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Abstract: 

In this study, experimental investigations are implemented to evaluate the effect of incorporation of graphene 

nanoplatelets (GNPs) on the low-velocity impact behavior of composites and fiber metal laminates (FMLs). 

The hand layup technique is employed to fabricate composite specimens and FML panels with 2/1 

configuration. Impact response and damage patterns of unmodified and modified specimens subjected to 

various impact energy levels are compared. The results reveal that the incorporating 0.2 wt% of GNPs 

strengthens the impact resistance of FMLs so that the modified panels possess higher bending stiffness,peak 

load, energy absorption and SEA compared to the unreinforced ones.Visual inspections and SEM images 

exhibit that the inclusion of GNPs enhances the adhesion between resin/fibers as well as composite plies, 

thereby reducing damage area and increasing penetration threshold of FMLs.In addition, reinforcing composite 

panels considerably improves the impact behavior in comparison with the unmodified composites. 
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1 Introduction 

Fiber metal laminates (FMLs) area family of hybrid materials that consist of thin metal layers and fiber 

reinforced composite laminates. By combining metal layers with composites (typically aluminum alloy sheets 

and glass/epoxy fiber laminates) the overall weight of resulting hybrid specimen in comparison with monolithic 

metals can be reduced, as well as properties such as the ability to delay and stop crack growth, damage 

tolerance and strength can be improved. These outstanding properties of FMLs, especially the high impact 

resistance, make them a suitable material for industrial applications, for instance, aircraft, aerospace and marine 

structures. Low-velocity impact, as one of the impact failure sources, can occur through damage from for 

example service trucks, cargo containers and dropped tools during maintenance operations of aircrafts[1–6]. 

In the 1990s, at the University of Delft, Vlot et al. conducted many tests, such as quasi-static test, low velocity 

and high velocity impact to investigate the dynamic behavior of FMLs. It was found that the FMLs had a much 

higher resistance than aluminum and composite layers against impact, also by comparing the FML types 

(ARALL, CARALL and GLARE), they concluded that GLARE had better impact properties and was able to 

absorb more energy[7–9]. After Vlot, during the last two decades, numerous researches have been performed to 

examine the impact behavior of the FMLs considering the effect of various parameters and factors, such as lay-

up configuration[10–16], metal constituents[10,17–23], distribution of layers[24–26], thickness effect [19,27–

29], impactor geometry [30–32], strain rate [33–36],repeated impact response[1,37–40] and damage area 

[26,41]. Additionally, Jakubczak et al. [42] evaluated the FML damage mechanisms at low energy impacts and 

reported that matrix fractures (at the fiber/matrix interface), fiber cracking, and delamination were the main 

modes of damage.The low-velocity impact damage is an important failure pattern in FML structures and 

complex damage modes make it more challenging to characterize the low-velocity impact behavior of FMLs 

[31]. 

Matrix reinforcement by incorporation of reinforcing phases into the matrix is a method of improving the 

mechanical properties and impact resistance of FMLs and many researchers have investigated the effect of 
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using nanofiller-modified matrix in manufacturing of FMLs in recent studies[3,43–51].Megahed et 

al.[52]investigated the mechanical characterization of FMLs by adding several types of nanofillers such as 

aluminum (Al), copper (Cu), titanium oxide (TiO2), silica (SiO2), aluminum oxide (Al2O3) and nano clay 

(NC).The experimental results indicated that since SiO2 nanomodification of the epoxy matrix led to an 

improved interfacial bonding between the nanophase epoxy matrix and fibers, and good bonding between outer 

metal layers and the nanocomposite laminate, a maximum improvement of 39%, 33.2% and 108.4% in tensile 

strength, modulus and toughness as compared to the unreinforced specimen were achieved. The effect of 

adding multi-walled carbon nanotubes (MWCNTs) on impact behavior of the FMLs is studied by several 

researchers [3,43,53,54]and it is stated that the incorporation of MWCNTs diversified the energy absorbing 

mechanisms in terms of nanotubes pull-out, debonding, and bridging effects, leading to improved impact 

performance of FMLs. 

Graphene-based nanofillers were recently used to strengthen epoxy resin thus enhance the mechanical 

properties of nanocomposites[55–64]. For instance, an investigation conducted by Li et al. [49]showed that the 

Young’s modulus, the tensile strength and the flexural performance of FMLs improved by inclusion of the 

graphene oxide (GO). This can be ascribed to the fact that the GO enhanced the interface strength between the 

aluminum and the epoxyand increased the load transmission capacity across the interface between fiber and 

epoxy in the FMLs.GNPs, as one of the most widely used nanoplatelets, have been able to enhance the 

properties and strength of composite[65–74]and FML specimens[5,75–79]. Furthermore, the significant 

improvements in strength, fracture toughness, and fatigue strength have been reported using graphene as fillers 

or reinforcements in nanocomposites[58].Domun et al.[70] studied the incorporation of GNPs at concentrations 

of 0.1, 0.25, 0.5, 0.75 and 1 wt% into epoxy resin and reported that maximum improvement in stiffness and 

fracture toughness was achieved in 0.25 wt%. This was attributed tothe preparation of homogenous dispersions 

of GNP in the nanocomposite, thereby increasing the performance significantly due to load transfer of the 

nanomaterials.Furthermore, Abbandanak et al.[77]stated thatflexural and impact properties of FMLs improved 
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by adding GNPs to epoxy. They explained the reason for this finding by the strong adhesion between the 

polymer and fibers within the composite interlayers, which led to considerable load transfer from matrix to the 

fiber.Moreover, a recent comparative study, investigated the quasi-static behavior of composite and FML 

panels modified by GNPs and reported that the inclusion of GNPsimproved the strength and fracture toughness 

of the composite and FML panels by delaying the failure modes[5]. 

