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ABSTRACT

In this paper, we introduce a full-reference quality assessment model for laparoscopic videos. The perceived
quality of medical imaging in general is of upmost importance, as visual degradations may lead to severe negative
impacts on diagnostic accuracy. Laparoscopy, also known as keyhole surgery, is a camera-assisted operation
performed in the abdomen or the pelvis of the patient. Unlike the conventional utilization of telescopic rod
lens systems, digital laparoscopy uses a miniature digital camera at the end of the laparoscope, and therefore,
the surgeon fully relies on the quality of the medical video. In our scientific contribution, we utilize different
image quality measures for each frame of the laparoscopic videos. We implement a regression neural network
architecture on the frame-level features with the associated mean opinion score as labels. Finally, we calculate
the average of the predicted frame-level scores to compute the overall quality score. The performance of the
proposed model is evaluated on the well-known LVQ laparoscopic video dataset. The evaluation results confirm
that our model is competitive with the state-of-the-art 2D full-reference and no-reference supervised algorithms.
Furthermore, the model demonstrates robust performance across all distortion types of the dataset.
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1. INTRODUCTION

Laparoscopy is a minimally-invasive surgical procedure, which belongs to the medical category of endoscopy.
Surgeons insert laparoscopic tools through small incisions of the patient’s body and perceive the real-time func-
tioning of human abdominal organs on a video monitor. The extracted information guides the surgeon to perform
the operation on malfunctioning organs. This low-risk method is less painful for the patient and recovery is rather
fast compared to traditional surgery.

The laparoscopic equipment has a camera, which enters the patient’s body through one of the incisions created
by the doctor. This camera displays all the surgical activities performed inside the patient’s body on a monitor
and this information is also recorded for further analysis. The captured video undergoes several processing and
acquisition stages. Each processing stage may produce spatial and temporal artefacts, such as smoke, fog, blur,
motion blur, ghosting and frame freeze distortions. Additionally, these degradations may also be the result of
specific technical issues. Such artefacts effectively reduce the perceptual quality of the video, which creates a
visual discomfort to the surgeon and it reflects in the degradation of surgical efficiency. At the time of this
paper, surgeons utilize the services of technical staff to overcome this problem. However, this method is neither
robust nor reliable due to manual errors, and manual intervention requires additional time. These unfortunate
technological circumstances resulted the necessity to analyze and assess the quality of laparoscopic videos in
order to enhance the efficiency of surgical performance.
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Quality assessment (QA) is a standard approach to assess the perceptual loss at each processing stage. QA
models are typically classified into three categories, based on the involvement of reference-quality content. Full-
reference (FR) algorithms require the entire reference-quality content to perform the QA task. Reduced-reference
(RR) algorithms utilize a small number of the features of the reference-quality content to compute the quality.
No-reference (NR) models do not require any kind of information about the degradation-free content to perform
the quality evaluation. In this paper, we propose an FR quality assessment model for laparoscopic videos, based
on performing the regression neural network on frame-level quality measures of videos.

The remainder of the paper is structured as follows. Section 2 introduces the algorithm in detail. Section 3
analyzes and discusses the performance of the proposed model. The paper is concluded in Section 4.

2. PROPOSED ALGORITHM

The proposed algorithm consists of two stages. In the first stage, we compute the frame-level quality measures
of laparoscopic videos. The second stage performs the regression network training on the frame-level quality
measures and provides the prediction of the overall quality.

2.1 Frame-level quality measures

Avcıbas and Sankur1 performed statistical analysis on image quality assessment (IQA) models to classify them
into multiple categories, such as pixel-difference-based measurements, correlation-based measurements, edge-
based measurements, spectral distance measurements, context measurements and measurements based on the
human visual system (HVS). This classification covers a wider spectrum of the off-the-shelf IQA models. These
algorithms collect diverse features of images to estimate the quality. We are motivated by the robust performance
of these IQA models and we utilize these computations to measure the frame-level quality of laparoscopic videos.

2.1.1 Pixel-difference-based IQA measurements

Mean Square Error (MSE), Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio (PSNR) and Modified
Infinity Norm (MIN) are well-known metrics that measure image quality at pixel level. We perform MSE, MAE,
PSNR and MIN computations between the reference-quality and the distorted frames of laparoscopic videos to
measure the pixel-difference-based frame-level quality.
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|Ak(i, j)− Âk(i, j)|, (2)

Q3 =
1

K

K∑
k=1

(20 log10(max(Ak))− 10 log10(Q1)), (3)

Q4 =

√√√√ 1

K

K∑
k=1

1

R

R∑
r=1
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where N and M represent frame dimensions; i and j are spatial indexes; K represents the chrominance channel
(K = 3); max represents the maximum pixel value; R indicates the pixel count threshold; r varies between 0
and R; A and Â indicate reference-quality and distorted laparoscopic video frames, respectively; and Q1, Q2, Q3

and Q4 are frame-level MSE, MAE, PSNR and MIN measurements, respectively.



