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Abstract: The refraction of an oblique shock wave on a tangential discontinuity dividing two gas
flows with different properties is considered. It is shown that its partial reflection occurs with the
exception of the geometrical diffraction of an oblique shock. Another oblique shock, expansion wave
or weak discontinuity that coincides with the Mach line can act as a reflected disturbance. This study
focuses on the relationships that define the type of reflected discontinuity and its parameters. The
domains of shock wave configurations with various types of reflected discontinuities, including
characteristic refraction and refraction patterns with a reflected shock and a reflected rarefaction
wave, are analyzed. The domains of existence of various shock wave structures with two types of
reflected disturbance, and the boundaries between them, are defined. The domains of parameters
with one or two solutions exist for the characteristic refraction. Each domain is mapped by the type
of refraction with regard to the Mach number, the ratio of the specific heat capacities of the two flows
and the intensity of a refracted oblique shock wave. The conditions of the regular refraction and the
Mach refraction are formulated, and the boundaries between the two refraction types are defined
for various types of gases. Refraction phenomena in various engineering problems (hydrocarbon
gaseous fuel and its combustion products, diatomic gas, fuel mixture of oxygen and hydrogen, etc.)
are discussed. The result can be applied to the modeling of the shock wave processes that occur
in supersonic intakes and in rotating and stationary detonation engines. The solutions derived
can be used by other researchers to check the quality of numerical methods and the correctness of
experimental results.

Keywords: shock wave; shock wave structure; refraction; tangential discontinuity; regular refraction;
Mach refraction; domain of existence

1. Introduction

The processes by which a gas dynamic system with parameters f 1 transforms into a
system with parameters f 2 are called shock wave processes, where f 1 and f 2 are some gas
dynamic variables before and behind the gas dynamic discontinuity.

Gas dynamic waves and discontinuities can be divided into two large groups. The first
group includes normal waves and discontinuities through which the gas flows, and they
are referred to as shock wave processes. The second group includes contact and tangential
discontinuities, through the surfaces of which the gas does not flow, and they cannot be
considered shock wave processes. A tangential discontinuity is also called a sliding line
because it can separate the flows of various gases with different densities, velocities and
temperatures. The static pressure on opposite sides of the tangential discontinuity is always
the same. The tangential discontinuity is usually denoted by the symbol τ. It appears in
shock wave structures formed as a result of the interaction of shock waves with each other
and with solid walls. The reason for the formation of tangential discontinuity lies in the
fact that at different shock waves, included in the shock wave structures, the value of the
total pressure loss and, accordingly, the flow rate is different.
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The theory of gas dynamic discontinuities consists of two large sections: the theory of
the interference (intersections, interactions) of discontinuities and waves with each other,
and the theory of their refraction (refraction) on contact and tangential discontinuities [1].
Contact and tangential discontinuities cannot intersect with each other.

The problem of refraction of an oblique shock wave on a tangential discontinuity is
consistently presented in [2]. There are cases of regular refraction (RRefr) [3] and Mach
(irregular) refraction (MRefr) [4]. In the first case, the flow is always supersonic. In the
second case, there are regions where the Mach number is less than unity (M < 1).

The theory of regular refraction is developed in [5]. A number of studies have been
devoted to the experimental determination of both regular and irregular refraction [6–8].
An attempt to systematize the flow patterns arising during refraction, both regular and
Mach, is made in [4,9]. A similar problem is solved in a non-stationary formulation in [10].

The interaction of an oblique shock wave with the interface between the media leads
to the development of complex non-stationary shock wave configurations [6–8,11]. The
passage of a shock wave through a medium containing gas bubbles or liquid droplets leads
to curvature of the wave front, shock wave interactions and the development of multiple
vortices.

A theoretical analysis of the emerging shock wave configurations using shock poles
is given in [12]. The boundaries of the regions of existence of refraction modes with a
rarefaction wave and the region of existence of refraction with a reflected shock wave,
with a change in the angle of inclination of the contact discontinuity, are determined. The
generation of vorticity and the evolution of vortex structures are discussed, as well as the
grid convergence of the solution [13]. An exact solution to the problem of refraction of a
plane shock wave at a contact discontinuity (regular case) is given, and the suppression
of the Richtmyer–Meshkov instability upon application of a magnetic field is discussed
in [14,15]. Exact solutions of the problem are given in both one-dimensional and two-
dimensional cases of regular refraction of a shock wave at a contact discontinuity.