According to the literature survey, despite the fact that the incorporation of nanofillers can improve the 

mechanical properties and enhance the impact and damage resistance of FMLs, the full potential of nano 

reinforcing of FMLs is not explored enough. In addition, although many studies have been examined on the 

modified epoxy resins and glass fiber composites, the researches about incorporating GNPs to FMLs are still in 

infancy.Moreover, to the best of the authors’ knowledge, the effect of adding GNPs on the low-velocity impact 

response of FMLs has not been investigated yet. Consequently, in order to develop the application of FMLs, it 

is essential to conduct further investigation on the impact behavior of GNPs-reinforced FMLs. 

Thus, the objective of this work is mainly to investigate the effect ofGNPs incorporation on the low-velocity 

impact behavior of composite and FML panels and also to identify and compare the damage modes of the 

unmodified and modified specimens. On the basis of the literature review, it can be expected that the presence 

of GNPs will enhance the bonding between the polymer and fiber, and the load transmission capacity from 

matrix to the fiber, thereby improving the impact and damage resistance of the specimens.To explore this, a 

series of the low-velocity impact tests including 33 J, 44 J and 82 J are conducted on the unreinforced and 

reinforced FML panels. In addition to the FMLs, composite specimens are studied to gain further insight into 

the effect of GNPs on the impact properties of the composite laminate of FMLs. The impact performance of 

specimens are assessed by comparingthe absorbed energy, the specific energy absorption (SEA), the peak load, 

and the maximum deflection of the unmodified and modified panels. Moreover, scanning electron microscopy 

(SEM), destructive cross–sectional technique, and non-destructive tests such as computed radiography (CR) 

and X-ray computed tomograhgy (X-CT) areemployed to elucidate the damage mechanisms. Furthermore, to 
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investigate the effect of strain rate on performance properties of FML panels, the results corresponding to 

impact tests are compared with those observed for identical panels subjected to quasi-static test reported in our 

previous work [5]. 

2 Experimental procedures 

2.1 Materials 

In current study, FMLs are manufactured with metallic layers and a composite laminate. 2024-T3 aluminum 

alloy sheets with a thickness of 0.5 mm per layer are selected as metallic layers in the FMLs, and the composite 

laminate is made of glass fiber, epoxy resin and graphene nanoplatelets.The properties of the materials 

investigated here are summarized inTable 1. 

Table 1. Type and mechanical properties of materials. 

Material Type Material properties 

Aluminum 2024-T3 E=72 GPa, ρ=2700 kg/m3, ν=0.3 

E-Glass Fiber Plain Woven ρA=400 g/m2, Nominal thickness=0.16 mm 

Epoxy System ML-506 (HA-11 hardener) 
ρ=1.1 g/cm3, Curing Temp. = Room Temp.(cold-cured), 

Gel Time = 24 min, Time to Max. Strength = 7 days 

Graphene Nanoplatelets XG Science Grade C ρ=2.2 g/cm3, SSA=750 m2/g 

 

2.2 Surface treatment of metal sheets 

As bonding between polymeric composite laminate and metallic layers is a key issue for FMLs performance, 

thus an adequate surface treatment of the metallic layers is required [52]. Therefore, the surfaces of aluminum 

sheets are pretreated according to the ASTM D2651 [80] protocol at four steps. First, the aluminum sheets are 

washed with acetone. Second, they are degreased using an alkaline solution. Then, the surfaces are abraded by 

sandpaper [81] and abrasive particles and debris are rinsed from the surface by warm-to-hot water. Finally, the 

sheets are left at ambient conditions for about one hour before applying the adhesive. 
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2.3 Dispersion of GNPs inepoxy resin 

As reported in the earlier study[5] andcan be seen in Figure 1, epoxy resincontaining 0.2 wt% weight 

percentage of GNPs had a superior mechanical properties in comparison with other GNPs contents of 0.1, 0.2 

and 0.4 wt%.According to thisresult, in the current research, the incorporation of 0.2 wt% GNPs is used to 

modify the composite and FML panels.The incorporationinvolves the following six steps: (1)The GNPs are 

incorporated to epoxy without the use of solvents and then mixed by a high shear-mixer for 20 min at 2000 

rpm. (2)For better dispersion, exfoliation and preventing agglomeration of GNPs, an ultrasonic mixer 

(UPS400S, Hielscher, Germany) at amplitude = 70% is employed for 13 min. In this step, the mixture is 

submerged in an ice bath to prevent overheating and aggregation [45]. (3) The shear-mixer is used once again 

for 15 min at 500 rpm. (4)To remove voids (air bubbles) created in the resin during the mixing process, the 

mixture is degassed for 15 min under vacuum (WOV-30 Precise Vacuum Oven, WiseVen, South Korea). (5) At 

the weight ratio of 100:13, the resin and hardener are mixed. (6) To eliminate voids, again, the mixture is 

degassed for 5 min under vacuum.It is noteworthy that all these processes areconducted at room temperature.A 

schematic of the preparation process is displayed in Figure 2. 

 

  

(a) (b) 

Figure 1. The mechanical behavior comparison of epoxy resin with different percentages of GNPs in tensile, compressive and 

flexural tests: (a) comparison of strength; (b) comparison of modulus[5]. 