2.1.2 Correlation-distance-based IQA measurements

Correlation-distance-based algorithms quantify the similarity between the reference and the distorted image. We
compute the structural content score, the mean of the angle difference, the mean of the combined angle magnitude
difference, the normalized cross correlation measurement and the Czenakowski distance between reference and
distorted laparoscopic video frames to represent the frame-level similarity measurements.
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where Q5, Q6, Q7, Q8 and Q9 represent the structural content score, the mean of the angle difference, the mean
of the combined angle magnitude difference, the normalized cross correlation measurement and the Czenakowski
distance of the distorted laparoscopic video frame, respectively.

2.1.3 Spectral-distance-based IQA measurements

Frequency-based distance measures are useful to understand the deviation of the geometric properties between
reference-quality and distorted images. We use spectral phase distortion strength and weighted spectral mag-
nitude and phase distortion strength calculations as frequency-based distortion measures. These measures are
computed from the magnitude and phase responses of the discrete Fourier transform (DFT).
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where u and v indicate frequency coordinates; λ is a weighting factor and it is equal to 2.5× 10−5; ϕ and ϕ̂ are
phase responses estimated from the DFT of the reference and the distorted video frames, respectively; M and
M̂ are magnitude responses estimated from the DFT of the reference and the distorted frames, respectively; Q10

and Q11 are the spectral phase distortion strength and the weighted spectral magnitude and phase distortion
strength of a video frame, respectively.

2.1.4 Context-based IQA measurements

This measurement aims to estimate the amount of information loss of a distorted image. We compute the entropy
score of distorted frames to measure the loss of information of a laparoscopic video.
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where x represents the number of bins and p denotes the normalized histogram counts of a frame.



2.1.5 HVS-based IQA measures

The behavioural response of the HVS can be modeled as a bandpass filter. The transfer function (in polar
coordinates) of a bandpass filter is defined as
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where ρ = (u2 + v2)1/2.

We perform a preprocessing step by computing the aforementioned bandpass filter response of a frame. Then,
we calculate the inverse discrete cosine transform (IDCT) of the DCT with spectral masked bandpass responses
of the reference and distorted frames to measure the error in the bandpass response characteristics.
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where U represents the IDCT of the DCT with the spectral masked bandpass response of a frame, and Q13 and
Q14 represent error measurements, which are estimated by using HVS properties.

2.2 Supervised learning using regression neural network

We compute the aforementioned quality measurements of each frame to form the feature vector of a video frame.

Qz = [Q1z , Q2z , Q3z , . . . , Q14z ], (16)

where z represents the frame sequence of a video.

An earlier work of Appina et al.2 highlighted that the Mean Opinion Score (MOS) of a video highly correlates
with the frame-level perceptual opinion score during short temporal durations. We are motivated by this finding
to use video-level MOS score as the ground truth quality representative of a frame. Therefore, we perform the
regression of the frame-level quality measurements and the video-level MOS scores (P) as its label. The feature
vector of a video V is
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with the corresponding label PV . The video-level feature vector and the associated labels are used to train the
regression neural network to perform supervised learning.

We use a 6-layered hidden neural network architecture to perform the regression on the given input features.
The dimension of hidden layers are 1024, 512, 256, 128, 64 and 32, and these are connected in the feed-forward
model. We use the ReLU activation function and the initial learning rate is fixed to 0.0001. The network
is trained for 450 epochs with the gradient descent along with the Adam optimization algorithm. The MAE
computation is used as a cost function to optimize the network weights and biases. Finally, the regression
network performs the quality prediction of each frame of a video. We compute the average of frame-level quality
prediction scores to estimate the overall quality score of a laparoscopic video.

3. RESULTS AND DISCUSSION

The efficacy of the proposed algorithm is evaluated on the publicly available Laparoscopic video quality (LVQ)
dataset.8 The LVQ dataset consists of 10 reference videos with a resolution of 512× 288. Each video sequence is
10 seconds long and the frame rate is 25 fps. The videos are available in .avi container. There is a total of 200
test stimuli, and the distorted video sequences are affected by a combination of motion blur, defocus blur, smoke,



Table 1: The efficacy of the proposed algorithm in terms of LCC measurements on the LVQ dataset (with expert
subjective scores).

Noise Defocus Blur Motion Blur Uneven Illumination Smoke Overall
PSNR 0.9939 0.8146 0.8226 0.9452 0.9777 0.6853
SSIM3 0.9706 0.7358 0.8827 0.9847 0.9116 0.5732
VIF4 0.9896 0.9806 0.9708 0.9878 0.9808 0.5909

BRISQUE5 0.9761 0.9623 0.4208 0.2973 0.4009 0.4434
NIQE6 0.9741 0.9883 0.7836 0.6655 0.4301 0.4407

VIIDEO7 0.8658 0.3498 0.5136 0.4035 0.4195 0.3744
Proposed algorithm 0.9987 0.9396 0.9673 0.9743 0.9854 0.9454

Table 2: The efficacy of the proposed algorithm in terms of SROCC measurements on the LVQ dataset (with
expert subjective scores).