Various modes of shock wave refraction using experimental and numerical methods
are studied in [3]. Numerical calculations are carried out on the basis of a TVD scheme of
the second order of accuracy and an approximate method for solving the Riemann problem.
The calculated data are in good agreement with the results of measurements and the results
of theoretical analysis, with the exception of the high Mach numbers of the incident shock
wave.

Two-dimensional calculations based on the Godunov-type scheme of the second order
of accuracy are carried out in [16]. The density discontinuity is oriented at an angle of
75 degrees to the horizontal, and the Mach number of the shock wave is 1.2. The MUSCL
scheme is used in [17] to calculate the flow structure at different angles of inclination of the
discontinuity. Various difference schemes are compared in [18].

A numerical study of the Richtmyer–Meshkov instability in the interaction of a strong
shock wave with a discontinuity in the density of a rectilinear and sinusoidal shape is
carried out in [19]. The refraction of a shock wave upon its interaction with a near-wall
layer of a heated gas is investigated in [20]. A wide range of issues related to the interaction
of shock waves with contact discontinuities and the formation of the Richtmyer–Meshkov
instability are discussed in [21]. The refraction of a spherical shock wave at the air–water
interface is considered in [22]. The results of calculations using the through-counting
scheme and using the level function method are compared, which makes it possible to
single out the contact gap and trace its evolution over time. The application of discontinuity
detection schemes as applied to the refraction of shock waves at the interfaces between
media is discussed in [23,24].

This study exploits notations and theoretical approaches developed in previous works.
For example, theoretical solutions related to the interaction of an oblique shock wave and a
Prandtl–Meyer expansion or compression wave were derived in [25]. Numerical simulation
of the interaction of shock waves in steady viscous flows was studied in [26] for gas with
a low ratio of specific heat capacities. Viscous effects on shock wave configuration for



Fluids 2021, 6, 301 3 of 24

different Reynolds numbers and the non-uniqueness of numerical solutions are discussed.
Results of the numerical simulation of steady axisymmetric supersonic flows in convergent
conical nozzles and overexpanded jets are presented in [27]. The formation of triple-
shock configurations is analogous to the configurations known for the steady inviscid
two-dimensional flows where the irregular reflection of a wedge-generated shock from a
wall with Mach stem formation occurs. In the four-wave flow pattern, the curvatures of
the tangential discontinuity and the Mach front at the triple point are finite [28]. When the
three-wave flow pattern is realized, the curvatures of the tangential discontinuity and both
wave fronts at the triple point are infinite.

For Mach reflection in steady supersonic flow, the slip line and reflected shock wave
from the triple point are disturbed by secondary Mach waves generated over the slip line
and by the expansion fan from the rear wedge corner. Analytical expressions for the shape
of the curved slip line and reflected shock wave are derived in [29]. An analytical model
for the configuration of Mach reflection due to the interaction of two-dimensional steady
supersonic flow over asymmetric wedges is presented in [30]. The asymmetrical Mach
reflection configuration is studied analytically in [31]. The study uses an asymmetrical
model extended from a recent symmetrical model and accounts for the new features related
to asymmetry of the two wedges. The accuracy of the model is checked by numerical
simulation.

The stability of the nonlinear wave structure caused by the interaction of an incident
shock with an interface separating two different media was studied in [32]. The reflection
and refraction problem was reduced to a free boundary value problem, where the unknown
reflected shock and refracted shock are free boundaries, and the deflected interface is to be
determined. The results obtained indicate that the wave structure and the flow field for
the reflection and refraction problem in this case are conditionally stable. The refraction
of shocks on the interface for 2D steady compressible flow is discussed in [33]. The 2D
steady potential flow equation is employed to describe the motion of the fluid. Supercritical
conditions are described theoretically and reproduced numerically using highly resolved
inviscid simulation in [34].

Shock refraction induces a package of reflected shock waves and inclines the air intake
flow in a non-optimal direction. This leads to an off-rated operation of the air intake system
and, sometimes, to its breakdown. There are currently many research papers on CFD.
Significant progress has already been made in the simulation of complex compressible
flows. The major difficulties that arise are linked to boundary conditions at the fluid and
solid interface, most significantly when the flow interfering with a solid is supersonic. The
study [11], along with the works [6,7], are considered reference experimental works on
refraction. There are no other studies in which experiments were carried out with such
thoroughness.

