
upmc, 2014). Here this is ensured by the work in Section 2 and in 3.4.1 above, 
which demonstrate the significant contribution these scale bands make to 
individual and collective variation. 
 
 
3.5 Discussion 
 
These results beg interesting questions regarding (i) the source of the cyclicality 
of sate level data; (ii) the cause of the de-synchronisation from the mid 1980s 
and (iii) the cause of the dramatic re-synchronisation starting in 1995.  

It is interesting to note that the significant common shock indicated by the 
mean power spectrum in the early 1980s coincides with the introduction at this 
time of a whole raft of regulatory changes aimed at boosting savings and loans 
(S&L) companies, that also opened the door to increasingly risky behaviour 
(culminating the Garn-St. Germain Depository Institutions Act of 1982 which, 
among many other things, eliminated restrictions on loan-to-value ratios 
(Chaudhuri, 2014, p. 105)) resulting in a dramatic expansion in S&L lending and 
assets (1982-1985 assets grew 56% (Federal Reserve Hisotry, 2013)).  

Meanwhile the entire transient de-synchronisation period from the mid 
1980s-1995, coincides closely with the period of S&L failures (Resolution Trust 
Corporation (RTC) established to resolve troubled S&Ls was closed in 1995) 
(Green & Wachter, 2005; Snowden, 1997). This raises the question whether and 
how the S&L crisis may have somehow driven the observed de-synch episode?  

In this respect, it is interesting to note, that while on the one hand the S&L 
crisis and the large number of S&L failures over this period (c.50% of S&Ls failed 
between 1986 and 1995 (Curry & Shibut, 2000)) was arguably a financial shock 
driven by developments at the national level,61 on the other hand most states 

 
61 Steep increases in inflation and interest rates at this time wiped out S&L industry net worth and profits. 
Regulatory limits on the deposit rates S&Ls could offer initially led depositors to withdraw funds and seek 
higher returns elsewhere.  However once these restrictions were lifted the sharp rise in deposit rate S&Ls 
had to offer in order to attract funds in the environment at that time, pushed short term funding costs 
above the return on their long-term fixed rate mortgage books.  
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experienced some time-localised spike in S&L failures over this c.10 year period, 
the timing of which differed considerably between states.  

Given these failures must have been highly disruptive for markets, the 
differences in the timing of S&L failures at the state level may have acted to de-
synchronise state level cycles62 - note that spatial type coupled cycle systems63 
can exhibit a cross-over from synchronized state at low noise-strength to de-
synchronized state at high noise-strength (Sarkar, 2020). 

Moving on, the beginning of the dramatic phase synchronisation from 1995 
coincides not only with the closure of the RTC but also with the deregulation of 
interstate banking (the Interstate Banking act of 1995) - e.g. Landier (2017) has 
linked housing market comovement to interstate banking - and follows a 
fundamental restructuring of housing finance in the US following the S&L crisis, 
with mortgage finance shifting from being dominated by local ‘balance sheet 
lending’ by depositories, to a national market based system of securitized 
mortgage finance (Schnure, 2005). 

Interestingly while Schnure (2005) argued in an IMF working paper on the 
eve of the sub-prime and housing crisis, that these changes in financial structure 
had  “smoothed out the boom-bust cycle in lending flows, real activity, and 
prices” associated with the S&L based system, and that “Lower volatility of 
residential investment also appears to be a factor in the decrease in 
macroeconomic volatility over the same period.” (Schnure, 2005, p. 3), it may be 
that the impact of these changes in financial structure was the synchronisation 
of these cycles.  

It is notable that the period 1985-2000 in which de-synchronisation of local 
markets significantly moderates aggregate house price volatility (i.e. house price 
volatility does not so much go away as average out during this period), coincides 
closely with the “Great Moderation” period (especially in light of the strong links 
by now widely believed to exist at the national level between housing and the 
macroeconomy).  

These are speculative observations and links, the detailed investigation of 
which is beyond the scope of this study and left to other or future research. 

More broadly, these results pose a number of challenges to established 
narratives on the source of the 2000s housing boom-bust, and the localness vs. 
national character of housing market instability.  

In particular the existence of a common cycle component spanning the entire 
sample period is at odds with the widely documented result that a significant 
common component to U.S. housing market fluctuations did not emerge until 
2000s, prior to which housing cycles were believed to be local (in the sense of 
idiosyncratic).  

While the apparent association of time series events with significant financial 
shocks and innovations suggests the possibility that these may have played a 
significant role in the level of synchronisation across cycles, nevertheless the 
contribution to the national boom-bust from the synchronisation of this 
common cycle challenges the widespread search for a smoking gun entirely at 

 
62 Of course this begs the question why the differences in timing between states – this question may no 

be easily answered and does not appear to have been studied in the literature (Warf & Cox, 1996). 
63 Such as 2D lattice and planar graphs. 
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the national level in terms of some common national driver and a switch from 
local to national housing market instability. 
 
 
3.6 Conclusion 
 
In this chapter I have studied the overall co-cyclicality of U.S. house prices across 
state level markets.  

I identify a striking common cycle component spanning the entire sample 
period (clearly visible in the mean power spectrum across all states) that largely 
averaged out of mean price developments at the national level prior to 1995. 

This result is clarified by a further analysis made of the evolution of overall 
phase coherence among U.S. states associated with this common cycle 
component over the historical sample period.  

I show evidence of a marked de-synchronisation of state level cycle (from 
moderate levels) after the mid 1980s, following a significant common shock 
identified by the mean power spectrum (but that entirely averages out in mean 
house prices at the national level further emphasising the value of a 
disaggregated perspective), until 1995, coinciding with a period of savings and 
loan company failures.  

This is followed by a dramatic transition from low to high phase-
synchronisation of cycles occurred after 1995, with phase-synch reaching new 
heights before 2000.   

With this analysis I am thus able to show that prior to the mid 1990s, and in 
particular between 1984-2000, asynchronicity moderated the impact of a 
common cycle on aggregate house price volatility, but that after 1995 a dramatic 
phase synchronisation of this existing cycle across markets made a significant 
contribution to the national housing boom-bust over the subsequent period.  

It is interesting that the period over which de-synchronisation of local 
markets significantly moderates aggregate house price volatility (1984-2000) 
also coincides closely with the “Great Moderation” period in which macro-
volatility was low.  

These results provide rich new insight into the dramatic housing market 
gyrations of the 2000s, and challenge existing narratives on the sources of this 
episode and debate over the localness vs. national character of house price 
instability.  
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4 Essay 3: The spatial dynamics of permanent 
cycle co-movement: evidence of traveling 
spatial-waves in local housing cycle timing 

 
 

Summary: In Essay 1 (Section 2) I show using monthly state level data from 
1975:01-2020:06, that the majority of subnational markets across the US exhibit 
a permanent cycle component of a similar 8-10 year periodicity over most or all 
of this sample period.  In Essay 2 (Section 3) I present evidence that states across 
the U.S. shared common cycle components over the entire sample period, but 
show how the contribution to aggregate house price variation was moderated, 
prior to the mid 1990s, by low overall synchronisation among cycles, as well as 
how a dramatic transition from low to high overall phase-synchronisation 
among these existing cycles occurred after the mid 1990s, contributed to the 
large national run up and subsequent downturn in national house prices after 
this time. In this Essay, I study (i) the question whether spatially local links 
between markets matter for the synchronisation among local cycles, or whether 
only national factors matter? And I also ask (ii) whether there are any significant 
spatial patterns in the timing of the 8-10 year cycles identified. I introduce a 
statistic to quantify spatial phase-synchronisation based on the instantaneous 
pairwise phase-differences (obtained here via continuous wavelet transform) 
between spatially contiguous markets and compare this to the overall level of 
synchronisation across all markets. I then employ the spatial projection of 
instantaneous phase and relative phase analysis in order to assess whether there 
are any significant spatial patterns in the relative timing of housing cycles across 
the country. This framework provides a time-varying, well time-resolved, 
frequency specific measure robust to non-stationarity and unbiased by temporal 
or cross-sectional variation in cycle amplitudes. I find clear evidence that the 
cycles in spatially adjacent markets are considerably more synchronous over the 
entire sample period; meanwhile relative phase analysis reveals a striking and 
remarkably stable spatial pattern resembling a traveling-wave over the c.50 year 
sample period.  These results provide clear evidence of the significance of spatial 
links between markets. While a number of previous studies have reported 
evidence of spatial diffusion in US housing markets, this is the first time these 
striking spatio-temporal dynamics have been documented. What is more the 
‘traveling-wave’ phenomenon revealed is more consistent with the interaction of 
intrinsically cyclical markets, than with the sort of idiosyncratic shock or bubble 
type dynamics hypothesised in the existing literature. 

 

 
 
4.1 Introduction 
 
 
Motivation 
 
The US sub-prime and subsequent global financial crisis that followed the 
national housing downturn starting in 2006-7 has stimulated interest in the 
study of the sources and propagation of housing market busts. While the 
national character of these events have motivated huge interest in aggregate 
factors in national house price fluctuations, a more careful look at disaggregated 
housing market data may be called for in order to assess the mechanisms 
underlying housing market instability.  
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In Essay 1 (Section 2) I document persistent housing cycles of similar 
frequency in state level data; in Essay 2 (Section 3) I clarify the existence of an 
important common cycle component across markets, and identify a period of 
marked de-synchronisation after the early 1980s, followed by dramatic 
synchronisation of these cycles after 1995 contributing, respectively, to low 
aggregate housing market volatility during the Great Moderation era, and the 
dramatic national housing boom-bust of the 2000s.  

An interesting and important question arises, whether low levels of overall 
synchronisation prior to 1995, may have concealed local synchronisation among 
markets (e.g. geographical clusters of synchronised markets), what is more 
whether the global synchronisation that occurred after 1995 was principally 
driven by common national factors, or whether local (in the sense of direct 
bilateral) links between individual markets have played a role.  

In this essay, I study the spatio-temporal character of the common cycle 
component in state level house price data 1975:01-2020:06. Specifically I 
address the questions: 
 
Research questions 
 
1. Does spatial contiguity matter for the synchronicity of the common cycle 

component as observed at the state level? (I.e. are neighbouring markets 
likely to be more synchronous?). (How) has this changed or varied over the 
available historical sample period (1975:01-2020:06)? 

2. Are there any particular spatial patterns in the relative timing/the 
synchronicity of cycles across markets (such as e.g. evidence of spatial 
spreading processes consistent with shock diffusion or contagion effects; or 
of clusters of synchronised markets)? (How) has this changed or varied 
over the available historical sample period (1975:01-2020:06)? 

 
 
Methods 
 
In order to assess whether or not contiguous states are more synchronous, I 
introduce an instantaneous measure of local network phase synchronisation that 
I combine with a spatial adjacency matrix for contiguous US states.  

To assess any spatial patterns that may have existed in the synchronisation 
and relative timing of cycles across markets over the sample period, I use the 
spatial projection of instantaneous phase and relative-phase information. The 
spatial projection of state level data allows me to assess not just whether 
neighbouring markets are more synchronous, but global patterns across 
markets, such as spatial segmentation (e.g. spatial clusters of synchronised 
markets or other spatial distribution of markets with similar phase); and the 
geographical distribution of leading and lagging markers and any propagation 
patterns of housing cycles across markets. In all cases instantaneous phase 
information is obtained via continuous wavelet transform (Eq.1) of the state 
level time series. 

For the task at hand of detecting spatio-temporal patterns in cyclic housing 
markets, these techniques have a number of distinct advantages over traditional 
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correlation based methods currently relied upon within the spatial econometric 
literature. 

For example a phase based approach to studying comovement is unaffected 
by relative or time varying amplitude and not subject to the spurious impression 
of a time varying relationship suffered by rolling correlations (see Section 3.2.2 
for discussion and references).  

Also the time-frequency decomposition can be used to study specific and/or 
multiple periodic patterns in the data even in the presence of noise. This allows 
me to focus on the dynamic component of interest (the common cycle in 8-15 
year periodicity band) as well as distinguish and compare the spatio-temporal 
patters associated with short run fluctuations vs. long cycles in the data.  

Meanwhile the instantaneous character of the methods permits a truly 
dynamic analysis that allows for and should have the ability to reveal dynamic 
variation in the spatial pattern of housing cycle propagation thus capable of 
capturing transient and evolving phenomena such as the spatial propagation of 
particular local shocks or contagion episodes (note the optimal time-frequency 
resolution provided by the continuous wavelet transform provides a superior 
dynamic measure of comovement than rolling correlation based methods and a 
far more continuous measure than methods that rely on estimating discrete 
events to approximate phase (see Section 3.2.2)). 

Despite their various advantages, these methods have not – to the best of my 
knowledge – been previously employed in the study of U.S. housing markets, or 
for that matter in any other application in economics (although similar methods 
have been employed in a range of analogous applications outside of 
economics).64 
 
Results 
 
Comparing local vs. global phase synchronisation shows clearly that spatially 
adjacent markets have always been highly synchronous over the entire c.50 year 
sample, even over the historical period when overall synchronisation levels 
were very low.  

However a small increase in synchronisation after 1995 at the local level, 
added up to the dramatic shift in overall synchronisation among markets 
documented by Essay 2 (see Section 3.4.2). 

The projection of instantaneous phase and relative phase analysis onto 
geographical space reveals a striking spatial pattern in the timings of cycles in 
different markets resembling a “traveling-wave” (analogous to a “Mexican 
wave”). This pattern is remarkably stable across the c.50 year sample period, 
across multiple cycle periods, and between the low and high overall 
synchronisation eras. 

There is also some evidence of geographical clusters/segmentation the 
detailed investigation of which is beyond the scope of this paper. 

 
64 It is worth noting that whilst not previously used (to the best of my knowledge) in the study of 
housing markets or any other applications in economics, related methods have been employed 
for spatio-temporal analysis in other applications. See for example Liebhold et al (2004) and 
Sherratt & Smith (2008) for discussion of the merits of wavelet based approaches to the study of 
the analogous problem in ecology of identifying spatio-temporal patterns in cyclic population 
fluctuations. 
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Significance 
 
Where much effort has been expended on the search for a smoking gun at the 
national level - a common national factor or shock - this evidence of the local 
synchronisation and global spatial pattern in the development of the common 
cycle component strongly suggests a significant role for local interactions in the 
form of spatial links between markets in the emergence of mean field house 
price fluctuations at the national level.  

What is more the specific spatial pattern revealed, may also provide further 
important clues to the character of the underlying dynamics: this empirical 
pattern resembles a ‘traveling wave’ – synchronisation at first decreases with 
spatial distance along one projection angle (the direction in which the wave is 
travelling) before increasing again as the geographical separation approaches 
one wavelength, but not along the projection angle orthogonal to this.  

This pattern is more consistent with the interaction of significant cyclical 
intrinsic dynamics, than with either the sort of spatial diffusion of local shocks, 
or contagious bubbles hypothesised within the existing literatures concerned 
with housing “ripples” and spillovers: whether shock diffusion or bubble 
contagion, the hypothesis in either case is that a local disturbance spills over 
from one neighbouring market to the next, thus we might expect in either case 
an epicentre pattern in which the disturbance radiates out in all directions from 
its initial source.   

We might, what is more, expect to see epicentres (shocks or corrections 
spilling over to neighbouring markets) arising in different markets at different 
points in time. This is at odds with the unidirectional traveling wave and stable 
pattern of phase-relationships over multiple cycle episodes that I empirically 
observe. 

These results are thus consistent with and reinforce the evidence of 
significant intrinsic dynamics reported in Essay 1 (Section 2) based on the 
wavelet power spectra of state level price series. They also raise the possibility 
local interactions between markets could have played a role in the national 
synchronisation of cycles, although it remains possible this was driven by a 
common factor or shock. 
 
Contribution and relation to existing literature 
 
Spatial dependence and spillovers are a well-established theme in the real estate 
literature, which has studied the hypothesis that house price relationships 
between contiguous markets might be stronger than between non-contiguous 
regions (S Holly et al., 2010); possible “ripple effects” due to the spatial diffusion 
of local shocks (Barros et al., 2012; Holmes et al., 2011); or contagion between 
spatially adjacent markets (DeFusco et al., 2013; Nneji et al., 2015; Riddel, 
2011).65 “Local” spillovers based not on spatial distance but some other form of 

 
65 See also e.g. Greenaway-Mcgrevy and Phillips. (2015) for study of Australian markts. 
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direct economic links have also been studied (Hernández-Murillo et al., 2017; 
Malone, 2017; Zhu et al., 2013).66  

Spillovers between housing markets have also become a policy concern since 
if local spillovers are significant, then a house price correction in one market 
could have macro-financial implications (IMF, 2018; Vansteenkiste, 2007) (see 
e.g. concern over the potential for problems in the London market to spill over 
to the rest of the UK (IMF, 2014; UBS, 2017)).67  

Many studies for the US have reported evidence that geography, and spatial-
distance matter (Baltagi & Li, 2014; Brady, 2011, 2014; Karl E Case & Shiller, 
1990; Chudik & Pesaran, 2010; J M Clapp & Tirtiroglu, 1994; John M Clapp, 
Dolde, & Tirtiroglu, 1995; DeFusco et al., 2013; Dolde & Tirtiroglu, 1997; S Holly 
et al., 2010; Kuethe & Pede, 2011; Pollakowski & Ray, 1997; Vansteenkiste, 
2007).  

However despite the huge interest in spatial aspects of U.S. housing, to the 
best of my knowledge this is the first time the striking spatio-temporal patterns 
revealed by my analysis have been documented. Indeed while there is much 
evidence on spatial dependence, work on the spatio-temporal dynamics 
underpinning this spatial correlation is surprisingly scarce. 

The spatial coefficients yielded by spatial econometric methods provide an 
overall measure of local co-movement averaged across adjacent pairs (based on 
the exogenous introduction of an adjacency matrix), and over time, not spatio-
temporal dynamics.  

The considerable existing “ripple” literature that relies on cointegration tests 
for convergence,68 asks whether markets share a common stochastic trend – 
whether they move together over time or exhibit mean-revering “spreads” (and 
rely on restrictive assumptions on the order of integration of time series).  

Note however that the existence of a “ripple effect” - in the simple sense of 
spatial propagation of disturbances - might occur even in the absence of 
convergence; what is more even where convergence occurs cointegration tests 
do not reveal the synchronisation or spatial structure of short run adjustments 
or provide a dynamic view of the data, but a test of long-run comovement over 
the sample period.  

Studies for the US in fact report mixed but limited evidence of convergence 
for U.S. markets and this has been argued to cast doubt on the existence of a 
ripple effect (Clark & Coggin, 2009; Gil-Alana et al., 2014; Gupta & Miller, 2012; S 
Holly et al., 2010; Holmes et al., 2011; Pollakowski & Ray, 1997; Zohrabyan et al., 
2008).69  

 
66 E.g. Zhu et al. (2013) put forward the argument that linkages across geographical regions 
should not be restricted to connectedness across adjoining spatial units, but rather, they should 
also include connectedness predicating upon similar economic conditions. 
67 Although these have been downplayed/shrugged off by the BoE’s latest inflation report (Bank 
of England, 2018). 
68 Since Meen (1999) argued that the transmission of shocks across regional markets will result 
in house prices in different markets converging in the long-run. 
69 Pollakowski and Ray (1997), Zohrabyan et al. (2008), Clark and Coggin (2009), Holly et al. (2010), Gupta 
and Miller (2012), Barros et al. (2012) and Barros et al. (2014) question the presence of overall 
convergence in regional housing prices and existence of a ripple effect, whereas Holmes et al. (2011) 
incorporates distance between states to show the existence of long-run convergence among U.S. states. 
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Unlike this convergence literature I directly investigate within a dynamic 
framework the geographical pattern in the timing of cyclical housing market 
fluctuations. The time-frequency methods I employ are less restrictive than the 
cointegration and error correction framework, and provides a richer unfolding 
both of time-scales (allowing the study of specific and multiple cycle 
components not just the long vs. short-run) and of the geography of house price 
developments, without any need for restrictive assumptions on the 
data/process.  

Of course none of the time-domain methods relied upon in the existing 
literature provide spectral information or allow the study of the specific or 
multiple cycle components. All correlation-based methods are sensitive to 
amplitude and phase variation in the data, unlike these I separate fluctuation 
magnitudes and the phase-relations between the fluctuations in different 
markets. 

It is common in studies of spatially disaggregated housing market data to 
emphasise a distinction between idiosyncratic ‘local’ dynamics and variation that 
can be captured by a common component assumed to reflect common national 
drivers (e.g. monetary policy, credit conditions and financial innovation, 
international capital flows, a national ‘mania’) (see e.g. Del Negro (2007) and 
papers that have followed). Some empirical studies of links between regional 
markets, first strip out the common component across all house price series (in 
order to control for strong cross-sectional dependence argued or assumed to 
reflect common national factors) before studying weak cross-sectional 
dependence in the residual variation (assumed to capture local spillovers - 
examples are e.g. Holly et al. (2010) and Baltagi et al. (2014)). By contrast, I 
study spatio-temporal dynamics in the relative timing of a periodicity band 
associated with a common cycle component across state level house price 
variation. 
 
Organisation 
 
Section 4.2 presents my analysis and results. Section 4.3 discusses my results 
and their interpretation. Section 4.4 puts these in the context of the existing 
literature. Section 4.5 concludes. 
 
 
4.2 Analysis and results 
 
4.2.1 Local phase-coherence of adjacent markets 
 

While the mean field order parameter 𝑅(𝑡) =
1

𝑁
∑ 𝑒𝑖𝜃𝑥𝑖

(𝑡)𝑁
𝑗=1  (Eq.8) I used to 

assess the overall level of phase synchronisation across all markets (introduced 
in Essay 2 section 3.3.1) gives a good summary at the national level, it does not 
provide local information. It measures the average of the phase differences 
across all pairs of cycles 
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𝑅(𝑡) = 𝑟(𝑡)𝑒𝑖𝜙(𝑡) =
1

𝑁
∑ 𝑒𝑖𝜃𝑥𝑖

(𝑡)

𝑁

𝑗=1

 

 

𝑅(𝑡)2 = |𝑟(𝑡)𝑒𝑖𝜙(𝑡)|
2

= 𝑟(𝑡)2𝑒𝑖𝜙(𝑡)𝑒−𝑖𝜙(𝑡) 

 

𝑅(𝑡)2 = |𝑟(𝑡)𝑒𝑖𝜙(𝑡)|
2

= 𝑟(𝑡)2𝑒𝑖𝜙(𝑡)𝑒−𝑖𝜙(𝑡)

=
1

𝑁2
∑ 𝑒

𝑖(𝜃𝑥𝑖
(𝑎,𝑡)−𝜃𝑥𝑗

(𝑎,𝑡))
𝑁

𝑖,𝑗=1

 

=
1

𝑁2
∑ cos (휃𝑥𝑖

(𝑎, 𝑡) − 휃𝑥𝑗
(𝑎, 𝑡))

𝑁

𝑖,𝑗=1

 

 
This all-to-all relationship in the mean field setting can be thought of as 
implicitly considering a fully connected network. By explicitly introducing an 
adjacency matrix 𝐴𝑖,𝑗 encoding the specific structure of links between elements, 

and averaging over these (rather than over all pairs) we can construct a 
parameter that can consider specific network topologies (but reduces to the  
standard Kuramoto order parameter for a fully connected (all-to-all) network) 
(Schroder, Timme, & Witthaut, 2017). Following Schroder et al (2017) I define 
an alternative order parameter 
 

𝑟𝑢𝑛𝑖(𝑡) =
1

∑ 𝑘𝑖
𝑁
𝑖=1

∑ 𝐴𝑖,𝑗ℜ (𝑒
𝑖(𝜃𝑥𝑖

(𝑡)−𝜃𝑥𝑗
(𝑡))

)

𝑁

𝑖,𝑗=1

 

           

                =
1

∑ 𝑘𝑖
𝑁
𝑖=1

∑ 𝐴𝑖,𝑗 cos (휃𝑥𝑖
(𝑡) − 휃𝑥𝑗

(𝑡))𝑁
𝑗=1                       (9) 

 
where 𝑘𝑖  is the degree of each node and 𝐴𝑖,𝑗  the adjacency matrix defining the 

specific topology of the network. The main difference with respect to Eq. 8 is 
that 𝑟 measures the degree of synchronization among all nodes with respect to 
the average phase 𝜙, while 𝑟𝑢𝑛𝑖  considers only phase differences between 
neighbouring nodes (respecting the topology of the interaction network)70. This 
parameter is able to track transitions to partially and fully phase-locked states 
as well as convergence to complete synchrony (several adaptations have been 
introduced to study synchronization on a network (see e.g. (Arenas & Albert, 
2008; Restrepo, Ott, & Hunt, 2006; Schroder et al., 2017)).  
 
By introducing a spatial adjacency matrix 𝐴𝑠𝑡𝑎𝑡𝑒𝑠 constructed based on the 
spatial contiguity of US states into Eq.9, I am able to quantify phase-synchrony 
considering only the phase-differences between price cycles in neighbouring 
states. In order to assess local synchronisation relative to the overall level of 
synchronisation among markets, I compare it to the same analysis run based on 
all-to-all network (i.e. the mean field analysis already presented in Ch.2 (see 

 
70 Thus reduces to Eq.8 for a completely connected network.  
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Section 3.4.2).  Figure 18 presents the results from applying this, calculated over 
the 8-9 year periodicity band identified by my results in Ch.1 and further 
analysed in Ch.2. These results provide clear evidence that spatial adjacency 
matters for synchronisation. 
 

 
Figure 18 Phase-synchronisation (according to Eq.9) among (i) spatially adjacent 
markets (dotted black line) compared to (ii) overall synchronisation across all markets 
(black line). The blue shading represents the same statistic calculated based on lower 
and upper confidence limit (angle) of the scale averaged mean phase-difference.71 

 
As a further check I also run the same analysis based on a series of random 
pairings of state level markets (I generate 1,000 random (ER) graphs with the 
same number of links as in the spatial adjacency matrix, and obtain the phase-
coherence for this graph. Then take the 95% percentile of these. This tests the 
hypothesis that spatial adjacency is no more synchronised than a random set of 
links. 
 
 
4.2.2 Spatial structure of relative-phase of cycles 
 
The strong evidence in 4.2 that spatial adjacency matters, raises the question 
what sort of spatial patterns in the timing of state level housing cycles underpin 
this result? While Eq. 9 provided a useful means of assessing the average level of 
synchronisation between price cycles in neighbouring states, it does not help us 
to understand the specific pattern of relationships between markets across the 
US.  
 

 
71 These are obtained using meanPHASE function of Aguiar-Conraria and Soares (2014)  
following Zar (1999) and Matlab implementation in CircStat by Berens (2009) (see 10.1.4 for 
detailed explanation). 
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As a simple approach to assessing this question, I obtain the instantaneous 
phase (Eq.6) 휃𝑥𝑛

 series averaged over the for each of 𝑛 = 1, … ,48 contiguous 

states level house price series then visualise the evolution of the instantaneous 
phase of state level cycles as a dynamic heatmap of the US. The instantaneous 
phase is generally obtained either via wavelet or Hilbert transform of the data 
(see 3.3.1.1). Here (as for Ch.2 – see Section 3.3.1) I use periodicity band 
averaged local wavelet phase (Eq.6) based on the continuous wavelet transform 
(Eq.1) with Morlet wavelet (Eq.4). (I use a 10-15 year band reflecting the mean 
power spectrum results in Section 3.4.1 - see Figure 15). 
 

 
Figure 19 These heatmaps present the instantaneous phase of cycles in state level 
data across the US at six different points in time over the sample period. Here peak to 
trough is red increasing in intensity towards the trough, and trough to peak is blue, 
increasing in intensity towards the peak. This colour scheme makes a stark contrast 
between expansionary phase vs. contractionary phase cycles, but we also see e.g. in 
1994 how the phase changes over space with coastal states close to troughing while 
central states are only just turning down. While these charts demonstrate the spatial 

patterns in relative phase, striking in the dynamic version (available here),72 is how 
turning points ripple from adjacent state to adjacent state (e.g. another striking 
feature of the pre-2000s period in particular is the distinct segmentation of the 
northeast states). 

 
It is perhaps worth emphasising, that there is nothing explicitly spatial about 
this analysis (unlike e.g. the spatial phase-coherence conducted in Section 4.2.1 
no spatial adjacency matrix is introduced) I simply obtain the phase series 
separately for each state, but by projecting the results of this analysis into 
geographical space through heatmap visualisation, I am able to assess the spatial 
structure of the timing of cycles across the US. 
 