 

0

50

100

150

200

250

Tensile Strength

(MPa)

Compressive Strength

(MPa)

Flexural Strength

(MPa)

0% GNP wt 0.1% GNP wt 0.2% GNP wt 0.4% GNP wt

0

1000

2000

3000

4000

5000

Young's Modulus

(MPa)

Compressive Modulus

(MPa)

Flexural Modulus

(MPa)

0% GNP wt 0.1% GNP wt 0.2% GNP wt 0.4% GNP wt



7 

 

100

Preparing Neat 

Epoxy Resin

Dispersion of GNPs 

into Epoxy Resin

Digital Scale High Shear-Mixer Ultra-Sonicator

High Amplitude Sonication of 

Nanoplatelets

High Shear-Mixer

Vacuum OvenManual MixingVacuum Oven

High Speed Shear 

Mixing

Ice Bath

Degassing Under 

Vacuum

Adding Hardner to the 

Mixture

Remove Voids 

(Air Bubbles)

FML 

Manufacturing

Hand Lay-Up Process

 

Figure 2.Schematic diagram of modified epoxy preparation. 

2.4 Fabrication andspecimen preparation 

The unreinforced and reinforced composite and FML specimensare manufactured in order to examine the effect 

of incorporation of GNPs on thelow-velocity impact behavior. The FML panelsare fabricated by hand lay-up 

technique with eight layers of glass fiber and two sheets of aluminum providing the stacking sequence of 

(AL/[G/E]8/AL). Schematics of the FMLs fabrication are shown inFigure 3. The lay-up configuration of 

composite panels is [G/E]8, which is identical to the composite laminate in the FMLs.The fabricated composites 

and FMLs are square with a width of 125 mm and the average thickness of 1.51 mm and 2.65 mm,respectively. 

After hand lay-up process, the panelsare pressed under 1.5 bar pressure[82] and the time duration between the 

fabrication of specimens and impact tests has been at least a week [83].All the manufacturing processes 

areaccomplished at room temperature. 
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Figure 3. Lay-up configuration of FML panels. 

2.5 Experimental method 

Low-velocity impact behavior of the composite and FMLpanels is investigated using a drop-weight 

apparatus,as shownin Figure 4(a). The square panels with dimensions of 125 mm × 125 mmare fully clamped 

by a fixture with internal dimensions of 100 mm × 100mm and a span ratio (the ratio of support span length to 

the impactor diameter) of 10. The samples are fixed by a mechanical clamping system that ensures uniform 

pressure throughout the clamping area. The fixture is clamped by eight M16 bolts, steel nuts and washers, and 

also in order to prevent slippage of the specimen during the test,two M8 bolts are used to fasten the fixture to 

the testing machine.A schematic drawing of the panel and the clamp are displayed inFigure 4(b). 

Prior to impact test, in the previous work of the authors [5], quasi-static indentation testswere conducted to 

obtain the required information regarding energy absorption characteristics of specimens, which can serve as a 

starting point for deciding on energy levels in impact testing.Therefore, by altering the height of the impactor, 

three different impact energy of 33J, 44J and 82 J areapplied at room temperature on unreinforced and 

reinforced specimens.The steel impactor used in the tests is a flat-ended cylinder with a 10 mm diameterand 

6kg weight. 

In order to ensure the repeatability of the results, minimum of three samples are tested at each energy level for 

each sample type. The output of the low-velocity impact test is represented as acceleration versus time.To 

measure it, a piezoelectric accelerometer is mounted on the impactor and the signal is acquired at 96 kHz.The 

deflection history is obtained by taking into account the energy balance equation during the impact. To do this, 
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the acceleration history is integrated numerically twice over time, considering the initial value of the 

velocity.Finally, the absorbed energy history, which represented the history of energy transferred from the 

impactor to the specimens, is obtained via an additional integration of the load with respect to the deflection. It 

should be mentioned that for non-perforated FMLs, ultimate damage of panels has been compared and 

presented curves are corresponding to the first hit of impact. 
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(a) (b) 

Figure 4.(a) Fixture installation on the drop-weight apparatus; (b) schematic of fixture 

3 Results and discussion 

The low-velocity impact testsare performed on the unreinforced and reinforced specimens, in order to 

investigate the effect of adding GNPs. The results are presented, and discussed in detail in the following 

sections.In addition, to examine the influence of strain rate on performance properties of specimens,the results 

corresponding to impact tests are compared with those observed for identical panels subjected to quasi-static 

Fixture 

Impactor 
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test reported in our previous work[5]. The observations obtained from the visual inspection of testedspecimens 

are summarized in Table 2. 

Table 2. Summary of the quasi-static indentation andthe low-velocity impact results. 

Test Specimens Penetration Situation Damage 

Indentation 

Unmodified Composite Perforated Fiber Failure/Bending, Matrix Breakage, Delamination 

Modified Composite Perforated Fiber Failure/ Bending, Matrix Breakage, Delamination 

Unmodified FML Perforated Debonding, Circular crack, Fiber Bending/Breakage, AL Bending 

Modified FML Perforated Debonding, Circular crack, Fiber Bending/Breakage, AL Bending 

33 J 

Impact 

Unmodified Composite Perforated Fiber Failure/Pull Out, Matrix Breakage, Delamination, Shear plugging 

Modified Composite Perforated Fiber Failure/Pull Out, Matrix Breakage, Delamination 

Unmodified FML Partial Indentation Indentation, Plastic deformation, Bulging 

Modified FML Slight Indentation Slight Indentation, Bulging 

44 J 

Impact 

Unmodified FML Perforated Circular crack, Fiber Bending/Breakage, AL Bending/Cracking/Petalling 

Modified FML Partial Indentation Slight Indentation, Localized Plastic Deformation, Bulging 

82 J 

Impact 

Unmodified FML Perforated Circular crack, Fiber Bending/Breakage, AL Bending/Cracking/Petalling 

Modified FML Perforated Circular crack, Fiber Bending/Breakage, AL Bending/Cracking/Petalling 

 

3.1 X-ray-diffraction analysis 

A comparative investigation on X-ray-diffraction (XRD) spectra of the GNPs, the neat epoxy resin and the 