Although many theoretical, experimental and computational studies have been pub-
lished in recent years, research on different types of refraction is far from complete. In
this study, the domains of existence of various shock wave structures with two types of
reflected disturbance, and the boundaries between them, are defined. The conditions of the
regular refraction and the Mach refraction are formulated, and the boundaries between
these two refraction types are defined for various types of gases.

This study presents analytical solutions that can be used by other researchers to
check the quality of numerical methods and the correctness of experimental results. The
Busemann method of analysis in the plane of heart-shaped curves and a computational
solution of dynamic compatibility equations for conditions on tangential discontinuity are
applied. The boundaries between the regular and Mach refractions are found. Domain
charts, drawn for characteristic and two other types of regular refraction patterns, support
the regular refraction case. The calculations are carried out for Mach numbers M = 1–5 and
various combinations of ratios of specific heat capacities of two flows: 1.67 (monatomic gas),
1.4 (air), 1.11 (hydrocarbon fuel and air mixture), 1.25 (combustion products). Refraction
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phenomena in various engineering problems (hydrocarbon gaseous fuel and its combustion
products, diatomic gas, fuel mixture of oxygen and hydrogen, etc.) are discussed.

The paper is organized as follows. The brief theory of shock wave is considered
in Section 2. This section allows us to introduce notations that are useful for further
considerations and to present the main equations in compact form. Regular refraction and
characteristic refraction are discussed in Sections 3 and 4. The domains of existence of the
theoretical solution can be found in Section 5. Conclusions are drawn in Section 6. The
domains of existence of various configurations are given in Appendix A for various Mach
numbers and ratios of specific heat capacities.

2. A Brief Theory of an Oblique Shock Wave

An oblique shock wave in a supersonic flow is a gas dynamic discontinuity (stationary
shock wave) located at an angle to the incident flow. A shock located at an angle σ
compresses the incoming flow and orientates it at a certain angle β (Figure 1). The angle β
is taken with a plus sign if it is plotted counterclockwise from the free stream velocity vector
(such a shock is referred to as left-handed), and with a minus sign if it is plotted clockwise
(such a shock is referred to as right-handed). An oblique shock is characterized by a static
pressure ratio J = p2/p1 (shock intensity). Subscript 1 corresponds to flow quantities before
shock, and subscript 2 corresponds to flow quantities behind shock.
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Figure 1. Oblique shock wave.

Oblique shocks are reflected from the walls, intersect with other shock waves and
refract at tangential discontinuities. If there are many shock waves in the flow, they are
usually numbered and the shock direction indicated with arrows—for example,

→
σ1 or

→
σ5.

Left-handed shocks are indicated by an arrow pointing to the left, and right-handed shocks
are indicated by an arrow pointing to the right. The quantities behind the corresponding
shock are indicated by a number. For example, the quantities behind the shock are denoted
by M1 and p1, and the flow quantities behind the shock are denoted by M2 and p2.

The mass balance, momentum balance and energy balance equations can be written
in the following form:

Continuity equation
[ρun] = ρ̂ûn − ρun = 0. (1)

Momentum equation in normal direction[
p + ρu2

n

]
= 0. (2)

Momentum equation in tangential direction

[ρunut] = 0. (3)

Energy equation
[ρunh0] = 0. (4)
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Here, un and ut are the projections of the velocity vector onto the directions normal to
the discontinuity plane and tangential to it (Figure 1).

Equation (2) directly relates the change in pressure p and dynamic pressure ρu2 on
a normal shock when the angle of inclination of the shock is σ = 90◦. Using the Mach
number M and the expression for the speed of sound a2 = γp/ρ (γ is the adiabatic index,
γ = cp/cv, cp is the specific heat capacity at constant pressure, cv is the specific heat capacity
at constant volume), and also by expanding the velocity vector of the incoming flow
into the components un and ut. Taking into account the fact that u1t = u2t, after simple
transformations from (1) and (3), one can obtain an equation that relates the intensity of
the shock to the angle of its inclination:

Jσ = (1 + ε)M2 sin2 σ− ε. (5)

The relation between angles β and σ takes the form

tgβ =
M2 sin2 σ− 1

1
1−εM2 − (M2 sin2 σ− 1)

ctgσ. (6)

Here, ε = (γ− 1)/(γ + 1). This is the limit of the ratio of densities on the jump as
J→∞.