The resulting dynamic heatmap reveals striking repeating ‘travelling waves’, 
with cycle peaks rippling across the US from east and west coast states into the 
centre. The full dynamic heatmap visualisation is available at (link) (see footnote 
72) and also provided in in supplementary materials, meanwhile here Figure 19 

 
72 The link is: 
https://drive.google.com/file/d/1BurjI7nm_2EjSpkusTZ0Qd4ZBF3K7u1T/view?usp=sharing 

 

https://drive.google.com/file/d/1BurjI7nm_2EjSpkusTZ0Qd4ZBF3K7u1T/view?usp=sharing
https://drive.google.com/file/d/1BurjI7nm_2EjSpkusTZ0Qd4ZBF3K7u1T/view?usp=sharing
https://drive.google.com/file/d/1BurjI7nm_2EjSpkusTZ0Qd4ZBF3K7u1T/view?usp=sharing
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illustrates the observed pattern with some point in time stills from different 
dates over the sample period. Phase differences in price cycles in neighbouring 
states generate a periodic wave travelling across the US (analogous to a 
“Mexican wave”). 
 
Prior to the 2000s cycle peaks in some states occurred simultaneously with 
troughs in others (see e.g. 1985 and 1992 in Figure 19). We also see that this 
resembles a unidirectional traveling wave: in pre-2000s cross-state synchrony 
initially declines relatively steeply with distance in one direction (roughly east<-
>west) and then rises again as the geographical separation approaches one 
wavelength; meanwhile synchrony hardly changes with distance at all in the 
other direction (roughly north<->south) which is perpendicular to the direction 
in which the wave is travelling. We also see that the increased synchronisation 
after 1995 (Figure 16) has lengthened the spatial wavelength relative to spatial 
domain - the width of the US - so that simultaneous peaks and troughs no longer 
occur, but the travelling wave pattern is preserved. 
 
In order to help assess the stability of/changes in this spatial pattern in the 
phase relationships between cycles, I use a continuous measure quantifying the 
phase shift of each individual market with respect to the overall mean phase 
across all states. I calculate the mean phase series across all markets from 

𝑅(𝑡) =
1

𝑁
∑ 𝑒𝑖𝜃𝑥𝑖

(𝑡)𝑁
𝑗=1  (Eq.8) as  

 
𝜙(𝑡) = 𝑎𝑡𝑎𝑛2(𝑅(𝑡))                                         (10) 

 
I then calculate the phase of each state relative to the mean phase across all 
sates (or relative phase angle (RPA)) as 
 
휃𝑥𝑛,𝜙(𝑡) = 휃𝑥𝑛

(𝑡) − 𝜙(𝑡)                                   (11) 

 
This provides a continuous measure quantifying the phase shift of an individual 
market with respect to the overall collective development across states. This is 
defined for every state at every time step. In order to provide a more succinct 
summary of the relationships identified, I obtain the time averaged relative 
phase 
 

휃̅𝑥𝑛,𝜙 =
1

𝑇
∑ 휃𝑥𝑛,𝜙(𝑡)𝑇

𝑡=1                        (12) 

 
for all states for a series of  (non-overlapping) sub-periods (using a 10 year 
window). Note that while as far as I am aware not previously employed in 
economics, these sort of relative phase differences have been used in a number 
of other applications (Brouwer et al., 2013; Lamb & Stöckl, 2014; Richardson, 
Garcia, Frank, Gergor, & Marsh, 2012; Varlet & Richardson, 2011). 
 
The relative phase maps in Figure 20 present these results. This also provides a 
succinct summary of the spatial patterns observed in spatial projection of phase 
data. 
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Figure 20 These heatmaps plot the relative phases of each state averaged over four 
non-overlapping 10 year windows spanning most of the sample period. Here red 
means ahead of the mean phase and blue lagging the mean phase, meanwhile stronger 
colours indicate a larger lead or lag (colours are consistent between maps). We see 
the general pattern is relatively stable over time with coastal states leading. However 
a number of changes are also apparent: (i) the distribution around mean phase 
tightens in the second half of the sample (hence the lighter colours in 1997-2007 and 
2007-21017 charts); (ii) the spatially segmented strongly leading cluster of states in 
the north east weakens in the second half of the sample period. 

 
We see that the overall spatial pattern of cycle phases relative to the mean phase 
across all states is relatively stable over time (with east and wet coast states 
leading the cycle. The increase in overall synchronisation is also clear (the 
lighter colours in later sub-periods reflect the smaller differences from mean). 
The spatial segmentation of leading northeast cluster of states (and how this 
segmentation weakens somewhat with time) is also recovered by this analysis. 
 
 
4.3 Discussion 
 
The clear spatial structure and patterns revealed provide a clear indication that 
the methods I employ are successfully picking up salient features of the housing 
market dataset, since no information on the spatial location of, or relationship 
between markets was employed in the data processing and analysis (only in the 
subsequent visualisation of my results). 

While this spatial projection clearly shows smaller phase-differences in cycles 
between spatially adjacent markets and the relatively smooth variation of cycle 
phase over space, however the spatial projection on the whole emphasises the 
spatial pattern in relative phase of cycles in different markets (and the stability 
of this pattern over time). The local-phase coherence statistic meanwhile helps 
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to provide a more precise quantification – thus view - of the time evolving 
average degree of synchronisation between adjacent markets.73 

Moreover both the consistently high levels of local synchronisation (even 
when overall synchronisation was low) and the clear spatial patterns revealed, 
imply that sub national housing markets have not followed their own 
independent cycles, even when national synchronisation has been low, 
providing strong evidence that spatial links matter for the propagation of state 
housing cycles in the U.S. and for average house price dynamics at the national 
level. 

Where the current literature for the US is inconclusive on the existence of 
“ripple effects” (Barros et al., 2012; Clark & Coggin, 2009; Gil-Alana et al., 2014; 
Gupta & Miller, 2012; S Holly et al., 2010; Pollakowski & Ray, 1997; Zohrabyan et 
al., 2008)74 and spatial patterns in US housing market instability, moreover a 
number of studies have argued that other forms of economic links/distance are 
(more) important than spatial links (Hernández-Murillo et al., 2017; Malone, 
2017; Pollakowski & Ray, 1997; Zhu et al., 2013), I clearly show that US markets 
are characterised by significant empirical “ripple effects” in the timing of price 
cycles demonstrating the significance of spatial links in U.S. housing. 

However, while this spatial-wave revealed in the data resembles the sort of 
“ripple effect” widely discussed and studied in the real estate literature (from 
Meen (1999) to Tsai (2014)), by which a disturbances in house prices in a given 
location may spill over to other locations, leading to a global (yet potentially 
diminishing) effect on house prices in all other regions; it may be more 
consistent with the (spatial) coupling of relatively autonomous cyclical local 
house price dynamics: 

Whether spatial diffusion of a local shock or a spatial contagion process, in 
either case we might expect “epicentre” dynamics/patterns where a local 
disturbance radiates out from its original source (as in fact observed using 
similar methods in e.g. the study of spatial epidemiological datasets (Grenfell, 
Bjùrnstad, & Kappey, 2001)). 

Meanwhile the particular empirical pattern I document for U.S. house prices 
rather resembles the sort of traveling-wave than can arise in systems of coupled 
elements with non-trivial intrinsic cyclical dynamics - a dynamic possibility as 
yet unconsidered or explored in the real estate or wider economics literature 
but that has been widely explored by a large theoretical literature (M. 
Rosenblum, Pikovsky, Kurths, Schafer, & Tass, 2001; Strogatz, 2001) and widely 
documented in a range of spatial (D. M. Johnson, Bjørnstad, & Liebhold, 2004; 
Sherratt & Smith, 2008) and network systems. 

 
73 Here the use of spatial contiguity based matrix for 𝐴 in the local phase coherence statistic (rather than 
other connectivity matrix) is strongly justified by the results of spatial-projection of phase series and 
travelling spatial wave documented. Future work might try to take a suitable data driven approach to 
empirically identifying coupling matrix and coefficients between markets. Under the hypothesis that 
individual markets are characterised by limit-cycle dynamics we must employ methods suitable for 
identifying (possibly time-varying) weak couplings between cycles (Cadieu & Koepsell, 2010; Casadiego et 
al., 2017; A. Pikovsky & Mrowka, 2007; M. G. Rosenblum & Pikovsky, 2001; Stankovski et al., 2012; 
Tirabassi et al., 2015) – see also section 8.2). 
74 Pollakowski and Ray (1997), Zohrabyan et al. (2008), Clark and Coggin (2009), Holly et al. (2010), Gupta 
and Miller (2012), Barros et al. (2012) and Barros et al. (2014) question the presence of overall 
convergence in regional housing prices and existence of a ripple effect, whereas Holmes et al. (2011) 
incorporates distance between states to show the existence of long-run convergence among U.S. states. 
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If markets have their own cycle, it seems easy to imagine how developments 
in neighbouring markets might cause small delays or accelerations to a state’s 
own price cycle moving neighbouring cycles more into synch – e.g. if prices turn 
down in one market, this may influence confidence in neighbouring markets 
causing price cycles in those markets to turn a little earlier than they would have 
otherwise; or if rising prices cause migration and capital to spill over into 
neighbouring markets accelerating expansionary phase in their cycles. The non-
stationarity of intrinsic cycle dynamics means that these adjustments have a 
permanent impact on co-movement – and in this way synchronisation could 
easily accumulate over time. Although for this reason, while the existence of a 
spatial-ripple strongly implies spatial coupling/diffusion, the degree of 
synchronisation does not provide a direct measure of dependence.  

The combination of (i) the sort of local spillovers between neighbouring 
markets (such as are widely studied by the spatial diffusion and contagion 
literatures - which suggest a rich array of possible sources of spatial dependence 
between markets (Meen, 1999)) and (ii) local endogenous boom-bust dynamics 
(such as those that arise for example in the growing heterogeneous agent 
housing market literature (Dieci & Westerhoff, 2016)), might thus potentially 
generate both spatial-waves and increased synchronisation - thus amplifying 
national fluctuations over time (in Essay 5/Section 6 I will demonstrate this in a 
concrete model based setting, extending an endogenous expectations switching 
model from heterogeneous agent housing market literature to spatially 
extended setting). 

Both the evidence of significant intrinsic dynamics reported in Essay 1 (the 
clear spectral ridges in the wavelet power spectra of state level price series); as 
well as the apparent stability of the spatio-temporal ordering of cycles across 
markets, and the traveling-wave spatial pattern revealed (the possibility of 
predicting not only the timing but also the geographical location of a shock 
seems inconsistent with the notion of an exogenous shock); seem to suggest the 
hypothesis that the local spatial interaction of relatively autonomous local cycle 
dynamics may underpin observed spatio-temporal dynamics. 

While the spatial pattern provides clear evidence of spatial dependence - 
there is no reason to expect a spatial wave in the absence of local dependencies. 
However the question of whether common/national factor(s) may also have 
played an important role in the observed de-synchronisation and 
synchronisation events remains open. 

Indeed the respective coincidence between the de-synch and synchronisation 
time series events and the S&L crisis, then Interstate Banking Act respectively 
(see previous work on interstate banking and housing market co-movement 
from Landier (2017)), provide at least circumstantial evidence that national 
financial shocks may have been significant in these events. 
 
 
4.4 Relevant literature 
 

Investigating the role of local links in co-movement presents some 
methodological challenges. Local dependencies between markets - especially 
spatial dependence - are well-established themes in real estate economics. 
However standard spatial econometric models may fail in the presence of strong 
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cross-sectional dependence (generally requiring weak forms of cross-sectional 
dependence, in the sense that dependence decreases sufficiently quickly along 
the spatial dimension (Chudik et al., 2011; Pesaran & Tosetti, 2011)).  

What is more, the spatial coefficients yielded by these models provide only a 
measure of contemporaneous local correlation averaged across links (adjacent 
pairs based on the introduction of a spatial adjacency matrix) and across the 
sample period or window.  

Even where dynamic spatial effects are considered through the inclusion of a 
time-lagged spatial correlation (Baltagi & Li, 2014; DeFusco et al., 2013), the 
resulting spatial coefficients in either case provide only a measure of average 
spatial dependence, and do not provide any information on spatial patterns.  

Some studies employ methods designed to accommodate both common 
factors and local links between markets as a sources of correlation (Pesaran, 
2006; Pesaran & Tosetti, 2011): first using variation that can be captured by a 
common component to control for strong cross-sectional dependence, then 
studying residual spatial dependence across the idiosyncratic components using 
a standard spatial econometric model (e.g. spatial autoregressive model) 
(applications in U.S. housing market context include (Baltagi & Li, 2014; S Holly 
et al., 2010)).  

Although studies employing this approach still find significant spatial 
dependence (Baltagi & Li, 2014; S Holly et al., 2010), this methodology starts 
from the assumption that covariance that can be captured by common 
components is driven by common factors. What is more, the standard spatial 
model estimated based on residual covariance, again only provides a test of 
spatial dependence based on average correlations.  

The considerable existing empirical “ripple-effect” literature - which 
researches spatial propagation of house prices - has mostly relied on 
cointegration tests for convergence (Meen, 1999), asking whether markets move 
around/share a common stochastic trend in the ‘long-run’ (whether they move 
together over time exhibiting mean-revering “spreads”) and rely on restrictive 
assumptions on the order of integration of time series.  

The existence of a “ripple-effect” (in the simple sense of spatial propagation of 
disturbances) might occur however even in the absence of long-run 
convergence; what is more even where convergence occurs cointegration tests 
do not measure the synchronisation or reveal the spatio-temporal pattern of 
short run adjustments or provide a dynamic view of the data. 

Indeed studies for the U.S. in fact report mixed but limited evidence of 
convergence for U.S. markets and this has been argued to cast doubt on the 
existence of a ripple-effect (Barros et al., 2012; Clark & Coggin, 2009; Gil-Alana 
et al., 2014; S Holly et al., 2010; Pollakowski & Ray, 1997).75 

While these methods all provide time-averaged estimates of co-movement, 
some studies have employed rolling-windows or recursive estimations in order 
to address the question of how the co-movement of U.S. markets has changed 
over time.76 

 
75 By far the largest literature on the ”ripple-effect” is for the U.K. (Meen, 1996, 1999), but ripple-effects 

have been tested for in many countries. 
76 Simple correlation analysis (Kallberg et al., 2014; Landier et al., 2017); cointegration and error 
correction methods (Yunus & Swanson, 2013); latent factor models (Del Negro & Otrok, 2007) or simple 



 

 76 

However, not only are there a number of potential issues with employing 
rolling-windows with many of these approaches,77 but also none of these time 
domain methods provide the spectral information or phase-amplitude 
decomposition possible with wavelet analysis. 

By contrast with a latent factor model approach, I study the phase-adjusted 
similarity between cycles in different markets (given by the wavelet power 
spectra in Essay 1 (Section 2) and the mean wavelet power spectra presented in 
Section 3.4.1 above); then study the phase synchronisation (Section 3-4) and 
pattern of phase-differences between markets (this Essay) for an empirically 
identified cycle component78 associated with a common frequency band across 
markets. I am thus able to study the role of amplitude vs. phase in changing 
correlation among markets over time. 

Given my focus on the pattern of phase-lead lags, strong cross-sectional 
dependence does not pose a problem (as it does for spatial econometric models) 
and the simple spatial projection of the instantaneous phase of the common 
cycle component that I introduce allows a rich elucidation of the exact pattern of 
relationships.79 

Unlike the existing ripple-effect literature that has focused on convergence of 
house price levels, I thus directly study the temporal pattern in house price 
fluctuations. 

What is more, the instantaneous phase based approach that I introduce 
allows me to study the development of overall synchrony and of spatial patterns 
with good temporal resolution (thanks to the optimal time-frequency resolution 
provided by the adaptive windowing of the continuous wavelet transform (see 
methods Section 2.2)). 

These methodological innovations I introduce reveal striking spatio-temporal 
patterns not previously documented in the literature, despite the huge interest 
in spatial aspects of U.S. housing (U.S. housing markets are of course among the 
most closely and widely studied in the world). 

Table 1 below sets out a brief summary of the relative capabilities and 
suitability for different data generating processes of the wavelet based approach 
I take in this essay, compared with dominant methodological strategies for 
studying ripple effects and spatial diffusion of house prices in the existing 
empirical literature - principally cointegration tests; and spatial panels and 
VARs.  

By the wavelet based approach I take in this essay, I refer in particular to the 
estimation of empirical phase of a specific semi-periodic time-series component 
and spatial projection of this phase information in order to inspect for local or 

 
multivariate regression frameworks (Cotter et al., 2011) as a way to try and estimate the relative 
importance of common (respectively latent or observed) national (vs. idiosyncratic local) factors in house 
price movements; and spatial econometric models (Abate & Anselin, 2016) in order to assess the co-
movement of contiguous markets. 
77 Rolling correlations based methods may generate nonsense results in the presence of persistent cycle 
components (oscillate even for stationary data and vary as a function of choice of window length relative to 
cycle period - see e.g. Yule (1926) on problems with rolling window correlations of oscillatory signals. 
78 Note no assumptions are required as for turning point based methods widely used in the business cycle 
literature, and to some extent housing cycle analysis. 
79 Although I also consider the phase-coherence of adjacent markets which provides an amplitude 
independent measure of spatial correlation. 
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global spatio-temporal patterns in phase lead-lags between markets (covered by 
third column of Table 1).  

Arguably, since Meen (1999), the hypothesis that the spatial transmission of 
changes in house prices implies short-run divergence (lead-lag) but long-term 
convergence in regional house price levels, and studies using a range of pairwise 
and joint cointegration tests to search for long-run relationship between 
markets have dominated the “ripple effect” literature (and this strand remains 
an active literature (e.g. Hudson et al. (2017), Montagnoli & Nagayasu (2015), 
Tsai (2018) are just some recent examples) (covered by first column of Table 1). 

More recently effort has increasingly focussed on using spatial panels and 
VARs to model spatio-temporal diffusion of house prices (Bailey, Holly, & 
Pesaran, 2016; Baltagi & Li, 2014; Blot, Creel, Hubert, Labondance, & Saraceno, 
2015; Cohen, Ioannides, & Wirathip Thanapisitikul, 2016; S Holly et al., 2010; 
Yang & Yang, 2021) (where there has been some convergence in methods 
(Elhorst, Gross, & Tereanu, 2018) and the joint modelling of dynamic relations, 
spatial or network interactions, and common shocks is an area of active 
developments (Bai & Li, 2021; Meetings & Booth, 2020) likely to contribute 
further to study of housing market ripple-effects) (column two of Table 1). 

 
 

Table 1: Comparison of methodological strategies 
Capability (i) Tests for convergence (ii) Spatial panels and VARs (iii) Wavelet based 

approach80 
Test for spatial 
transmission? 

No 
(Testing hypothesis of short–
run divergence but long-run 
convergence81 – thus despite 
being dominant strategy in 

the literature for testing 
housing market ripple effect, 
not a test of spatial diffusion). 

Yes 
(Studies spatio-temporal 

correlation – using coefficients 
on spatial lag, temporal lags of 
spatial lag - directly relevant to 

hypothesis of spatial 
transmission/diffusion of 
shocks.  May struggle to 

disentangle common shocks vs. 
spatial effects/endogenous 
comovement as source of 

strong cross-sectional 
dependence.82 Relies on the 

introduction of spatial weights). 

Yes 
(By estimating empirical phase 
and phase-differences between 

price changes in different 
markets, reveals any spatio-
temporal patterns in phase 
lead-lags across markets – 

providing direct evidence on 
whether there are wide-scale 
“spatial-ripple” phenomena. 
While unobserved common 

factors may drive spatial 
correlation and reduce overall 

dispersion in cycle phases 
across markets, they cannot 

explain widescale ripple 
pattern in phase-lead lags 

between markets). 

  

 
80 By this I refer only to the methods introduced in this Essay, but it is important to note that the potential 
to exploit wavelet transform in study of spatio-temporal phenomena is far from exhausted by the work 
presented here, and the wavelet transform could provide the basis for a whole range of further 
methodological strategies and extensions. 
81 Variety of pairwise and joint cointegration tests. 
82 Methods that control for strong cross sectional dependence through some de-factoring procedure (using 
principal components, or cross-sectional averages such as the two-stage approach taken by Bailey et al. 
(2016) that extracts the common factors in the first stage and then estimates the spatial connections in the 
second stage) make the assumption that strong cross-sectional dependence driven by some unobserved 
common factor (and not endogenous comovement). 
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Reveal spatial 
pattern of lead-
lags between 
markets? 

No 
(Tests whether prices in 

regional markets share the 
same contemporaneous 

stochastic trends – neither 
considers long-run lead-lags, 
nor the patter of lead-lags in 

short-run fluctuations around 
equilibrium). 

Partly 
(Slope coefficient on spatial 

regressor does not reveal 
spatial pattern of lead-lags.83  

However within VAR 
framework GC84 tests and 

FEVD85 can provide information 
on average direction of 

information/key sources of 
shocks).86 

Yes 
(This approach directly 

estimates spatial pattern of 
temporal lead-lags. Spatial 

projection of estimated phase 
then provides rich information 
on spatio-temporal patterns  at 

different scales).  

Reveal time-
evolving 
pattern of 
relationships? 

No 
(Tests time-averaged 

dynamics). 

No 
(Time-averaged 
relationships).87 

Yes 
(Instantaneous phase and 
amplitude decomposition 

provided allows viewing lead-
lag pattern at a given time and 

time-scale, and how this 
evolves/unfolds over time – thus 

can provide information on 
specific shocks or time-evolving 

relationships/dynamics). 
Provide 
frequency/scale 
specific test for 
spatial 
ripple/transmis
sion? 

Partly 
(Ripple effect - if it exists - is 
assumed to be in short-run 

lead-lags. “Short-run” vs. 
“long-run” defined in terms of 

trend vs. equilibrium 
adjusting dynamics). 

No Yes 
(Frequency decomposition 

means relevant time-scales can 
be identified in the data and 

scale-specific/varying spatio-
temporal patterns studied). 

Study spatial-
ripple arising in 
coupled 
(quasi)-periodic 
dynamics 
setting? 

No 
(Concerned with stochastic 

trend processes and not 
oscillatory processes. Study 

existence of equilibrium 
relationship between 

markets/ contemporaneous 
common stochastic trend(s)). 

No 
(A well-specified model - with 

appropriate lag structure - 
might successfully capture 

cyclic dynamics,88 but not (time 
evolving) phase-relations and 

their contribution to 
correlation. Meanwhile de-
factoring based approaches 
ignore/destroy pattern of 

phase-shifts between cycles in 
different markets). 

Yes 
(Combined time-frequency and 

phase-amplitude 
decomposition allows data 

driven identification of cycles 
and cycle period; study 

changing phase relationships 
between identified cycles – 

highly suited to empirical study 
of coupled deterministic cycle 

dynamics). 

Forecasting/ 
prediction? 

*No 
(*But cointegration implies 
the presence of a valid error 
correction model that could 
be exploited for forecasting 

purposes). 

Yes 
((Well) specified model could 

be used to directly forecast 
price developments over space 

and time.). 

Partly 
(In coupled deterministic cycle 
setting, instantaneous phase + 
amplitude may help to predict 

direction and magnitude of 
future cyclic developments both 
at market and aggregate/mean 

field level).89 

 
 

4.5 Conclusions 
 
In this chapter I have investigated the spatio-temporal character of the common 
cycle component in state level house price data identified in Essay 1 and 2.  

Through the introduction to the economics literature of time-frequency 
methods for spatio-temporal analysis, I am able to reveal and document for the 
first time, not only the high level of synchronisation among adjacent markets, 

 
83 Market specific slope coefficients in VAR settings (and some spatial panel specifications) can provide 
spatial information on comovement but not pattern of lead-lags. 
84 Granger causality. 
85 Forecast error variance decomposition. 
86 As for example Chiang & Tsai (2016). 
87 Sub-sample estimates can be used to deal with structural breaks. 
88 But struggle with multiple periodic components. 
89 This might be best exploited by combining with more conventional parametric methods for time-series 
modelling – something I leave to future work. 
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but a striking spatial pattern in the timings of cycles in different markets 
resembling a ‘traveling-wave’ (analogous to a “Mexican wave”).  

This pattern is remarkably stable across the c.50 year sample period, across 
multiple cycle periods, and between the low and high overall synchronisation 
eras. Where the existing literature has cast doubt on the existence of a “ripple 
effect” my analysis clearly shows the spatial propagation of US housing cycles.  

However whilst these results will be of considerable interest to the “ripple 
effect” literature, the ‘traveling-wave’, rather than ‘epicentre’ pattern may be 
more consistent with spatial interaction among markets with significant 
intrinsic cyclical dynamics (consistent with the evidence presented in Essay 1 – 
see Section 2), than with shock diffusion or contagion dynamics hypothesised in 
the literature. 

Meanwhile both consistently high local-synchronisation and the striking 
spatial pattern make clear that local housing markets have not followed their 
own independent cycles, even when overall synchronisation was low at the 
national level. These results raise the questions whether local synchronisation 
among markets could have been at play in the global synchronisation event. 
However the manner in which this maps to changes in mortgage finance seems 
to suggest finance played some important role. 
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5 Essay 4: Local cycle and bubble dynamics: 
evidence permanent cycle phase modulates 
temporary bubble formation and collapse 

 
 
Summary: econometric studies of U.S. house prices at the sub-national 
level present compelling evidence of a long history of temporary explosive 
episodes consistent with bubble dynamics. These were common prior to 
the 2000s consistent with a history of local bubbles, and geographically 
widespread during the 2000s housing boom, consistent with a national 
bubble at this time. Meanwhile in Essays 1 to 3 I document evidence of 
repeating c.10-year cycles, and of traveling spatial waves over the 
available historical sample period Jan 1975 - Jun 2020. These results are 
more consistent with spatial dependence among intrinsically cyclical 
markets, than with time localised explosive episodes in an otherwise 
stable process. Given the compelling evidence of both explosive episodes, 
and of persistent cycles, a question arises whether these are connected or 
independent phenomena. In this Essay I investigate the relationship 
between the bubbles and cycles observed in U.S. house prices using 
monthly state level house price data since 1975. I find a systematic 
relationship between the timing of the onset of explosive bubbles (dated 
using the PSY test by Phillips, Shi and Yu (2015a, 2015b) - now popular in 
the literature) and the instantaneous phase of the slow cycles (obtained 
by wavelet transform (as per analysis presented in Essays 2-3/Section 3-
4)). This result suggests low frequency repeating housing cycle 
fluctuations may have played an important role in the occurrence and 
timing of housing bubbles, shedding new light on a problem we have so 
far made little progress on: how can we explain where and when bubbles 
occur? It also suggests slow fluctuations may have significance for housing 
market dynamics beyond their own amplitude contribution since the slow 
cycle seems to modulate shorter-run housing market volatility. 

 

 
5.1 Introduction 
 
The central role the U.S. housing market price run-up and collapse seem to have 
played in the global financial crisis and recession, have generated renewed 
interest in the dynamics of house prices (see Sections 2 to 4). A view widely 
shared among academics and policymakers is that the 2000s boom period saw 
US house prices depart from their fundamental values, leading to distortions and 
ending in the price correction that eventually precipitated the crisis (Ben S 
Bernanke, 2010). 

While economic theory suggests many reasons housing markets may 
overshoot, and the character and causes of this episode remain hotly debated, 
the enormous increases and subsequent crashes in house prices have led many 
researchers to test for the presence of speculative bubbles:  

Where property prices are determined not only by economic fundamentals, 
but driven either by the rational expectation of a future gain from future price 
increases (Flood & Hodrick, 1990),90 or by irrationally optimistic expectations 

 
90 Rational expectations hold so no arbitrage opportunities. A recent review of theory of rational bubbles 
for macroeconomics is provided by Martin & Ventura (2018). Gurkaynak (2008) provides a previous 
overview of different empirical tests on rational bubbles. 
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(Shiller, 2000; Vissing-jorgensen, 2004), house prices will follow an explosive 
process. 

A substantial empirical literature exploits this feature of non-fundamental 
asset price components as the basis for formal bubble tests - framed both within 
the well known present-value model  ((Diba & Grossman, 1988a; Hall, 
Psaradakis, & Sola, 1999; Homm & Breitung, 2012; Efthymios Pavlidis et al., 
2016; Phillips & Yu, 2011) and e.g. trend-following behaviour ((Bolt et al., 
2014)) hypothesised in the behavioural asset market literature.  

Bolt et al. (2014) make empirical tests based on an argument that house price 
dynamics and deviations from fundamentals will become temporarily explosive 
where the average extrapolation factor in house price expectation formation 
exceeds one. Zhou and Sornette (2005) look for faster than exponential growth 
(power law super-exponential acceleration) as evidence of an unsustainable 
bubble. The recursive unit root test recently introduced by Phillips (Phillips, Wu, 
& Yu, 2011) and Phillips Shi and Yu (2015a, 2015b) (henceforth PSY test) in 
particular has been deployed in a wide variety of applications,91 including a 
large and growing number of studies of real estate markets (Engsted, Hviid, & 
Pedersen, 2016; Greenaway-mcgrevy & Phillips, 2015; Hu & Oxley, 2018a; Jiang, 
Phillips, & Yu, 2015; Efthymios Pavlidis et al., 2018, 2016; Phillips & Yu, 2011; 
Shi, 2017; Yusupova, Pavlidis, Paya, & Peel, 2016). 

