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Abstract— Fragment assembly protein structure prediction is one 
of the most successful methods whenever reliable templates (for 
homology-based approaches) and/or massive computational 
resources (for physics-based approaches) are not available. 
However, it suffers from important limitations: tremendous 
search space, energy scores inaccuracy, and consequently the 
large number of decoys which are needed to be generated. 
Taking advantage of the different protein sequence-structure 
complexity shown by the various types of secondary structure, -
using Rosetta - we propose to customize the diversity of 
fragments for each region of the conformation being built. By 
eventually reducing the size of search space, this approach 
permits better exploitation of promising areas. Experiments 
demonstrate the value of the proposed strategy: compared to 
standard Rosetta’s performance in terms of first model, accuracy 
improves significantly (~6%), respectively dramatically (~24%), 
when using 20,000, resp. 2,000, decoy-based predictions. 
Furthermore, performance using 2,000 decoys is equivalent to 
that of standard Rosetta using 20,000 decoys, which means that 
predictions can be executed on a standard PC instead of a high-
performance computing system. 
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I. INTRODUCTION

In all living organisms, once a protein’s correct folded
structure is attained, it is able – in principle - to perform its 
critical and diverse biochemical reactions.  The folding process 
of a protein starting from a linear chain of amino acids into its 
native 3D shape takes places in vivo on a millisecond 
timescale. After more than half a century of research, neither 
full understanding of the folding process nor availability of a 
‘robust’ computerized prediction tool of the native structure for 
all types of proteins has been achieved yet. Despite enormous 
efforts in biochemistry and bioinformatics fields, both in vitro 
and in silico methods to determine and predict the final 
structure remain flawed. Despite the high cost in terms of time 
and money of wet laboratory techniques such as X-ray 
crystallography, Nuclear Magnetic Resonance (NMR), and 
Electron Microscopy (EM), they are still prone to errors. On 
the computational biology side, the recent exploitation of 
machine learning has led to a series of breakthroughs in protein 
structure prediction (PSP)[1]. The latest one was recorded very 
recently by DeepMind in their contribution in the 14th round of 
the biannual worldwide competition CASP (Critical 

Assessment of Structure Prediction) [2], where its end-to-end 
deep learning techniques were able to reach an unprecedented 
accuracy in the prediction of single-domain proteins. 
Nonetheless, challenges still exist for a range of proteins 
including de novo designed proteins, quaternary complexes, 
protein-ligand complexes, and multi-domain proteins [3].  

Since knowledge of the spatial data of a protein’s tertiary 
native structure is invaluable to biochemists, for about three 
decades, bioinformaticians have tackled the challenge of 
designing computer software that predict a protein’s correct 
native structure from its amino acid sequence. Those 
computational approaches can be classified within two large 
categories: Template-Based Modelling (TBM) and template 
Free Modelling (FM) techniques – also known as ab initio, 
which are the only ones able to solve targets for which no 
reliable template can be found. 

 Ab initio methods attempt to build conformations from 
scratch relying on Anfinsen’s theories [4], [5]. Those two 
theories state that (i) the amino acid sequence is sufficient to 
infer the corresponding structure since the folding process is a 
result of biophysical forces and (ii) the native structure 
corresponds to the lowest free energy. This has given birth to 
“physics-based methods”, which, as the name suggests, rely on 
the laws of physics as an attempt to mimic the actual folding 
process. In principle, such simulations are able to reach the 
native structure, however, their enormous computational needs 
have restricted their usage to very short proteins and/or on 
massive distributed computing systems [6].  