Equations (5) and (6) for a given M link J, β and σ. These equations are referred to
as dynamic compatibility conditions on the oblique shock wave. These equations for a
given freestream Mach number define a closed curve (heart-shaped curve) as shown in
Figure 2. Since each M number has its own curve, shock polars are also called isomachs. It
is convenient that the polar begins at the origin of coordinates [0, 0]; therefore, it is usually
constructed in the variables (lnJ, β).
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3. Regular Refraction

The scheme of regular refraction is shown in Figure 3, where σ1 is the incident shock
wave, σ2 is the refracted shockwave,ω3 is the reflected rarefaction wave, σ3 is the reflected
shockwave, ν3 is the reflected weak discontinuity, τ is the tangential discontinuity, ←
is the left-moving discontinuity,→ is the right-moving discontinuity, T is the refraction
point, and M is the Mach number. The subscript + denotes the flow quantities in original
flow above τ, and subscript—denotes the flow quantities in the original flow under τ. For
example, M+ and M− denote Mach numbers in the relevant flow regions (above and below
tangential discontinuity).
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Refraction of the shock wave σ1 on the tangential discontinuity leads to an increase
(Figure 3a) or decrease (Figure 3b) in its inclination angle. In the particular case in which the
reflected discontinuity is a discontinuous characteristic, only the curvature of the incident
shock wave changes. This refraction is called characteristic.

The equation of regular refraction is written as

→
σ1 + τ→


→
ω3 + τ+

→
σ2,

←
σ3 + τ+

→
σ2,

→
σ2 + τ.

(7)

The first equation corresponds to refraction with a reflected rarefaction wave (Figure
3a), the second equation corresponds to refraction with a reflected shock wave (Figure 3b),
and the third equation corresponds to characteristic refraction (Figure 3c). Three types of
regular refraction on a shock polar are presented in Figure 4.
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To solve Equation (7), the conditions of dynamic compatibility are used, written in the
form of the equality of pressures p and the inclination angles of the velocity vector at the
tangential discontinuity behind the point T. These conditions are written as{

ϑ3 = ϑ2,
p3 = p2.

. (8)

Subscript 2 denotes flow quantities behind the refracted shock wave, and subscript 3
denotes flow quantities behind the reflected discontinuity (Figure 3).
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A partial case of regular refraction is characteristic refraction (Figure 3c), when the
polar − and polar + intersect each other (Figure 4c). Since the reflected discontinuity is
a discontinuous characteristic (weak discontinuity of the second order), the slope of the
shock σ1 does not change. Then, the conditions of dynamic compatibility on τ are written
in the form of the equality of the angles of flow turn:

βσ(γ−, M−, Jc) = βσ(γ+, M+, J). (9)

The flow turn angle at the shock is expressed by the formula

βσ = arctan

(√
Jm − J
J + ε

(1 + ε)(J − 1)
Jm + ε+ (1− ε)(J + 1)

)
. (10)

Here, γ is the ratio of specific heat capacities at constant pressure and constant volume,
and ε = (γ − 1)/(γ + 1). The maximum intensity of the shock wave is Jm = (1 + ε)M2 − ε.

For the case when a reflected discontinuity is a shock wave, an equation similar to
Equation (9) is written in the form

βσ(γ−, M−, J1)− βσ
(

γ−,
^

M1, J2/J1

)
= βσ(γ+, M+, J2). (11)

Subscripts 1 and 2 denote relevant shock waves (Figure 3b) and the flow quantities
behind them, and subscript ˆ denotes the flow quantities behind a shock wave.

The Mach number behind the incident shock in Equation (11) is found from the
relation

^
M1 =

√
M2
− − (1− E)(J1 + 1)

EJ1
, E = (1 + εJ1)(J1 + ε). (12)

For the cases shown in Figures 3a and 4a, when the reflected discontinuity is a
rarefaction wave, the conditions of dynamic compatibility take the form

βσ(γ−, M−, J1)− βσ
(

γ−,
^

M1, J2/J1

)
= βσ(γ+, M+, J2),

βω = ω(Mω)−ω(M), Mω =

√((
1 + ε(M2 − 1)

)
J−

2ε
1+ε − 1 + ε

)
/ε,

ω(M) = arctan
(√

ε
(
M2 − 1

))
− arctan

(√
M2 − 1

)
.