Econometric studies of US markets find national house price series followed 
an explosive process during the 2000s boom period, consistent with e.g. a 
temporary rational bubble or period of “irrational exuberance” (Kivedal, 2013; 
Phillips & Yu, 2011; W. Zhou & Sornette, 2005).  

While many studies focus on aggregate U.S. house price developments, similar 
studies of regional house price series (i) further identify a long history of such 
explosive episodes at local market level (consistent with significant “local” 
speculative bubbles prior to the 2000s); and (ii) also confirm that explosive 
episodes were geographically widespread during the 2000s (providing 
additional support for the ‘national bubble’ interpretation of this period (see e.g. 
Shi (2017), Hu & Oxley (2018a), Pavlidis et al. (2018))). 

While the bubble identification literature presents compelling evidence of 
significant temporary explosive episodes in regional house price series 
consistent with a non-stationary process switching between stable and 
temporarily explosive dynamics, in Essay.1 (Section 2) I present evidence that 
U.S. regional housing markets have exhibited repeating cycles (with a period of 
roughly 10 years) consistent with permanent or persistent fluctuations around 
an unstable or weakly stable equilibrium – i.e. limit cycle or near limit cycle 
dynamics such as those that arise in some e.g. behavioural housing models 
(Dieci (2016) is a recent example). 

I further show, moreover, that the synchronisation of these repeating cycles 
across US markets made an important contribution to the national boom-bust of 
the 2000s.  

These results suggest a novel alternative interpretation of the national 
housing market instability of the 2000s in terms, not of a temporary bubble, but 

 
91 Some examples covering various financial and commodity markets are: Bohl (2003); Etienne et al. 
(2014a, 2014b); Gutierrez (2012); Adammer & Bohl (2015); Figuerola-Ferretti et al. (2020); Hu & Oxley 
(2018b); Phillips & Shi (2017). 
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the synchronisation of existing cycles (something that could have occurred 
endogenously or as the result of a common shock or increased coupling 
between/integration of markets (something I will explore further in Essay.5 
(Section 5)). 

This evidence that: (i) temporary explosive (‘bubble’) episodes – now well 
documented, and (ii) on-going low frequency cyclicality both make significant 
contributions for understanding U.S. house price instability, raises the question: 
whether there is any important relationship between these two distinct 
phenomena? In order to address this question I study the relationship between 
the timing of (i) temporary house price bubbles, and (ii) repeating house price 
cycles. Specifically: using monthly state level house price data for the period Jan 
1975 - Jun 2020, following the recent empirical bubble and housing bubble 
literature I use the PSY test (which provides a technology for identifying 
explosive episodes with consistent dating of their origination and collapse) to 
date-stamp both the onset and bursting of bubbles; then I obtain the 
instantaneous phase of the low frequency cycle at bubble onset dates (i.e. the 
instantaneous phase of the low frequency cycle in the same months as the 
‘bubble’ started and burst as dated by PSY procedure). 

First I use a simulation based exercise to test whether the novel procedure I 
introduce and employ is able to (i) identify bubbles and cycles, and (ii) 
distinguish between the case where bubble formation depends on the cycle 
phase, and the case where it does not. The procedure works well on simulated 
data.  

I then apply the procedure to US housing market data. I find a systematic 
relationship between the onset and bursting of explosive bubbles, and the phase 
of the slow cycle with bubbles systematically associated with phase-angles 
corresponding to the late stage of the expansionary phase of the 10-year cycle, 
and collapse episodes occurring after the slow cycle has peaked. This result 
holds for pre-2000 bubble episodes (when bubbles were ‘regional’ not national 
and before local cycles synchronised) as well as for the full sample.  

A defining aspect of temporary bubble based theories of house price 
instability, is that dramatic market swings are seen to be driven, not by major 
changes in economic conditions, but rather by random capricious shifts in 
market psychology (Martin & Ventura, 2018; Shiller, 2000, 2015). As a result it is 
hard to say much on predicting when or where temporary bubbles are likely to 
arise - note that while e.g. the PSY procedure provides a real-time monitoring 
strategy (for example the PSY approach is now employed by the Federal Reserve 
Bank of Dallas, providing an exuberance indicator for 23 international housing 
markets)92 thus potential for early identification of a bubble once it starts, it 
does not help to predict in advance where or when bubbles are likely to occur.  

By contrast the work I present in Essays 1-3 (Sections 2-4) is able to 
document striking temporal and spatial patterns in the data and the 
synchronisation of local cycles.  

 
92 The Dallas FED publishing recursive unit-root test based housing market exuberance indicators for 23 
national housing markets based on the bubble test of Phillips, et al. (2015a,b) and the methods developed 
in Pavalidis et al. (2016). This indicator can be found here: 
https://www.dallasfed.org/institute/houseprice/ 

 

https://www.dallasfed.org/institute/houseprice/
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Given these results, the systematic relationship I demonstrate here, between 
bubble timing and cycle timing, implies bubbles may be far from random, and 
clearly has implications for our understanding and possible interpretations both 
of the evidence of some spatial patter in the historical timing of booms in 
different markets identified by some analysts (refs), and of the more nationally 
synchronised booms across the U.S. during the 2000s. 

Meanwhile this result suggests that the low frequency cycles (even where 
these oscillations may be weak considering their amplitude relative to explosive 
episodes) have a significant influence on house price instability at shorter time 
scales and overall house price volatility beyond their own direct amplitude 
contribution due to their role in influencing the timing and likelihood of 
explosive episodes. 

The paper proceeds as follows: In 5.2 in introduce my methodology in some 
detail, and provide simulation based demonstrations and validation (Section 
5.3.3). Section 5.4 presents my analysis and results including some examples of 
state level house price series that exhibit (i) evidence of both cycles and bubbles, 
(ii) evidence of cycles but no significant evidence of bubbles (Section 5.4.1) as 
well as my systematic analysis of the relationship between cycle and bubble 
timing (Section 5.4.2). I make some discussion of my results in Section 5.5 
Finally Section 5.6 concludes. 
 
 
5.2 Housing bubble literature and choice of bubble test 
 
Bubbles are defined as periods characterized by asset pricing that deviates from 
market fundamentals. Unsurprisingly there is a very large literature both on 
asset bubble detection in general (with a focus on stock markets and other 
traded securities and commodities), as well as on housing market bubble 
detection specifically.  

Research has addressed both the (possible) sources of bubbles, and empirical 
methods to test for them. The literature on bubbles include research within the 
present-value pricing framework on rational speculative bubbles (Blanchard, 
1979; Diba & Grossman, 1988a) which have nothing to do with fundamentals93 
(Kashiwagi, 2014); or intrinsic bubbles (Froot & Obstfeld, 1991) which depend 
exclusively on over-reaction to exogenous fundamental shocks (Nneji, Brooks, & 
Agency, 2013); as well as research on non-present value pricing such as 
momentum and extrapolative expectations (Glaeser & Nathanson, 2017; 
Granziera & Kozicki, 2015), herd behaviour, and irrational exuberance (Shiller, 
2000, 2015; Vissing-jorgensen, 2004). 

Since a bubble is defined as deviation of price from that justified by 
fundamentals, many studies seeking to assess the presence of housing bubbles 
have examined the relationship between house prices and housing market 
fundamentals94  (Abraham & Hendershott, 1993, 1996; Meese & Wallace, 

 
93 When investors share the belief that variable(s) not related to fundamentals influence prices, it is 
rational to include this information into price expectations (Diba & Grossman, 1988a). 
94 The set of fundamentals typically includes variables such as income, housing stock, demography, credit 
availability and interest rates. 
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1994).95 What cannot be explained by fundamentals may represent a bubble 
component in house prices.  

However the question of fundamental value is not easy to pin down with any 
certainty or consistency and in these sorts of studies it remains unclear whether 
deviations from estimated fundamental values are due to a “bubble” or to model 
misspecification – a general problem for strategies based on measuring bubbles 
as a residual (Gürkaynak, 2008).96 

This has motivated another strand of research which takes an alternative 
strategy, seeking to identify bubbles based on dynamics: bubbles are explosive 
(Diba & Grossman, 1988a) and subject to periodic collapse (Blanchard, 1979).  

Evans (1991) showed that the conventional right-tail unit root test (Diba & 
Grossman, 1988a) is incapable of detecting explosive bubbles that collapse 
periodically (Blanchard, 1979) – these sorts of tests have difficulty 
distinguishing periodic collapse from mean reversion. However this has given 
rise to a number of econometric approaches based on testing the presence of 
time-localised explosive dynamics which are suitable not only for testing for, but 
also for dating bubble episodes given a periodically collapsing explosive process.  

Econometric test for identifying and dating bubble episodes include: (i) 
regime switching models such as the Markov-switching augmented Dickey–
Fuller (MSADF) test developed by Hall et al. (1999) (see also extension by Shi 
(2013));97 and the infinite hidden Markov model proposed by Shi and Song 
(2016); (ii) the cumulative sum (CUSUM) test by Homm and Breitung (2012); 
(iii) rolling window unit-root tests (Chong & Hurn, 2017; Shi, 2007);98 and (iv) 
measures constructed by recursively testing whether or not a time series 
variable is in a regime characterized by explosive behaviour such as the 
recursive right-tailed unit root test by Phillips, Wu and Yu (2011) (PWY) 
generalised by Phillips, Shi and Yu (2015a, 2015b) (PSY).99 

In this essay, I choose to employ the PSY test in order to identify and date 
stamp bubble episodes, for: its power to consistently date multiple periodically-
collapsing episodes of mildly explosive behaviour; its ability to accommodate 
various bubble generating mechanisms100 – thus relative agnosticism with 
respect to the bubble-generating mechanisms; as well as its recent popularity in 
the literature for studying house price dynamics (see following references) 
(note other tests listed here have not as far as I can tell found application in the 
study of housing markets).101 

 
95 Meese and Wallace (1994) examine whether the real expected return on home ownership is close to the 
real homeowner cost of capital by studying the relationship between price, rent, and the cost of capital. 
Abraham and Hendershott (1993, 1996) study the relationship between housing prices and construction 
cost, real income growth and interest rate. They find that these factors explain half of the historical 
variation in house price appreciation. The bubble, then, manifests itself in the “sustained serially correlated 
deviations,” yet, it remains unclear whether these deviations are due to a “bubble” or to a misspecification 
of the econometric model (Escobari & Damianov, 2015). 
96 Bubbles will create a residual but so will any misspecification of the model. 
97 See also Norden (1996) for related approach. 
98 See also Taipalus (2006). 
99 Other strategies proposed in response to the “Evan’s critique” include: the momentum threshold 
autoregressive (MTAR) test of Enders and Granger (1998) and Enders and Siklos (2001). Bohl (2003) 
showed that this test provides a sufficiently powerful test to detect periodically collapsing bubble 
behaviour and the test has been used to test bubbles in REITs markets (Jirasakuldech, Campbell, & Knight, 
2006; Payne & Waters, 2006; Waters & Payne, 2007; Xie & Chen, 2015). 
100 Shi (2011) provides a partial overview of the literature. See also Phillips Shi and Yu (2015a, 2015b). 
101 Although the MSADF test was used by Qin and Tan (2006) to test for bubbles in Seoul property market. 



 

 85 

Consistency of the PSY estimated bubble start and end dates under various 
data generating processes was established in Phillips et al. (2015b) and Phillips 
and Shi (2018a); and Phillips and Shi (2017) proved consistency of dating for 
crises.  For bubble detection it has been shown to outperform the forward 
recursive algorithm (Phillips et al., 2011), rolling window unit-root testing 
approaches (Chong & Hurn, 2017; Shi, 2007), and the CUSUM monitoring 
strategy of Homm and Breitung (2012) - in particular when, as here, the sample 
period is likely to include multiple episodes of explosive bubbles. 

Although studies employing the PSY test for bubble identification have 
tended to be framed in terms of present-value model and theory of rational 
speculative bubbles (Blanchard, 1979; Diba & Grossman, 1988a), the reduced-
form empirical approach of the PSY test also accommodates other bubble-
generating mechanisms such as intrinsic bubbles (Froot & Obstfeld, 1991) (for 
studied of intrinsic bubbles in housing market context see e.g. (Nneji et al., 
2013)), and herd behaviour and extrapolative price expectations (Abreu & 
Brunnermeier, 2003; Avery & Zemsky, 1998) (in housing market context e.g. 
Bolt et al. (2014) make empirical tests based on an argument that house price 
dynamics and deviations from fundamentals will become temporarily explosive 
where the average extrapolation factor in house price expectation formation 
exceeds one); as well as time-varying discount factor fundamentals (Phillips & 
Yu, 2011).  

This flexibility with respect to the underlying bubble process makes it 
suitably agnostic for my purpose: rather than distinguishing between alternative 
bubble mechanisms, my purpose here is to investing the relationship between 
the sort of explosive episodes identified by the existing literature, and the 
permanent cycle dynamics I document in Essay 1 (Section 2). 

Moreover the PSY test has become widely used for detecting bubbles in a 
variety of different markets,102 including a growing number of applications to 
the detection of housing market bubbles: based on the PWY test Phillips and Yu 
(2011) find U.S. national house price series followed an explosive process during 
the 2000s boom period (see also Das et al. (2011)); Hu and Oxley (2018a) and 
use the PSY procedure to test for bubbles in U.S. state level price series, finding a 
long history of explosive episodes at this subnational level (see also Pavlidis et 
al. (2018) and Shi (2017) for applications to U.S. subnational markets). The PSY 
procedure has also been widely used to test for housing bubbles in a number of 
other markets around the world (both national price series (Anundsen, Gerdrup, 
Hansen, & Kragh-Sorensen, 2016; Deng, Girardin, Joyeux, & Shi, 2017; Gomez-
gonzalez, Gamboa-arbeláez, Hirs-garzón, & Pinchao-rosero, 2018; Hu & Oxley, 
2016; Martínez-garcía & Grossman, 2020) and studies of sub-national markets 
(Gomez-gonzalez & Sanin-restrepo, 2018; Greenaway-mcgrevy & Phillips, 2015; 
Shi, Rahman, & Wang, 2020)). 

Note some other strategies for identifying (housing) bubbles without relying 
on estimating fundamental values include: Zhou and Sornette (2005) who look 
for faster than exponential growth (power law super-exponential acceleration) 
as evidence of an unsustainable bubble. Watanabe et al. (2006) – extended by 

 
102 Wider applications include (but not limited to): stock markets (some examples are (Chuliá & Uribe, 

2017; Deng et al., 2017; J. H. Lee & Phillips, 2016)); commodity markets (for instance, Etienne, (2017); 
Alexakis et al., (2017)), energy markets (Narayan & Kumar, 2017); and exchange rates (Maldonado, 
Tourinho, & Abreu, 2018).  
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Hui et al. (2010) -  introduce a mathematical definition of bubbles and crashes 
by exponential behaviours, and use of this for detection. Escobari and Damianov 
(2015) exploit the idea that low tier home prices increase at a faster pace during 
the boom than the high tier home prices if cheap credit is available to consumers 
predominantly at the low end of the distribution of houses and estimates the 
beginning and the burst of bubbles as structural breaks in the difference 
between the appreciation rates of price tiers. They study 15 U.S. MSAs during 
the 2000s. In an earlier study Mizuno et al. (2011) also proposed making use of 
information on the cross-sectional dispersion of real estate prices and study not 
price movements but changes in the price dispersion. 
 
 
5.3 Methodology 
 
In order to study the relationship between the timing of bubble episodes and the 
timing of underlying cycles, I combine (1) the procedure introduced by Phillips, 
Shi and Yu (2015a, 2015b) for detecting and date-stamping temporary bubble 
episodes; with the time-frequency methods already introduced in previous 
chapters – power spectrum and instantaneous phase. 
 
 
5.3.1 ‘Bubble’ identification and timing 
 
For the purpose of bubble identification and dating I employ the procedure 
introduced by Phillips, Shi and Yu (2015a, 2015b) (PSY procedure) which has 
become popular in the study of house price bubbles (Engsted et al., 2016; 
Greenaway-mcgrevy & Phillips, 2015; Hu & Oxley, 2018a; Jiang et al., 2015; 
Efthymios Pavlidis et al., 2016; Phillips & Yu, 2011; Yusupova et al., 2016) as 
well as wider asset price bubble literature;103 with the bootstrapping procedure 
proposed in Phillips and Shi (2018b).104   

The PSY procedure provides a method for detecting and dating multiple 
explosive bubble (Phillips et al., 2015a, 2015b) and/or crisis episodes (Phillips & 
Shi, 2017) in the same sample series.105 This procedure is based on the 
implementation of right-tailed augmented Dickey-Fuller (ADF) type unit root 
tests via a backwards recursive evolving algorithm (See 10.2.1 of methods 
appendix).  

The hypothesis of a mildly explosive process is tested against the null of a 
‘martingale’ process with asymptotic drift 
 
𝐻0: 𝑝𝑡 = 𝑑𝑇−𝜂 + 𝑝𝑡−1 + 휀𝑡,      휀𝑡~𝑁𝐼𝐷(0, 𝜎2)                     (13) 
 
𝐻1: 𝑝𝑡 = 𝛿𝑇𝑝𝑡−1 + 휀𝑡                                                                    (14) 

 
103 Some examples covering various financial and commodity markets are: Bohl (2003); Etienne et al. 
(2014a, 2014b); Gutierrez (2012); Adammer & Bohl (2015); Figuerola-Ferretti et al. (2020); Hu & Oxley 
(2018b); Phillips & Shi (2017). 
104 This procedure was introduced in order to simultaneously addresses both heteroskedasticity (Harvey et 
al., 2016) and multiplicity issues in testing. 
105 The method is a generalized version of the sup augmented Dickey–Fuller (ADF) test of Phillips et al. 
(2011). 
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The term 𝑑𝑇−𝜂 captures any mild drift that may be present in prices but which is 
of smaller order than the martingale component and is therefore asymptotically 
negligible (Phillips & Shi, 2018b, p. 5), where 𝑑 is a constant,  𝑇 sample size, and 

the localizing coefficient 휂 is greater than 
1

2
. 𝛿𝑇 = 1 + 𝑐𝑇−𝜃 with 𝑐 > 0 and 휃 ∈

(0,1).. The ADF test statistic is the t-statistic on the least squares estimate of the 
coefficient of 𝑝𝑡−1 in the regression model chosen for the PSY procedure 
 
∆𝑝𝑡 = 𝛼 + 𝛽𝑝𝑡−1 + ∑ 𝛾𝑘

𝐾
𝑘=1 ∆𝑝𝑡−𝑘 + 휀𝑡                                    (15) 

 
which includes the intercept 𝛼 but no time trend and nests the null hypothesis 
as a special case with 𝛼 = 𝑑𝑇−𝜂 and 𝛽 = 0 . The 𝐾 lag terms are included to 
account for serial correlation. 

The PSY procedure calculates the ADF statistic recursively from a backward 
expanding sample sequence. If  𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 are the start and end points of the 
regression sample, the ADF statistic calculated from this sample is denoted 

𝐴𝐷𝐹𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡 . The starting point of the sample varies from the first observation 𝑡0 to 

𝑡† − 𝑤0 + 1 where 𝑡† is the observation of interest and 𝑤0 is the minimum 
number of observations required in order to estimate Eq.34. The resulting ADF 
sequence is shown as 
 

 {𝐴𝐷𝐹𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡}
𝑡𝑒𝑛𝑑=𝑡†
𝑡𝑠𝑡𝑎𝑟𝑡∈[𝑡0,𝑡†−𝑤0+1]

                                                           (16) 

 
and inference regarding the explosiveness of observation ∆𝑝𝑡†  is based on the 
PSY statistic defined as the maximum value of the entire ADF sequence106 
 

𝑃𝑆𝑌𝑡†(𝑤0) = sup     {𝐴𝐷𝐹𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡}
𝑡𝑒𝑛𝑑=𝑡†
𝑡𝑠𝑡𝑎𝑟𝑡∈[𝑡0,𝑡†−𝑤0+1]

                       (17) 

 
The supremum enables the selection of the ‘optimal’ starting point of the 
regression in the sense of providing the largest ADF statistic. This procedure can 
be repeated for each individual observation of interest ranging from 𝑤0 to 𝑡𝑒𝑛𝑑 

generating the PSY statistic sequence {𝑃𝑆𝑌𝑡†(𝑤0)}
𝑡†∈[𝑤0,𝑡𝑒𝑛𝑑]

.  

In Figure 38 I reproduce a visual representation of the recursive evolving 
algorithm provided by Phillips and Shi (2018b)). 
 
 

 
106 The backward supremum ADF. 
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Figure 21: This figure reproduces illustration of PSY recursive evolving algorithm 
as presented in Phillips and Shi (2018b). 

 
Consistency of the estimated bubble start and end dates under various data 
generating processes was established in Phillips et al. (2015b) and Phillips and 
Shi (2018a); and Phillips and Shi (2017) proved consistency of dating for crises.  
For bubble detection it has been shown to outperform the forward recursive 
algorithm (Phillips et al., 2011), the rolling window approach (Chong & Hurn, 
2017; Shi, 2007), and the cusum monitoring strategy of Homm and Breitung 
(2012). 

To assess statistical significance I rely on the procedure proposed by Phillips 
et al. (2018b) that combines the wild bootstrap introduced by Harvey et al. 
(2016) to address heteroskedasticity,107 with a procedure to account for 
multiplicity in the test sequence recursion (a problem common to recursive 
testing procedures is that the probability of false positives rises with the number 
of hypotheses tested (Phillips & Shi, 2018b, p. 14)) (See Section 10.2.2 of 
methods appendix for details of this procedure as set out by Phillips et al. 
(2018b)). 
 
 
5.3.2 Cycle identification 
 
For cycle identification I rely on the analysis presented in Ch.1. Timing of cycle 
assessed based on instantaneous phase (Eq.6). 
 
 
5.3.3 Assessing the relative timing of bubbles and cycles 
 
Evidence house price series exhibit both significant ‘bubble’ and periodic 
components raises the question: what is the relationship between these 
phenomena? In order to answer this question we need to obtain information on 
the relationship between the timing of bubbles in relation to the timing of the 
cycle. The timing of the cycle can be described in terms of its phase (which 
evolves over time), thus the instantaneous phase of the cycle at the time of 
bubble onset, gives us the timing of the bubble in relation to the cycle. This is 

 
107 Harvey et al. (2016) show that the presence of heteroskedasticity can affect the performance of the 
forward recursive method of Phillips et al. (2011) and introduce a wild bootstrap to solve this problem 
which they show to have good performance asymptotically and in finite samples. 
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easily empirically quantified since the imaginary part of the wavelet transform 
gives us precise information about the instantaneous phase (Eq.6) of the cycle at 
each time step and frequency (See Section 3.3.1), while the PSY test gives us a 
precise onset date for the bubble episode (Section 5.3.1). I use simulation based 
approach to illustrate and validate this methodological approach.  
 
 
5.3.3.1.1 Simulating combined bubble and cycle process 
 
I simulate a time series that combines both (i) a repeating cycle component and 
(ii) a random-bubble with the overall process simply given by the sum of these 
two components. The cycle component I simulate as a simple sin wave with 
period 50 (corresponding to a 50 quarter, or c.12 year cycle). The temporary 
bubble process I simulate according to the model specified by Phillips et al. 
(2011) - based on Evans (1991) periodically collapsing bubbles model - allowing 
for regimes that switch between a unit root process and mildly explosive 
episodes. This is a data-generating process that allows for the possibility of a 
single explosive episode: 

𝑥𝑡 = 𝑥𝑡−11{𝑡 < 𝜏𝑒} + 𝛿𝑛𝑥𝑡−11{𝜏𝑒 ≤ 𝑡 ≤ 𝜏𝑓} + ( ∑ 휀𝑘

𝑡

𝑘=𝜏𝑓+1

+ 𝑥𝜏𝑓
∗ ) 1{𝑡

> 𝜏𝑓} + 휀𝑡1{𝑡 ≤ 𝜏𝑓} 

 

𝛿𝑛 = 1 +
𝑐

𝑛𝛼
,       𝑐 > 0, 𝛼 ∈ (0,1) 

 
where 휀𝑥,𝑡 is i.i.d. (0, 𝜎2), and the model is assumed to initiate at 𝑡 = 0 from 
some 𝑂𝑝(1) random variable 𝑥0. 

The autoregressive parameter 𝛿𝑛 = 1 +
𝑐

𝑛𝛼 > 1 for all 𝑛 when 𝑐 > 0 leading to 

mildly explosive behaviour in the data over the sub-period 𝑡 ∈ [𝜏𝑒 , 𝜏𝑓]. The 

model starts with a unit root process but allows for switches in regime at 𝜏𝑒 (to 
the explosive episode) and 𝜏𝑓 (back to unit root behaviour).  

When the explosive period comes to an end, the initial value of the new unit 
root period differs from the end value of the explosive period. So the 
specification captures both exuberance and collapse and involves re-
initialization of the process under collapse - with re-initialization at 𝜏𝑓 the 

process jumps to a different level 𝑥𝜏𝑓
∗ . Following [] I define the new initial value 

𝑥𝜏𝑓
∗ = 𝑥𝜏𝑒

+ 𝑥∗ for some 𝑂𝑝(1) random quantity 𝑥∗ - i.e. in terms of the earlier 

period martingale behaviour of the process with some random deviation. 
 
 
5.3.3.1.2 Identifying bubbles and cycles in combined process 
 
The top part of (a) of Figure 22 presents a plot of a time series obtained by 
simulating the combined cycle and bubble process set out in 5.3.3.1.1. I also 
mark the true onset and termination dates for the single explosive episode with 
vertical red lines. This chart further plots the results of the PSY procedure 
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(Phillips et al., 2015b, 2015a, 2011) (section 5.3.1) applied to this simulated 
series – bubble episodes identified by the procedure are shaded green. We see 
that the PSY procedure makes a good job of dating the onset and termination of 
the temporary bubble (and also picks up a couple of very short false positives 
that would be ruled out by minimum episode threshold). 

Meanwhile the lower panel (b) presents the wavelet power spectrum (Eq.2) 
of the same simulated time series (see Section 2 for detailed presentation of this 
method and its interpretation). In the wavelet analysis the periodic component 
is clearly visible, appearing as a spectral ridge across all time (x-axis) at period-
50 (y-axis) – this ridge is indicated by the narrow band of high power 
(expressed as hot colours) the peak of which is indicated by the white line in the 
centre of the ridge. 
 
 
 
 

Figure 22: This figure presents (a) a time series simulated as a combination of a 
periodic cycle process (of 50 quarters so c.12 years) and a random walk process, 
with a single ‘explosive episode’/’collapsing bubble’, the true onset and 
termination dates for which are marked by vertical red lines. Meanwhile the green 
shading indicates the “explosive episodes” as identified by applying the PSY 
procedure (95% level) to the simulated data – we see the procedure dates the 
single explosive episode almost exactly (as well as suggests two extremely short 
false positives). Meanwhile (b) presents the wavelet power spectrum for the same 
simulated series. This change of perspective via transformation very clearly 
highlights the 12-year cycle - this shows up clearly in time-frequency 
representation as a spectral ridge, the peak of which - white line in the centre of 
the area of high power - identifies the true cycle periodicity almost exactly 
(something obscured in visual inspection of the time series plot by the martingale 
and explosive dynamics). 

 
This simple simulated example illustrates: the usefulness of the PSY procedure 
for identifying temporary explosive dynamics; the usefulness of time-frequency 
methods for identifying cyclical components that may be obscured by other 
processes. While the bubble is clearly visible on inspection of the time-series 
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plot, the PSY test provides an objective, consistent and accurate dating 
strategy.108 Meanwhile the change of perspective provided by the wavelet 
transform of the series reveals the stable underlying periodic component (the 50 
quarter or 12.5 year cycle) very clearly – something otherwise obscure in the 
combined signal and in fact making only a limited contribution to the overall 
variation in the series given its amplitude. 

Figure 23 is based on the same simulated data as analysed in of Figure 22. This 
time: (a) plots the same simulated time series (thick line) and true bubble onset 
date, now along with the 12.5-year cycle component of this series (thin line). 
Meanwhile (b) plots the time evolution of the instantaneous phase of the cycle 
over the entire time period (based on the imaginary part of the wavelet 
transform of the time series)109 and (c) the phase angle – in polar coordinates - 
of the cycle at the bubble onset date (the onset date as before – though now only 
the onset date - is marked both in (a) and now also in (b) by the vertical red 
line). This analysis makes clear what could not be assessed based on the power 
spectrum: the bubble began during the expansionary phase of the 12.5-year 
cycle. This did not have to be the case, however the question arises was this by 
chance, or due to some dependency between the cycle and bubble processes?  
 