GNPs/epoxy nanocomposite can demonstrate the quality of GNPs dispersion. As illustrated in Figure 5(a), the 

XRD spectra of GNPs exhibits a sharp diffraction peak at 2θ =31ᴼ and two weak peaks at 2θ= 51ᴼand 64ᴼ, which 

is in good agreement with the results given in[84].It is noteworthy that in this study the different X-ray source 

(Cobalt, λCoKα1= 1.789 Å) is employed, leading to a slight shift of the peaks detected in comparison with the 

ones reported inliteratures that use a Cu target [68,72,85].The XRD pattern of a pure substance can be described 

as an identification of that, because the same material always gives the same pattern [72].In general, the 

disappearance of characteristics peaks of GNPs in XRD patterns of nanocomposites would indicate that 

nanoparticles are uniformly dispersed within the matrix [86].The diffractograms of GNPs/epoxy 

nanocomposite, as displayed Figure 5(b), resembles very closely to the XRD spectra of the neat epoxy. In 



11 

 

addition, the peaks at 31° for GNPs cannot be observed for the modified epoxy, whichis an evidence of 

appropriate dispersion of GNPs. 

 
 

(a) 

 
 

(b) 

Figure 5.XRD patterns of: (a) GNPs;(b) unmodified and modified epoxy. 

3.2 Quasi-static indentation test 

Prior to impact tests, quasi-static indentation tests with a loading rate of5 mm/min were conducted on 

composite and FML panelsto obtain information regarding energy absorption characteristics of specimens, 

which can serve as a starting point for deciding on energy levels in impact testing.Sincethe present work can be 

considered as a continuation of the previous study, a summary of the results obtained in quasi-static test, which 

can be found in [5], is given in the following.It should be noted that panels investigated in low-velocity impact 

tests are identical to those in quasi-static loading.Figure 6illustrates the load-deflection curves of unmodified 

and modified panels under the quasi-static loading.The results show that an enhancement of 15.2% in peak load 
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and 31.2% in SEA are obtained by reinforcing composite panel. The reason for this improvement will be 

discussed in Subsection 3.6.5. As for FML curves, the first failure in the modified specimens is debonding 

between the aluminum and composite interface, which is accompanied by a rapid load-drop at 2.6 kN. Thus, 

owing to this reduction, the incorporating 0.2 wt% of GNPs into the FML decreases the peak load and does not 

have significant influence on the SEA. The resultant damage patterns of unmodified and modified FMLs can be 

observed from Figure 7, including a circular crack, matrix cracking, bending and breakage of the composite 

plies, bending, cracking and petalling of the bottom aluminum layer. 

 

Figure 6.Load–deflection curves of composite and FML panels under quasi-static loading[5]. 
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(b) 

Figure 7. Damage morphologies of FMLs subjected to quasi-static loading: (a) unmodified panel; (b) modified panel [5]. 

(Magnification of damaged area is denoted by the circle) 

3.3 Experimental testing under 33 J impact energy 

In 33J impact energy event, to get a clear outcome on the influence of incorporation of GNPs and investigatethe 

damage propagation modes in composite laminate of FMLs, unmodified and modified composite specimensare 

also tested. 

3.3.1 Composite panels subjected to 33J impact energy 

The low-velocity impact test is conducted on the unreinforced and reinforced composite panels and the 

behavior of these specimens has been analyzed to investigate the effect ofinclusion of GNPs to epoxy 

resin.Figure 8compares various responses: the time-histories of energy absorption, central deflection, contact 

load and contact stiffness of the composite specimens corresponding to E=33 J impact energy. 
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(c) (d) 
Figure 8.Low-velocity impact response of unmodified and modified composite panels impacted at 33 J: (a) absorbed energy; (b) 

central deflection; (c) contact force; (d) contact stiffness. 

As for the impact load-deflection curves, on the one hand, two curves havesimilar trends, which indicates that 

failure modes of specimens can be analogous. On the other hand, for the modified specimen the peak load 

occurs at higher displacement, therefore, the failure modes are delayed and this delay leads to more energy 

absorption and higher strength in comparison with the unmodified composite panel. As a result, the 

incorporation of GNPs to the composite panel increases the peak load, the energy absorption and the SEA by 

21%, 10% and 11%, respectively.Likewise, Fathi et al. [5] stated that the GNPs inclusion can have significant 

effect on strength and energy absorption of composite panels which have undergone quasi-static punch and 

indentation tests. Figure 9 exhibits the resultant damage patterns on the non-impacted and impacted sides of the 

unmodified and modified composite panels. As the figure indicates, both specimens are fully perforated. 

Moreover, diversified failure mechanisms including fiber failure, fiber pull out, matrix breakage and 

delamination between composite plies can be observed from the damage morphologies. The damage 

mechanisms in composite panels are similar except that the shear plugging occurs just in the unmodified 

composite, which implies that the effect of addition of GNPs on the failure modes cannot be neglected. 
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(a) 

  
(b) 

Figure 9.Damage morphologies ofcomposites subjected to 33J impact energy: (a) unmodified panel; (b) modified panel. 

(Magnification of damaged area is denoted by the circle) 

3.3.2 FML panels subjected to 33J impact energy 

When the 33 J of impact energy is performed to examine the low-velocity behavior ofthe unmodified and 

modified FML panels, the time-histories of energy absorption, central deflection, contact load and contact 

stiffness are depicted inFigure 10.According tothe energy-time curves, it is well observed that the energy 

absorption increases with time until its peak,subsequently there is a reduction, which is corresponding 

toimpactor rebound during the impact process. This phenomenon can be explained in view of the fact thatthe 

impact energy of 33 J is not sufficient to make the impactor perforate the laminates. Generally, aload–deflection 

curve,which is the signature of a specimen’s response to impact loading, can be classified as closed type curve 

and open type curve [6,87]. As for theload-deflection curves, both curves are closed type and consist of an 

ascending stage of loading, a peak load value and a descending stage of unloading. 