(13)

In Equation (13), for Mω, J2/J1 is substituted for J, and
^

M1 is substituted for M. Then,

the Prandtl–Mayer functionω(M) is found for Mω and
^

M1.

4. Characteristic Refraction

In different technical problems, where there is refraction on the mixing layer or the in-
terface between two media, different types of reflected discontinuities are preferable. Thus,
with a reflected shock wave, the initial shock is enhanced, which is good for supersonic air
intakes and wave compressors but not good in cases where a shock wave attenuation is
required [35,36]. If it is required to protect a certain device from the impact of a shock wave,
then refraction with a reflected rarefaction wave is preferable. Characteristic refraction
separates these two cases.

The characteristic refraction corresponds to the intersection of shock polar J(M+) and
shock polar J(M−), which is realized at a strictly defined intensity of the initial oblique jump
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Jc = Jc(M+, M–, γ+, γ–) at which Equation (9) is satisfied. The condition for the equality of
the intensities of the shocks Jc(M+, γ+) = Jc(M–, γ–) reduces to the cubic equation

3

∑
n=0

Aizn = 0, (14)

where

z = Jc − 1

A3 =
γ+M2

+
1+ε −

γM2
−

1+ε1

A2 = (γ− − γ+)M2
−M2

+ −
(
M2

+ −M2
−
)
+
[
2
(

1
1+ε− + 1

1+ε+

)
− γ+M2

++γ−M2
−

(1+ε−)(1+ε+)

](
γ+M2

+ − γ−M2
−
)

Γ− =
γ−M2

−√
M2
−−1

Γ+ =
γ+M2

+√
M2

+−1
A0 =

(
M2
− − 1

)(
M2

+ − 1
)(

Γ2
+ − Γ2

−
)

A1 = 2
(
γ+M2

+ − γ−M2
−
)[

1−
(

1
1+ε− + 1

1+ε+

)(
γ−M2

− + γ+M2
+

)
+ M2

−M2
+

[
γ+M2

+
1−ε+ −

γ−M2
−

1−ε− + 2(γ− − γ+)
]]

If the same gas flows on both sides of τ, then γ+ = γ–, ε+ = ε–, Γ+ = Γ–, and Equation
(8) is simplified:

A3 = γ(γ + 1)
(
M2

+ −M2
−
)
;

A2 = γ
(

γ+1
2

)2(
M2

+ −M2
−
)[

M2
+ −M2

− − 4− 2γ+1
(γ+1)2

]
;

A1 = γ3(M2
+ −M2

−
)[

4− (γ + 1)
(
M2

+M2
− − 2M2

+ −M2
−
)]

;
A0 = 2γ4(M2

+ −M2
−
)(

M2
+M2

− −M2
+ −M2

−
)
.

(15)

Substituting (15) into (14) and excluding the solution z = −(1 − ε) that has no physical
meaning, the unique solution is

Jc = 1 +
1
2

M2
+ + M2

−
1− ε − 2−

√√√√(M2
+ + M2

−
1− ε

)2

− 4γ
(
M2
−M2

+ −M2
− −M2

+

). (16)

Equation (16) determines the intensity of the inlet shock, at which the characteristic
refraction is realized, provided that the same gases flow on both sides of the tangential
discontinuity.

The case when the same gases flow on both sides of τ—for example, air with
γ = 1.4—is considered. An important conclusion follows directly from Equation (10)
that characteristic refraction is possible if

M+ >
M−√

M2
− − 1

. (17)

Formula (17) is interpreted in such a way that the shock polars do not intersect if M <
21/2, since one of them lies completely inside the other (Figure 5).
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Figure 5. Domain of existence of characteristic refraction in air (the shaded area).