Noise Defocus Blur Motion Blur Uneven Illumination Smoke Overall
PSNR 0.9579 0.7836 0.7977 0.9530 0.9478 0.6914
SSIM3 0.9435 0.7320 0.8802 0.9580 0.8817 0.5653
VIF4 0.9592 0.9555 0.9376 0.9534 0.9459 0.5642

BRISQUE5 0.9527 0.9355 0.3994 0.2634 0.4355 0.3842
NIQE6 0.9594 0.9443 0.7028 0.5605 0.3382 0.3674

VIIDEO7 0.8822 0.3023 0.3915 0.4281 0.4416 0.3334
Proposed algorithm 0.9701 0.9701 0.9461 0.9286 0.9333 0.9309

noise and uneven illumination. The subjective assessment study involved experts and non-expert subjects, and
the authors published the MOS scores of both groups as quality representatives of the dataset; the data of the
two test subject groups are available separately.

We partitioned the dataset in a 80 : 20 proportion. This means that 80% of the videos is used to train the
neural network and the remaining 20% is used to perform the regression analysis. It is important to emphasize
that the training and the testing sets do not overlap. The network is trained with the frame-level features and
estimates the regression score at frame level. Finally, we compute the average of the frame-level regression scores
to estimate the overall quality score of a laparoscopic video.

We compute the Linear Correlation Coefficient (LCC), the Spearmann Rank Order Correlation Coefficient
(SROCC), and the Root Mean Square Error (RMSE) statistics to indicate the performance of the proposed
algorithm. The LCC represents the linear relationship between predicted scores and the MOS, the SROCC
measures the monotonic relationship between the components and the RMSE measures the error between the
estimates and the MOS scores. These statistics are reported after performing a 4-parameter non-linear logistic
fit.9

Tables 1 and 2 show the efficacy of the proposed algorithm on the LVQ dataset with expert MOS scores.
Tables 3 and 4 show the efficacy of the proposed algorithm on the LVQ dataset with non-expert MOS scores.
From these tables, it is clear that the proposed algorithm correlates well with both expert and non-expert MOS
scores. Also, we compare the proposed algorithm’s performance with off-the-shelf FR and NR quality assessment
models. PSNR, SSIM3 and VIF4 are 2D FR IQA models. BRISQUE5 and NIQE6 are 2D NR IQA models. The
IQA algorithms are applied on each frame and the average score is computed to estimate the final quality score
of the video. VIIDEO7 is a video quality assessment model. From the results, it is clear that the proposed
algorithm shows robust and state-of-the-art performance numbers on the different MOS scores.



Table 3: The efficacy of the proposed algorithm in terms of LCC measurements on the LVQ dataset (with
non-expert subjective scores).

Noise Defocus Blur Motion Blur Uneven Illumination Smoke Overall
PSNR 0.9968 0.8166 0.8199 0.9561 0.9811 0.6054
SSIM3 0.9690 0.7388 0.8861 0.9926 0.9165 0.6123
VIF4 0.9925 0.9764 0.9713 0.9919 0.9853 0.6267

BRISQUE5 0.9803 0.9646 0.4090 0.3142 0.3735 0.4593
NIQE6 0.9783 0.9880 0.7704 0.6618 0.3238 0.4242

VIIDEO7 0.8749 0.3549 0.4998 0.3983 0.4214 0.3842
Proposed algorithm 0.9972 0.9391 0.9639 0.9809 0.9928 0.9401

Table 4: The efficacy of the proposed algorithm in terms of SROCC measurements on the LVQ dataset (with
non-expert subjective scores).

Noise Defocus Blur Motion Blur Uneven Illumination Smoke Overall
PSNR 0.9594 0.7773 0.8163 0.9372 0.9439 0.5775
SSIM3 0.9509 0.7157 0.8941 0.9502 0.8987 0.5914
VIF4 0.9636 0.9417 0.9433 0.9391 0.9316 0.6228

BRISQUE5 0.9571 0.9322 0.3564 0.2980 0.4041 0.4304
NIQE6 0.9640 0.9514 0.6101 0.5416 0.3589 0.3731

VIIDEO7 0.8600 0.3138 0.379 0.3888 0.3866 0.3416
Proposed algorithm 0.9762 0.8982 0.8982 0.9461 0.9000 0.9325

4. CONCLUSION

In this paper, we proposed a full-reference quality assessment algorithm for laparoscopic videos, based on comput-
ing the multiple-image quality measures of a frame. The regression neural network architecture was performed
on frame-level features to predict the distorted video quality. The proposed algorithm was tested on the LVQ
dataset and the results show robust performance with both expert and non-expert MOS scores. It delivered
state-of-the-art performance compared to the other FR and NR image and video quality assessment models. In
the future, we plan to extend these models to propose supervised and unsupervised quality assessment models.
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