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ABSTRACT

In this work, we propose a supervised no-reference (NR) Image Quality Assessment (IQA) model for the objective
evaluation of the perceptual quality of 3D virtual reality (VR) images. To achieve such practical algorithm,
we first study the scene statistics of saliency maps of the individual left and right views of VR images, and
empirically model these statistics with Univariate Generalized Gaussian Distribution (UGGD). We compute the
UGGD model parameters at multi-scale and multi-orient steerable subband decomposition, and introduce these
features as distortion discriminables. This is followed by the computation of the entropy and normalized root
mean square scores of each subband and then these values are utilized as weights to pool the individual view
features. We apply the popular 2D supervised BRISQUE model on the individual views to estimate the overall
spatial quality of VR images. As the last step of the algorithm, the predicted saliency score and the spatial
BRISQUE score are pooled to derive the final quality score of VR images. The performance of the proposed
model is evaluated on the popular LIVE 3D VR IQA dataset. The results indicate robust and competitive
performance against the off-the-shelf 2D full-reference and NR supervised algorithms.
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1. INTRODUCTION

In recent years, the usage of virtual reality (VR) and its applications have increased significantly due to the
launch of various end-user devices, such as HTC-Vive, Oculus Rift and Playstation. Eeden and Chow1 states
that the budget expenditure on VR devices will reach nearly 20 billion US dollars by 2022. With the rapid
development of fast wireless networks and the availability of affordable VR devices, entertainment platforms
like Netflix, Amazon Prime and YouTube now support 360◦video viewing. Unlike 2D images, VR images are
captured by using a 360◦camera equipped with different lenses to cover the entire 360◦of a scene. For example,
Insta-360◦Pro Titan is a specialized camera that can capture 2D and 3D images with eight 200◦lenses and a
resolution of up to 11K. Finally, the captured scenes are stitched together and stored in an equirectangular
projection (ERP) format.

In case of VR, users can view the content in any direction with high resolution. However, the requirements
to store these large contents with different formats and different viewing conditions pose significant challenges
regarding acquisition, storage, transmission and visualization. Due to these challenges, it is necessary to properly
understand the effects of the various types of distortions on the perceptual quality of VR contents.

Quality assessment (QA) is a procedure that can measure the severity of distortion. QA can be classified into
subjective and objective methods. In case of subjective QA, human observers rate the quality based on percep-
tion. One may state that this procedure is hectic and cumbersome due to the involvement of test participants,
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yet these scores serve as the de facto benchmark for objective QA. Objective QA is an automatic procedure that
computes the perceptual quality based on extracted features. It is classified into full-reference (FR), reduced-
reference (RR) and no-reference (NR) metrics, based on the availability of the distortion-free reference content.
Evidently, FR methods utilize the complete reference content, RR methods consider a few of its features and
NR methods do not require any information at all.

In this paper, we propose a supervised NR QA algorithm for VR images. Our work is based on estimating the
scene statistics of saliency regions and spatial Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)
scores.

The rest of the paper is organized as follows: Section 2 provides a brief overview of the related VR image QA
algorithms. Section 3 introduces the proposed method. Section 4 presents the evaluation results and discusses
the obtained data. Section 5 concludes the paper and highlights potential future continuations of the work.

2. RELATED WORK

The generation of VR images involves several processing steps – such as sampling, quantization and post-
acquisition – and each stage in the processing chain affects the perceptual quality of the source-generated content.
Several FR and NR image QA (IQA) models2–9 are performed on ERP-projected views to compute the quality
of VR images. However, these models may not offer sufficient performance due to the nonlinear characteristics
of VR scenes. Yu et al.10 proposed an FR IQA model to evaluate the coding efficiency by considering the
nonlinear characteristics of VR scenes. The model computes the motion trajectories of a viewport from the head-
mounted display to estimate the sphere-to-plane image projection mappings. Furthermore, the viewport quality
is represented using average Peak-Signal-to-Noise Ratio (PSNR), and thus, this algorithm is called Spherical
PSNR (S-PSNR).