Equation (17) follows from the condition J > 1, but on the other hand, the condition
J < Jm must also be satisfied. Then, both shocks, the original shock σ1 and the refracted shock
σ2, must be straight lines. Therefore, the second condition is that curves corresponding to
characteristic refraction have an envelope

Jm(γ, M+) =
2γ

γ + 1
M2

+ −
γ− 1
γ + 1

. (18)

This corresponds to M– = ∞. Solutions of Equation (16) with limitations (17) and (18)
are shown in Figure 6.
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In the general case, when γ+ 6= γ–, it is necessary to solve the cubic Equation (8).
Unlike the previous case, the solution can have one to three roots. Since z ≥ 0, it follows
from (8) that when one of the roots is equal to zero (z = 0), the polars J(γ–, M–) and
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J(γ+, M+) have the same derivatives at the origin (Γ– = Γ+), since A0 = 0. From the equality
Γ– = Γ+, it follows that, between the numbers M– and M+, there must be a relation

M2
+ =

Γ2
−

2γ2
+

[
1±

√
1−

2γ2
−

Γ2
−

]
. (19)

The discriminant of Equation (13) exists if γ+ ≥ γ–. Therefore,

M− ≥ 2
γ2
+

γ2
−

(
1 +

√
1−

γ2
−

γ2
+

)
, (20)

or

M− ≤ 2
γ2
+

γ2
−

(
1−

√
1−

γ2
−

γ2
+

)
. (21)

Equations (20) and (21) determine the region of existence of characteristic refraction.
The other two roots are obtained by solving the quadratic equation

A0
3z + A0

2z + A0
1 = 0. (22)

In Equation (22), the coefficients A are calculated by Formula (14) taking into account
the relationship (19) between the Mach numbers M– and M+. These equations allow us to
construct the domains of existence (Figure 7).
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Figure 7. The domains of existence of characteristic refraction at the interface between the hot
hydrocarbon fuel mixture (γ = 1.1) and the products of its combustion (γ = 1.25), where domains 1, 2
and 3 are the first, second and third roots of Equation (8).

Figure 8 shows the dependence of the intensity of the incident shock wave correspond-
ing to the characteristic refraction. It is seen that there are solutions with one and two roots
of Equation (14). The three roots are not physically realized.
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Figure 8. Dependence of the intensity Jc of the incident shock corresponding to the characteristic
refraction on the Mach numbers M– and M+ in flows separated by a tangential discontinuity. The
dotted line shows the dependencies corresponding to the case when the refracted shock has the
maximum intensity J2 = Jm.

5. Domains of Existence

If the intensity of the incident shock is J1 6= Jc, then it passes the tangential discontinu-
ity with partial reflection. Depending on the intensity of the tangential discontinuity Jτ,
the reflected discontinuity r3 can be either a compression shock σ3 or a rarefaction wave
ω3. If r3 is a shock wave, then, at certain intensities J1 of the incident shock, the solution of
Equation (5) may not exist, since polar (3) emitted from point (1) corresponding to J1 does
not intersect with polar (1) (Figure 9). The shock wave structure corresponding to MRef is
shown in Figure 10.
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Figure 10. Shock wave configuration for Mach refraction.

For irregular refraction, the incident shock σ1 branches with the formation of a re-
flected shock σ3 and a main shock σ2 (the Mach stem). The main shock experiences
characteristic refraction on the tangential discontinuity τ. The Mach stem is enclosed
between two points, T and T1, from which tangential discontinuities originate, τ and τ1.
Figure 11 shows the regions of existence of a shock wave structure with a different type of
reflected discontinuity r3 (Figure 1), which are formed during refraction of the shock σ1 at
the tangential discontinuity τ.
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Figure 11. Domains of existence of various types of hydrocarbons formed during refraction of a
shock with intensity J propagating from a flow with a Mach number M− = 2 into a flow with a Mach
number M+. The grey area corresponds to irregular refraction with a supersonic flow M1 > 1 behind
a shock σ1, and white area corresponds to irregular refraction with a subsonic flow behind a shock
σ1.

It can be seen that at M– = 2 and M+ < 2, there are quite extensive regions with both
the reflected shock wave σ3 and the reflected rarefaction wave ω3. As M– increases, the
domains of existence of the reflected σ3 at M+ < M– are significantly reduced (Figures 12
and 13).
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Figure 12. Domains of existence of various types of hydrocarbons formed during refraction of a
shock with intensity J, propagating from a flow with a Mach number M– = 3 into a flow with a Mach
number M+.
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Figure 13. Domains of existence of various types of hydrocarbons formed during refraction of a
shock with intensity J, propagating from a flow with a Mach number of M– = 5 to a flow with a Mach
number of M+.