The alternative to physics-based approaches was introduced 
more than two decades ago under the category of fragment-
based methods, which, until recently, dominated the FM CASP 
competition. Whilst these methods are able to handle FM 
targets, they require much less computational resources than 
‘classical’ ab initio. In a nutshell, they are based on two main 
observations. First, as the sequence-structure correlation is 
stronger for short sequences, the search space at the local level 
can be narrowed - it is quite important to note that such 
correlation’s strength varies depending on the type of the 
secondary structure (this point will be elaborated further since 
it represents the basis of the work presented in this paper). 
Second, any protein conformation can successfully be built by 
simply assembling short fragment structures from other 
proteins whose global shape – known as architecture or fold – 
could be totally different. The second point is the reason behind 



fragment-based methods’ ability to infer FM targets. Amongst 
the most successful fragment assembly PSP, some use short 
fragments, e.g., Rosetta [7] and Quark [8], while others rely on 
long fragments, e.g., I-TASSER [9] and Robetta [10]. One 
should note that adopting long fragments has triggered an 
endless debate whether to continue to consider such methods in 
the ab initio category. In terms of fragment size, Rosetta – the 
tool we used to conduct our experiments - relies on two sets of 
fixed size, i.e., 9 and 3, which are referred to as 9-mers and 3-
mers respectively. 

Related to the concept of fragments, secondary structures 
are the main constituents of any protein’s tertiary structure. 
Alpha helices and beta sheets are not only the main secondary 
structures, but they are also regular, in the sense that, as their 
overall shape is ‘fixed’, their degree of flexibility is limited 
when compared to the irregular secondary structures called 
coils. Accordingly, coils represent the highest complexity in 
terms of sequence–to-structure mapping, even for short 
sequences. In addition, a study has shown that alpha helix 
fragments’ diversity is much lower than beta sheets’ [11]. 
Herein, we take advantage of the different complexity of the 
various secondary structures to adjust the number/diversity of 
fragments being inserted during fragment-based PSP. Whilst 
standard Rosetta uses a fixed number of candidate fragments 
from its fragments library, i.e., 25 for 9-mers and 200 for 3-
mers, we propose to refine this process by selecting a number 
of candidates reflecting the typical complexity of the predicted 
local secondary structure. 

II. FRAGMENT-BASED METHODS AND ROSETTA 

While the term ab initio suggests that the amino acid 
sequence is the main unit of construction and the only source 
of data, fragment-based methods use short structural fragments 
as building unit and a set of structure templates from which 
fragments are extracted as an ‘indirect’ additional source. As a 
preliminary step, such methods create a set of non-redundant 
high resolution template structures extracted from the database 
of proteins of known structures – the Protein Data Bank (PDB) 
[12]. First, there is a search process for structure fragments by 
identifying those matching sequence fragments of the protein 
of interest. Candidate fragments are then collected to form the 
fragments library. Second, the fragment assembly stage 
concatenates relevant fragments by using randomized 
techniques such as simulated annealing. Third, the free energy 
of each of these produced conformations is assessed. Finally, 
the most promising ones are further refined. Due to the 
randomness of search trajectories in fragment-assembly 
methods, they usually produce a large number of candidate 
structures, called decoys, from which the most native-like 
conformation(s) has (have) to be selected ultimately. While 
identifying the ‘best model’ within a pool of decoys may be 
performed using clustering or quality assessment techniques, 
typically, the conformation with the lowest energy score is 
often elected. Such model is known as the first model.  

  

Fragment selection is critical to the success of fragment-
based methods. One of the best criteria has been to quantify the 

similarity between the secondary structure of a structure 
fragment and the predicted secondary structure of the sequence 
fragment that it is supposed to model [13]. Such similarity is 
not employed extensively in TBM approaches when choosing 
(a) template(s). As secondary structures play a crucial role in 
fragments selection, this study will go further investigating 
their sequence-structure complexity to exploit it to adjust the 
local conformational sampling used during the assembly stage. 