Sun et al.11 proposed an FR IQA model by computing the pixel error values using the PSNR scores of
VR images. The model estimates spherical area-based weights by using the Craster parabolic projection (CPP)
model. The final quality of VR images is computed by calculating the product between PSNR values and
spherical area weights. The algorithm is called the CPP-PSNR VR IQA model. Zakharchenko et al.12 proposed
an FR IQA model for VR images by computing the average PSNR scores of the CPP projection plane based on
the field of view (FoV).

Xu et al.13 proposed multiple FR IQA models based on computing the content-based and the non-content-
based PSNR scores. These models calculate a distance from the center to other regions to estimate the weights.
Zhou et al.14 introduced a VR IQA model by computing the average structural similarity scores between test
and reference images, in which pixels are weighted based on the distortion level in the corresponding projection
area. The authors named this model the Weighted to Spherically-uniform SSIM (WS-SSIM).

Li et al.15 proposed FR IQA models based on computing the local index and global index scores between
test and reference images. They compute the local index score from the attentive and stitching regions, and the
global index score is measured by calculating the information loss during visual experience assessment. The work
of Chen et al.16 presents a neural network architecture model to estimate the quality of VR images. The authors
trained network architecture using eye and head movement weight maps to understand the human perceptual
behavior while perceiving the VR scene. Kim et al.17 introduced an adversarial network learning approach to
evaluate the quality of VR images. They used dataset images and corresponding difference mean opinion scores
(DMOS) to train the generator and discriminator networks. They encoded the visual and positional features to
estimate the final quality scores of VR images.

It is important to point out that none of the above VR IQA algorithms utilize scene statistics of the saliency
of VR scenes. In this paper, we propose an NR IQA model for VR images based on performing the scene
statistical analysis on saliency maps of VR images combined with a spatial estimate. Our algorithm is called
Saliency-Based Image Quality Estimator for VR scenes (SBIQE-VR), the mechanisms of which are presented
in the following section.



3. PROPOSED METHOD

The proposed framework consists of five stages. In the first stage, we decompose six faces of left and right
VR views by using the cube map projection (CMP) format. The second stage performs the computation of
saliency maps of CMP decomposition, followed by steerable pyramid decomposition. The third stage involves
the computation of quality-aware features. The fourth stage performs the saliency-based quality prediction and
the computation of the spatial quality score. In the fifth and final stage, we pool spatial and saliency quality
prediction scores to estimate the quality of VR images.

3.1 Cube map projection

Several works of the scientific literature18,19 perform human perceptual analysis on VR images to explore the FoV
selection of observers. These works conclude that the FoV of an observer is highly present at the equator/front
region. In order to achieve this, the ERP projection model is performed on the spherical VR image to convert
it onto the 2D image plane. However, the ERP projection model is highly prone to geometric distortions and
border artefacts. Hence, we perform CMP projection on ERP-projected images to overcome these distortions.
We consider the CMP projection model based on the trade-off between accuracy and complexity. We generate
six faces of each ERP image: front, back, top, bottom, left and right. Figure 1a shows the ERP projection map
of the left view of the well-known ‘Cheese cake’ VR image. Figures 1b, 1c, 1d, 1e, 1f and 1g show the back,
bottom, front, left, right and top faces of a CMP projection of the corresponding ERP-projected VR image,
respectively. Finally, we generate six faces of each left and right views of stereoscopic VR images.

(a) ERP projection. (b) Back face. (c) Bottom face.

(d) Front face. (e) Left face. (f) Right face. (g) Top face.

Figure 1: Illustration of the ERP projection of the left view of the ‘Cheese cake’ VR image and corresponding
back face, bottom face, front face, left face, right face and top face of the CMP projection.

3.2 Saliency map generation

Yoshida et al.20 and Veale et al.21 performed psycho-visual experiments on the Macaque visual cortex to
explore the prominent region selectivity of a perceptual scene in the middle temporal (MT) visual area. They
concluded that the neurons located in V1 are highly responsible for salient feature computation of perceptual
scenes. Furthermore, they stated that the saliency map contains the variation of stimulus strength of prominent
regions of images. We are motivated from these aforementioned psycho-visual studies, and thus, we generated
a stimulus strength map by computing the saliency of a given image. Specifically, we performed the model of
Achanta et al.22 to compute the saliency map. We chose this algorithm based on the accuracy in representing
the wider perceptual strengths. Figures 2a, 2b, 2c, 2d, 2e and 2f show the saliency map of each face of the CMP
projection of the left view of the ‘Cheese cake’ VR image.