The boundary of irregular refraction with supersonic flow behind the shock σ1 (gray
area in Figures 11–13) is bounded from above by the intensity of the incoming shock
J = Js. It should also be noted that the line corresponding to the characteristic refraction
at M+ < M– gradually shifts to the left and enters the MRef region. This is especially
noticeable in Figure 13. The red arrow shows a thin line corresponding to the solution in
the plane of the shock polar in Figure 14. This line marks the characteristic refraction.
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Figure 14. Ambiguity of the solution on the polar plane: irregular refraction (A), characteristic
refraction (B): (a) solutions on the plane of shock polar, (b) shock wave structure corresponding to
the Mach refraction MRef.

In the area enclosed between the solid line separating the gray and blue areas and the
thin line, the solutions are ambiguous. One solution (point B in Figure 14a) corresponds to
characteristic refraction, and the other solution (point A in Figure 14b) corresponds to MRef
with the shock wave structure shown in Figure 14b. The flow above τ behind the refracted
shock σ4 is subsonic. Between these two lines lies a region with a reflected rarefaction
wave. Consequently, depending on the initial conditions, either RRef with a reflected wave
or MRef with a shock wave structure can be realized as shown in Figure 14b.

Figures A1–A17, presented in Appendix A, show the domains of existence of MRef

and RRef refractions with different types of reflected discontinuities, where
←
R =

←
ν is the

line of characteristic refraction,
←
R =

←
ω is RRef with a reflected wave, and

←
R =

←
σ is with a

reflected shock.

6. Conclusions

The refraction of an oblique shock wave on a tangential discontinuity is considered.
The domains of existence of shock wave structures with two types of reflected discontinu-
ities are constructed, the rarefaction wave and the shock wave, as well as the characteristic
refraction separating these two cases. It is shown that, for characteristic refraction, there
are parameter regions with one and two solutions. Conditions for the existence of regular
and Mach refraction are formulated, and the boundaries separating them are constructed
for various gases.

A theoretical approach to the analysis of the refraction of a shock wave at a contact
discontinuity makes it possible to determine the regions of existence of different types of
refraction for a monatomic and diatomic gas with different Mach numbers. In particular,

at M = 2, the line (
←
R =

←
ν ) corresponding to the characteristic refraction is the boundary

separating the various types of reflected discontinuity, shock wave (
←
R =

←
σ ) or rarefaction

wave (
←
R =

←
ω). At M = 5, however, this boundary does not separate two types of reflection,

but is a line of a jump-like change in intensity. The vertical boundary at M- = M+ shows
a line corresponding to a weak tangential discontinuity, where there is equality of flow
velocities and adiabatic indices on both sides. The shock region to the left of this boundary
practically disappears with an increase in the Mach number to 5. With an increase in the
Mach number, the point of intersection of this vertical boundary with the characteristic
refraction line shifts significantly upward, approaching the intensity boundary J = Js, at
which the flow behind the incoming shock of the compaction moves at a speed equal to the
speed of sound. This leads to the fact that the area of reflection in the form of a rarefaction
wave to the right of the vertical boundary is significantly reduced.
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The results obtained could potentially be used in the design and optimization of
supersonic intakes and CFD solvers based on the numerical solution of Euler equations
describing the supersonic flows of inviscid compressible flows.
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Appendix A

The domains of existence of reflected discontinuities for refraction from a gas consist-
ing of combustion products into a diatomic gas at the Mach number of the flow M– = 2 are
shown in Figure A1.
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Figure A1. Domains of existence of reflected discontinuities for refraction from a gas consisting of
combustion products into a diatomic gas. The Mach number of the flow from which the shock comes
is M– = 2.

The domains of existence of reflected discontinuities for refraction from a gas consist-
ing of combustion products into a diatomic gas at the Mach number of the flow M– = 3 are
shown in Figure A2.
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combustion products into a diatomic gas. The Mach number of the flow from which the shock comes
is M– = 3.

The domains of existence of reflected discontinuities for refraction from a gas consist-
ing of combustion products into a diatomic gas at the Mach number of the flow M– = 5 are
shown in Figure A3.
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Figure A3. Domains of existence of reflected discontinuities for refraction from a gas consisting of
combustion products into a diatomic gas. The Mach number of the flow from which the shock comes
is M– = 5.

The domains of existence of reflected discontinuities for refraction from a gas consist-
ing of combustion products into a monatomic gas at the Mach number of the flow M– = 2
are shown in Figure A4.
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Figure A4. Domains of existence of reflected discontinuities for refraction from a gas consisting of
combustion products into a monatomic gas. The Mach number of the flow from which the shock
comes is M– = 2.