In the loading phase,from the start of loading (point A) to point B,the curves of unmodified and modified FMLs 
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failure occurs in the specimen. From point B onward, as the impact load continuously increases, the slope of the 

load-deflection curve for the unmodified FML reduces, which implies that the unmodified FML experiences 

more serious damage in the loading stage. Subsequently, the peak load of reinforced FML increases by 12% in 

comparison with the unreinforced specimen.As displayed in the deflection-time curves (Figure 10), maximum 

deflection ofthe unreinforced FML is slightly higher than that ofthe reinforced one (point C), whereas ultimate 

central deflection of both laminates are almost the same (point D). 

As discussed previously, no perforation occurs in any of the laminates, but according to Figure 11, the 

unmodified panel experiences more damage extent in the impact region. For unmodified FML, an indentation 

as well as plastic deformation of aluminum sheet around the impact point occurs, whereas for modified FML, 

only the slight indentation can be found on the impacted side and also the unmodified panel exhibits a greater 

bulge on the non-impacted side. In addition, regarding to Figure 22, an interfacial debonding occurs between 

the aluminum layers and the composite laminate, whereas there is no evident delamination between composite 

plies. The slighter damage of the reinforced FML can be attributed to the fact that the addition of GNPs has a 

remarkable influence on the impact resistance compared to unreinforced one. 
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(c) (d) 
Figure 10.Low-velocity impact response of unmodified and modified FML panels impacted at 33J: (a) absorbed energy; (b) central 

deflection; (c) contact force; (d) contact stiffness. 

 

Consequently, since the modified laminate has higher strength, it exhibits the higher peak load and the lower 

contact-time duration. Additionally, in spite of the fact that both specimens absorb equal energy, the modified 

FML represents the better impact damage resistance than the unmodified FML due to the smaller damage area. 
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Figure 11.Damage morphologies ofFMLs subjected to 33J impact energy: (a) unmodified panel; (b) modified panel. (Magnification 

of damaged area is denoted by the circle) 
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3.4 FML panels subjected to 44J impact energy 

Figure 12illustrates the time-histories of energy absorption, central deflection, contact force and contact 

stiffness of the unmodified and modified FML panels impacted with 44 J.As regards the energy-time curves, it 

can be observed that the energy absorption of the modified panel drastically reduces after the peak value, 

whereas the curve ofthe unmodified panel tends to be flat. It is in accordance with the fact thatthe impact 

energyof 44J is less than the energy required to penetrate the reinforced laminate and thereforeimpactor 

rebound is apparent in this specimen, while the unreinforced laminate is completely perforated. This 

phenomenon indicates that the inclusion of GNPs to epoxy resin has a great influence on the impact resistance 

of modified FML and increases the perforation threshold energy compared to the unmodifiedone. 

As for load-deflection curves in Figure 12, the peak load of modified specimen is 5% higher than that ofthe 

unmodified one due to higher strength. Since the unreinforced FML is fully perforated while no penetration 

occurs in the reinforced panel, no comparison can be carried out in terms of absorbed energy, contact-time and 

maximum deflection. 
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(c) (d) 
Figure 12. Low-velocity impact response of unmodified and modified FML panels impacted at 44 J: (a) absorbed energy; (b) central 

deflection; (c) contact force; (d) contact stiffness. 

The post-impacted images of the front and rear surfaces of unmodified and modified FMLs are shown in 

Figure 13. As for the damage morphologies ofthe reinforced panel, the impactor does not perforate. In addition, 

on the impacted side of this laminate, only a small plastic deformation close to the perforation zone and a slight 

indentation on the aluminum layer can be observed, and on the non-impacted side, there is no obvious crack - 

just alocalized bulge can be found inthe impact region. On the contrary, the impactor fully perforates the 

unreinforced laminate and forms a circular crack in the top surface. Furthermore, on the non-impacted side, 

matrix cracking, bending and breakage of the composite plies and bending, cracking and petalling of the bottom 

aluminum layer can be seen obviously from the post-impacted images of this specimen. Thus, these results 

confirm that the incorporation of GNPs into the composite laminate of FML significantly improves the 

impactperformance of the modified panel in comparison with the unmodified one. 

The perforation process in unreinforced panel can be explained in view of the fact that first,a shear plug with 

the diameter equal to the impactor is created in the uppermost aluminum layer. Then, the formed plug begin to 

be pushed through the composite laminate and create a petal in it. Finally, at the perforation threshold, the 

impactor passes through the entire panel leaving a relatively clean hole on the front surface and petalling at the 

rear surface. The similar phenomenon can also befound in [5,39,88]. 
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(a) 

  
(b) 

Figure 13.Damage morphologies ofFMLs subjected to 44J impact energy: (a) unmodified panel; (b) modified panel. (Magnification 

of damaged area is denoted by the circle) 
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energy is higher than the perforation threshold energy, the unreinforced and reinforced panels are tested under 

82 J impact energy and results are exhibited in Figure 14.As the impact energy further increases (from 33J to 
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also found in [6,87]. 
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(a) (b) 

  

(c) (d) 
Figure 14. Low velocity impact response of unmodified and modified FML panels impacted at 82 J: (a) absorbed energy; (b) central 

deflection; (c) contact force; (d) contact stiffness. 
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less damage extent. Likewise, Seyed Yaghoubi et al. [29] stated that decreasing contact-time means that 

damage cannot be fully developed in the sample. Similar observation has also been reported by Yu et al. [6]. 