Rosetta has been continuously contributing in CASP since 
its third round, being at the forefront in most of them and 
showing particularly promising results for hard targets [14].  
Rosetta’s fragment selection strategy for ab initio PSP relies on 
its “fragment picker” tool and its customized “quota protocol” 
[15]: fragments are excised from a set of high resolution 
template structures to form a fragment library of 25 9-mers and 
200 3-mers for each position of the target protein’s 
conformation. The score upon which candidate fragments 
compete to be selected is calculated using a weighted function 
taking into account the sequence profile, the secondary 
structure similarity and the Ramachandran map probability. In 
our experiments, the secondary structure predictors come from 
three sources PsiPred [16], Jufo [17] and SAM [18] and all 
parameters in “quota protocol”  have been kept at their default 
values [15]. The fragment-assembly phase comprises two 
steps: 9-mers insertion (up to 28,000 attempts) and 3-mers 
insertion (up to 8,000 attempts). Note that those large numbers 
of insertions attempt, as well as the large number of decoys, to 
cover the largest possible area of the configuration space. Since 
all fragments were extracted from native structures, which 
implies that they correspond to local energy minima, they are 
kept rigid when inserted so that their integration within a model 
being built decreases the conformation’s total entropy. The 
choice of the location of insertion, and the selection of which 
9-mer, resp. 3-mer, among the 25, resp. 200, fragments 
available is inserted are made randomly.  

III. PROPOSED METHODOLOGY AND PRELIMINARY TESTS 

Despite the significant amount of efforts that has been 
dedicated to improve Rosetta, - to our knowledge – it has never 
been proposed to vary the number of possible insertion 
fragments according the section of a target’s sequence. Taking 
advantage of the relative ‘straightforward’ sequence-structure 
mapping for alpha helices, the more complex one for beta 
strands, and the much more obscure one for coils, a novel 
approach is proposed to customized the conformational 
sampling at local level according to the associated predicted 
secondary structure by amending the number of available 
insertion fragments per position. 

Before implementation, preliminary tests were conducted to 
estimate what number of 9-mers and 3-mers for each of the 
three different secondary structures would work best. This was 
performed by selecting a ‘representative’ protein, i.e., a target 
which displays relative evenly distributed secondary structures 
and whose prediction complexity could be qualified as 
average. Within this study’s dataset – which will be detailed 
later – the protein, whose PDBID is 1CC8, was chosen as, in 
addition to a balanced distribution of secondary structures, its 
best predicted model by standard Rosetta scored a Global 



Distance Test (GDT) of 55 (this metric ranges from 0 to 100 
where 100 means the predicted structure is undistinguishable 
from the native structure).   

In the 1CC8’s structure there are 9 positions where there are 
9 consecutive amino acids that belong to a pure alpha helical 
structure. For each of those 9 positions, the Root Mean Square 
Deviations (RMSD) was calculated between each of the 25 
possible substitution 9-mers and the native structure. Figure 1 
displays for those positions the first, average, lowest (best) and 
highest (worst) obtained RMSD. Before analyzing this figure is  
worth remembering that (i) the lower the RMSD is, the more 
similar the fragments are, (ii) Rosetta’s fragment picker sorts 
fragments according to their similarity to the sequence 
fragment as described in the previous section. Figure 1 shows 
that the first fragment is not only much better than the worst 
and better than the average one but is also very close to the best 
one. Since the first fragment appears to be a ‘very good’ 
choice, replacing the whole set of 25 9-mers by the first 
fragment is unlikely to lead to any significative degradation of 
accuracy. Similarly, we pursued this study by investigating the 
quality of the 21 and 17 positions in 1CC8 where ideal 3-mers 
are supposed to belong to a pure alpha helical and a pure beta 
strand respectively. In order to set an adequate minimum 
number of fragments at those positions, the average RMSD 
gain when using the best fragment out of a set of 5, 10, 15, 20, 
25, 30, 35 and 40 were plotted in Figure 2.  

Figure 1. The averages, first, lowest, and highest RMSD of 225 9-mers  
 

Figure 2. The average of RMSD gain when selecting the best fragment from a 
set of size m instead of a smaller set of size n.  