The domains of existence of reflected discontinuities for refraction from a gas consist-
ing of combustion products into a monatomic gas at the Mach number of the flow M– = 3
are shown in Figure A5.
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Figure A5. Domains of existence of reflected discontinuities for refraction from a gas consisting of
combustion products into a monatomic gas. The Mach number of the flow from which the shock
comes is M– = 3.

The domains of existence of reflected discontinuities for refraction from a gas consist-
ing of combustion products into a monatomic gas at the Mach number of the flow M– = 5
are shown in Figure A6.
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Figure A6. Domains of existence of reflected discontinuities for refraction from a gas consisting of
combustion products into a monatomic gas. The Mach number of the flow from which the shock
comes is M– = 5.

The domains of existence of reflected discontinuities for refraction in a flow of diatomic
gas at the Mach number of the flow M– = 2 are shown in Figure A7.
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Figure A7. Domains of existence of reflected discontinuities for refraction in a flow of diatomic gas.
The Mach number of the flow from which the shock comes is M– = 2.

The domains of existence of reflected discontinuities for refraction in a flow of diatomic
gas at the Mach number of the flow M– = 3 are shown in Figure A8.
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The Mach number of the flow from which the shock comes is M– = 3.

The domains of existence of reflected discontinuities for refraction in a flow of diatomic
gas at the Mach number of the flow M– = 5 are shown in Figure A9.
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Figure A9. Domains of existence of reflected discontinuities for refraction in a flow of diatomic gas.
The Mach number of the flow from which the shock comes is M– = 5.

The domains of existence of reflected discontinuities for refraction from a monatomic
gas into a gas consisting of combustion products at the Mach number of the flow M– = 2
are shown in Figure A10.
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Figure A10. Domains of existence of reflected discontinuities for refraction from a monatomic gas
into a gas consisting of combustion products. The Mach number of the flow from which the shock
comes is M– = 2.

The domains of existence of reflected discontinuities for refraction from a monatomic
gas into a gas consisting of combustion products at the Mach number of the flow M– = 3
are shown in Figure A11.
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Figure A11. Domains of existence of reflected discontinuities for refraction from a monatomic gas
into a gas consisting of combustion products. The Mach number of the flow from which the shock
comes is M– = 3.

The domains of existence of reflected discontinuities for refraction from a monatomic
gas into a gas consisting of combustion products at the Mach number of the flow M– = 5
are shown in Figure A12.
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Figure A12. Domains of existence of reflected discontinuities for refraction from a monatomic gas
into a gas consisting of combustion products. The Mach number of the flow from which the shock
comes is M– = 5.

The domains of existence of reflected discontinuities for refraction from a diatomic
gas into a gas consisting of combustion products at the Mach number of the flow M– = 2
are shown in Figure A13.
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Figure A13. Domains of existence of reflected discontinuities for refraction from a diatomic gas into
a gas consisting of combustion products. The Mach number of the flow from which the shock comes
is M– = 2.

The domains of existence of reflected discontinuities for refraction from a diatomic
gas into a gas consisting of combustion products at the Mach number of the flow M– = 3
are shown in Figure A14.
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Figure A14. Domains of existence of reflected discontinuities for refraction from a diatomic gas into
a gas consisting of combustion products. The Mach number of the flow from which the shock comes
is M– = 3.

The domains of existence of reflected discontinuities for refraction from a diatomic
gas into a gas consisting of combustion products at the Mach number of the flow M– = 5
are shown in Figure A15.
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Figure A15. Domains of existence of reflected discontinuities for refraction from a diatomic gas into
a gas consisting of combustion products. The Mach number of the flow from which the shock comes
is M– = 5.

The domains of existence of reflected discontinuities for refraction from a hydro-
gen/oxygen mixture at Mach number M– = 3.27 corresponding to Chapman–Judge deto-
nation are shown in Figure A16.
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Figure A16. Domains of existence of reflected discontinuities for refraction from a hydrogen/oxygen
mixture at Mach number M– = 3.27 corresponding to Chapman–Judge detonation.

The domains of existence of reflected discontinuities for refraction from a propane/air/
combustion product mixture at Mach number M– = 5.46 corresponding to Chapman–Judge
detonation are shown in Figure A17.
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