Moreover, a change in the slope ofthe load-deflection and load-time curves occurs several times. These 

fluctuations can be explained by the intensity and propagation of damage in specimens in different time 

intervals, which is also found by Ref [29]. As for Figure 14, the fluctuations in the curve of unmodified 

specimen are slightly more than thoseofthe modified one, which implies that more damage induces in this panel 

in comparison with the modified one. 

The modified specimen exhibits damage modes similar to the consequences of impact on the unmodified one, 

except that the global plastic deformation and metal cracks in unreinforced panel are more than those in the 

reinforced one, as depicted in to Figure 15. Accordingly, lower damage extent in the reinforced FML indicates 

that the influence of incorporation of GNPs on the impact behavior of this panel cannotbe neglected. According 

to the damage morphologies (Figure 15) and the cross-section view of the modified FML (Figure 22), matrix 

cracking, bending and breakage of the composite plies, plastic deformation, cracking and petalling of aluminum 

sheets, debonding and delamination are the main failure modes of the panels. 

As reported by Ahmadi et al.[89], for FML panel under high velocity impact, the most part of energy absorbing 

mechanism is the global deformation of the aluminum sheets. In addition, the global permanent deformation 

has an important role in dissipating energy, especially in thinner specimens [29]. It can therefore be concluded 

that at higher impact energies, the behavior of aluminum becomes moredominant and as a result, under 82 J 

impact energy, the incorporation of GNPs has less significant effect on the impact performance of the modified 

FML. 
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(a) 

  
(b) 

Figure 15. Damage morphologies ofFMLs subjected to 82J impact energy: (a) unmodified panel; (b) modified panel. 

3.6 FML responses underdifferent loading rates 

This section presents and discusses the quasi-static and low-velocity impact results with respect to strain rate 

effect, bending stiffness, coefficient of restitution and damage mechanisms. 

3.6.1 Strain rate effect 
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investigate the impact response of the unmodified and modified specimens. In addition, the behavior of 

equivalent panels under quasi-static indentation loadingis compared with the impact performance of panels to 

examine the effect of strain rate. The generaltrend of the load-deflection curvesfor perforated panels in impact 

testsare virtually similar to quasi-static curves (Figure 6 and Figure 14), which indicates that failure modes in 

these two test can be almost analogous.Furthermore, for the purpose of intuitive comparison, the key 
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quasi-static loading is not sufficient to makethe impactor perforate the laminates, which implies that the 

perforation threshold energyis higher for both unmodified and modified panels at impact rates of loading. This 

phenomenon is attributed to the strain rate sensitivity of the constituent materials of FMLs and shows that the 

perforation resistance of the specimens can be enhanced by dynamic effects. On the other hand, there is an 

obvious difference between the behavior of FMLs under quasi-static loading and 33 J impact event, as depicted 

inFigure 16. For instance, FML specimens subjected to 33 J impact event absorb significantly less energy (- 

26%) than FMLs subjected toquasi-static loading. 

 

Figure 16. The comparison ofFML responses under different loading rates. 

Moreover, as exhibited in Figure 16, when impact energy is higher than the perforation threshold, the peak 

load, the energy absorption and SEA are considerably greater at dynamic rates of loading in comparison with 

values obtained at the quasi-static rate of strain. As an example, the peak load of the modified panel under 44 J 

impact energy is 23% higher than that in quasi-static test, which shows that strength of the FML specimens can 

be enhanced by dynamic effects. Comparing failure modes of FMLs in the quasi-static loading (Figure 7) and 

dynamic test (Figure 15), damage mechanism are similar in these two tests, except that the impact test results 

in the more severe aluminum cracking and fiber pull out. 
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For dynamic tests, generally, increasing the impact energyleads to higher absorbed energy (see Figure 16 and 

Figure 17), maximumdeflection (see Figure 18), peak load (seeFigure 19), and lower contact-time duration 

(see Figure 17) for both specimen types, similar results have also been observed by Zarei et al.[90].These 

evidences highlight the strain rate sensitivity of the constituent materials of FMLs[36].As discussed before,the 

load–deflection curves alter from the closed type to the open one by increasing the impact energy. In addition, 

the curves exhibits a rather smooth behavior under the 33J ofimpact energy, whilethe behavior of the load-

deflection curves gradually changes to more oscillatory behavior as the impact energy further increases 

(compare Figure 10(c) with Figure 14(c)), which indicates that the damages become more severe. 

 

Figure 17. Absorbed energy-time curves of unmodified FMLs under different impact energies. 
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less than that in unmodified ones. Moreover, when the impact energy increases from 33 J to 44 J, the peak load 

of both specimens enhances considerably (see Figure 19). Whereas by further increasing the energy level (from 

44 J to 82 J), improvement of the peak load is less significant. It can be concluded that there is a limit value of 

impact energy that would not result in further increase of peak load despite of further increase of this energy. 

 

Figure 18. Maximum deflection in tested specimens under different impact energies. 

 

Figure 19. Maximum impact energies of tested specimens under different impact energies. 
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3.6.2 Bending stiffness 

Bending stiffness may be employed as one of the quantitative criteria for assessing the specimens impact 

resistance due to its representation of the stiffness of laminates under impact-induced bending, which can be 

defined as the initial bend angle of a rectilinear section of load increase as a function of displacement 

[27].Figure 20illustrates determined ‘impact bending stiffness’ values of unmodified and modified laminates. It 

can be observed that the specimen stiffness is not constant at different impact energies, which demonstrate a 

strain-rate dependency of the stiffness, similar results also have been observed by Belingardi et al.[38]. In 

addition, as stated by Jakubczak et al.[15], this material property is contingent mostly on its thickness, 

component type and other structural features of laminates,andincreases along with a rise in energy impact. 