(a) Back face. (b) Bottom face. (c) Front face.

(d) Left face. (e) Right face. (f) Top face.

Figure 2: Illustration of saliency map of each face of the CMP projection of the left view of the ‘Cheese cake’
VR image.

In our work, we perform multiple-scale and multiple-orient steerable pyramid decomposition23 on the saliency
map of each face of VR images. The bandpass filter response in a steerable subband decomposition can mimic
the properties of the human visual system (HVS). We are motivated by the earlier work of Appina et al.24 to
consider three scales (1, 2 and 3) and six orientation levels (0◦, 30◦, 60◦, 90◦, 120◦and 150◦) of steerable pyramid
decomposition.

3.3 Quality-aware features

Consider a random vector (x ∈ RN ) and the corresponding UGGD distribution with zero mean is given by

fX(x;α, β) =
α

2βΓ
(
1
α

)exp(−(
|x|
β

))α, (1)

where α and β are fitting model coefficients and Γ (.) is a gamma function. We compute the UGGD model
parameters at 3 scales and 6 orientations of steerable pyramid decomposition.

Figures 3a and 3b show the saliency maps of the front face of reference-quality version and the Gaussian-
distorted version of the left view of the stereoscopic ‘Cheese cake’ VR image, respectively. The saliency maps
clearly show the variation with respect to the type of distortion. Figure 3c shows the log histograms of the
saliency maps of different Gaussian-distorted versions of the corresponding reference image. It is clear that the
shape and structure of the histograms vary with the type and level of test stimulus strength. These findings
motivated us to use UGGD distribution to model the subband coefficients. The aforementioned histograms are
computed at the first scale and at 0◦orientation of the steerable pyramid decomposition.

Figure 3d shows the variation of the UGGD features (α and β) of the reference-quality and the Gaussian-
distorted versions of the saliency map of the front face of the ‘Cheese cake’ VR image. From the plot, it
is apparent that UGGD features accurately capture the perceptual quality variation of VR images. These
observations motivated us to use α and β features as quality discriminate parameters. The features shown in
the plot are computed at the first scale and six orientations of the steerable pyramid decomposition.



(a) Reference-quality version. (b) Gaussian-distorted version.

(c) Log histograms. (d) (α, β) distribution.

Figure 3: Illustration of the saliency map of the front face of the reference-quality and the Gaussian-distorted
versions of the left view of the stereoscopic ‘Cheese cake’ VR image. Visualization of the variations of log
histograms and UGGD features (α and β) for the reference-quality and the Gaussian-distorted versions.

3.4 Prediction of saliency based quality and spatial quality

As stated earlier, we perform steerable pyramid decomposition at three scales and six orientations on the saliency
map of each face of the left and right views of stereoscopic VR images. We compute UGGD model parameters
at each subband of the individual views of a VR image and they are denoted as

f lsαβ = [αlsi;β
l
si], (2)

frsαβ = [αrsi;β
r
si], (3)

where i is the subband level (1 ≤ i ≤ 18), s represents saliency map of each face, l and r indicate left and right
views, respectively, and f lsαβ and frsαβ are each face-level feature sets of the aforementioned left and right views,
respectively.

We compute the entropy and the normalized root mean square values of each subband to pool the UGGD
features of each saliency map of individual views of VR scenes.

f lαβ =

6∑
s=1

f lsαβ × entlsji × rmslsji, (4)

frαβ =

6∑
s=1

frsαβ × entrsji × rmsrsji, (5)



where ent represents the entropy score and it measures the average amount of information present in the subband.
rms indicates the normalized root mean square value and it presents the band strength of a subband. We are
motivated by previous works25,26 to consider these scores as pooling weights in the proposed algorithm. f lαβ and
frαβ indicate the final feature vector set of the left and right views.