 

Figure 23:  (a) plots the combined cycle, martingale and temporary bubble 
processes (heavy line), the cycle component (thin line) and the timing of 
bubble onset (red vertical line). (b) Plots the evolution of the instantaneous 
phase of the cycle component over time. (c) Plots in polar coordinates, the 
phase angle at bubble onset date (i.e. where vertical red line intersects 
phase series in (b)). 

 
Without knowledge of the data generating process little can be said based on a 
single bubble. I simulate two sets of series (each 1,000 time-series with a length 
of 300 quarters) like that presented and Figure 23 and Figure 23, each time series 
combining both (i) a periodic cycle and (ii) a martingale process with a bubble 

 
108 Note one might e.g. easily (and incorrectly) have dated bubble onset earlier based on visual inspection. 
109 While power spectrum reveals stability of the periodicity of the cycle component over time, the phase of 
the cycle of course evolves. 
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episode. Both sets are simulated using the same data generating process set out 
in 5.3.3.1.1, however in one set of simulations the cycle and bubble processes 
are independent (bubble onset occurs randomly); in the other set of simulations, 
bubbles are influenced by the phase of the 12.5-year cycle (bubble onset only 

occurs during the expansionary phase of the cycle in the interval [
𝜋

2
, 𝜋] – but 

otherwise randomly).  
For each simulated time series I obtain the phase angle of the cycle at bubble 

onset data as per the example presented in Figure 23 (c). Figure 24 presents 
circular histograms of the vectors of phase angle data thus obtained (a) for the 
coupled case; (b) for the un-coupled case (in each case 1,000 phase points are 
sorted among 12 phase bins). We see that the wavelet analysis of the combined 
signals is able to successfully distinguish these two different scenarios: in the 
un-coupled case (a) the distribution of the phase angles is relatively uniform 
around the circle and symmetric around zero; in the coupled case (b) the 

distribution of phase angles are appropriately clustered within the [
𝜋

2
, 𝜋] 

interval (within which interval bubble onset was simulated to be random). 
 
 

 
 
5.4 Analysis and results 
 
5.4.1 Evidence both of repeating cycles and of explosive ‘bubbles’ 
 
5.4.1.1 Identifying and dating bubble episodes 
 
I study log-changes in monthly house price data since Jan 1975 for 51 US states 
and the District of Columbia.110 For each time series I conduct the PSY test.111  
These are implemented with a minimum window length of 18 following the 

 
110 I use seasonally adjusted monthly Freddie Mac House Price Index data. The availability of monthly data 
improves temporal but also spectral resolution. I take YoY log-differences. The data can be found at the 
following link: http://www.freddiemac.com/research/indices/house-price-index.page 
111 This is implemented with a minimum window size of 18, and lag-order selection was made using BIC 
order selector and maximum lag order of 6. 

Figure 24: presents the results of methodology applied to simulated series (a) where 
the timing of bubbles is random and independent from timing of cycle; (b) where 
bubbles only occur during the expansionary phase of the cycle. The results show that 
the combined wavelet analysis and PSY procedure are able to distinguish between 
these two different generating processes.  

http://www.freddiemac.com/research/indices/house-price-index.page
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recommendation by Phillips et al. (2015a) to set the minimum window size 

close to 𝑤0 = 0.01 +
1.8

√𝑇
 as reduce the probability of size distortion. Optimal lag 

orders are selected based on BIC criteria and a maximum lag length of 6.112   
For my analysis and following Gomez-gonzalez et al. (2018), after the 

bootstrapping test, I further define a restriction that an explosive “episode” 
should last at least 6 months. This procedure identifies a total of 230 episodes 
103 (that is c.45%) of which occur before the year 2000 - from which time the 
literature roughly dates the beginning of the national bubble. The onset dates for 
these bubbles are plotted in Figure 25. 
 

 
Figure 25: Bubble onset dates as estimated based on PSY procedure and minimum duration 
threshold of 6 months. 

 
 
5.4.1.2 Evidence both of repeating cycles and of explosive ‘bubbles’ 
 
While the general relevance of explosive ‘bubble’ episodes for U.S. regional 
housing market dynamics is established in the literature (see e.g. Shi (Shi, 2017), 
Hu & Oxley (2018a), Pavlidis et al. (2018)), and Essay 1 (Section 2) documents 
the importance of persistent cycles, it is useful to make a joint analysis of both 
phenomena for some specific examples. Figure 26 subjects house price data for 
Washington State113 to precisely the same analysis as that made for the 
simulated time series in Figure 22, providing an empirical example of a market 
that exhibits evidence both of the c.10-year cycle identified by Sansom (2018), 
and important ‘bubble’ episodes of the type studied and documented in the 
bubble identification literature. 
 
 

 
112 These procedures are implemented using Matlab code made available by Shuping Shi. This can be found 
at https://sites.google.com/site/shupingshi 
113 Log-changes in seasonally adjusted monthly Freddie Mac House Price Index data (see data appendix 
Section 11.1). 

https://sites.google.com/site/shupingshi
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Figure 26:  An empirical example of a market that exhibits evidence both of a cycle, 
and of important ‘bubble’ episodes (by PSY definition). (a) Plots log-changes (YoY) in 
the monthly house price index for Washington State since Jan 1975, and identified 
bubble episodes (shaded green). Note window length means first few observations 
are not covered by the PSY procedure (thin pale line). Significant bubbles are 
identified in the 1980s and mid-2000s. Meanwhile the wavelet power spectrum (b) 
exhibits evidence of a c.10 year cycle - the clear spectral ridge at this period. 

 
(a) The PSY procedure identifies a significant bubble in the late-1980s (95% 

confidence interval based on the bootstrapping procedure proposed in 
Phillips and Shi (2018b)), and during the mid-2000s - bubble episodes are 
shaded green - as well as a collapse and recovery episode associated with 
the housing and financial crisis.  
 

(b) The wavelet power spectrum meanwhile exhibits evidence of a c.10-year 
cycle (the clear spectral ridge near 10 year period – characteristic of a 
periodic not of an explosive process). This low frequency cycle, while low 
amplitude relative to the dramatic fluctuations during bubble episodes, is a 
striking feature of this time series. 

 
Figure 27 presents the same analysis for Tennessee State (same data source and 
treatment) as an example of a market characterised by the c.10-year cycle, but 
that exhibits limited evidence of significant explosive ‘bubble’ episodes – the PSY 
procedure (a) only identifies the collapse and recovery associated with the 
housing and financial crisis of the late-2000s. However (b) the wavelet power 
spectrum of this price series (b) nevertheless clearly exhibits a spectral ridge 
consistent with a roughly 10-year cycle over the entire sample period. 
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Figure 27:  An empirical example of a series that exhibits evidence of a 
cycle, but limited evidence of ‘bubble’ episodes (by PSY definition). (a) Plots 
log-changes (YoY) in the monthly house price index for Tennessee State and 
bubble episodes (which are shaded green): only the collapse and recovery 
associated with the housing and financial crisis of the late-2000s is 
identified by the bubble test. Meanwhile the wavelet power spectrum of this 
price series (b) clearly exhibits a spectral ridge consistent with a roughly 
10-year cycle over the entire sample period. 

 
 
5.4.2 Evidence of a systematic relationship between cycle and bubble timing 
 
5.4.2.1 Estimating phase of underlying cycle 
 
Using the same set of house price time series (for all states in which the bubble 
detection procedure identified at least one bubble episode), I then estimate the 
instantaneous phase series of the roughly 10-year cycle identified by Sansom 
(2018). I perform this estimation with the continuous complex wavelet 
transform (CCWT) using the Morlet mother wavelet (Torrence & Compo, 1998) 
which yields instantaneous phase 𝜙𝑓(𝑡) for each wavelet central frequency 𝑓 

which I average – taking the circular mean - over the 8-12 year periodicity band 
of interest to obtain 𝜙𝑐𝑦𝑐𝑙𝑒(𝑡).114  

 
5.4.2.2 Obtaining cycle-phase at bubble onset dates 
 
Finally, I obtain the instantaneous phase of this low frequency cycle at bubble 
onset dates as estimated with the PSY procedure, 𝜙𝑐𝑦𝑐𝑙𝑒(𝑡𝑜𝑛𝑠𝑒𝑡) as a vector of 

phase angles which I will denote 𝛼𝜙. This step allows me to answer the simple 

question: what phase was the 10-year cycle in when the bubble started? Under 
the null hypothesis of no relationship between the low frequency cycle and 
bubble episodes, the angles will have a uniform circular distribution, meanwhile 
a peaked distribution implies a systematic relationship between the phase of the 

 
114 A broadband signal of a multi-scale process needs to be filtered into a spectral band of interest. 
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low frequency cycle and the timing of the explosive episodes (as defined by the 
PSY procedure used in the empirical bubble literature). 
 
 
5.4.2.3 Results (full sample) 
 

Cycle phase of explosive episode onset 

 
Figure 28: presents histograms in polar coordinates of the distribution of 
phase angles for the slow cycle (obtained based on the mean phase over 10-
13 year periodicity band) at (a) explosive ‘boom’ episode onset dates and 
(b) ‘collapse’ episode onset dates (as identified with the bubble 
identification procedure of Phillips et al. (2015a, 2015b)). The slow cycle 
phase angles obtained at onset dates for a total of 230 identified explosive 
episodes are sorted between 12 angle bins on the interval (𝟎, 𝟐𝝅). Both 
distributions show clear peaks near the “top” of the slow cycle suggesting a 
systematic relationship between the timing of bubble formation and 
collapse episodes, with bubbles developing during the expansionary phase 
and sudden collapses occurring after the slow cycle has peaked.115 

 
Figure 28 plots a histogram of the vector of phase angles 𝛼𝜙. The phase interval 

(0,2𝜋) (representing the full cycle) is divided into 12 bins. This empirically 

estimated joint distribution exhibits a clear peak in the bins between (
𝜋

2
, 𝜋) (this 

is near the “top” of the 10 year cycle, during expansionary phase above its mean 
but before it peaks) suggesting a systematic influence from the rise of the slow 
10-year cycle on the occurrence of explosive bubbles. 
 
 
5.4.2.4 Sub-sample analysis for eras of local vs. national housing instability 
 
Given that many of the bubbles in this analysis occurred during the “national” 
bubble episode of the 2000s when both bubbles and cycles were rather 
synchronised, it is interesting to make a separate analysis of pre and post-2000 
episodes.  The results of this analysis are presented in Figure 29. Before the 2000s 
both ‘bubbles’ and cycles were ‘local’ in the sense that they were not globally 

 
115 Booms and busts are distinguished based on comparison of series value at onset and termination dates. 

Full sample (1975-2020) 
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synchronised. Even so, there is a systematic relationship between bubble onset 
and 10-year cycle phase. 
 

Cycle phase of explosive episode onset  

 

Figure 29: presents the same analysis as that presented in 
Figure 28 (see caption for details) but for the restricted sample 
period 1975:01-2020:06 in order to exclude the more 
synchronised bubble and cycle dynamics of the 2000s national 
boom-bust. This leads to a sample of 103 explosive episodes for 
which slow cycle phase at onset dates are obtained. Although 
both ‘bubbles’ and cycles in this pre-2000 period were ‘local’ (in 
the sense of not globally synchronised), the distributions 
obtained are nevertheless similarly peaked (indeed boom 
episode onset dates are more narrowly distributed for the 
subsample) suggesting a systematic relationship between 
repeating cycles and bubble development across both the era of 
local and of national housing market instability. 

 
 
5.5 Discussion 
 
This study identifies a systematic empirical relationship between the timing of 
the sort of temporary explosive episodes documented in regional U.S. house 
price series by the empirical ‘bubble’ identification literature; and the repeating 
c.10-year cycle in state and city level price series I have documented in Essay 1 
(Section 2). 

One possible interpretation of this systematic relationship is that bubble 
episodes and low frequency cycles basically represent distinct processes, but 
cyclical expansions and contractions can, respectively, set off speculative 
bubbles, or trigger losses of confidence precipitating collapse episodes.  

Another possibility might be that the explosive ‘bubble’ episodes picked up by 
the PSY procedure are nonlinearities in the cycle process.  

While the latter possibility looks quite plausible in some markets (where the 
PSY procedure picks up ‘bubbles’ every cycle), in other markets explosive 
episodes - while systematically related to the phase of the underlying cycle -
appear more sporadic and not a reliable feature of every cycle. 

In any case the existence of a systematic relationship suggests that the low 
frequency cycles (even where these oscillations may be weak considering their 
amplitude relative to explosive episodes) have a significant influence on house 

Sub-sample (1975-2000) 
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price instability beyond their own direct amplitude contribution, due to their 
role in influencing the timing and likelihood of ‘bubble’ markets. 

This systematic relationship also implies, of course, that ‘bubble’ episodes 
may be far from random – indeed the striking temporal and spatial patterns in 
underlying cyclicality that I document in Essays 1-3 (Sections 2-4) may be an 
important key to understanding both the apparent ‘localness’ of the widespread 
bubbles of the 1980s; as well as the ‘national’ character of the bubbles during 
the 2000s: 

It is well known, after all, that the combination of explosive processes with 
other explosive, unit root, and/or stationary processes, generally results in an 
explosive process. This point is particularly important for unit root testing 
procedures because it implies that as long as one of the constituent series is 
explosive, so will the aggregated series be – this provides the basis for tests on 
individual time series hypothesised to aggregate a fundamental and a bubble 
component; but also applies in the geographical aggregation of housing market 
data. Nevertheless, explosive episodes, though widespread in the 1980s, have 
not shown up in PSY tests on aggregate US price series (Efthymios Pavlidis et al., 
2016).116 

Pavlidis et al. (2018) observe that “the effect of an upward explosive period in 
one of the constituent series could offset the effect of a simultaneous downward 
explosive period in another constituent series of the aggregate”, (my emphasis) 
but comments that “Although theoretically possible, this scenario seems unlikely 
from a practical point of view in most conventional applications (a knife-edge 
case)” (Efthymios Pavlidis et al., 2018, p. 5).  

Nevertheless, this seems to be what happened in the US during the 1980s.117 
While highly unlikely in a random bubble setting, this could be explained by the 
link between explosive episodes and underlying cycles given observed spatial 
wave in these cycles – the existence of a spatial wave implies highly correlated 
movements but phase-differences that increase with geographical distance. This 
makes the possibility that an upward explosive period in one of the constituent 
series could offset the effect of a simultaneous downward explosive period in 
another constituent series, rather plausible (something supported by the very 
low global phase-synchronisation at cycle frequency during the 1980s that I 
document in Essay 2 (Section 3) i.e. the fact that phase of cycles was balanced 
around the phase-circle implies that for every boom-phase there was an 
offsetting bust-phase). 

This evidence that bubble episodes may be far from random is interesting 
since a huge problem when it comes to temporary ‘bubbles’, is of course how to 
identify them as they emerge, not just after they burst. This has lead to popular 
epithets such as “you know a bubble when you see one” and counter claims.  

The PSY test provides a practical and objective quantitative method to 
identify bubbles as they emerge, and its potential as an early warning alert 
system for exuberance has been recognised by central bank economists, fiscal 
regulators, and others (for example the PSY approach is now employed by the 
Federal Reserve Bank of Dallas, providing an exuberance indicator for 23 

 
116 Although Pavlidis et al. (2016) do identify national bubbles in the UK and other national price series 
during this period. 
117 Pavlidis et al. (2018) use Case-Shiller 10 city index which only goes back to 1987. Given the window size 
needed for PSY procedure, this means 1980s bubbles will have been entirely excluded from this study. 
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international housing markets),118 but it has nothing to say on the likelihood of a 
bubble emerging for any given market at a given time. 

Overall, these results suggest that focussing exclusively on the more 
“pathological” dynamics of explosive episodes may miss the importance of 
housing cycles in both local and aggregate house price instability  – not only can 
cycles help explain bubbles, but also some markets which did not experience 
significant bubbles, nevertheless do exhibit clear cyclicality (see the illustrating 
empirical example in Figure 27) which with the increased synchronisation fo 
markets has come to contribute to aggregate housing volatility. 
 

 
5.6 Conclusion 
 
I find evidence of a systematic relationship between the timing of the sort of 
temporary explosive episodes widely documented in regional US house price 
series by the ‘bubble’ identification literature, and the repeating c.10-year cycle I 
have empirically documented in state and city level price series in Essay 1 
(Section 2). 

This systematic relationship suggests that the cyclical component of these 
series - even where the contribution from these oscillations to house price 
volatility may in some cases be weak considering their amplitude - have a 
significant influence on house price instability beyond their own direct 
amplitude contribution. 

What is more, it suggests ‘bubble’ episodes may be far from random - given 
the striking temporal and spatial patterns in underlying cyclicality that I 
document in Essay 3 (Section 4). Explosive episodes may (or may not) be driven 
by a distinct dynamical process (such as short periods of strongly speculative 
markets) from underlying low frequency cyclicality, however their timing – both 
their appearance of ‘localness’ during the 1980s and their ‘national’ character in 
the 2000s – seems to be well explained by the spatial-wave in phase 
development of underlying cycles prior to 1995 and their dramatic 
synchronisation after this time. 

These results suggest that focussing exclusively on the more “pathological” 
dynamics of explosive episodes may miss the importance of repeating housing 
cycles in both local and aggregate house price instability: not only can cycles 
help explain bubbles, but also some markets which did not experience 
significant bubbles, nevertheless do exhibit clear cyclicality (see empirical 
example in Figure 27). What is more the more continuous cycle processes 
reveals spatial and temporal patterns that are obscured or lost in analysis of 
onset dates of explosive episodes - in which a lot of information is discarded. 

  

 
118 The Dallas FED publishing recursive unit-root test based housing market exuberance indicators for 23 
national housing markets based on the bubble test of Phillips, et al. (2015a,b) and the methods developed 
in Pavalidis et al. (2016). This indicator can be found here: 
https://www.dallasfed.org/institute/houseprice/ 

 

https://www.dallasfed.org/institute/houseprice/
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6 Essay 5: A simple model of spatially coupled 
speculative housing cycles reproduces key 
spatio-temporal patterns in U.S. house prices 

 
 

Summary: A variety of arguments have been put forward to explain the 
2000s housing boom-bust in the U.S., however these hypotheses seem to 
have difficulty accounting for the restrictions implied by the accumulation 
of empirical evidence on the spatio-temporal dynamics of housing. 
Motivated by evidence in the existing empirical literature and in 
particular the empirical results presented in Essays 2 to 4 of this thesis, I 
argue that a persuasive account of U.S. housing market instability needs to 
explain or account for the following key empirical facts: (i) a long history 
of repeating boom-bust episodes in subnational markets; (ii) both the 
historic heterogeneity in timing of these local cycles as well as their more 
recent synchronisation; but also crucially (iii) the striking and persistent 
non-random spatial patterns in these dynamics over both the local and 
national instability eras. Collectively these seem to provide some rather 
strong restrictions and are not easily accounted for within the 
idiosyncratic shock or bubble frameworks in the existing literature. In this 
Essay I model a network of identical housing cycles locally bi-directionally 
coupled according to the spatial adjacency matrix for spatially contiguous 
U.S. states. I show that this simple framework of locally coupled housing 
cycles is able to simultaneously explain: repeating local boom busts; their 
synchronisation over time; and perhaps most interestingly neatly 
reproduces the east-west traveling spatial waves empirically observed in 
the historical data (see Essay 3. That this simple framework is sufficient to 
provide a unified explanation for these key spatio-temporal features of 
empirical house price dynamics suggests that the local coupling of 
intrinsically cyclical markets may offer a useful new framework and 
departure point for further empirical and theoretical work. The 
qualitative predictions of this framework are rather different from 
standard models, with important policy implications. 

 
 
6.1 Introduction 
 

The role of the national U.S. housing boom-bust of the 2000s at the centre of 
the sub-prime crisis - widely viewed as the trigger for the Global Financial Crisis 
and subsequent Great Recession - have made U.S. housing market developments 
and their wider economic linkages a key macro-financial concern for 
policymakers (Ben S. Bernanke, 2008; D. Miles, 2013; Praet, 2011).  

Explaining the causes of this remarkable housing boom-bust has become the 
subject of a large and still expanding body of research: a wide range of 
explanations have been put forward including interest rates; mortgage credit 
and subprime lending; speculation and irrational bubbles; contagion and “fads”; 
and international capital flows.119 

 
119 Interest rates (Campbell et al., 2009; Glaeser et al., 2013; Himmelberg et al., 2005); mortgage 
credit/market “innovations” and subprime lending (Dell’Ariccia, Igan, & Laeven, 2012; Favilukis et al., 
2016; Levitin & Wachter, 2012; Mian & Sufi, 2009; Pavlov & Wachter, 2009; C. W. Wheaton & Nechayev, 
2008); speculation and irrational bubbles (Barlevy & Fisher, 2011; Bayer et al., 2011, 2016; K E Case et al., 
2005; Karl E Case & Shiller, 2003; J. M. Lee & Choi, 2011; Shiller, 2005; C. W. Wheaton & Nechayev, 2008); 
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Of course while the national boom-bust of the 2000s may have been 
historically unprecedented, earlier housing booms and busts had been 
previously widely documented at a geographically more local level in the US 
(Karl E Case & Shiller, 1993; Riddel, 1999; Shiller, 1990); and housing market 
observers had long puzzled over (i) the exaggerated cyclical behaviour of house 
prices relative to fundamentals; (ii) their significant short-term persistence; and 
(iii) longer-term mean reversion (see e.g. Case & Shiller (1989), Cutler et al. 
(1990), DiPasquale & Wheaton  (1994); while more recent studies include e.g. 
Glaeser et al. (2014) Head et al.  (2014)). 

As Glaeser & Nathanson (2017) recently remark “These features were 
spectacularly on display during the great housing convulsion that rocked the 
U.S., and the world, between 1996 and 2010. Yet these three phenomena 
characterized house price dynamics even before this episode and continue to do 
so afterward.” (Glaeser & Nathanson, 2017, p. 147).  

Indeed not only does the U.S. appear to have a long history of housing 
market boom-bust (see e.g. Glaeser (2013), and Shiller (2005, 2007)  for a 
review of various historical episodes) but systematic econometric studies of 
both metropolitan area and state level data suggest periodic “explosive” or 
“bubble” episodes had been geographically widespread in previous decades (Hu 
& Oxley, 2018a; Efthymios Pavlidis et al., 2018; Shi, 2017) – a result I confirm in 
my analysis of state level data in Essay 4 (Section 5, Figure 25). 

Meanwhile a striking empirical feature of this widespread historic boom and 
bust are the non-random spatial patterns in the amplitude and timing of cycles: 
for example the states that experienced the largest boom-busts in the 2000s also 
experienced the largest boom-busts in the 1980s (Sinai, 2012).  

Ferreira and Gyourko (2011) report (based on a proprietary MSA level 
dataset) that “the start of the boom was not a single, national event. Booms, 
which are defined by the global breakpoint in an area’s price appreciation series, 
begin at different times over a decade-long period from 1995-2006.” They note 
that “the geography of the timing of the start of housing booms is interesting in 
its own right” and report briefly that “the first booms at the metropolitan area 
level occurred in northern New England (Massachusetts and Connecticut) and 
coastal California. On the east coast, they then spread east and south from 
northern New England. They spread north and east from coastal California.” 
arguing that this “is suggestive of a role for contagion in explaining the spread of 
the boom across markets.” (Ferreira & Gyourko, 2011, p. 14). 

DeFusco et al. (2013) highlight that local (MSA level) booms between 1993 
and 2009 began initially in highly concentrated areas on the two coasts,120 
before spreading inland. 

Hernández-Murillo et al. (2017) studying city level building permits data in 
in a Markov switching model allowing for idiosyncratic and national cycle 
regimes, find that national downturns always begin with the ‘idiosyncratic’ 
downturn in a cluster of cities (before growing to effect all cities).  

These sorts of results suggest an important spatio-temporal dimension to 
housing market instability.121 

 
contagion and “fads” (Bayer et al., 2016; Burnside et al., 2016); and international capital flows (Favilukis et 
al., 2013, 2016). 
120 In California and the mid-New England region. 
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My own results from the empirical phase of this thesis provide evidence (1) 
many sub-national housing markets across the U.S. have exhibited not just 
idiosyncratic explosive episodes but repeating cycles since data begins in the 
1970s (Essay 1/Section 2); (2) these existing sub-national cycles synchronized 
dramatically in the mid 1990s (and this seems to have played a significant role 
in the national boom-bust of the 2000s) (Essay 2/Section 3); and document (3) 
striking non-random spatial patterns in the development of state level housing 
cycles: specifically clear and repeating ‘ripples’ running from coastal states (east 
and west coast) into the central states (Essay 3/Section 4). I also show a 
systematic relationship between the timing of bubbles (as identified in the 
econometric bubble test literature), and the local timing (local phase) of this 
permanent cycle component (Essay 4/Section 5). 

My results on the spatial pattern of housing cycle developments confirm 
that developments in coastal markets spread inland. However I show that this 
pattern is much more continuous/smoother in both space and time than has 
been previously realised: since not relying on the timing of discrete events (e.g. 
turning point (peaks and troughs) or structural break in time series) I am able to 
show the stability of this pattern month-to-month since the early 1970s.  

This pattern characterised not just the start of the 2000s boom, but equally 
characterises the “local” and “national” bubble periods and is consistent over all 
phases of the housing cycle (and continued to characterise 2000s bust, even 
though this was very simultaneous).  

The systematic relationship between the timing of occasional bubble 
episodes also suggests that patterns previously noted in the timing of bubbles 
are likely to be driven by this smoother underlying spatio-temporal process. 

Ideally potential explanations of the 2000s national boom-bust episode 
should account for, or at least accommodate, these characteristics of spatio-
temporal dynamics. While Sinai (2012) for example has previously argued that 
potential explanations for housing booms need to generate differences in the 
timing of price changes across markets, I propose that it is important to account 
not just for differences in timings, but to specifically account for repeating 
coastal-to-centre ripples that have characterised U.S. housing market 
fluctuations over at least the last 50 years. 

I will argue that theories of house price fluctuations in the existing literature 
may struggle to simultaneously account for (i) local cycles, (ii) the national 
boom-bust, and (iii) observed spatial waves and their stability across periods of 
apparently “local” instability (when phase of sub-national cycles are dispersed) 
vs. apparently national instability (when phase of sub-national cycles very 
clumped) - results which, taken together, seem to provide some powerful 
empirical restrictions on any explanation or model of U.S. housing dynamics. 

On the one hand contributions in the literature that seek to identify national 
shocks to explain the national housing boom-bust (a very substantial literature) 
are not able to account either for the much longer history of instability at a local 
level, or for the spatial patterns in the data. Explanations based on a national 
‘mania’ are similarly unhelpful in addressing the spatio-temporal facts.  

 
121 Not all studies agree on this. For example Pavlidis et al. (2009) date the onset of bubbles using the PSY 
test (Phillips et al., 2011); Freese (2015) using “Statistical Process Control”. Both studies find no indications 
that the 2000s bubble evolved in a specific region and spread to another neighbouring region. 
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The spatial diffusion of local shocks, or contagion of local bubbles seems 
consistent with the existence of spatial “ripples” and might – were spillovers 
sufficiently large and spatial transmission sufficiently rapid and slow to decay 
over spatial distance - offer an account of both local and national level 
disturbance. However trying to account for evidence of repeating local cycles 
and stable spatial patterns over time within these local shock diffusion or 
contagious bubble frameworks seems – implausibly - to require similar shocks 
repeating at regular temporal intervals in the same leading markets. Moreover it 
does not provide an explanation for the temporal tightening of this spatio-
temporal pattern over time. 

An emerging heterogeneous agent housing market literature and the 
endogenous cyclical dynamics that often arise in these models (Bao & Hommes, 
2015; Bolt et al., 2014; Defusco et al., 2017; Dieci & Westerhoff, 2012b, 2016; 
Geanakoplos et al., 2012) offers some plausible hypotheses for explaining the 
repeating cycles evident at a local market level. However they do not account for 
the national boom-bust, nor for spatial ripple phenomena – which have not, to 
the best of my knowledge, been addressed by this literature. 