As can be seen in Figure 20, the incorporation of GNPs results in the increase bending stiffness of composite 

and FML specimens in general. For instance, at 33 J impact energy, the contact stiffness of reinforcedcomposite 

and FML specimens was improved by 17% and 12%, respectively, compared to the unreinforced laminates. 

Moreover, it is reported that the inclusion of nanoparticles like MWCNTs [3], nanoclay [61], and pristine GNPs 

(PG) [78] can enhance the impact bending stiffness of composites and FMLs. It should be pointed out thatat the 

higher impact energy level (i.e. energy levels causing perforation), the increase in the stiffness of modified 

panels is less noticeable. 

 

Figure 20.Bending stiffness of tested specimens under different impact energies. 
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3.6.3 Coefficient of restitution  

In general the collision between the impactor and the FML is inelastic; thus, the interaction forces between the 

colliding bodies are non-conservative and some energy is lost during loading and unloading. It is expected that 

the amount of absorbed energy could serve as an indicator to the extent of damage in the low velocity 

impact[40].On the other hand, the coefficient of restitution (COR) can be arepresentation of material’s capacity 

to absorb energy, which is often used for the quantitative assessment of impactresults. Although the comparison 

on the basis of COR only, hasproven to be insufficient, it can be used to some extent to compare the 

investigated FMLs[19].The COR is calculated as the ratio of the velocity of the impactor before and 

afterimpact[91]: 

𝐶𝑂𝑅 =
𝑉𝑟𝑒𝑏𝑜𝑢𝑛𝑑

𝑉𝑖𝑚𝑝𝑎𝑐𝑡
 (1) 

When COR = 1,the collision of impactor and laminate is completely elastic, while COR = 0 designates that 

100% of the impact energy has been transferred to the panel. The above equation can be defined in terms of 

absorbed and impact energies as: 

𝐶𝑂𝑅 =  √1 −
𝐸𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑

𝐸𝑖𝑚𝑝𝑎𝑐𝑡
 (2) 

Figure 21displays COR profiles of the unreinforced and reinforced laminates against the different impact 

energies.At 33 J and 82 J impact energy, the COR value is approximately equal for the unmodified and 

modified FMLs, which indicates that the incorporation of GNPs does not have significant influence on 

theenergy absorption capacity.When consideration of COR is applied so as to compare impactresistance, the 

most essentialmatter is the perforation observation of each specimen. The impactor velocity at impact can be 

similar to that when the impactor is rebounded and repelled. Nevertheless, in the above phenomena, the impact 

behavior of sample is different. This is the reason that totally perforated specimens cannot be compared by 

COR with non-totally perforated laminates[20]. Hence,at 44 J impact energy, since the unreinforced FML is 
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fully perforated while no penetration occurs in the reinforced panel, no comparison can be carried out in term of 

COR. 

As for the unmodified curve, at relatively low impact energies (the perforation threshold energy or less), 

increasing the value of the impact energy produces a reduction in the COR value. The similar phenomenon can 

also befound in [19,20,91,92].In addition, as can be seen in Figure 21 and also stated by Sadighi et al. [19], 

increasing the impact energy further (from 44 J to 82J), results in an increase of the COR indicating that not all 

the energy is absorbed, which means the specimen is perforated. 

 

Figure 21.COR curves for the tested FMLs under different impact energies. 
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bulging area are wider compared to the reinforced panel. In addition, permanent deformation of the rear 

aluminum layer in unmodified FML (at 33 J impact energy) is considerably higher than that in modified 

specimens (at 33 J and 44 J impact energy), which indicates that GNPs incorporation significantly decreased 

the damage extent. 

By looking at the cross-sectional view of the GNPs-modified specimens subjected to 33 J and 44 J impact 

energy,at44 J impact event the delamination and bulging area enlarge more widely. The conclusions can be 

drawn that the size of impact damage area increases with the increasing of impact energy irrespective of the 

constitution of FMLs [1].Moreover, it can be observed that localized plastic deformation of metal layers and the 

debonding between aluminum layers and composite laminate are the main damage under the lower impact 

energies, whereas global plastic deformation of metal layers, metal cracking, fiber fracture and delamination in 

composite plies transfer to the main damages at the higher impact energies. 

As regards for Figure 23(a) and the CR results, when the specimens are fully perforated, neither the inclusion 

of GNPs nor the strain rate has significant effect on the breakage area of FMLs. Conversely, by comparing the 

debonding area (Figure 23(b) and the X-CT results) the modified specimens are characterized by considerably 

smaller debonding area in comparison to the unmodified laminates. As an example, in quasi-static indentation, 

the incorporation of GNPs reduces the breakage and the debonding area of the FML panel by 5% and 36%, 

respectively. Moreover, the GNPs inclusion is found to be more effective at the energy levels that caused no 

perforation, hence at 33 J impact energy, a reduction of 71% in the debonding area of the modified panel is 

obtained, in comparison to that of the unmodified panel. Likewise, some researchers stated that nanoparticle 

inclusion can substantially reduce the damage area of composites and FMLs[43,61,78,90].The analysis of the 

total damage area (Figure 23(c)) indicates that increasing impact energy is accompanied by increasing FML 

damage area.  Similar results have been recorded in other works [26,41,93,94]. Furthermore, another study [13] 

proved that the delamination damage on the aluminum-composite interface is greatly affected by impact 

energy. 
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Figure 22.CR and X-CT results and corresponding cross-sectional viewof tested FMLs. 
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(a) (b) (c) 

Figure 23. (a) Breakage (b) Debonding and (c) Total damage areas of the FML panels. 