Figure 2 shows that replicating the strategy selected for 9-
mers, i.e., picking the first fragment only, would not be an 

adequate choice since tangible improvements (~11% and 27 % 
for alpha helix and beta sheet 3-mers respectively) were 
measured when the number of fragments was increased to 5. 
On the other hand, one notices that beyond the first 25 
fragments, improvements become negligeable (~0.15%) for 
both types of fragments. In the case of alpha helical 3-mers, 
considering more than 5 fragments leads to an improvement of 
less than 1.5%, thus, 5 could be chosen as the number of 
fragments for that category. Regarding the beta 3-mers, quality 
still improves (+4%) with 10 fragments and keeps increasing 
(an additional 1.5%) until reaching 25. Thus, adopting 25 3-
mers in this case seems more suitable. 

In conclusion, application of the proposed methodology to 
both fragment files yields to a significant reduction of the 
overall number of candidate fragments in relatively low 
complexity regions. One could imagine that during the 
sampling process, some regions would be ‘frozen’ or at least 
much less often substituted than other parts. In summary, the 
proposed process is as follows: in the 9-mer file, whenever 9 
consecutive amino acids are predicted to belong to a helix, only 
the first structural fragment is made available for insertion, 
otherwise, the standard number (25) can be selected. Similarly, 
when building the 3-mers file, whenever 3 consecutive amino 
acids are predicted to belong to a helix, resp. a beta strand, only 
5, resp. 25, structural fragments can be inserted respectively. In 
all remaining positions, the standard number of available 
fragments (200) is used. 

IV. DATA SETS, EXPERIMENTS, RESULTS AND 
DISCUSSION 

In order to validate the proposed methodology, the 
performance of the Secondary Structure-based Rosetta 
(denoted as SS-Rosetta) approach - where the number of 
fragments is customized according to the position - is 
compared to that of the standard version of Rosetta (denoted as 
Standard) for a set of targets. Our methodology requires 
choosing a secondary structure predictor and feed it with the 
target’s sequence to obtain the required secondary structure 
information. Since the assessment of our proposed approach 
should be independent from the choice of a secondary structure 
predictor and its accuracy, we have used the secondary 
structure annotations associated to each target instead. Usage of 
actual secondary structure information will not affect the 
conclusions of this study since state-of-the-art predictors 
provide predictions with very high accuracy (>80%) [19]. Note 
that those correct annotations are used only when choosing the 
positions where the number of fragments should be reduced; 
the fragment libraries are built using the secondary structures 
predictors mentioned earlier.  

Whenever parallel computing facilities are available, 
researchers tend to produce several thousands of decoys for 
each target to assess Rosetta’s performance; 20,000 is 
considered an appropriate number in this regard [20], [21]. In 
some experiments, the production of 2,000 decoys has also 
been adopted since this allows them to be conducted on a 
typical PC [22]. Here, we have considered both numbers of 

 

 



decoys, i.e., 20,000 and 2,000, for each experiment and for 
each target. This has allowed (i) investigating the effects of the 
number of decoys along with the number of fragments on the 
exploration/exploitation compromise of the search space and 
(ii) evaluating the performance of our new methodology when 
executed on either a cluster or a standard PC.  

Since many previous studies aiming at improving fragment 
choice in Rosetta were evaluated by using a diverse 20-protein 
dataset [20], [23], [24], the same dataset has been used in this 
work. However, that dataset suffers from two minor issues: (i) 
there are only 3 targets that belong to all-alpha structural class 
and (ii) the largest target has a size of 128. Since fair evaluation 
of Rosetta’s performance usually involves processing targets 
whose length spans up to 150 amino acids [20] and evaluation 
of our approach requires targets with a variety of secondary 
structures, 5 additional targets (2KDL, 2LR8, 4HLB, 2K4V 
and 2KY4) – all annotated as FM targets in previous CASP 
experiments – were included. Note that for each target, any 
homolog – if present - was removed from the fragment 
libraries. Finally, one of the targets (1BQ9) in the 20-protein 
dataset was excluded because, as it is composed mostly of 
coils, it could not take advantage of the proposed approach and 
in practice would be processed using the standard Rosetta 
parameters. Eventually, an updated dataset of 24 proteins 
whose sequence length ranges from 56 to 149 was created. 