In this paper, I explore whether the combination of (a) local spillovers 
between neighbouring markets (such as those hypothesised both in the local 
shock propagation and local bubble contagion literatures); and (b) local 
endogenous boom-bust cycle dynamics (such as those often arising in the 
growing heterogeneous agent housing market literature), could provide a simple 
and unified qualitative explanation not only for the sort of repeating local boom-
bust cycles already modeled in the literature, but also simultaneously account 
for both (i) the emergence of national housing boom-bust, as well as (ii) the 
spatial “ripples”/“waves” empirically observed in the data. 

To this end I model 49 identical housing markets with autonomous cyclical 
dynamics (each characterised by the same endogenous speculative cycles in an 
endogenous expectations formation setting) but coupled according to the 
empirical spatial adjacency network for the 49 spatially contiguous US states 
(such that neighbouring markets have some influence on price expectations).  

I conduct a number of simulation-based experiments to understand the 
influence of the local coupling parameter introduced, on the spatio-temporal 
dynamics on the network. I find that the local coupling (mutual influence among 
spatially adjacent markets) of local endogenous expectations driven quasi-
periodic housing cycles, is sufficient to explain both the observed coasts-to-
central waves, and the emergence over time of national boom-bust. No shocks 
to; heterogeneity across; or global factors are necessary to reproduce these 
phenomena.  

While I simulate local housing dynamics based on the extension of a specific 
endogenous expectations formation mechanism driven cycle process borrowed 
from the existing literature (Dieci & Westerhoff, 2012b), my results are very 
unlikely to be specific to this particular process but rather are likely to hold for 
any specific model consistent with the more general framework I set out of 
locally interacting markets characterised by intrinsic cycle dynamics. 

This work thus leads to a novel simple and plausible unified explanation for 
a collection of key empirically documented phenomena not easily resolved by 
recourse to existing theories. The sufficiency and parsimony of this minimal 
framework does not of course mean we should discard or discount other 
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explanations and factors. It does seem to suggest however, that locally coupled 
locally unstable housing market dynamics may offer a valuable new theoretical 
framework, the relevance of which deserves further exploration. 

This new framework, whilst it represents nothing short of an alternative 
paradigm, at the same time is broadly aligned with an important strand of 
thought in the real estate literature that argues housing markets may be best 
represented as a series of interconnected regional and local markets (Meen, 
1996) - implying that we can neither consider housing in terms of a national 
aggregate, nor in terms of entirely local markets as housing markets are likely to 
be linked. It also provides a new direction and extends the potential empirical 
relevance for the growing behavioural housing market literature (as well as 
other work interested in intrinsic cycle dynamics in housing market behaviour). 
It suggests the relevance of, and contributes to a complex systems view of 
economic processes and suggests the potential relevance of existing literature of 
synchronisation phenomena in complex networks. 

The interpretation of the 2000s housing boom-bust in terms of the 
synchronisation of unstable local markets not only provides a more ready 
explanation for key historical facts, it also has significant implications for what 
we might expect from the future, and distinct policy implications. 

The paper is organized as follows: Section 6.2 provides a more careful 
discussion of relevant existing literature; section 6.3 introduces my general 
model (framework); section 6.4 introduces a specific model for the purpose of 
simulation; section 6.5 presents analysis of this model and simulation based 
results; in 6.6 I discuss some of the implications and questions thrown up by my 
key results. Section 6.7 concludes. 
 
 
6.2 Relevant literature 
 
6.2.1 Endogenous housing cycles literature 
 

While the literature on endogenous housing market cyclicality is relatively 
small, following the wider behavioural asset market literature (B. Y. W. A. Brock 
& Hommes, 1997; W. A. Brock & Hommes, 1998) a number of behavioural 
housing market models have been proposed and estimated and a small 
literature has developed. The potential for endogenous periodic or semi-
periodic dynamics tends to arise in these type of heterogeneous agent based 
models. 

Sommervoll, Borgersen, and Wennemo (2010) model the interplay between 
consumption and investment/speculative motive in housing demand for budget 
constrained agents under an adaptive expectation scheme (Muth, 1960). The 
dynamics of the model are described by a high-dimensional nonlinear system. 
Simulations show the model generates periodic fluctuations in house prices and 
volumes. They further extend the model to include mortgage lending, and find 
that introducing credit constraints change the dynamics of the model generating 
periods of mild oscillations interrupted by violent collapses. 

Dieci & Westerhoff (2012b) develop a model in which speculative agents are 
assumed to rely on a combination of extrapolative and regressive forecasting 
rules in forming their price expectations. The relative importance of these 
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competing heuristics depends on the magnitude of the deviations of housing 
prices from long run fundamental steady state (in their model prices adjust to 
excess demand in each period in dis-equilibrium). The dynamics of the model 
are described by a two-dimensional non-linear map. Their model can generate 
irregular housing cycles endogenously (see also Dieci & Westerhoff (2013)). 

Similarly Bolt et al. (2014) develop a model of the dynamic interplay of 
regressive and extrapolative beliefs in demand formation, in which agents 
switch endogenously between mean-reverting (regressive) and trend-following 
(extrapolative) beliefs based on their relative performance. Where Dieci & 
Westerhoff (2012b, 2013) employ a dis-equilibrium price adjustment rule based 
on excess demand, their model employs a temporary equilibrium. The model is 
described by a high-dimensional nonlinear dynamical system. Their simulations 
show cyclical fluctuations. 

Kouwenberg and Zwinkels (2015) introduce and estimate a housing market 
model with a structure similar to Dieci & Westerhoff (2012b). As do Eichholtz et 
al. (2015). 

Dieci & Westerhoff (2016) present a similar model of an endogenously 
evolving mix of extrapolative and regressive beliefs, but “nested into” a  
traditional stock-flow housing  market  framework (Denise DiPasquale & 
Wheaton, 1992; Poterba, 1984) connecting the house price to the rent level and 
housing stock. This is used in order to investigate how expectations driven 
house price fluctuations (such as those modeled in e.g.: Dieci & Westerhoff 
(2012b, 2013), Bolt et al. (2014), Kouwenberg and Zwinkels (2015), Eichholtz et 
al. (2015))  interact with supply-side conditions (housing supply elasticity and 
the existing stock of housing). Their model is described by a two-dimensional 
nonlinear map. Strong extrapolative behavior of housing market investors 
destabilizes the model's fundamental steady state, either via a pitchfork 
bifurcation and the emergence of multiple steady states or via a Neimark-Sacker 
bifurcation and the appearance of oscillatory dynamics, ‘born’ initially as a 
simple cycle, then irregular fluctuations (a complex attractor). In this model, the 
loss of stability may produce very different outcomes depending on the 
elasticities of the supply of new housing and the demand for housing services: in 
particular “price bubbles” tend to be shorter under a more elastic supply of new 
housing or a less elastic demand of housing services. 

In a realted study, Bao & Hommes (2015) design an experimental housing 
market and study how the strength of negative feedback (framed in terms of 
supply elasticity), affects market stability in the context of positive feedback 
through speculative demand.  

Defusco et al. (2017) model a housing market populated by extrapolative 
investors with heterogeneous investment horizons. In this model long-run and 
short-run investors play a role similar to that of fundamental and feed-back 
traders in models of asset price fluctuations arising out of the interaction of 
these two different expectations schemes (Cutler et al., 1990; De Long, Shleifer, 
& Summers, 1990). In their model the combination of extrapolative expectations 
and heterogeneous holding times generates cycles in prices and transaction 
volumes. 

While there is thus a small theoretical literature using formal dynamical 
models in order to explore mechanisms by which housing market cyclicality may 
arise endogenously, to the best of my knowledge the implications from the 
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interaction of multiple cyclical markets – the setting I explore in this Essay - has 
not been previously considered. 
 
 
6.2.2 Interconnected local housing markets – theory and evidence 
 

While the implications from the interaction of housing markets characterised 
by endogenous cyclicality has not been previously considered, the issue of local 
dependence between housing markets has been widely studied and theorised in 
real estate economics, where theory and evidence suggest the potential 
relevance of a range of different connectivity structures from local dependence 
between spatially adjacent markets; to a range of other forms of local 
dependence based not on spatial adjacency but e.g. economic links; to global (all-
to-all) coupling among markets. 

Empirical evidence of spatial ‘ripple effects’ (especially from the U.K.) has 
motivated a large literature on possible channels by which house prices may 
spill over leading to the spatial diffusion of house prices among neighbouring 
markets. It has been proposed that the underlying economic factors associated 
with the ripple effect may include e.g. migration flows, home equity conversion, 
or capital flows and spatial arbitrage between neighbouring markets (Meen, 
1999). 

While it remains unclear what channels operate and their relative 
importance, empirical evidence of local spatial dependencies among U.S. housing 
markets is quite strong. A number of studies of state level data find evidence of 
dependence among neighbouring states. For example:  

Vansteenkiste (2007) in a global VAR framework finds evidence of significant 
interstate linkages for house prices and impulse response analysis suggests 
closer states tend to be more affected by a local shock than states which are 
located further away.  Kuethe and Pede (2011) find evidence in a spatial VAR of 
spatial spillovers in their analysis of state level house price data for the Western 
USA.122 Holly et al. (2010) in a spatial panel   model find a significant spatial 
effect among contiguous states even after controlling for state specific real 
incomes, and allowing for a number of unobserved common factors. These 
results are confirmed by Chudik and Pesaran (2010) who additionally find 
evidence of significant dynamic spatial spillovers among contiguous states.123 
DeFusco et al. (2013) report strong evidence of housing market spillovers 
among U.S. cities and their nearest neighbour cities124 but do not find evidence 
of significant spillovers arising from more distant markets. Brady (2014) using a 
single equation spatial autoregressive model finds significant evidence of 
persistent spatial diffusion of housing prices across U.S. states.125 Similar results 
are reported for studies conducted at a more spatially granular level (see e.g. 

 
122 Spatial autocorrelation test, significant spatial cross-regressive lags in SpVAR, and significantly reduced 
mean square forecast error. 
123 With the dynamics from past price changes distributed between own and neighbourhood effects in a 
spatial panel  
124 Based on proprietary data on 99 MSAs. 
125 Estimates the spatial diffusion of housing prices across US states over 1975–2011 using a single 
equation spatial autoregressive model. 
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Dolde and Tirtiroglu (1997), Case and Shiller (1990), Clapp and Tirtiroglu   
(1994), Brady (2011)). 

Many of the channels hypothesised to explain 'ripple-effect' type spatial 
diffusion, might also give rise to long-range connections between markets based 
on various forms of 'economic proximity' that are to some extent independent of 
spatial contiguity. For example migration flows, capital flows (internationally or 
regionally mobile investors - whether direct or indirect), and a range of relevant 
fundamental economic links between markets need not be primarily a function 
of geographical distance. 

It has been argued for example that the similar timing of cycles in 
geographically distant markets (such as San Diego and Washington DC) implies 
local spatial diffusion of house prices cannot fully explain the spatio-temporal 
patterns of U.S. housing fluctuations and that some other explanation - e.g. the 
arbitrage of investment opportunities by national investors (Füss, Zhu, & Zietz, 
2012; Zhu et al., 2013) -  is required. Holly et al. (2010) whilst finding strong 
evidence of a role for spatial contiguity, also document in tests for spatial 
autocorrelation,  a number of between-State correlations that appear to be 
independent of spatial patterns. Bailey et al. (2016) find evidence of significant 
non-local dependencies  after controlling for common factors in house price data 
across U.S. metropolitan statistical areas. 

Much as empirical evidence of spatial dependence seems to imply some form 
of local spatial coupling, nevertheless it seems highly likely that global 
connectivity structures are also relevant. While local spatial spillovers and 
strong non-local links between some markets imply spatial adjacency based - or 
otherwise sparse - connectivity structure, it is easy to see how e.g. common 
factors (national variables such as for example monetary policy, other aggregate 
shocks such as oil prices, or national credit supply-side conditions) may be an 
important source of global coupling (dense connectivity structure). 

A wide range of possible mean-field couplings present a further potential 
sources of global coupling. A simple example would be that if price expectations 
of market participants are influenced or anchored by national house price 
indices, this feedback would result in all-to-all connection among the local 
markets underlying this index.  

It is easy to think of many other likely - and potentially powerful - mean-field 
feedbacks including a range of possible financial channels. For example: a 
national housing volumes cycle will have an impact on total mortgage formation, 
and mortgage backed security (MBS) supply, but also on prepayment risk thus 
duration and spreads in fixed income markets impacting the cost of housing 
finance (as well as a wide array of other connected markets); due to the counter 
cyclicality of mortgage defaults with respect to house prices, a national housing 
cycle may imply a national mortgage default rate cycle leading to cyclicality in 
credit supply if lenders do not “look through the cycle” adequately or 
underestimate underlying correlations. Price and volumes cycles will also lead 
to wealth and housing equity withdrawal cycles with the potential to impact 
aggregate demand, thus feed back to housing markets via income and 
employment channels.  

All of these channels and others besides imply that if/once a mean field 
emerges among local cycles, powerful feedbacks to markets across the country 
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might well arise via channels that do not operate when local markets are in an 
asynchronous state. 

In practice local, non-local and global couplings among markets all seem likely 
to operate to some extent. Although as I have already argued in this thesis, while 
explanations for national boom-bust have tended to emphasise common factors 
(e.g. monetary policy (Campbell, Davis, Gallin, & Martin, 2009; Glaeser, Gottlieb, 
& Gyourko, 2013; Himmelberg, Mayer, & Sinai, 2005), or aggregate credit shocks 
(Dell’Ariccia, Igan, & Laeven, 2012; Favilukis, Ludvigson, & Nieuwerburgh, 2016; 
Levitin & Wachter, 2012; Mian & Sufi, 2009; Pavlov & Wachter, 2009; C. W. 
Wheaton & Nechayev, 2008)); or arguments that may be consistent with mean-
field coupling (e.g. if national house price trends inform house price 
expectations in the development of a national house price ‘mania’ (Shiller, 2000) 
local coupling seems to offer by far the more plausible explanation for the 
observed spatial dependence by now well established in the empirical literature 
and the spatial patterns that I documented in Essay 3 (see Section 4).  

I am interested in the implications from different connectivity structures in 
an endogenous cycle framework – a question that has not been previously 
studied. In particular I am interested in whether local coupling of endogenous 
cycles could provide a more convincing explanation for the stability of spatial 
‘ripples’ over multiple boom-bust episodes than the spatial diffusion of local 
shocks assumed in the existing ‘ripple effect’ literature; but also whether purely 
local coupling could plausibly account in principle not only for repeating ripples 
but also for the emergence of national boom-bust. 
 
 
6.3 Local housing cycles with local spillovers: a general model 
 

An important strand of thought argues that housing markets may be best 
represented as a series of interconnected regional and local markets (Meen, 
1996). This framework implies that we can neither consider housing in terms of 
a national aggregate, nor in terms of entirely local markets as housing markets 
are likely to be linked. 

I use a graphical framework in order to formalise this idea. I consider a 
graph 𝓖 = {𝐕, 𝐄}  in which each node or ‘vertex’ 𝑣𝑖  in 𝐕  represents a 
geographically defined local market with its own autonomous intrinsic 
dynamics, and the interactions between these markets is represented by the 
edges in the graph 𝐄 ⊆ 𝐕 × 𝐕 (each edge written as a tuple (𝑣𝒊, 𝑣𝒋)) which can be 

summarised by an adjacency matrix 𝐀 - a square |𝑽| × |𝑽| matrix whose element 
𝐴𝑖𝑗 = 1 where there exists an edge (𝑣𝒊, 𝑣𝒋) and 0 otherwise. 

In general the dynamics of different markets need not be the same, and 
coupling strength 𝐴𝑖𝑗  may also vary (with some markets more strongly linked 

than others) and be asymmetric (if influence is proportional to e.g. market size). 
However I consider the simple case of 𝑁 markets with identical internal 
dynamics and assume they interact over a connected unweighted (𝐴𝑖𝑗 ∈  [0,1]) 

undirected (𝐴𝑖𝑗 = 𝐴𝑗𝑖) graph. I define the underlying dynamics as 

 

𝑿𝒊,𝒕+𝟏 = 𝑭 ((1 − 𝐷
𝑤

𝑑𝑖
∑ 𝐴𝑖𝑗

𝑁
𝑗=1 ) 𝑿𝒊,𝒕 + 𝐷

𝑤

𝑑𝑖
∑ 𝐴𝑖𝑗

𝑁
𝑗=1 𝑿𝒋,𝒕)                              
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                                                                                                                                  (18) 
𝑿𝑖,𝑡(0) = 𝑿𝑖

0 

 
or by rearrangement 
 

𝑿𝒊,𝒕+𝟏 = 𝑭 (𝑿𝒊,𝒕 + 𝐷
𝑤

𝑑𝑖
∑ 𝐴𝑖𝑗

𝑁
𝑗=1 (𝑿𝒋,𝒕 − 𝑿𝒊,𝒕) )                                                   

                                                                                                                                  (19) 
𝑿𝑖,𝑡(0) = 𝑿𝑖

0 

 
for 𝑖 = 1, … , 𝑁, where 𝑿𝒊 ∈ ℝ is the state vector denoting the state of the 𝑖-th 
node (i.e. market conditions), 𝑭(. ) the dynamics by which these evolve (identical 
for all markets), 0 < 𝑤 < 1 a uniform coupling strength at all nodes governing 
the relative weight given to conditions in neighbouring markets, 𝑑𝑖 is the degree 
of the 𝑖-th node126 (this normalisation giving equal weighting to all linked 
markets) and 𝐴  a symmetric adjacency matrix (influence between linked 
markets is mutual) defining the specific topology of the connectivity structure 
among markets. Finally 𝐷 is an identity matrix allowing the introduction of 
restrictions on the coupling dimensions (markets may be coupled on some 
dimensions and not others, and may be positively or negatively coupled). The 
model reduces to 𝑿𝒊,𝒕+𝟏 =  𝑭(𝑿𝒊,𝒕) for any unconnected market, and for all 

markets 𝑖 = 1, … , 𝑁 where 𝑤 = 0. 
 

The dynamics of the model will of course be crucially influenced by the 
intrinsic local dynamics 𝑭(. ) of markets, the coupling parameter 𝑤, but also the 
connectivity structure 𝐴, and the interaction among these.  

Reflecting documented empirical evidence for repeating boom-bust 
dynamics in local markets (Essay 1/Section 2), I am here interested in cases 
where individual markets are characterised by their own non-trivial local 
dynamics. In particular where the qualitative dynamics of 𝑭(𝑿𝒊)  are 
characterised by endogenous cyclicality – i.e. limit-cycle dynamics. 

Meanwhile regarding the connectivity structure, although economic theory 
suggests the potential a priori relevance of a range of different connectivity 
structures - from spatially local, to non-local (in a spatial sense i.e. sparse 
connections based on some form of non-spatial economic linkage) to global (all-
to-all) coupling among markets (See section Error! Reference source not 
found. for a more detailed discussion)  – motivated by my the spatial ripple 
patterns I find in Essay 3 (Section 4), I am interested to study local spatial 
coupling in an endogenous cycle framework. 

Specifically I am interested in whether local spatial coupling of endogenous 
local cycles could provide a more convincing explanation for the stability of 
spatial ‘ripples’ over multiple boom-bust episodes than the spatial diffusion of 
local shocks assumed in the extensive existing ‘ripple effect’ literature; but also 
whether purely local coupling could plausibly account not only for spatial 
patterns but also for the emergence of national boom-bust. 𝐴 is thus a sparse 
matrix representing a spatial contiguity based planar network. 
 

 
126 The degree of node 𝑖 denoted 𝑑𝑖 is the number of links that connect node 𝑖 to other nodes in the network. 
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6.4 Simulating speculative housing cycles in a spatial network setting 
 

For simulation purposes we will require a specific model. Since the 
economic processes underlying the observed cyclicality of local markets remains 
poorly understood, the appropriate choice of functional form of 𝑭(. ) and state 
vector 𝑿 in the general model introduced in Eq.19 is not obvious. However as 
already discussed one important class of models in the existing literature that do 
provide plausible hypotheses regarding the source of cyclicality in housing 
markets, are heterogeneous agent based behavioural models of housing market 
dynamics (a mostly recent literature - see for example Dieci & Westerhoff  
(2012b, 2016), Geanakoplos et al. (2012), Bolt et al. (2014), Bao & Hommes 
(2015), Defusco et al. (2017). I make some review in section 6.2.1). 

I employ and extend the simple speculative housing cycle model developed 
by Dieci & Westerhoff (2012b) as a workhorse with which to explore the 
implications of spatial spillovers for housing markets within an endogenous 
cycle setting. Unlike many of the models in the existing literature the dynamics 
are described by a low dimensional system (two dimensional non-linear map). 

In their original model (which I will formally introduced in section Error! 
Reference source not found.) the demand for houses is influenced by 
expectations about future house prices. In forming their expectations about 
future prices, agents rely on a combination of ‘extrapolative’ and ‘regressive’ 
forecasting rules (i.e. they expect both momentum and mean reversion in 
prices). The relative importance of these competing views evolves endogenously 
over time in response to market conditions. The interaction between speculative 
and fundamental forces in the model can - under some parameterisations - give 
rise to quasi-periodic boom-bust cycles broadly consistent with the semi-regular 
housing boom bust cycles that can be observed in U.S. markets (in both city and 
state level data). 

I extend this rather general theoretical model of a single market to that of a 
network of spatially connected mutually influencing markets according to the 
general framework described by Eq.19.  

For those persuaded that the endogenous expectations dynamics studied 
in Dieci and Westerhoff’s original model provide crucial insights into local 
housing market instability, this extension allows us to study and generate 
qualitative insights into how the spatial dimension to housing markets interacts 
with fluctuations initiated by local speculative forces, within a specific 
topological context – here the geography of the US.  

Alternatively, maintaining a more agnostic approach with respect to the 
underlying mechanism behind the cyclicality of local housing markets, this work 
provides the concreteness necessary in order to explore the implications for 
positive spatial spillovers among quasi-periodic cycles in US housing markets.  
The qualitative insights generated by this analysis regarding wide-scale spatio-
temporal phenomena, are unlikely to be specific to the particular cycle process 
described by this model, but rather have more general relevance to the locally 
coupling of any quasi-periodic house price dynamics. 
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6.4.1 Autonomous dynamics of individual market 
 
The original model of Dieci and Westerhoff (2012b) is described by the two 
dimensional non-linear map 
 

𝜋𝑡+1 = (1 − 𝑐 − 𝑒)𝜋𝑡 +
𝑓𝜋𝑡 − 𝑔ℎ𝜋𝑡

3

1 + ℎ𝜋𝑡
2 − 𝑑휁𝑡  

                                                                                                                (20) 
휁𝑡+1 = 𝑒𝜋𝑡 + 𝑑휁𝑡  
 
where the state variables 𝜋 and 휁 are, respectively, house prices and house 
building expressed as deviations from fundamental equilibrium.127   
 
The parameter 𝑐 is the price elasticity of demand for housing (fundamental 
demand depends negatively on the current price); (1 − 𝑑) is the depreciation 
rate of the housing stock (0 < 𝑑 < 1);128 𝑒 is the price elasticity of housing 
supply (𝑒 > 0); meanwhile 𝑓 and 𝑔 govern the speculative housing demand 
components driven respectively by extrapolative and mean-reverting 
expectations. Finally the parameter ℎ governs agents’ endogenous switching 
behaviour between these extrapolative and regressive forecasting strategies - 
specifically the higher the parameter ℎ, the faster agents abandon extrapolating 
behaviour in response to increases in mispricing (𝑃𝑡 − 𝑃∗).129 
 
Switching behaviour is assumed to be governed by the bell shaped curve 
 

𝑊𝑡 =
1

1+ℎ𝜋𝑡
2                                                                               (21) 

 
The transformed system Eq.(20) of course has a fixed point at the origin (𝜋∗ =
0, 휁∗ = 0) (corresponding to the market fundamental equilibrium). This fixed 
point is stable under some parameterisations, but undergoes a supercritical 
Neimark-Sacker bifurcation when 
 

𝑓 > 𝑐 +
𝑒

1+𝑑
− 2                                                                                (22) 

 

𝑓 < 𝑐 +
𝑒

1−𝑑
                                                                                        (23) 

 
but 
 

𝑓 > 𝑐 +
1

𝑑
− 1                                                                                    (24) 

 
generating ongoing quasi-periodic cycles around the destabilised fundamental 
equilibrium (see Diecei and Westerhoff’s original paper for full derivation of the 
model and more detailed stability analysis). Figure 30 illustrates with a 

 
127 𝜋𝑡 = 𝑃𝑡 − 𝑃∗, 휁𝑡 = 𝑍𝑡 − 𝑍∗ where 𝑃 is house prices, 𝑍 lagged house building, and 𝑃∗ and 𝑍∗ the fixed point 
of the untransformed model that represents the market fundamental equilibrium. 
128 Where the housing stock is given by 𝑆𝑡+1 = 𝑆𝑡 − (1 − 𝑑)𝑆𝑡 + 𝑒𝑃𝑡 = 𝑑𝑆𝑡 + 𝑒𝑃𝑡. 
129 Since in my simulations I set 𝑔 = ℎ = 1 the equation of motion for 𝜋 further simplifies. 



 

 112 

numerical simulation, the dynamics of the model parameterized in this cyclical 
regime. 
 
 

Figure 30: The signals generated by the speculative housing cycle 
model of Dieci and Westerhoff (2012b) parameterised to be in a 
cyclical regime. I use this model to characterise the autonomous 
dynamics of individual housing markets. 

 
The intuition behind the derivation and ultimate functional form of the model is 
that: at the margin households will reduce their fundamental housing demand in 
response to an increase in house prices, unmet demand will bid prices up and 
upshifted supply will cause asking prices to be adjusted down, while excess 
demand may also be met by a positive supply response to price movements. 
However speculative investment motives can destabilize the equilibrium, as 
investors seeking to benefit from the capital gains offered by house price 
momentum themselves become a source of market momentum. The potential 
explosiveness this dynamic introduces is contained in the model by the fact that 
agents do not believe growth out of line with fundamentals can continue 
indefinitely. This combination of globally contained local instability gives rise to 
cycles. 
 
 
6.4.2 Extension to network setting 
 
In this specific example I extend Eq.20 according to Eq.19 in the sense that I 
assume that the autonomous dynamics of each market 𝑭(𝑿) are driven by the 
Dieci and Westerhoff model (Eq.20). I further assume that while agents’ price 
expectations for a given market may be mainly based on local market conditions, 
they may also be influenced to some extent by conditions in adjacent markets  
(for example if I live in x and I hear prices are falling in y, this may have some 
influence on my expectations regarding the outlook for house prices in x). 

Specifically I assume that agents to some extent factor trends and mispricing 
in adjacent markets into their price expectations.  

Formally I assume prices and volumes in the 𝑖-th market evolve according to 
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𝜋𝑖,𝑡+1 = (1 − 𝑐 − 𝑒)�̂�𝑖,𝑡 +
𝑓�̂�𝑖,𝑡 − 𝑔ℎ�̂�𝑖,𝑡

3

1 + ℎ�̂�𝑖,𝑡
2 − 𝑑휁𝑡  

                                                                                                                 (25)              
휁𝑖,𝑡+1 = 𝑒�̂�𝑖,𝑡 + 𝑑휁𝑡  
 
where �̂�𝑖,𝑡 is the weighted sum of own market and neighbouring market price 
deviations at time 𝑡 
 

�̂�𝑖,𝑡 = 𝜋𝑖,𝑡 +
𝑤

𝑘𝑖
∑ 𝐴𝑖𝑗

𝑁
𝑗=1 (𝜋𝑗,𝑡 − 𝜋𝑖,𝑡)                                                (26) 

 
Local markets are thus directly coupled via the price expectations dimension 
only. 
 
 
6.4.3 Spatial diffusion and local coupling scheme 
 

The specific topology - i.e. choice of 𝐴 - may be important for the dynamics 
of the model. As discussed in section Error! Reference source not found., links 
among different housing markets may be local (markets influence and/or are 
influenced by nearby markets); non-local (long range economic links among 
markets that are not necessarily geographically close); or global (where mean 
field or common global factors generate an all-to-all dependency structure). 

However as already discussed and introduced I am interested here in the 
case of sparse spatial contiguity based coupling motivated by the strong 
empirical evidence in the literature and from my results in Essay 3 (Section 4) 
for some form of spatial dependence of house prices in markets across the U.S. 
(something also found for other markets such as the U.K (Sean Holly, Hashem 
Pesaran, & Yamagata, 2011; Meen, 1996)).  

For simulation purposes I introduce (for choice of 𝐴 in Eq.26) the spatial 
adjacency matrix describing the actual spatial contiguity patter among the 49 
contiguous US states (visually illustrated in Figure 31). 
 