We compute f lαβ and frαβ feature vectors of reference-quality VR images and create an individual feature
vector set of reference-quality images of a dataset.

f l
Q

αβ = [f l
1

α , f
l2

α , . . . f
lq

α ]; 1 ≤ q ≤ Q, (6)

fr
Q
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1

α , f
r2

α , . . . f
rq

α ]; 1 ≤ q ≤ Q, (7)

where q represents the reference-quality image sequence and Q indicates the total number of such VR images in

the dataset. f l
Q

αβ and fr
Q

αβ are the final feature vector sets of the left and right views of the VR image dataset.
We perform Multivariate Gaussian (MVG) distribution on the individual feature vector sets and estimate the

mean (µl
Q

αβ , µr
Q

αβ) and covariance (Σl
Q

αβ , Σr
Q

αβ) of the corresponding feature vector sets of f l
Q

αβ and fr
Q

αβ .

Similarly to the reference-quality VR image set, we compute UGGD model parameters (f l
d

αβ , fr
d

αβ ; d indicates
a distorted image) of individual left and right views of a stereoscopic VR test image. Furthermore, we estimate

the mean (µl
d

αβ , µr
d

αβ) and covariance (Σl
d

αβ , Σr
d

αβ) of the corresponding left and right feature vector sets of the
test image.

We compute Mahalanobis distance measure between the estimated mean and covariance of the individual
views of the reference and test features to measure the quality score of the left and right views.
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where Tl and Tr represent the quality prediction of the left and right views based on saliency features.

Finally, we compute the average between Tl and Tr scores to estimate the overall saliency-based quality
prediction of a stereoscopic VR test image.

T =
Tl + Tr

2
, (10)

where T represents the overall saliency-based quality prediction score.

We estimate the spatial quality score by evaluating the BRISQUE model7 on ERP projections of the left and
right views.

B =
BRISQUE(l) + BRISQUE(r)

2
, (11)

where B represents the overall spatial quality score of a VR image.

3.5 Overall quality score:

We compute the product between the overall saliency quality score (T ) and the spatial quality score (B) to
derive the overall quality score of a VR image.

SBIQE-VR = T ×B, (12)

where SBIQE-VR represents overall quality prediction of a VR image.



4. RESULTS AND DISCUSSION

The performance of the proposed SBIQE-VR model was tested on the LIVE 3D VR image dataset.27 The dataset
consists of 15 reference-quality and 450 distorted images. The test stimuli are a combination of Gaussian blur,
Gaussian noise, downsampling, stitching, VP9 loss and H.265 compression. There are five levels of distortion
strength applied to the left and right views to create the dataset. The DMOS scores are published as the quality
indicators of the dataset.

Table 1: Performance evaluation of the proposed algorithm in terms of LCC scores on the LIVE 3D VR image
dataset.27

Algorithm Gaussian Blur Gaussian Noise Downsampling Stitched VP9 H.265
PSNR28 0.8707 0.9178 0.8448 0.7297 0.5034 0.7478
WS-PSNR11 0.8726 0.9205 0.8535 0.7801 0.6526 0.8401
SSIM2 0.8606 0.9360 0.8343 0.4810 0.7227 0.7433
MS-SSIM3 0.9076 0.9329 0.8865 0.6945 0.8288 0.9169
WS-SSIM14 0.8761 0.9416 0.8630 0.5675 0.7358 0.7876
FSIM29 0.9488 0.9379 0.9096 0.8046 0.8875 0.9375
VSI30 0.9465 0.9311 0.9021 0.7216 0.8634 0.9404
GMSD31 0.9409 0.9289 0.9088 0.7653 0.8622 0.9335
MDSI32 0.9505 0.9369 0.9221 0.7983 0.8777 0.9339
NIQE8 0.9479 0.9099 0.9192 0.5093 0.4774 0.6499

B7 0.8912 0.9120 0.2413 0.3562 0.4756 0.5445
T 0.5284 0.2690 0.2804 0.1752 0.5067 0.3681
SBIQE-VR 0.9036 0.9237 0.5271 0.4355 0.5499 0.5480

Table 2: Performance evaluation of the proposed algorithm in terms of SROCC scores on the LIVE 3D VR image
dataset.27