In our blind assessment, CASP’s rules were followed: up to 
5 models are submitted and one of them is defined as the first 
model. As in CASP, two main ranking scores were adopted: the 
GDTs of both the first model and the Best model among the5 
submitted structures. Figures 3, resp. 4, compares the First 
models and Best models produced by standard Rosetta and SS-
Rosetta for the 20,000-, resp. 2,000-, decoy experiment. When 
20,000 decoys are considered (See Figure 3), SS-Rosetta 
produced better First models for 15 out of the 24 targets, 
leading to a total improvement of 6.3%, and 12 better and 3 
equal Best models with a total improvement of 5.0%. In the 
2,000-decoy experiment (see Figure 4), SS-Rosetta delivered  
dramatic improvements: 24.2% and 11.5% for the First models 
and best models respectively, where higher accuracy higher 
than standard Rosetta’s was achieved for 16 and 18 targets 
respectively. 

A possible explanation of the much higher improvement 
provided by our proposed methodology in 2,000-decoy 
experiment over the 20,000-decoy is as follows: When the 
number of decoys is small, further exploration is a more 
dominant process than additional exploitation as randomly 
generated trajectories from a large number of available 
fragments are likely to show high diversity. On the other hand, 
when the number of available fragments is much smaller, 
search trajectories tend to focus on exploiting limited regions in 
the search space (known as funnels) rather than exploring new 
regions using new fragments. As a result, such further 
exploitation yields discovering a larger number of local minima 
in funnels. Taking into consideration the known inaccuracy of 
energy functions, enhanced performance provided by our 
approach - which discards unhelpful fragments - suggests that 

the production of those larger numbers of local minima within 
a relatively narrower search space could benefit particularly the 
quality of First Model for the 2,000-decoy predictions. 

Figure 3. GDT of the First and Best (out of 5) models for standard Versus 
SS-Rosetta predictions using 20,000 decoys. Linear regression lines are 

shown for both scores 

Figure 4. GDT of the First and Best (out of 5) models for standard Versus SS-
Rosetta predictions using 2,000 decoys. Linear regression lines are shown for 

both scores 
          
       The comparison presented in Table I reveals another 
outcome, possibly the most important one of this study: SS-
Rosetta with 2,000 decoys delivers similar accuracy to standard 
Rosetta with 20,000 decoys! Consequently, the novel SS-
Rosetta democratizes PSP as performance, which was only 
possible by running standard Rosetta on high-performance 
computing systems, can now be achieved using a typical PC.   

V. CONCLUSION 

        We have shown in this study that the evenly-distributed 
fragment insertion process across a target’s whole sequence 
that Rosetta uses leads to the exploration of regions that are 
unlikely to be relevant. Instead, inspired by findings related to 
the proteins’ sequence-structure mapping complexity, we have 
amended Rosetta to exploit funnels further by limiting the 
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number of fragments for low complexity regions, focusing 
more on the challenging parts of the protein target. Actually, 
the paradigm we have proposed in this paper is applicable to 
any fragment-based PSP tool regardless of the fragments size it 
uses. In cases where the length of the fragment size is so long 
that a single secondary structure is unlikely to span over it, 
cardinalities could be customized based on the dominant type 
of secondary structure instead. 

        Our novel methodology has revealed tangible (~6%) and 
significant (~24%) improvement in terms of first model 
accuracy when adopting 20,000 decoys and 2,000 decoys 
respectively. Furthermore, performance of the proposed 
approach using 2,000 decoys proved to be as accurate as that 
of standard Rosetta using 20,000 decoys, making PSP 
available to all.  

 
TABLE I. Results of standard predictions using 20,000 decoys against  

SS-based predictions using 2,000 decoys.  
 First 

model 
Best 
model 

20,000 Decoys (Standard Predictions) 
Vs 
2,000 Decoys (SS-based Predictions) 

12/24  
+ 0.4% 

13/24  
+ 4.6% 
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