 

Figure 31: State-to-state spatial contiguity matrix for contiguous 
US states. 
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6.5 Simulation and results 
 

To numerically investigate the mean field and spatial dynamics of the 
network model Eq.25 augmented with spatial adjacency matrix for US states, I 
set the vector of initial values 𝑿𝑖

0 based on uniformly and randomly sampling of 
the signal generated by the simulation of a single market. Since the cycle is 
sampled at all different points in its phase-space this achieves a random and 
approximate uniform distribution of initial phases 𝜽𝑋𝑖

0 . I then evolve the system 

to obtain the trajectory of 𝜋𝑖  and 휁𝑖  over time for all markets 𝑖 = 1, … , 𝑁.  
 
 
6.5.1 Endogenous synchronisation of locally coupled cycles 
 

The results of this simulation are presented in Figure 32, which plots the 
evolution of the state variables 𝜋𝑖  and 휁𝑖  (prices and volumes respectively) over 
time as well as the simple mean across all markets for each state variable (bold 
blue line).  

Although the cyclical stance of cycles in different markets is initially 
dispersed, they clearly synchronise over time. 
 
 

Figure 32: Illustration of the synchronisation over time of coupled 
cycles with initially randomised phase and 𝒘 = 𝟎. 𝟑. Each of the 
thin lines plots the evolution of one of 49 markets; the thick blue 
line is the un-weighted mean value across all markets. 

 
Figure 33 presents a phase-space trajectory of the mean field of the system 

(average prices vs. average volumes across all 48 markets) based on a longer 
run of the same simulation. This clearly shows the mean field converging to a 
quasi-periodic orbit i.e. the network of markets – although only locally coupled 
local cycles – is behaving like a single cyclical market. 
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Figure 33: Plots the trajectory of the mean fields for prices and 
volumes in phase-space (randomised initial phase, 𝒘 = 𝟎. 𝟑, 2,500 
time steps) showing that starting from a small collective cycle in 
the almost incoherent state, the amplitude of the collective cycle 
grows as synchronisation proceeds, and the network apparently 
converging to what looks like quasi-periodic behaviour. 

 
In order to study the relationship between the coupling parameter 𝑤 (the 

parameter governing the strength of influence from neighbouring markets on 
own-market price expectations) and the synchronisation dynamics of the 
network, it is useful to quantify the overall state of the system.  

In order to quantify the time-evolving overall degree of synchronization 
among markets 𝑖 = 1, … , 𝑁, I employ the same order parameter (Eq. 8, re-stated 
here for convenience) as I employed in my empirical analysis of U.S. markets in 
Essay 2 (Section 3): 
 

𝑅𝑡 =
1

𝑁
∑ 𝑒𝑖𝜃𝑥𝑖,𝑡𝑁

𝑖=1                                                   (27)                           

 
The modulus 𝑟 = |𝑅|,  0 ≤ 𝑟 ≤ 1 measures the overall phase synchronisation 

among the different markets, achieving its maximum 𝑟 = 1 when all phases are 
identical and its minimum 𝑟 = 0 when phases are balanced around the circle.130 
Phase series 휃𝑥𝑖𝑡 are obtained by complex continuous wavelet transform of the 

simulated time series.131   
 

 
130 Such as evenly spread or in clusters that balance each other out. For a detailed discussion of the 

structure/local order that may be missed by Kuramoto order parameter see e.g. Frank & Richardson 
(2010) , Richardson et al. (2012). 
131 This is a scale-band average over the narrow scale-band within which the cycles generated by the 
model reside.  
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Figure 34: This figure plots average time sequences (time is on the 
x-axis) of the order parameter 𝒓 (Eq.8) (represented by the colour 
of the heatmap) calculated at different strengths of the coupling 
parameter 𝒘 (vertical axis). These are based on 500 simulations 
from different randomised initial conditions, each of 500 time 
steps. 

 
Figure 34 displays the temporal evolution of   𝑟 = |𝑅| averaged over 500 

realisations from different randomised initial conditions, for different values of 
the coupling parameter 𝑤. For uncoupled markets or low levels of influence 
from neighbouring markets, synchronisation does not occur. For higher values 
of 𝑤   ( 𝑤 = 0.1 and above)  synchronisation occurs, and the level of 
synchronisation ultimately reached depends on 𝑤 - synchronisation happens 
faster and reaches higher levels for higher values of  𝑤. 

That the network does not fully synchronise reflects a competition between 
the synchronising influence of the spatial coupling and the de-synchronising 
influence from the quasi-periodic dynamics of individual market level cycle 
process.132 
 
 
6.5.2 Endogenous emergence of spatial-waves 
 

To study the spatial pattern of dynamics generated by the model, I follow 
precisely the same strategy as for my empirical analysis in Essay 3 (Section 4. 
See Section 4.2.2 specifically).  
 

 
132 Interestingly the network of interdependencies seem to stabilize the periodicity of the cycles compared 
to the autonomous dynamics of a single market without neighbouring influences. 
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Figure 35: This figure presents a snapshot (the distribution of 
instantaneous phase angles at a single time-step) from the dynamic 
heatmap representation of a single realisation of the model (the full 
dynamic visualisation is available here).133 (Note that space is not 
continuous in the model as each state is represented by a single node 
and the distances between sates is geodesic not Cartesian).  

 
First I plot as a dynamic heatmap the individual phase series 휃𝑥𝑖𝑡 for each 

market (based on a simulation of the model, and obtained as above by complex 
continuous wavelet transform of the simulated time series). This analysis (which 
can be viewed here (see footnote 133) and is provided as supplementary 
material) shows the endogenous emergence of a pattern very closely resembling 
the empirical pattern I show in historical house price data, with coast-to-centre 
ripples. Figure 35 presents a ‘snapshot’ from this dynamic view of the simulated 
data. From this we can see that even the appearance of a cluster of markets in 
the northeast of the country emerges endogenously from the spatial structure of 
the model. 

I then use the mean relative phase of cycles (Eq.12) in order to summarise the 
overall spatial pattern in the relative timing of cycles in a static chart. I have 
previously introduced mean relative phase analysis for the purposes of my 
empirical analysis in section Essay 3 (See Section 4.2.2), but for convenience I 
restate definitions here:  

I calculate the mean phase series across all markets from 𝑅(𝑡) =
1

𝑁
∑ 𝑒𝑖𝜃𝑥𝑖

(𝑡)𝑁
𝑗=1  (Eq.8) (which can be re-written 𝑅𝑡 = 𝑟𝑡

𝑖𝜙𝑡) as  

 
𝜙(𝑡) = 𝑎𝑡𝑎𝑛2(𝑅(𝑡))                                           (28) 

 
I then calculate the phase of each market relative to the mean phase across all 

markets (or relative phase angle (RPA)) as 
 

 
133 Hyperlink is: 
https://drive.google.com/file/d/1GVLsEvUXgb5JLNyuTyMTfL3gqcb5_uSF/view?usp=sharing 

https://drive.google.com/file/d/1GVLsEvUXgb5JLNyuTyMTfL3gqcb5_uSF/view?usp=sharing
https://drive.google.com/file/d/1GVLsEvUXgb5JLNyuTyMTfL3gqcb5_uSF/view?usp=sharing
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휃𝑥𝑛,𝜙(𝑡) = 휃𝑥𝑛
(𝑡) − 𝜙(𝑡)                                   (29) 

 
This provides a continuous measure quantifying the phase shift of an 

individual market with respect to the overall collective development across 
states. This is defined for every state at every time step. In order to provide a 
more succinct summary of the relationships identified, I obtain the time 
averaged relative phase 

 

휃̅𝑥𝑛,𝜙 =
1

𝑇
∑ 𝑒𝑖𝜃𝑥𝑛,𝜙(𝑡)𝑇

𝑡=1                                      (30) 

 
where 𝑡 = 1, … , 𝑇 are the number of time steps and 휃̅𝑥𝑛,𝜙  are the mean 

relative phases in complex form (radian [−𝜋, 𝜋] form can be obtained as 
𝑎𝑡𝑎𝑛2(휃̅𝑥𝑛,𝜙)). These 휃̅𝑥𝑛,𝜙 capture the phase-shift of a given market 𝑛 with 

respect to the collective or national cycle 𝜙. 
By using these mean relative phases 휃̅𝑥𝑛,𝜙 as input for a heatmap of U.S. sates 

(see Figure 36) I am able to see whether there is any stable spatial pattern over 
time in the relative timings of cycles across the spatial network. Figure 36 plots 
the results of this analysis for a single (500 time-step) simulation of the 
model.134 

This analysis clearly shows that this simulation of the locally coupled spatial 
network generates clear east-west spatial ‘waves’ similar to those I empirically 
documented in Essay 3 (Section 4). 

Figure 37 plots the same mean relative phase analysis, but now averaged over 
1,000 different simulations of the model. This average over a large number of 
simulations allows me to assess whether there are particular patterns that tend 
to arise endogenously regardless of initial conditions (the initial distribution of 
cycle phase). While the pattern is less clear than for individual runs of the model, 
we see that there is a systematic tendency for coastal states (east and west) to 
lead the collective cycle. The less crisp traveling-wave pattern seems to be the 
result of some variation in the precise spatial projection of the traveling wave 
pattern, although a general east-west pattern is clearly confirmed. 

 
 

 
134 The first 100 time steps are excluded from the time averaged relative phase angles, since the phase of 
cycles in different states are initially randomized, before then pattern among cycles emerges endogenously 
out of their interaction. 
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Figure 36: This figure plots the time averaged relative phases for each 
market  �̅�𝒙𝒏 ,𝝓 (Eq.30)) (obtained as average over 1,000 time steps based 

on a simulation of the network model Eq.25 as detailed above) as a 
heatmap of US states (space is not continuous as each state is a node and 
the distances between sates is geodesic not Cartesian). Spatial 
‘waves’/’ripples’ are clearly visible with coastal states on east and west 
coasts leading and central states lagging the collective or ‘national’ cycle. 

 
It is perhaps worth briefly noting, that the pattern of phase relations between 

markets is the same for the price dimension as it is for the volumes dimension of 
the model, thus I do not present a separate analysis of price and volumes. 
 
 

Figure 37: This figure plots the same analysis as Figure 36 but now 
averaged over 1,000 runs of the model (where Figure 36 presents the 
result of a single run). 
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6.6 Discussion and significance 
 
The model developed for this essay is highly stylised: I employ a rather 

minimal model to characterise the intrinsic dynamics of individual 
nodes/markets; I assume not only the same model (in the sense of functional 
form), but also identical parameters across all markets and uniform coupling 
between markets (‘unrealistic’); I also assume parameters are identical over 
time (also unlikely to be the case); I assume away all sorts of aggregate factors 
and feedbacks that are likely very important. No shocks – local or national - no 
heterogeneity across markets, no global factors go into the model.  

This deliberate simplicity however sets up an interesting thought 
experiment. 

The results of this experiment show that in a limit-cycle setting, even for 
quasi-periodic dynamics, purely local spatial spillovers among local markets; 
combined with the specific spatial topology of the geography of U.S. states, are 
by themselves sufficient to account for key aspects of the historic spatio-
temporal dynamics of housing, including: local cycles,135 spatial ripples, and 
national boom-bust. Perhaps most interestingly, it produces not just ripple 
patterns, but is able to neatly reproduce something very close to the empirical 
pattern of relationships observed in the data: the synchronisation of markets 
along one spatial projection; and traveling wave along that orthogonal to it; and 
the coasts-to-centre pattern of this wave (see Figure 35-Figure 37). Indeed even 
other details such as the appearance of a northeast cluster emerge from the 
model. 

The ability of this model - despite its simplicity - to simultaneously account 
within a unified framework for a collection of key empirical aspects of the 
spatio-temporal dynamics of U.S. housing – features that cannot easily be 
resolved by recourse to existing theories - suggests locally coupled locally 
unstable housing market dynamics may provide an empirically relevant and 
valuable new framework within which to interpret and study U.S. housing 
market instability. 

These results will be of relevance and interest for a number of different 
literatures.  

Clearly it has significant implications for theory and modeling of housing 
market dynamics as well as for the forecasting of housing variables. 

One common hypothesis is that a national cycle exists across all housing 
markets, but that housing cycles also have some local or regional element. Some 
empirical work seeks to parse these common vs. idiosyncratic components (Del 
Negro & Otrok, 2007; S Holly et al., 2010). Previous research into the national 
boom-bust has generally sought to identify the relevant common factors driving 
common price developments in markets across the country (a national 
loosening of credit, FED interest rate policies etc. (Campbell et al., 2009; 
Dell’Ariccia, Igan, & Laeven, 2012; Favilukis et al., 2016; Glaeser et al., 2013; 
Himmelberg et al., 2005; Levitin & Wachter, 2012; Mian & Sufi, 2009; Pavlov & 
Wachter, 2009; C. W. Wheaton & Nechayev, 2008)). Meanwhile theories of local 

 
135 Trivially so given cyclic character of model, although networks of oscillatory variables can lead to 
oscillation death and other interesting phenomena. Nevertheless the empirical results presented in section 
2 supports the use of a model able to explain periodic behaviour. 
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market instability have seemed to lack relevance or explanatory power with 
respect to the national boom-bust. 

At the same time spatial dependence has been an important theme in real 
estate economics and seems at odds with the view that house price fluctuations 
are a simple sum of independent local and of common national components. 
Here methods to separate out the relationship between spatial markets that is 
due to the effect of common factors from that which is truly spatial have been 
sought. One strategy introduced is to first strip out contemporaneous 
comovement across all markets, before then studying comovement between 
markets in the residual variation (e.g. Holly et al. (Baltagi & Li, 2014; S Holly et 
al., 2010)). Global comovement is thus assumed to be the result of common 
factors and spatial dependence only a source of weak cross-sectional 
dependence. 

What is more within this shock diffusion framework, since a disturbance in 
one market directly drives adjacent markets, and more distant markets only 
indirectly, the spatial diffusion of local shocks cannot explain the synchrony of 
distant markets. It has thus been argued that the similar timing of cycles in 
geographically distant markets (such as San Diego and Washington DC) provides 
evidence of important non-spatial links between markets resulting from e.g. the 
arbitrage of investment opportunities by national investors (Füss et al., 2012; 
Hernández-Murillo et al., 2017; Zhu et al., 2013). 

By contrast my theoretical framework and experiment suggests an 
alternative hypothesis, according to which we can neither consider housing in 
terms of a national aggregate, nor in terms of entirely local markets: both spatial 
patterns and national housing market movements may be understood as 
emerging endogenously from the local interaction among local markets.  

It thus provides a novel and seemingly powerful alternative explanation and 
framework for thinking about housing market dynamics at different spatial 
scales and the sort of ‘ripple effects’ that have long been studied in the real 
estate economics literature (Holmans, 1990; Meen, 1999).  

It suggests a need for care in interpreting everything that does not average 
out as driven by some unobserved common factor. Indeed this observation 
potentially has wider relevance in business cycle applications - whether the 
analysis of spatial or sectoral disaggregations of variables, or even different 
business cycle variables – and calls for methods that take account of temporal-
relations between variables.136 

The hypothesis developed in this essay and model is made plausible by the 
fact that these model results are consistent with the data. The traveling-wave 
pattern observed in the data (Section 4, Figure 19) and generated by this model 
(see Figure 36) is very hard to account for within a spatial diffusion of shocks 
framework, in which setting we might rather expect an epicentre pattern (in 

 
136 Methods that allow for phase differences between cycles, such as complex principal component analysis 
(Horel, 1984) (hardly exploited in economics). The phase-adjusted correlation methodology of Koopman & 
Azevedo (2008) based on unobserved components models explicitly assumes time-varying phase-shifts 
between signals. However, while the Koopman & Azevedo (2008) method allows for the convergence of 
cycles, the evolution of phase differences is governed by a monotone deterministic function of time. The 
empirical methods I introduce in the first 1-4 of this thesis make a contribution in this respect, towards 
methods suitable for time-evolving multivariate signals. 
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which shocks diffuse in all directions) as well as evidence of changing lead-lag 
patterns reflecting a succession of local shocks to different markets. 

Indeed, it is also a particularly interesting feature of this model that the 
leading character of coastal states emerges endogenously (regardless of initial 
conditions – see Figure 37).  This result should be of interest not only to the 
housing “ripple effect” literature, but to the wider spatial economics literature, 
since it implies an important role for space: the system of interconnected 
markets means that space needs to be explicitly considered and is important 
both for aggregate dynamics and for the role of particular markets within the 
economy – here giving influence to coastal markets: 

For some markets to have a constant systematic lead over others within a 
spatial diffusion of local shocks setting, requires them to be a dominant market 
propagating shocks to other regions (Sean Holly et al., 2011). Here by contrast, 
given the identical parameterisation and uniform coupling scheme, the strong 
tendency for coastal states to lead the national cycle in the model must be driven 
by the topology of the network (i.e. spatial structure of the model - perhaps 
simply being coastal (at a boundary) gives them more influence).  

This result suggests a need for caution over seeking heterogeneity based 
explanations for the apparent dominance of some markets, and interpreting 
leading markets as key sources of shocks (Chiang & Tsai, 2016).  

Similarly, although e.g. stronger time-lagged correlations between adjacent 
markets after the 2007-8 crisis have been interpreted as evidence of increased 
spatial shock transmission (Cohen et al., 2016), the results of this modelling 
exercise suggest caution over this strongly causal interpretation, since increased 
local synchronisation between cycles would increase both contemporaneous 
and lagged correlations between markets. 

While there may be good reason to expect possible non-local links between 
geographically distant markets, my results also suggest a need for caution in 
interpreting the synchronisation of non-adjacent markets: in a local shock 
diffusion setting, the synchrony of spatially distant markets implies non-spatial 
economic links (Füss et al., 2012; Hernández-Murillo et al., 2017; Zhu et al., 
2013). However the synchronisation of spatially distant markets (such as San 
Diego and Washington DC) arises in the spatially coupled cycle I investigate here 
(even though links are purely spatial) due to the ‘wave’ patterns generated by 
the local synchronisation of markets.  

These results are also relevant for a literature that seeks to explain observed 
increases over time in the co-movement across subnational markets. One highly 
plausible line of thinking pursued by a growing literature, asks whether 
increased integration among sub-national markets has been a driver of their 
increased co-movement (in particular increasing financial integration has been 
proposed as a possible factor in increased comovement across US housing 
markets (Loutskina & Strahan, 2015; Milcheva & Zhu, 2016)). 

The nationalisation of housing finance in the US represents the emergence of 
a common factor across sub-national markets. While one possibility is that 
financial dynamics become a common semi-exogenous source of volatility, 
another possibility is that the common factor becomes a source of global 
coupling - increasing the coupling/potential for spillovers among markets. In a 
limit-cycle setting this increased coupling would certainly become a driver for 
increased comovement. As such in the context of endogenous cyclicality in sub-
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markets, market integration (whether general economic integration of housing 
fundamentals; or financial integration and the de-localisation of housing finance 
etc.) may lead to increased aggregate volatility. It is particularly interesting to 
note, for example, the possibility that e.g. interstate banking policies designed to 
take advantage of risk diversification opportunities presented by the 
heterogeneity in the timing of cycles across different markets (Amel, 2000; Rice 
& Johnson, 2007), could plausibly in this sort of setting contribute to the 
synchronisation of those markets.  Some support for this hypothesis is provided 
by the fact that the global synchronisation event I empirically document in Essay 
2 and 3 (see Section 3, Figure 18) 

At the same time my results suggest a need for caution in interpreting trends 
in comovement since while a function of coupling, synchronisation may play out 
as a dynamic process over time. As a result incremental changes in the level of 
comovement in the system need not necessarily reflect incremental changes in 
the underlying connectivity structure or strength of links between markets.  

What is more, increases in the sort of global coupling implied by the 
nationalisation of housing finance for example, does not provide an explanation 
for observed spatial patterns; meanwhile local coupling is sufficient to explain 
both spatial patterns and the trend to increased comovement nationally. 

As such my results suggest an important need for further empirical work to 
identify the channels operating between markets and to unpick the 
contributions of local, non-local and global connectivity among them. 

The coupling dimension matters: for example evidence presented here that 
synchronisation already experienced in the U.S. might in principal be consistent 
with local coupling, raises question to what extent national comovement has 
been driven by global factors such as e.g. financial regulation and innovation vs. 
channels of local diffusion that may not necessarily map clearly to obvious 
macro policy and leavers such as monetary policy.  

Nevertheless it seems highly likely that both local and global (e.g. financial 
integration and innovation driven) factors have been at play in the U.S. historic 
experience, suggesting the need for empirical work to disentangle their 
contributions. Another important point here may be that once a national cycle 
develops (i.e. once some mean field emerges perhaps as a result of local spatial 
links) a host of powerful mean-field feedbacks/couplings (experienced acutely 
during the GFC) seem perhaps as good as inevitable and should be explored in 
detail. These are also likely to trigger behavioural and policy reactions with the 
potential to modulate the cycle process. 

The potential relevance of a coupled intrinsic cycle framework in explaining 
the historic U.S. national housing boom-bust raises of course the question 
whether we should expect intensified housing cyclicality at the national level on 
an on-going basis.137 The answer to this question is contingent not only on the 
relevance of the framework I have explored in this essay for explaining historical 
experience; but also whether e.g. institutional or behavioural responses to the 

 
137 In coupled cycle setting/my simulations once synchronisation built up in the network, all the sub-
markets then continued to behave like one giant cyclical market. Synchronisation of on-going cycles thus 
implies potential for onset of on-going cyclicality of housing at a national level. This contrasts with the 
exogenous shock and temporary bubble views/paradigms in the existing literature, under which we would 
expect markets may normalise. 
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GFC (including structural and cyclical macroprudential tools) have moderated or 
qualitatively shifted instability in housing dynamics. 

These questions point finally to the potential policy significance of the 
results presented here. 

Historically the asynchrony of sub-national cycles meant that macro policy 
could not target housing effectively but also limited the role of housing as a 
significance source of macro-financial instability. It may also have limited the 
house price based credit channel (Iacoviello, 2004, 2005; Iacoviello & Minetti, 
2008) for monetary policy transmission (Brady, 2014; Fratantoni & Schuh, 
2003; Füss et al., 2012); it presumably meant the impact of monetary policy 
varied across regions and may have been sub-optimal for some (this relates to 
the literature on business cycle synchronisation as a criteria for an optimal 
currency area starting from the seminal work of Mundell (1961) and McKinnon 
(1963)). 

Meanwhile the synchronisation of sub-national cycles whilst representing a 
potentially significant source of macro-financial risk, and increased transmission 
of autonomous/endogenous housing market dynamics to the wider economy 
and housing based transmission and amplification of a variety of shocks; may 
also imply housing becomes amenable to countercyclical policies, and indeed 
could sharpen housing based channels of national policy transmission to 
macroeconomic and financial aggregates (Hofmann & Peersman, 2017).  

The distinctive implications of this setting for interest rate, non-interest rate 
and structural policies cannot be developed in detail here, but merit careful 
exploration. 

 The empirical evidence of permanent cycles in city and state level data 
(Section 2) provides strong empirical motivation for models able to explain 
endogenous cyclicality. This is reinforced by the results of my theoretical 
modeling exercise in this essay, where I show the potential explanatory power 
and empirical relevance of local housing market cycle models such as those that 
have been developed in the existing behavioural heterogeneous agent housing 
market literature, for explaining rich wide-scale spatio-temporal phenomena 
and national house price averages and aggregates. 

It is perhaps worth pointing out however, that both the empirical results I 
present, and the model based results I derive here are nevertheless agnostic 
with respect to the fundamental cycle mechanism underlying the instability of 
local markets and unlikely to be specific to the particular model of endogenous 
expectations dynamics I employ (rather the qualitative dynamics are the key 
issue, with simple periodic dynamics synchronising more easily than quasi-
periodic dynamics such as those of the model here employed). As such my 
results call for further effort to develop and empirically discriminate between 
and test competing explanations for local housing market cyclicality.138 

The ideas and results presented in this Essay introduce a new paradigm 
within which to interpret and analyse housing market dynamics. This new view 
is broadly aligned with the idea articulated, now some twenty five years ago, by 
Geoffrey Meen: that “housing is better treated as a set of interrelated local or 

 
138 While the heterogeneous agent literature seems to provide perhaps the most promising starting point in 
the existing literature; however even within this literature a range of different mechanisms are proposed 
(section 6.2.1) and empirical motivation and validation is often cursory, suggesting a need to deepen our 
understanding of the generating process/fundamental source of instability. 
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regional markets” (Meen, 1996, p. 346). However allowing for non-trivial 
dynamics at the individual market level introduces the potential for much richer 
phenomena than within the spatial shock diffusion framework employed in the 
existing literature. Combining the sort of non-trivial market level dynamics 
hypothesised and studied within the behavioural housing literature (Bao & 
Hommes, 2015; Bolt et al., 2014; Dieci & Westerhoff, 2012b, 2013, 2016; 
Sommervoll et al., 2010) (see Section 6.2.1) with the interconnected market 
view of Meen (e.g. Meen (1996)) deeply embedded within the real estate 
literature (Baltagi & Li, 2014) results in the sort of oscillator network system 
extensively studied by complexity literature (Arenas & Albert, 2008; A S 
Pikovsky, Rosenblum, & Kurths, 2001; Rodrigues, Peron, Ji, & Kurths, 2015; M. 
Rosenblum et al., 2001; Schroder et al., 2017).  

Directions for further work are numerous but include (i) exploring spatio-
temporal synchronisation dynamics in coupled noise driven cycle settings (here 
I model coupled limit-cycle setting, but what if house price dynamics would 
converge in the absence of noise, but are nevertheless characterised by complex 
roots?); (ii) empirical and theoretical work into appropriate cycle models (from 
the perspective of empirical relevance); and (ii) empirical investigation of the 
coupling dimension between markets.  
 

 
6.7 Summary and conclusions 
 

In the first, empirical phase of this thesis (Essays 1-4), I present evidence of 
repeating sub-national housing cycles  (Essay 1. See Section 2); spatial 
correlation and non-random repeating spatial waves in these cycles (Essay 3. 
See Section 4); and show that the synchronisation of these sub-national cycles 
played a crucial role in the national U.S. housing-boom bust that culminated in 
the GFC (Essay 2. See Section 3).  

Taken together these empirical facts seem to provide non-trivial restrictions 
on any theoretical explanation. Indeed I argue they are not easily explained by 
existing theories in the literature. 

In this essay, I ask whether the sort of spatial diffusion of house prices among 
local markets often assumed in the spatial ‘ripple’ effect literature; combined 
with the sort of endogenous cyclicality suggested by the data and that often 
arises in e.g. heterogeneous agent housing models; could provide a useful new 
theoretical framework within which to think about this collection of empirical 
phenomena.  

I model 49 identical housing markets with autonomous dynamics 
characterised by the same endogenous quasi-periodic speculative price cycles 
but coupled according to the spatial adjacency network for the 49 spatially 
contiguous U.S. states - such that neighbouring markets also have some 
influence on price expectations (sections Error! Reference source not found.-
Error! Reference source not found.).  

I conduct a number of simulation-based experiments to understand the 
spatio-temporal dynamics on the network and the influence of the local positive 
coupling parameter (mutual influence among spatially adjacent markets) on 
these dynamics (section 6.5.1-6.5.2). I find for sufficiently weak coupling the 
national market (understood as the average price and aggregate quantities over 
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all markets) is stable; but if coupling is increased a bifurcation occurs and 
markets: (i) synchronise over time (developing a collective or national cycle); 
and (ii) coast-to-center spatial ‘waves’ develop (consistent with those I 
document in Essay 3 (Section 4). 

This work thus leads to a novel simple and unified explanation for a collection 
of key empirically documented phenomena not easily resolved by recourse to 
existing theories. The sufficiency and parsimony of this minimal framework 
does not of course mean we should discard or discount other explanations and 
factors. It does seem to suggest however, that locally coupled locally unstable 
housing market dynamics may offer a valuable new framework, the relevance of 
which deserves further exploration. 

This approach combines familiar elements: (i) spatial dependence between 
adjacent markets - consistent with an important strand of thought in the real 
estate literature that argues housing markets may be best represented as a 
series of interconnected regional and local markets (Meen, 1996); and (ii) 
intrinsic cyclicality such as arises in behavioural house price models.  

This combination of familiar elements leads to a new paradigm framework 
able to account for rich spatio-temporal phenomena, and provides a more ready 
account of the data than existing frameworks.  

This re-conceptualizes the local vs. national character of housing market 
dynamics: we can neither consider housing in terms of a national aggregate, nor 
in terms of entirely local markets, and the sources of national instability may be 
found in local phenomena. 

Since my results are very unlikely to be specific to the particular local cycle 
process I employ here, but rather are likely to hold for a general class of models 
consistent with the more general framework I set out of locally interacting 
markets characterised by intrinsic cycle dynamics (section 6.3), my results 
motivate further work on developing, and empirically discriminating between 
and testing theories of endogenous local housing market cyclicality. 