Algorithm Gaussian Blur Gaussian Noise Downsampling Stitched VP9 H.265
PSNR28 0.7964 0.8964 0.8179 0.7929 0.5036 0.7750
WS-PSNR11 0.8071 0.8893 0.8321 0.8000 0.6393 0.8571
SSIM2 0.7750 0.9107 0.8286 0.5071 0.7607 0.7821
MS-SSIM3 0.8536 0.9143 0.8000 0.7214 0.8107 0.9250
WS-SSIM14 0.7964 0.9143 0.8571 0.5783 0.7500 0.8179
FSIM29 0.9179 0.9143 0.7893 0.8179 0.8821 0.9357
VSI30 0.9143 0.9143 0.7964 0.7964 0.8571 0.9429
GMSD31 0.9000 0.9071 0.8214 0.7812 0.8429 0.9321
MDSI32 0.9179 0.9179 0.7929 0.8143 0.8679 0.9429
NIQE8 0.9321 0.8929 0.8821 0.1107 0.5411 0.6786

B7 0.8291 0.9171 0.2037 0.3275 0.4431 0.5407
T 0.4902 0.2124 0.2777 0.1355 0.5012 0.3927
SBIQE-VR 0.8221 0.9162 0.5599 0.4239 0.5299 0.5539

We compute Linear Correlation Coefficient (LCC), Spearman Rank Order Linear Correlation Coefficient
(SROCC) and Root Mean Square Error (RMSE) statistics to indicate the performance of the proposed algorithm.
LCC represents the linear relationship between predicted scores and DMOS. SROCC measures the monotonic
relationship between the components and RMSE measures an error between estimates and DMOS scores. These
statistics are reported after performing a 4-parameter non-linear logistic fit.33

f(ζ) =
τ1 − τ2

1 + exp( ζ−τ3|τ4| )
+ τ2, (13)

where ζ denotes the raw objective score, and τ1, τ2, τ3 and τ4 are the free parameters selected to provide the best
fit of the predicted scores to the DMOS values.



Table 3: Performance evaluation of the proposed algorithm in terms of RMSE scores on the LIVE 3D VR image
dataset.27

Algorithm Gaussian Blur Gaussian Noise Downsampling Stitched VP9 H.265
PSNR28 7.079 4.1236 7.7767 5.9731 8.0565 8.9386
WS-PSNR11 6.7828 4.2306 7.6926 5.4808 7.5422 7.4981
SSIM2 6.4503 3.7293 7.9927 7.8591 6.9617 9.1335
MS-SSIM3 5.5060 3.9153 6.6031 6.4280 5.4026 5.5419
WS-SSIM14 6.1632 3.6075 7.4096 7.5257 6.8337 8.2770
FSIM29 4.1814 3.5923 5.7645 5.2133 4.6247 5.0247
VSI30 4.3320 3.7436 6.0238 6.0504 5.1298 4.7776
GMSD31 4.5461 3.8439 6.1944 5.6549 5.1752 4.9873
MDSI32 4.3169 3.5571 5.6266 5.3215 4.7613 4.7147
NIQE8 4.3405 4.5707 6.0460 7.9863 8.1521 10.3686

B7 5.2258 3.7399 12.914 7.1784 7.4863 9.6573
T 11.672 8.9890 12.7739 7.6658 7.3369 10.705
SBIQE-VR 4.9347 3.4937 11.0260 7.6529 8.5025 9.5929

Tables 1, 2 and 3 show the performance evaluation of the proposed algorithm on the LIVE 3D VR IQA
image dataset. We compare the proposed algorithm performance to well-known 2D FR and NR IQA models.
PSNR, WS-PSNR, SSIM, MS-SSIM, WS-SSIM, VSI, GMSD and MDSI are 2D FR IQA models, while NIQE is
an NR IQA model. These models were applied to the ERP maps of the individual views to estimate the quality
of VR images. From the results, it is clear that the proposed NR IQA model shows consistent and competitive
performance against the state-of-the-art 2D FR and NR algorithms on all distortion types of the LIVE 3D VR
image dataset.

5. CONCLUSION

In this paper, we proposed a supervised NR VR IQA algorithm based on modeling the scene statistics of saliency
map of VR scenes. We estimate the UGGD model parameters of saliency map subband coefficients and show
that these features are distortion discriminable. We use the supervised BRISQUE model to estimate the spatial
quality of VR images. Finally, the saliency-based quality and spatial quality were pooled to estimate the overall
quality of VR images. In the future, we plan to extend these ideas to an unsupervised quality assessment
algorithm.
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