The empirical relevance of this framework suggested by the ready 
explanation it provides for key historical facts, raises for example the question 
whether we should expect intensified national housing instability on an on-
going basis. It also has distinct policy implications. The synchronisation of local 
cycles might imply on the one hand increased spillovers from autonomous 
housing dynamics to wider economy as well potentially as increased 
transmission and/or amplification by housing of policy and other shocks; 
meanwhile it might also make housing more amenable to countercyclical 
policies and sharpen housing based channels for national policy transmission. 
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7 Implications and relation to the literature 
 
 
7.1 Implications for economic theory and the empirical literature 
 
7.1.1 Characterising local housing cycle dynamics 
 

Many sub-national housing markets in the U.S. exhibit a long history of 
repeated boom-bust. The dynamic character of these cycles represents an 
important question. A key debate in the literature has been whether house 
prices are stable but subject to shocks; or exhibit bubble episodes (Abraham & 
Hendershott, 1996; Clark & Coggin, 2011; Mikhed & Zem, 2009; Shiller, 1990). In 
either case this leads to a view of housing cyclicality as an irregular episodic 
process. I first ask whether the repeated fluctuations in state level house prices 
could instead reflect an endogenous mechanism, which produces recurrent 
boom-bust phenomena (Essay 1). 

While economic theory suggests a variety of market imperfections and/or 
“alternative” behavioural assumptions that may amplify fundamental shocks,139 
enormous house price increases and subsequent crashes have led many 
researchers to test for the presence of speculative bubbles. 

An empirical bubble literature reports evidence of temporarily explosive 
dynamics (argued to be the time series signature of an unstable bubble process 
rather than equilibrium adjustment in response to a shock  (see Phillips et al. 
(2015a) for an overview)).140 Econometric studies of U.S. markets find national 
house price series followed an explosive process during the 2000s boom period 
(Bolt et al., 2014; Phillips & Yu, 2011; W. Zhou & Sornette, 2005) consistent with 
e.g. a temporary rational bubble or period of “irrational exuberance”. Meanwhile 
similar studies of regional house price series both (i) identify a long history of 
such explosive episodes at the local market level (consistent with multiple 
"local" bubbles prior to the 2000s); and (ii) confirm that explosive episodes 
were geographically widespread during the 2000s (consistent with a ‘national 
bubble’ during this period) (Hu & Oxley, 2018a; Efthymios Pavlidis et al., 2018; 
Shi, 2017). 

Where this empirical bubble literature employs tests for time-localised zero 
frequency explosive behaviour (Bolt et al., 2014; Kivedal, 2013; Phillips & Yu, 
2011; W. Zhou & Sornette, 2005) I use wavelet spectra in order to investigate 
the time-varying spectral characteristics of state level house price series since 
Jan 1975. The wavelet transform has power to distinguish periodic 

 
139 Key examples are credit-constraints (Ortalo-magné, 2006; Stein, 1995),  search market externalities 
(Diaz & Jerez, 2013; W. C. Wheaton, 1990), (policy) constraints on the elasticity of supply (Glaeser & 
Gyourko, 2007), and e.g. backward-looking expectations schemes (Capozza et al., 2002; Karl E Case & 
Shiller, 1988). 
140 Where property prices are determined not only by economic fundamentals, but driven either by the 
rational expectation of a future gain from future price increases (Flood & Hodrick, 1990),  or by irrationally 
optimistic expectations (Shiller, 2000; Vissing-jorgensen, 2004), house prices will follow an explosive 
process. A substantial empirical literature exploits this feature of non-fundamental asset price components 
as the basis for formal bubble tests - framed both within the well known present-value model (Diba & 
Grossman, 1988b; Hall et al., 1999; Homm & Breitung, 2012; Efthymios Pavlidis et al., 2016; Phillips et al., 
2011; Phillips & Yu, 2011) and e.g. trend-following behaviour (Bolt et al., 2014) hypothesised in the 
behavioural asset market literature. 
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component(s) in time series (where present) even where these may be obscured 
within a noisy or complex dynamical process (Magrini, Oliveira Domingues, 
Macau, & Kiss, 2020; Torrence & Compo, 1995). It also has the distinct 
advantage over conventional spectral methods (Fourier analysis)141 that it 
provides an (optimal) joint time-frequency decomposition. 

Note that whether driven by successive shocks or bubbles, in either case 
under this episodic view housing cycles might recur, but would be 
fundamentally irregular and unpredictable (no preferred period). 142 The stable 
spectral ridges that I document for the majority of state level (and other 
subnational) markets, suggest on the contrary that housing cycles, while they 
may be subject to shocks thus exhibit some noisy behaviour, and while they may 
be “bubbly”, they also have a cycle component with a preferred period (a c.10 
year cycle) consistent with significant intrinsic cycle dynamics (i.e. persistent 
fluctuations around an either unstable or only weakly stable equilibrium). 

Moreover, while the bubble identification literature presents compelling 
evidence of significant time-localised explosive dynamics in regional house price 
series (i.e. at the zero frequency), I document a systematic relationship between 
the onset and termination of “bubble episodes” (as dated by the econometric 
bubble literature (Phillips et al., 2015a, 2015b)) and the timing (as measured by 
the instantaneous phase)143 of the permanent cycle component in the data. This 
implies that while prices may be bubbly, episodic bubble dynamics are crucially 
modulated by the more systematic intrinsic dynamics of the underlying cycle 
process.  

This provides an important advance for our understanding of bubbles, since 
until now the bubble literature has focussed on how to identify a bubble when it 
happens, but has had little or nothing to say on when and where a bubble is 
likely to occur. Indeed a defining aspect of temporary bubble based theories of 
house price instability, is that dramatic market swings are seen to be driven, not 
by major changes in economic conditions, but rather by random capricious shifts 
in market psychology (Martin & Ventura, 2018; Shiller, 2000, 2015). However 
my results suggest that the timing of bubbles has been very far from random.144 

While endogenous house price cycles are a dynamic possibility that has been 
shown to arise in a number of different theoretical house price model settings 
(such as Sommervoll et al. (2010), Dieci & Westerhoff (2012b, 2016)),145 I am 
not aware of any serious empirical studies of whether house prices actually 
exhibit evidence of periodic dynamics (either for the U.S. or any other 

 
141 Used in recent studies such as high profile work by Beaudry et al. (2020) who address the same 
question of distinguishing noisy-limit cycle from persistent shock driven cycles but in a study of macro 
series, in particular unemployment data.  
142 Another possibility of course is that some markets are not switching but permanently in an unstable 
Evans bubble type regime (Evans, 1991). However if bubble period duration has some regularity, this 
would imply - unlike Evans bubbles - that bubbles not only build, but also end endogenously. 
143 Obtained here via continuous wavelet transform of the time series. 
144 Indeed in some markets the onset of such explosive episodes with the expansionary phase of every cycle 
raises the question whether these markets are really switching occasionally between stable and 
temporarily explosive dynamics as hypothesised, or are rather in an endogenous non-linear cycle regime 
with a locally unstable equilibrium. On the other hand for some markets explosive episodes are more 
occasional and do not occur every cycle. 
145 There really are not many relevant papers on this (Baptista et al., 2016; Bolt et al., 2014; Burnside et al., 
2016; Chia et al., 2017; Defusco et al., 2017; Dieci & Westerhoff, 2012a, 2016; Diks & Wang, 2016; Eichholtz 
et al., 2015; Geanakoplos et al., 2012; He et al., 2015; Kouwenberg & Zwinkels, 2015; Lingling & Ma, 2009; 
Ryoo, 2015; Sommervoll et al., 2010; Uluc & Bank of England, 2015; W. C. Wheaton, 1990). 
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markets).146 In a thematically related study, Beaudry et al. (2020) recently argue 
key macroeconomic time series - unemployment data - might be best 
understood as a noisy limit-cycle process (they present Fourier based analysis). 

The evidence I present of endogenous cyclicality within a similar dominant 
cycle frequency range across U.S. markets, thus suggests we may need to make a 
significant shift in our understanding of housing market instability at the local 
level. This sort of qualitative dynamic regime has, up to now, received only 
limited theoretical attention and even less serious empirical motivation or 
validation. These results motivate calls for effort to develop theoretical models 
able to explain observed cyclicality, and strategies by which to empirically 
discriminate between alternative hypotheses regarding the underlying cycle 
mechanism. 

 
7.1.2 Local vs. national sources of housing instability and spatial dynamics 
 
The evidence I find of permanent cycle components in state level house price 
fluctuations also suggest however, a need to revisit our interpretation and 
analysis of housing instability both at different spatial scales and across space: 
our current understanding and interpretation of “local” or “regional” vs. national 
house price fluctuations; as well as our interpretation of spatial patterns in the 
timing of house price fluctuations in different markets, is fundamentally 
underpinned by the idiosyncratic shock and bubble hypotheses. 

One common and natural hypothesis is that housing market fluctuations in 
any given market may reflect both national and local factors. Fluctuations in 
national house price indices and aggregates are assumed to reflect national 
shocks or bubbles, since local shocks or bubbles (given their idiosyncratic 
character) aught to largely average out. 

Previous research into the national boom-bust has generally sought to 
identify the relevant common factors driving common price developments in 
markets across the country (a national loosening of credit, FED interest rate 
policies etc.) and some studies attempt to estimate unobserved common factors 
using a latent factor decomposition approach (Del Negro & Otrok, 2007; 
Vansteenkiste, 2007) - a panel of price growth rates is decomposed into loadings 
on a low-dimensional vector of latent factors, and a vector of market-specific 
variation (satisfying weak cross-sectional dependence) based on assumption 
that idiosyncratic components average out (Forni & Reichlin, 1998).147 

However in the presence of permanent cycles (such as those I document in 
state level price data), a temporary global shock can potentially have a 
permanent impact on the degree of co-movement among cycles (thus aggregate 
volatility) meaning for example that the impact of a succession of common 
shocks on co-movement could plausibly accumulate over time. What is more, the 
coupling of markets via direct links or two-way causality between housing and 
the wider economy could result in the endogenous synchronisation of local cycle 
dynamics. 

 
146 And that has been missed in particular by Flor & Klarl (2017) despite similar methods due to the short 
sample period (thus narrower frequency window) they considered. 
147 This approach is also widely employed in the study of international house price cycles, see e.g. (Cesa-
Bianchi, 2013; Hirata et al., 2013; Igan et al., 2009). 
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The latent factor model approach typically does not allow for phase-shifts 
between common components (that may e.g. naturally arise as a result of local 
propagation), and by assuming local components are independent from each 
other, preclude the meaningful study of bilateral linkages between markets as a 
source of co-movement across all markets. While such a variance decomposition 
is always possible, care must be taken in its interpretation as common shocks 
rather than the result of endogenous co-movement generated by the 
interactions between different markets (a concern raised for example in the 
analogous context of production networks by Carvalho & Tahbaz-salehi (2019)). 

Indeed, by studying the phase-adjusted similarity in predominant frequency 
between cycles in different markets; then quantifying the time-evolving phase 
synchronisation among markets for these predominant cycles in the data,148 I 
am able to show that the synchronisation of existing cycle components in state 
level house price variation contributed to national housing boom-bust (Essay 2). 
This result strongly suggests local endogenous dynamics contributed 
significantly and increasingly to national house price fluctuations over time. 

At the same time spatial dependence has been an important theme in real 
estate economics and seems at odds with the view that house price fluctuations 
are a simple sum of independent local and of common national components. 
Spatial dependence and spillovers, or other (non-spatial) local links between 
markets may also be a source of co-movement across markets and are well-
established themes in real estate economics. 

Here methods to separate out the relationship between spatial markets that 
is due to the effect of common factors from that which is truly spatial have been 
sought. One strategy introduced is to first strip out contemporaneous 
comovement across all markets, before then studying comovement between 
markets in the residual variation (e.g. Holly et al. (Baltagi & Li, 2014; S Holly et 
al., 2010)). Global comovement is thus assumed to be the result of common 
factors, and spatial dependence only a source of weak cross-sectional 
dependence. 

Interestingly the question of whether local dependence between cycles of 
this sort could be an important source not only of regional but also of national 
house price co-movement, seems not to have been widely or seriously 
considered (although this has increasingly featured as a policy concern since the 
GFC (see e.g. IMF (2014, 2018), UBS  (2017), Vansteenkiste (2007)).  

The existing literature on spatial patterns in house price movements, have 
assumed either the spatial diffusion of housing shocks (see especially the “ripple 
effect” literature) (Barros et al., 2012; Cook & Thomas, 2003; Drake, 1995; S 
Holly et al., 2010; Holmes et al., 2011; Meen, 1996, 1999) or (less often) some 
sort of spatial contagion process for the spread of bubbles (DeFusco et al., 2013; 
Nneji et al., 2015; Riddel, 2011). 

However in the presence of permanent cycle dynamics (such as those I 
document in state level house prices), the spatial coupling of housing cycles 
could give rise to local synchronisation leading to spatial-pattern formations 
across markets. This thus provides an alternative conceptual framework within 

 
148 Note that no a priori assumptions are required on e.g. relevant band as for turning point based methods 
widely used in the business cycle literature, and to some extent housing cycle analysis. Relevant frequency 
range is identified from the time-frequency decomposition of the entire signal (a reversible 
transformation). 
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which to explain and interpret empirical “ripple-effect” type phenomena that 
has not previously been considered in the literature. There is also the possibility 
that a national cycle could arise via the endogenous synchronisation of spatially 
coupled cycles – another possibility has not, as far as I am aware, been 
considered before. 

Local dependencies between markets - especially spatial dependence - are 
well-established themes in real estate economics. However standard spatial 
econometric models may fail in the presence of strong cross-sectional 
dependence (generally requiring weak forms of cross-sectional dependence, in 
the sense that dependence decreases sufficiently quickly along the spatial 
dimension (Pesaran & Tosetti, 2011)). 

What is more, the spatial coefficients yielded by these models provide only a 
measure of contemporaneous local correlation averaged across links (adjacent 
pairs based on the introduction of a spatial adjacency matrix) and across the 
sample period or window. Even where dynamic spatial effects are considered 
through the inclusion of a time-lagged spatial correlation (Baltagi & Li, 2014; 
Chudik et al., 2011), the resulting spatial coefficients in either case provide only 
a measure of average spatial dependence, and do not provide any information 
on spatial patterns in the timing of cycles. 

Some studies employ methods designed to accommodate both common 
factors and local links between markets as a sources of correlation (Pesaran, 
2006; Pesaran & Tosetti, 2011): first using variation that can be captured by a 
common component to control for strong cross-sectional dependence; then 
studying residual spatial dependence across the idiosyncratic components using 
a standard spatial econometric model (e.g. spatial autoregressive model) 
(applications in U.S. housing market context include (Baltagi & Li, 2014; S Holly 
et al., 2010)).  

Although studies employing this approach still find significant spatial 
dependence (Baltagi & Li, 2014; S Holly et al., 2010), this methodology thus also 
starts from the assumption that covariance that can be captured by common 
components is driven by common factors. What is more, the standard spatial 
model estimated based on residual covariance, again only provides a test of 
spatial dependence based on average correlations.  

The considerable existing empirical “ripple effect” literature – motivated by 
the hypothesis of spatial house price propagation - has mostly relied on 
cointegration tests for convergence, asking whether markets move 
around/share a common stochastic trend in the ‘long-run’ (whether they move 
together over time exhibiting mean-revering “spreads”) and rely on restrictive 
assumptions on the order of integration of time series. Studies for the U.S. report 
mixed but limited evidence of convergence for U.S. markets and this has been 
argued to cast doubt on the existence of a ripple effect (Clark & Coggin, 2009; 
Gil-Alana et al., 2014; Gupta & Miller, 2012; S Holly et al., 2010; Holmes et al., 
2011; Pollakowski & Ray, 1997; Zohrabyan et al., 2008).149 

The existence of a “ripple effect” (in the simple sense of spatial propagation of 
disturbances) in cyclical fluctuations might occur however even in the absence 

 
149 By far the largest literature on the "ripple-effect" is for the U.K.  (following influential early 
contributions such as Meen (1996, 1999), but ripple-effects have been tested for in the housing markets of 
many countries around the world including an number of studies of U.S. markets. 
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of long-run convergence; what is more even where convergence occurs 
cointegration tests do not measure the synchronisation or reveal the spatio-
temporal pattern of short run adjustments or provide a dynamic view of the 
data. 

By contrast, I directly study the spatial pattern in the relative timing of cycle 
components, focussing on the c.10 year cycle identified as a shared predominant 
cycle frequency in the data (Essay 3). Given my focus on the pattern of phase-
lead lags, strong cross-sectional dependence does not pose a problem (as it does 
for spatial econometric models) and the simple spatial projection of the 
instantaneous phase of the common cycle component that I introduce allows a 
rich elucidation of the exact pattern of relationships between individual 
markets.150 Moreover the scale band I analyse – associated with the specific 
cycle component of interest – provides a far more concrete and explicit notion of 
temporal-scale than the ‘long-run’ and ‘short-run’ distinction in the 
cointegration approach. 

The striking “traveling-wave” phenomena I document in the pattern of lead-
lag relationships between cycles across U.S. markets (Essay 3), while very much 
resembling a “ripple effect”, is much more readily interpreted within a coupled-
cycle framework than it can be in terms of the spatial diffusion of shocks or 
contagion of bubbles.  

For example: the synchronisation of markets along one spatial projection, 
and traveling wave along that orthogonal to it is characteristic of coupled cycle 
systems but hard to explain within a standard spatial house price diffusion or 
contagion framework (likely to generate “epicentre” patterns).  

Likewise the rather consistent spatio-temporal pattern of lead lags over 
time (c.50 years of data and multiple cycle periods) is more consistent with 
coupled cycle dynamics, but hard to reconcile with spatial diffusion of random 
local shocks or contagious bubbles (likely to give rise to changing lead-lag 
patterns across markets in response to successive random local shocks or 
bubbles in different markets in different periods). 

Not only does this provide an alternative framework within which to 
understand empirical “ripple effects”, but the link I document (Essay 4) between 
the timing of the sort of temporary explosive episodes documented by the 
econometric ‘bubble’ identification literature, and the phase of the underlying 
permanent cycle component of price fluctuations, also have a direct bearing on 
contagions bubble hypotheses (DeFusco et al., 2013; Nneji et al., 2015; Riddel, 
2011): since the episodic character of bubbles compared to the more systematic 
cycle processes,151 suggests that any spatial pattern in the onset of bubble 
episodes might be better explained by the underlying pattern of phase-relations 
between cycles, without necessarily requiring a direct contagion process 
between bubbles. 

The relevance of this hypothesis is strongly corroborated by the results of 
the modelling exercise I undertake (Essay 5) in which I show a the extension of a 

 
150 Although I do also consider the average phase-coherence of adjacent markets, which is analogous to 

spatial correlation coefficient but only considers phase and not amplitude. 
151 The cycle component I document is present both in markets that do not exhibit bubble episodes (as 
well as those that do) and over historical periods in which bubble episodes did not occur (as well as those 
in which they did). 
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simple speculative housing cycle model to a network context is able to replicate 
all the key aspects of the spatio-temporal patterns I document in the data. 

This modelling work also helps to highlight a few further areas where this 
new framework may have distinct implications for our interpretation of the data 
as compared with e.g. spatial diffusion of shocks setting. 

For example, for some markets to have a constant systematic lead over 
others within a spatial diffusion of local shocks setting, requires them to be a 
dominant market propagating shocks to other regions (Sean Holly et al., 2011). 

For example I show Massachusetts has a consistent and stable lead over some 
one-third of U.S. states over the entire sample period. Under a causal 
interpretation - consistent with spatial diffusion of shocks paradigm - this 
temporal hierarchy would imply the surprising conclusion that shocks in 
Massachusetts cascade across the U.S. ripping through larger markets and 
reaching as far as Kansas and Louisiana. Meanwhile this would be an un-
remarkable outcome in a coupled cycle setting where it would not however, 
imply that fluctuations in Massachusetts directly drive fluctuations in New York 
and Louisiana. 

This argument is confirmed by the results of my modelling exercise (Essay 
5) in which I show given identical parameterisation, and a uniform coupling 
scheme, there is a strong tendency for coastal states to lead the national cycle 
(driven by the topology of the network i.e. spatial structure of the model). These 
results thus suggests a need for caution over seeking heterogeneity based 
explanations for the apparent dominance of some markets, and interpreting 
leading markets as key sources of shocks (Chiang & Tsai, 2016).  

What is more within this shock diffusion framework, since a disturbance in 
one market directly drives adjacent markets, and more distant markets only 
indirectly, the spatial diffusion of local shocks cannot explain the synchrony of 
distant markets. It has thus been argued that the similar timing of cycles in 
geographically distant markets (such as San Diego and Washington DC) provides 
evidence of important non-spatial links between markets resulting from e.g. the 
arbitrage of investment opportunities by national investors (Füss et al., 2012; 
Hernández-Murillo et al., 2017; Zhu et al., 2013). 

While there may be good reason to expect possible non-local links between 
geographically distant markets, my results also suggest a need for caution in 
interpreting the synchronisation of non-adjacent markets as evidence of non-
spatial economic links (Füss et al., 2012; Hernández-Murillo et al., 2017; Zhu et 
al., 2013) since, as I show with my model of spatially coupled cycles - the 
synchronisation of spatially distant markets can naturally arise out of purely 
local spatial interactions in a coupled cycle setting. 

It is also perhaps worth noting that although e.g. stronger time-lagged 
correlations between adjacent markets after the 2007-8 crisis have been 
interpreted as evidence of increased spatial shock transmission (Cohen et al., 
2016), both my empirical results and the results of my modelling exercise 
suggest caution over this strongly causal interpretation, since increased local 
synchronisation between cycles would increase both contemporaneous and 
lagged correlations between markets. 

Note that while these methods all provide time-averaged estimates of co-
movement, some studies have employed rolling-windows or recursive 
estimations in order to address the question of how the co-movement of U.S. 



 

 134 

markets has changed over time (Abate & Anselin, 2016; Cotter et al., 2011; Del 
Negro & Otrok, 2007; Kallberg et al., 2014; Landier et al., 2017; Yunus & 
Swanson, 2013).152 

However, not only are there a number of potential issues with employing 
rolling-windows with many of these approaches (spurious time variation, 
sensitivity to time-varying amplitude etc.), but also none of these time domain 
methods provide the spectral information or phase-amplitude decomposition 
possible with the wavelet based methods I employ and introduce. These 
methods also inherit the optimal time-frequency resolution from the wavelet 
transform (which optimises the trade-off between temporal and spectral 
resolution) providing a well time resolved approach to studying time-evolving 
dynamics (non-stationary phenomena). 

 
 

7.1.3 Relation to previous literature using wavelets methods 
 
Wavelets analysis is widely employed in a range of applied sciences (it is 

extensively used in physics, neuroscience, epidemiology, ecology, climate 
science, seismology, signal processing, etc.) and has become increasingly 
employed in economics (Aguiar-Conraria & Soares, 2014; Crowley, 2007; Soares 
& Aguiar-Conraria, 2011), especially in studying cyclical properties of economic 
and financial time series, and their cyclical comovements. 

A growing number of studies employ wavelet coherence (or related measures 
such as 'cohesion' (Rua, 2010)) to provide a pairwise measure of correlation in 
the time-frequency domain (Aguiar-Conraria & Soares, 2011; Aloui & Hkiri, 
2014; Crowley & Mayes, 2008; ECB, 2018; Flor & Klarl, 2017; Klarl, 2016; Li et 
al., 2015; Reboredo et al., 2017). These have been generalised to the multivariate 
context simply by averaging over all possible pairs (Kurowski & Rogowicz, 2018; 
Rua & Lopes, 2012). These measures provide a combined measure of phase and 
amplitude correlation. 

One problem with this approach may be that areas of low power may be 
similar between spectra of different series. 

What we really want to know about is common areas of high power. In a 
study of business cycle synchronisation Aguiar-Conraria & Soares (2011) first 
apply a dimension reduction approach (SVD) to extracted components 
corresponding to the most important common patterns (areas of high power) 
between the wavelet spectra, then they compute a measure of distance between 
the two spectra. 

Their measure of distance again takes into account both the real and the 
imaginary part of the wavelet spectrum, thus provides a combined measure of 
phase and amplitude correlation and is based on a comparison of the whole 
time-frequency matrix. Similarity is thus maximised when two series share the 

 
152 Simple correlation analysis (Kallberg et al., 2014; Landier et al., 2017); cointegration and error 
correction methods (Yunus & Swanson, 2013) to test whether price differences between markets are mean 
reverting - thus whether regional housing cycles move around/share a common stochastic trend in the 
‘long-run’; latent factor models (Del Negro & Otrok, 2007) or simple multivariate regression frameworks 
(Cotter et al., 2011) as a way to try and estimate the relative importance of common (respectively latent or 
observed) national (vs. idiosyncratic local) factors in house price movements; and spatial econometric 
models (Abate & Anselin, 2016) in order to assess the co-movement of contiguous markets. 
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same high power regions and their phases are aligned consistently (over the 
entire sample period). 

Pairwise instantaneous phase-difference provides a dynamic measure of 
phase lead-lag that has become increasingly used since introduced to economics 
by (Soares & Aguiar-Conraria, 2011). While economic applications have stress 
the size of the phase difference (smaller phase-difference -> more synchronous)  
the stability of phase-difference over time (phase-locking) also provides a 
relevant measure of synchronisation. 

However the methodological question of instantaneous phase 
synchronisation in a multivariate context, although studied by the wider 
synchronisation literature (Arenas & Albert, 2008; A S Pikovsky et al., 2001; 
Rodrigues et al., 2015; M. Rosenblum et al., 2001; Schroder et al., 2017), has not 
to the best of my knowledge been previously addressed in economics. 

It provides significant advantages however, over the concordance index 
methods (Bordon & Reade, 2013; Harding & Pagan, 2002, 2003, 2006; Mink et 
al., 2012) - based on the fraction of time that two series spend in the same 
binary (expansionary or contractionary) phase - widely employed to study 
phase-synchronisation in the business cycle literature (housing cycle 
applications include (L J Álvarez et al., 2009; Hirata et al., 2013; Jackson et al., 
2008; W. Miles, 2015b)). Because only discrete distances between turning points 
are used to approximate underlying phase-differences, valuable temporal 
information is lost. What is more since the dating of turning points (based on 
commonly used algorithms such as Bry-Boshan (Bry & Boschan, 1971)) may 
also be imprecise in the presence of noise and complex spectral content, and 
require assumptions on cycle periods, these indexes also lack spectral precision. 

Given increasing adoption of wavelet based methods for the study of co-
movement, and wide interest in phase synchronisation in business cycle 
literature, it is surprising that the imaginary part of the wavelet transform has so 
far been largely overlooked. For example a recent report from ECB Working 
Group on Econometric Modelling (ECB, 2018) uses wavelet power spectra in 
order to assess cyclical properties of growth series; and wavelet coherence to 
assess bivariate comovements; but resorts (in the very same paper) to the 
binary indicator based concordance approach in order to measure bivariate and 
multivariate phase synchronicity. 

The instantaneous measure of overall phase-synchronisation in a 
multivariate setting that I introduce in this paper seems likely to find wide 
relevance in a range of other applications. 

In what is by far the closest study to my own, Flor & Klarl (2017)  borrow the 
method introduced by Aguiar-Conraria and Soares (2011) in order to study U.S. 
regional housing market sychronisation (they study MSA level data).  

They first perform the clustering routine (as per Aguiar-Conraria and Soares 
(2011): SVD based dimension reduction, then pairwise distances reflecting a 
combined measure of phase and amplitude similarity). They then look at (i) the 
power spectrum of the average price series for each cluster; and (ii) the wavelet 
coherence and instantaneous phase-differences between the average price 
series for each cluster and the the national house price index series.153 

 
153 Itself of course some weighted mean of regional series. 
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One simple but important difference between our studies is that they only 
study data between 2001-2013 (c.10 years of data compared to the c.50 years of 
data I study here).154 

A sample of this length of course makes it impossible for them to study lower 
frequency dynamics, and is only really suitable for analysis of variance in a 2-3 
year periodicity band. As a result the c.10 year cycles I identify and study here is 
out side the scope of their analysis. 

As above, their measure of synchronisation used in the primary step of 
cluster assignment, is a measure of combined phase and amplitude correlation; 
and  clusters markets that have both areas of similar power and phase over the 
entire sample period. They provide neither a measure of national 
synchronisation, nor detail on the spatio-temporal pattern in the timing of 
cycles. 

In contrast to this, I estimate instantaneous cycle frequency and compare 
cycle frequencies across different markets over time; I study separately (i) areas 
of common high power (phase-adjusted similarity of cycles) and (ii) the phase-
synchronisation among markets at this common cycle frequency with an 
emphasis on how these have changed or varied over time. Finally I study 
detailed time evolving spatio-temporal patterns in the timing of house price 
cycles across the U.S. 
 
 
7.2 Policy implications 
 
All of this leads to a range of significant policy implications that will be of 
interest in the context of a rapidly expanding literature investigating the 
housing/monetary policy nexus (both the impact of monetary policy on house 
price fluctuations, and the implications of house price fluctuations for monetary 
policy) (Adam & Woodford, 2013; Allen, 2011; Del Negro & Otrok, 2007; Glaeser, 
Gottlieb, & Gyourko, 2010; Goodhart & Hofmann, 2008; Jarociński & Smets, 
2008; Jordà, Schularick, & Taylor, 2015; Kuttner, 2013; Williams, 2011). 

On the one hand, the historical asynchrony of cycles prior to the late 1990s 
suggests that common national factors such as monetary policy were not the key 
driver of these cycles. On the other hand, one obvious implication of the work I 
present here is that policy shocks may be a potential source of synchronising 
impetus (when markets are not well synchronised). What is more, a series of 
policy shocks that would not themselves be large enough to generate significant 
house price movements, could - by incrementally shifting the phase of cycles 
across the country - nevertheless lead to the emergence of national house price 
boom-bust. This observation has significant implications for the debate over the 
link between monetary conditions, mortgage borrowing, and house price 
appreciation (e.g., Bernanke, (2010); Leamer, (2007); Taylor, (2007)).155 

That the global synchronisation of cycles coincides with the Interstate 
Banking Act of 1995 and shift towards national credit based finance, suggests 

 
154 It is not clear why they do not use full available historical time-series dimension given on the one hand 
the problem of edge effects, and on the other hand the good temporal resolution provided by the transform. 
155 Many analysts and policy makers have wondered whether the low interest rate environment that 
prevailed in the years before the GFC contributed to the housing booms experienced in many economies 
over this period. 
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however that these institutional shifts may have played a significant role in the 
global synchronisation event. The intrinsic cyclicality of individual markets 
seems very likely to change the calculus of market integration: while integration 
may be a potential source of efficiencies and provide diversification 
opportunities, increased integration across markets exhibiting persistent or 
permanent cycle dynamics seems also highly likely to result in increased co-
movement of these cycles - thus may also risk increased instability of relevant 
aggregates.156 

Significantly the synchronisation of permanent cycles of course implies the 
potential for on-going aggregate cyclicality. However, whilst the synchronisation 
of sub-national cycles represents a potentially significant source of macro-
financial risk, and increased transmission of autonomous/endogenous housing 
market dynamics to the wider economy and housing based transmission and 
amplification of a variety of shocks; it may also imply housing becomes 
amenable to countercyclical policies, and indeed could sharpen housing based 
channels of national policy transmission to macroeconomic and financial 
aggregates (Hofmann & Peersman, 2017): 

Policies to counteract housing cyclicality in the synchronised regime would, 
if effective, not only benefit macro-financial stability (previously supported by 
the low synchronisation across unstable local markets), but also stabilise 
housing markets at the local level reducing the risk faced by (and speculation 
opportunities available to) micro-economic agents (households and investors).  

However an important question arises whether policy can be effective, or 
what sort of policy can be effective, for this purpose. It seems likely that a 
magnitude of policy shock sufficient to synchronise cyclical markets, may be 
entirely inadequate to counter the dynamic forces driving the underlying cyclic 
behaviour. On the other hand, housing may be responsive to targeted 
interventions.  

Indeed, while historical asynchrony of markets may have both moderated the 
macro-financial impact of housing instability and limited policy makers ability to 
target housing market developments, it may also have limited the house price 
based credit channel (Iacoviello, 2004, 2005; Iacoviello & Minetti, 2008) for 
monetary policy transmission (Brady, 2014; Fratantoni & Schuh, 2003; Füss et 
al., 2012); it presumably meant the impact of monetary policy varied across 
regions and may have been sub-optimal for some (this relates to the literature 
on business cycle synchronisation as a criteria for an optimal currency area 
starting from the seminal work of Mundell (1961) and McKinnon (1963)). 

While a macro-prudential policy able to improve the efficiency of markets 
across the country (helping them to increase the stability of equilibrium prices) 
might be particularly appealing, were this infeasible given available policy tools 
or remit, a coupled cycle view of housing dynamics does suggest a range of 
possible new alternative stabilisation strategies not available within the shock 

 
156 An existing literature has linked banking integration and house price co-movement:  for example 
Landier et al. (2017) argue that when banks face idiosyncratic lending shocks and operate across multiple 
markets, their mortgage lending activity induces house price co-movement across those markets (if the 
mortgage market is sufficiently concentrated). They present evidence that inter-state banking agreements 
led to increased house price comovement. However according to this argument, for banking integration to 
affect house price comovement, a few large overlapping banks need to be subject to substantial 
idiosyncratic shocks: common banking shocks impact all banks the same whether integrated or not. 
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diffusion or bubble settings. For example: rather than attempting to everywhere 
stabilise local cycle dynamics, could an alternative policy strategy be to 
deliberately aim at desynchronising markets, or disrupting synchronisation? 
These are questions that would need to be explored and developed in more 
detail. 

The distinctive implications of this setting for interest rate, non-interest rate 
and structural policies cannot be developed in detail here, but merit careful 
exploration. 

Besides implications for both the likely impact of policy interventions and the 
set of available policy strategies, notice that the findings presented and the 
methods employed here also potentially offer authorities valuable monitoring 
tools and strategies.  

The spatio-temporal patters and cross frequency amplitude modulation that I 
document suggest some non-trivial predictability that could be exploited. The 
evolving magnitude of cycle components and degree of synchronisation among 
cycles can provide a useful measure of the existence and magnitude of aggregate 
housing cyclicality. Meanwhile the mean phase angle may be helpful for 
assessing the timing of shifts between more and less inflationary periods.  

Meanwhile the spatial pattern of lead-lag relationships between markets 
clearly identifies which markets provide leading information, thus key markets 
to watch from a monitoring perspective.  

Where e.g. PSY test based index provides one approach to identify a bubble 
once it has started; the systematic relationship between cycle phase and the 
timing of bubble episodes implies this approach can provide some indication of 
where and when bubbles are more likely to arise, thus could form the basis for a 
real time local and national bubble risk index.  
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8  Summary and conclusions 
 
 
8.1 General conclusions 
 
In this thesis I revisit U.S. housing market cyclicality. 

In the first, empirical phase of my work, I use time-frequency methods and 
the phase-amplitude decomposition facilitated by complex wavelet analysis, to 
study spatio-temporal patterns in U.S. housing market fluctuations. These 
methods allow me to study how the spectral structure of house price 
fluctuations and spatial patterns in the timing of cycles in different markets have 
evolved with time. The power and flexibility of these methods combined with 
c.50 years of monthly state level house price data (Jan 1975 - Jun 2020) allows 
me to derive a series striking new results: 

I document for the first time that house price fluctuations in markets all 
across the U.S. exhibit a clear spectral ridge (estimated as local maxima of 
wavelet power spectrum) consistent with a cyclical component with a preferred 
period (at odds with the idiosyncratic shock and bubble hypotheses in the 
existing literature) over this long historical sample. What is more, cycles in 
different markets share a similar c.10 year periodicity. 

I show that historically phase-shifts between these cycles moderated 
aggregate house price cyclicality. However the global synchronisation after 1995 
of these existing cycles contributed to the emergence of a national housing cycle 
- the national boom-bust of the 2000s that is widely believed to have played a 
central role in the onset of the Global Financial Crisis of 2007-8. 

Focusing on the scale/spectral band around the relatively well-defined c.10 
year cycle identified, I am able to generate a phase-angle for each market at each 
(monthly) time step. With this phase information I am able study the time-
evolving relative phase of cycles in different markets. I show that there exists a 
striking travelling-wave pattern in the timing of U.S. housing market cycles that 
has not been previously documented. I show that this pattern has been relatively 
stable over time. 

 Travelling-wave patterns of this type typically arise in networks of locally 
coupled cycles. Taken together, these findings suggest an important role both for 
(i) local spatial coupling between markets and (ii) non-trivial intrinsic cycle 
dynamics leading to a possible re-interpretation of the character of U.S. housing 
market instability in terms of either emergent and/or common shock driven 
synchronisation of coupled cycles across a spatial network.  

Changes in overall synchronisation seem to coincide with important 
developments in housing finance and the global synchronisation event coincides 
with the Interstate Banking Act of 1995 and move to national credit based 
mortgage finance. This suggests common shocks or increased integration among 
markets may have played a significant role in the national synchronisation of 
cycles.  

On the other hand the spatial-wave pattern I document clearly indicates an 
important influence from local coupling between markets, and suggests the 
possibility at least, that a national cycle could have emerged out of the local 
interaction of local cycles. 
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I make a model based development of this novel coupled endogenous cycles 
hypothesis in the second, theoretical phase of my work:  

I model 49 identical housing markets with autonomous cyclical dynamics 
(each characterised by the same quasi-periodic endogenous speculative cycles 
in a simple agent based endogenous expectations formation setting (Dieci & 
Westerhoff, 2012b)) but coupled according to the empirical spatial adjacency 
network for the 49 spatially contiguous U.S. states (such that not only own-
market but also neighbouring markets have some influence on price 
expectations – the weight given to neighbouring markets controlled by a 
coupling parameter). 

I show that for sufficiently weak coupling the national market (understood 
as the average price and aggregate quantities over all markets) is stable; but if 
coupling is increased a bifurcation occurs and markets: (i) synchronise over 
time (developing a collective or national cycle); and perhaps most interestingly 
(ii) east-west coast-to-center spatial-waves develop, very closely resembling 
those I document in the empirical part of this thesis (Essay 3/Section 4). This 
suggests the interesting possibility that not only the existence of spatial waves 
per se, but also the particular wave pattern observed may be driven by 
geography, in a purely topological sense (rather than important heterogeneities 
across different markets). 

Overall this work thus leads to a novel simple and unified explanation for the 
striking set of phenomena I empirically document – phenomena very hard to 
explain within standard random shock or bubble frameworks. The sufficiency 
and parsimony of this minimal framework does not of course mean we should 
discard or discount other explanations and factors. It does seem to suggest 
however, that locally coupled locally unstable housing market dynamics may 
offer a valuable new framework, the relevance of which deserves further 
exploration. 

Taken together, the empirical and theoretical elements of this thesis lead to a 
view of U.S. housing market cyclicality that combines familiar elements: (i) 
spatial dependence between adjacent markets (consistent with an important 
strand of thought in the real estate literature that argues housing markets may 
be best represented as a series of interconnected regional and local markets 
(Meen, 1996)); and (ii) intrinsic cyclicality (which, though not widely studied, 
arises in behavioural house price models). The combination of these familiar 
elements, leads to a new paradigm framework able to generate and account for 
rich spatio-temporal phenomena. 

This re-conceptualizes the local vs. national character of housing market 
dynamics: we can neither consider housing in terms of a national aggregate, nor 
in terms of entirely local markets, and the sources of national instability may be 
found in local phenomena. 

The empirical relevance of this framework suggested by the ready 
explanation it provides for key historical facts, raises for example the question 
whether we should expect intensified national housing instability on an on-
going basis. It also has distinct policy implications. The synchronisation of local 
cycles might imply on the one hand increased spillovers from autonomous 
housing dynamics to wider economy as well potentially as increased 
transmission and/or amplification by housing of policy and other shocks; 
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meanwhile it might also make housing more amenable to countercyclical 
policies and sharpen housing based channels for national policy transmission. 
 
 
8.2 Future Research Opportunities 
 

The work I present in this thesis clears the path for a number of new research 
programs in housing economics, macro-financial questions and beyond. 

One obvious extension of considerable interest would simply be to extend the 
temporal span of the analysis. This is currently restricted by data availability, 
however historical time series already existing or currently under construction 
might form the basis for similar analysis covering some 100 years of data. 
Meanwhile there is an important project deserving resourcing to build more 
comprehensive historical data on house prices, transactions and finance 
building on the trail blazed by Rose (2020). 

Another obvious direction for further research would be to revisit data for 
other housing markets, such as the U.K. (where the “ripple effect” literature 
originated) with the methodological tools I deploy here in my study of U.S. 
housing. 

The empirical work I present suggests an important role for endogenous 
dynamics in sub-national house price cycles. However the serious investigation 
of the dynamic process generating these cycles, or even identification of other 
relevant state variables in the cycle process, is left to future work. 

Meanwhile, although I specify a cycle model for my theoretical modeling 
exercise, the key results I obtain here are very unlikely to be specific to the 
particular local cycle process I employ here, but rather are likely to hold for a 
general class of models consistent with the more general framework I set out, of 
locally interacting markets characterised by intrinsic cycle dynamics. Indeed the 
qualitative character of cycle dynamics is more crucial in this context. 

Since both my empirical and theoretical results are thus agnostic with respect 
to the dynamic process generating sub-national price cycles, the work presented 
in this thesis motivates further work on developing, and empirically 
discriminating between and testing theories of endogenous local housing 
market cyclicality. 

This project should be informed and supported by further research to explore 
other housing, financial and real variables at a spatially disaggregated level (e.g. 
fluctuations in housing market churn, house building, mortgage default rates, 
employment) both using the same methodological strategies employed here, 
and using cross-wavelet based approach to understand the relationships 
between different variables in a scale specific way over space and time.  

This work could help to begin to identify relevant state variables in cycle 
dynamics; and unpick the housing-finance-real economy nexus within a spatially 
disaggregated framework that accommodates time-evolving relationships. 

Moreover further empirical and theoretical work to qualify the dynamics in 
the data, and explore alternative possibilities – e.g. limit-cycle vs. noise driven 
oscillations – in a model-based setting is also called for.  

Given a relevant model - probably a richer model integrating housing supply 
side and potentially also housing finance - another direction for further 
modelling work would be to attempt to empirically estimate model parameters 
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and explore whether, with proper parameterisation to reflect relevant spatial 
heterogeneities, this sort of model can reproduce other key spatio-temporal 
features of the house price data – e.g. where I have already shown that the local 
coupling of cycles can explain the travelling-wave pattern in the data, one 
hypothesis might be that once the model accounts for the real supply elasticity 
in different markets, it could simultaneously account for the pattern of cycle 
amplitudes across different markets. 

Related to this, the empirical instantaneous-phase series might be further 
exploited in order to recover local couplings between markets in a data driven 
way, as well as to make a more detailed study of how synchronisation developed 
and the role of shocks and policy events vs. endogenous synchronisation 
dynamics. Under the hypothesis that individual markets are characterised by 
limit-cycle dynamics we must employ methods suitable for identifying (possibly 
time-varying) weak couplings between cycles (Cadieu & Koepsell, 2010; 
Casadiego, Nitzan, Hallerberg, & Timme, 2017; A. Pikovsky & Mrowka, 2007; M. 
G. Rosenblum & Pikovsky, 2001; Stankovski, Duggento, McClintock, & 
Stefanovska, 2012; Tirabassi, Sevilla-escoboza, Buldú, & Masoller, 2015). In 
particular methods for studying perturbations of the phase-series could help to 
reveal interdependencies between the cycles in different markets and, 
hypothetically, other participating variables - i.e. couplings may show up in 
deviations from a deterministic trend or common stochastic trend in the phase-
series for each market cycle thus be amenable application of more conventional 
econometric methods to the multivariate phase series (Østergaard, Ditlevsen, & 
Rahbek, 2017; Tirabassi et al., 2015). 

Alternatively they might be used to study the impact (if any) of local policy 
events such as the series of bilateral/multi-lateral reciprocal interstate banking 
agreements prior to 1995 studied by Landier (2017) and others. 

Given the substantial element of predictability implied by regular spatio-
temporal dynamics documented, it would also be interesting to explore how this 
can be exploited for forecasting purposes. 

My project here has been motivated by empirical evidence of housing cycles 
and aimed at explaining these, however the framework I develop could have 
theoretical implications beyond housing since these results raise the question 
whether coupled endogenous dynamics paradigm could be relevant for 
understanding the dynamics of other economic systems. For example the “trade-
comovement puzzle” and international business cycle comovement (R. C. 
Johnson, 2014; Kose & Yi, 2006)? Or the role of sectoral comovement in 
aggregate business cycles (Foerster et al., 2011; Garin, 2018; Lehn, Winberry, & 
Booth, 2020; Thomas, 2018). 

Note also that it would be a mistake to see the relevance of empirical methods 
I employ in this thesis as restricted only to periodic time series/dynamics. This 
is not the case, and for example instantaneous phase-based methods whilst 
perhaps more intuitive in the context of periodic dynamics, may also be usefully 
employed to identify and study dependencies for other types of non-stationary 
time-series processes. 
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10 Methods appendix 
 
10.1 Wavelets methods 
 
10.1.1 Morlet wavelet: relationship between scale and frequency 
 
For the Morlet wavelet, the relation between frequencies, 𝑓, and wavelet scales, 
𝑎, is particularly simple and is given by 
 

(
1

𝑓
) =

4𝜋𝑎

(𝜔0+√2+𝜔0
2)

  

 
when 𝜔0 ≈ 2𝜋, the wavelet scale 𝑎 is inversely related to the frequency so that 
 

𝑓 ≈
1

𝑎
 

 
This greatly simplifies/aids the interpretation of wavelet analysis since for all 

equations the wavelet scale 𝑎 may be substituted for the far more intuitive 
1

𝑓
 

(that is the cycle period). 
 
 
10.1.2 Cone of influence 
 
Applied to finite length time-series, the continuous wavelet transform inevitably 
suffers from “edge effects” or distortions. Wavelet spectrum values are 
incorrectly computed at the beginning and end of a finite time-series due to 
missing data. It is standard to pad the ends of the series with zeros (and this is 
the strategy I employ for the analysis presented in this thesis). Since the 
“effective support” of the wavelet at a given scale is proportional to the scale, 
these “edge effects” increase with scale. The region of the transform that is 
impacted by this problem is referred to as the “cone of influence” or COI. Results 
that fall within this region should be interpreted with care. For further details 
see Soares & Aguiar-Conraria (2011) or other introduction to the continuous 
wavelet transform. 
 
 
10.1.3 Relationship between phase-difference and time-lag 
 
The instantaneous phase-difference 휃𝑥,𝑦(𝑎, 𝜏) can be easily converted into an 

instantaneous time-difference by the relationship 
 

∆𝑇𝑥,𝑦(𝑎, 𝜏) =
𝜃𝑥,𝑦(𝑎,𝜏)

𝜔(𝑎)
                          (31) 

 
where 𝜔(𝑎) is the angular frequency corresponding to the scale 𝑎. 
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10.1.4 Confidence intervals on mean-phase (difference) 
 
Following Zar (1999) (equations 26.23-26.26) and Matlab implementation by 
Berens (2009) in CircStat, the confidence Intervals for the mean angle (of the 
phase difference) is computed as the (1 − 𝛿)%-confidence intervals for the 
population mean. See Berens (2009, p. 11) for details to be 
reproduced/explained here. 
 
 
10.2 PSY methodology 
 
To identify and date the onset dates for bubble and collapse episodes, I employ 
the procedure proposed by Phillips, Shi and Yu (2015a, 2015b) (PSY) based on 
the augmented Dickey-Fuller (ADF) model specification and a recursive evolving 
algorithm (Section 10.2.1), combined with the bootstrapping procedure 
proposed in Phillips and Shi (2018b)157  (Section 10.2.2) designed to mitigate 
the potential impact of heteroskedasticity and to effect family-wise size control 
in recursive testing algorithms. This procedure provides a framework for 
detecting both explosive bubble and collapse/crisis episodes,158 and a consistent 
date-stamping strategy for the origination and termination of multiple episodes 
(Phillips & Shi, 2017, 2018a; Phillips et al., 2015b).159 
 
 
10.2.1 The Augmented Dickey-Fuller test and recursive evolving algorithm 
 
The hypothesis of a mildly explosive process is tested against the null of a 
‘martingale’ process with asymptotic drift 
 
𝐻0: 𝑝𝑡 = 𝑑𝑇−𝜂 + 𝑝𝑡−1 + 휀𝑡,      휀𝑡~𝑁𝐼𝐷(0, 𝜎2)                     (32) 
 
𝐻1: 𝑝𝑡 = 𝛿𝑇𝑝𝑡−1 + 휀𝑡                                                                    (33) 
 
The term 𝑑𝑇−𝜂 captures any mild drift that may be present in prices but which is 
of smaller order than the martingale component and is therefore asymptotically 
negligible (Phillips & Shi, 2018b, p. 5), where 𝑑 is a constant,  𝑇 sample size, and 

the localizing coefficient 휂 is greater than 
1

2
. 𝛿𝑇 = 1 + 𝑐𝑇−𝜃 with 𝑐 > 0 and 휃 ∈

(0,1).. The ADF test statistic is the t-statistic on the least squares estimate of the 
coefficient of 𝑝𝑡−1 in the regression model chosen for the PSY procedure 
 
∆𝑝𝑡 = 𝛼 + 𝛽𝑝𝑡−1 + ∑ 𝛾𝑘

𝐾
𝑘=1 ∆𝑝𝑡−𝑘 + 휀𝑡                                    (34) 

 

 
157 This procedure was introduced in order to simultaneously addresses both heteroskedasticity (Harvey 
et al., 2016) and multiplicity issues in testing. 
158 The method is a generalized version of the sup augmented Dickey–Fuller (ADF) test of Phillips et al. 

(2011). 
159 These procedures are implemented using Matlab code made available by Shuping Shi. This can be 
found at https://sites.google.com/site/shupingshi 
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which includes the intercept 𝛼 but no time trend and nests the null hypothesis 
as a special case with 𝛼 = 𝑑𝑇−𝜂 and 𝛽 = 0 . The 𝐾 lag terms are included to 
account for serial correlation. 
 
The PSY procedure calculates the ADF statistic recursively from a backward 
expanding sample sequence. If  𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 are the start and end points of the 
regression sample, the ADF statistic calculated from this sample is denoted 

𝐴𝐷𝐹𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡 . The starting point of the sample varies from the first observation 𝑡0 to 

𝑡† − 𝑤0 + 1 where 𝑡† is the observation of interest and 𝑤0 is the minimum 
number of observations required in order to estimate Eq.34. The resulting ADF 
sequence is shown as 
 

 {𝐴𝐷𝐹𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡}
𝑡𝑒𝑛𝑑=𝑡†
𝑡𝑠𝑡𝑎𝑟𝑡∈[𝑡0,𝑡†−𝑤0+1]

                                                           (35) 

 
and inference regarding the explosiveness of observation ∆𝑝𝑡†  is based on the 
PSY statistic defined as the maximum value of the entire ADF sequence160 
 

𝑃𝑆𝑌𝑡†(𝑤0) = sup     {𝐴𝐷𝐹𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡}
𝑡𝑒𝑛𝑑=𝑡†
𝑡𝑠𝑡𝑎𝑟𝑡∈[𝑡0,𝑡†−𝑤0+1]

                       (36) 

 
The supremum enables the selection of the ‘optimal’ starting point of the 
regression in the sense of providing the largest ADF statistic. This procedure can 
be repeated for each individual observation of interest ranging from 𝑤0 to 𝑡𝑒𝑛𝑑 
generating the PSY statistic sequence {𝑃𝑆𝑌𝑡†(𝑤0)}

𝑡†∈[𝑤0,𝑡𝑒𝑛𝑑]
. In Figure 38 I 

reproduce a visual representation of the recursive evolving algorithm provided 
by Phillips and Shi (2018b)). 
 
 

Figure 38: This figure reproduces illustration of PSY recursive evolving algorithm 
as presented in Phillips and Shi (2018b). 

 
 
 
 
 
 

 
160 The backward supremum ADF. 
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10.2.2 Composite bootstrap procedure 
 
I employ the bootstrap procedure suggested by Phillips & Shi (2018b) designed 
to mitigate the potential influence of unconditional heteroskedasticity and to 
address the multiplicity issue in recursive testing. 

The composite bootstrap procedure ass set out by Phillips and Shi (2018b, p. 
13) is: 
 
Let 𝑤0 and 𝑡𝑏 be the number of observations in the window over which size is to 
be controlled.  
 
Step 1: Using the full sample period, estimate the regression model Eq.34 under 

the imposition of the null hypothesis of 𝛽 = 0 and obtain the estimated 
residuals 𝑒𝑡. 

 
Step 2: For a sample size of 𝑤0 + 𝑡𝑏 − 1, generate bootstrap sample given by 
 
   ∆𝑝𝑡

𝑏 = ∑ 𝛾𝑘
𝐾
𝑘=1 ∆𝑝𝑡−𝑘

𝑏 + 𝑒𝑡
𝑏                                                 (37) 

 
with initial values 𝑝𝑡

𝑏 = 𝑦𝑖 with 𝑖 = 1, . . , 𝑗 + 1, and where 𝛾𝑘 are the OLS 
estimates obtained in the fitted regression from Step 1. The residuals 
𝑒𝑡

𝑏 = 𝑤𝑡𝑒𝑙  where 𝑤𝑡  is randomly drawn from the standard normal 
distribution and 𝑒𝑙  is randomly drawn with replacement from the 
estimated residuals 𝑒𝑡. 

 
Step 3: Using the bootsrapped series, compute the PSY test statistic sequence  

{𝑃𝑆𝑌𝑡
𝑏}𝑡=𝑤0

𝑤0+𝑡𝑏−1
 and the maximum value of this test statistic sequence, 

giving 
 

𝓜𝒕
𝒃 = 𝑚𝑎𝑥 (𝑃𝑆𝑌𝑡

𝑏)

𝑡 ∈ [𝑤0, 𝑤0 + 𝑡𝑏 − 1]
 

  
Step 4: Repeat Steps 2-3 for 𝐵 = 999 times. 
 
Step 5: The critical value of the PSY procedure is not give by the 95% 
percentiles of the sequence. 
 
Step 2 of this iteration implements a wild bootstrap to address 
heteroskedasticity; and Steps 3-5 of the iteration replicate the PSY recursive test 
sequence and create critical values that account for multiplicity in the test 
sequence recursion. 
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11 Data appendix 
 
11.1 House price data 
 
Throughout this thesis I employ seasonally adjusted monthly Freddie Mac House 
Price Index data (FMHPI).  

The FMHPI is a repeat-sales method index, where repeat transactions are 
defined as two first-lien mortgages that originate on different dates for the same 
house location. This includes loans originated for sales transactions, but also 
appraisal values for refinance transactions (at least one of the two mortgages is 
for a sales transaction i.e. refinance-to-refinance data pairs are excluded). The 
sample data only covers single-family and town home properties that are 
financed by conventional and conforming loans.161 

The inclusion of appraisal values and limitation to mortgages sold to Fannie 
Mae or Freddie Mac may represent limitations to the data. However the 
availability of monthly frequency data represents an advantage since it 
improves temporal but also spectral resolution in the data. The widely used 
state level transaction based index provided by the Federal Housing Finance 
Agency (FHFA) is only available on a quarterly frequency (this data is employed 
for example by Davidoff (2013), Favara & Imbs  (2015), Flor & Klarl (2017)).  

Using other standard price indices (I look at FMHPI state level data, and also 
S&P/Case-Shiller metropolitan market data) yields very much the same results. 

Some (slightly arbitrary) examples of other studies employing the FMHPI 
include: Mayer & Sinai (2007), Huang et al. (2017), Bailey et al. (2016). 
 
The Freddie Mac House Price Index (FMHPI) data employed in analysis 
presented here can be found at the following link: 
http://www.freddiemac.com/research/indices/house-price-index.page  
 
Federal Housing Finance Agency (FHFA) house price index data can be found at: 
https://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index-
Datasets.aspx#mpo 
 
 

  

 
161 A "conforming" mortgage meets the funding criteria of Fannie Mae and Freddie Mac—principally, a 
dollar limit on the size of the loan.  

http://www.freddiemac.com/research/indices/house-price-index.page
https://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index-Datasets.aspx#mpo
https://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index-Datasets.aspx#mpo
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12 Data analysis appendix 
 
12.1 Wavelet power spectra for all U.S. states 
 

 
Figure 39: Example wavelet power spectra for state level house price series 

(transform obtained for seasonal log differences of monthly data).162 Significance 
test against null of AR(1) process. 

 
 
  

 
162 I use seasonally adjusted monthly Freddie Mac House Price Index data. The availability of monthly data 
improves temporal but also spectral resolution. I take seasonal log-differences of the data before obtaining 
wavelet transform and power spectrum. The data can be found at the following link: 

http://www.freddiemac.com/research/indices/house-price-index.page 

http://www.freddiemac.com/research/indices/house-price-index.page
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12.2 Wavelet power spectra for MSA level series 
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