 

3.6.5 Microscopic observation 

The adhesion interface of GNPs-modified FMLs between aluminum layers and composite laminate as well as 

composite plies aredisplayed inFigure 24. It can be observed that the two interfaces are combined well. As 

mentioned earlier, surface treatment of aluminum sheets increases the roughness of the aluminum surface, 

which in turn increases the surface energy of the substrate and provides mechanical interlocking, thereby 

enhancing the bonding strength[49,95]. 

  

  

Figure 24. SEM images of Modified FML before impact: (a) over-view of sectional region; (b) close view of composite region; (c) 

and (d) close view of aluminum/composite bonding 
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The SEM images of the unreinforced and reinforced FMLs under different loading rates taken at the damaged 

areas areillustrated in Figure 25 and Figure 26to further investigate the damage mechanisms.By comparing 

SEM results of unmodified and modified FMLs subjected to 33 J impact energy, as seen in Figure 25(a), the 

unmodified panel experiences more delamination extent, indicating poor adhesion between composite plies 

compared to the modifiedone.Thus, incorporating GNPs into the FMLs improves the adhesion between the 

composite layers and accordingly reducesdelamination area.Regarding to Figure 25(b) and (c) for 33 J impact 

event, in the unreinforced panel, owing to the weak interfacial adhesion between resin and glass fibers, most of 

the fibers are detached from matrix, and matrix cracks of this specimen are more severe. Moreover, an 

extensive cavity happened between composite plies of the unmodified panel, whichconfirms weak bonding 

between glass fibers and neat matrix. Whereas, in the reinforced FML, the modified matrixis perfectly bonded 

to glass fibers representing the enhanced adhesion between the resin and fibers in comparison with the 

unmodifiedone. Similar results have been observed in other works[43,52,77,96].The strong interfacial bonding 

is favorable to improve the stress transfer capacity from matrix to fibers and thus significantlyenhances the 

strength of specimens, which has been reported in previous researches[46,49,56,70]. Consequently, the 

inclusion of GNPs in composite laminate of FMLs increases the strength of this panelsand the improved impact 

resistance of GNPs-modified FMLs is mainly attributed to these micro damage mechanisms. 

Under quasi-static loading, the SEM study for the fractured FMLs (Figure 26(a)-(d)) reveals a substantial 

improvement in the matrix and glass fibers interface adhesion as well asreduction inmatrix cracking, fiber 

breakage, fiber pull-out and debonding due to the addition of GNPs. This makes the damaged area of reinforced 

panelsreduce compared to the unreinforced specimens. As illustrated in Figure 26(c) and (g), for the 

unmodified panel, the smooth surfaces of the fibers and the debonding at matrix/fiber interface show weak 

interfacial bonding.In contrast, surfaces of glass fibers in the modified specimen are not smooth (see Figure 

26(d) and (h)), which is a clear indication of strong adhesion at the interface. Furthermore, it can be observed 

that the fracture surfaces of the reinforced FML (Figure 26(d) and (f)) are remarkably different compared to 
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those of the reinforced one (Figure 26(e)). This change from smooth to rough surface features on the composite 

fracture surface suggests that the GNPs have induced the deflection of propagating crack fronts, which 

introduces off-plane loading and generates new fracture surfaces [58].Accordingly,it can be concluded that this 

process increases the required strain energy to perforate the reinforcedFML. 

82 J-Modified 44 J-Modified 33 J-Modified 33 J-Unmodified  

    

(a) 

    

(b) 

 

 

 

 (c) 

Figure 25. SEM images of FMLsafter impact: (a) over-view of sectional region; (b) and (c) close view of damage mechanism. 
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Figure 26. SEM images of FMLs after quasi-static: (a) and (b) over-view of sectional region; (c)-(h) close view of damage 

mechanism. 

As for the SEM images of modified FMLs subjected to different impact energies (Figure 25), by increasing 

impact energy, as expected, delamination, matrix cracking, fiber breakage, fiber pull-out and debonding 

become more severe. Nevertheless, the matrix attachment to glass fibers is still observed even at 82 J impact 

energy. Moreover, it is noteworthy that in unreinforced panel under 33 J impact energy, not only the debonding 

Fiber breakage 

Sm

oot

h 

fib

er 

sur

fac

e 

(g) 

 

Rough fiber surface 

Fiber breakage 
(h) 

 

Smooth fracture surface 

(e) 

 

Strong bonding between 

fiber and matrix 

Rough fracture surface (f) 

 

Sm

oot

h 

fib

er 

sur

fac

e 

 

Fiber breakage 

 

(c) 

 

Rough fracture surface 

 

Strong bonding between        

fiber and matrix 
(d) 

 

Delamination 

 

Fiber pull-out 

 

Fiber breakage 

 

(b) 

 

Fiber pull-out 

 

Fiber breakage 

 Delamination 

 
(a) 

 



37 

 

area and the permanent deformation (Figure 22) but also micro damages are more serious than that of 

reinforced FML at 44 J impact energy, which reveals the remarkable influence of GNPs incorporation. 

4 Conclusions 

In this work, the influence of incorporation of GNPs on the low-velocity impact behavior of composite and 

FML specimensis investigated experimentally.The GNPs at a concentration of 0.2 wt% are added to epoxy 

resin then the reinforced epoxy is used in the fabrication of the composite and FML panels. Impact response 

and damage pattern ofunmodified and modified panels subjected to various impact energy levels including 33 J, 

44J and 82 J are compared. The following conclusions can be drawn from this investigation. 

• The inclusion of0.2 wt% of GNPs significantly strengthens the impact resistance of the composite 

panelso that the modified composite possesses higherbending stiffness,peak load, energy absorption 

and SEA compared to the unreinforced one. 

• For the non-perforated FMLs, the reinforced panelsoffer higher contact stiffness, peak load and SEA 

and also substantially lower damage area in comparison with the unreinforced ones; for the perforated 

cases, the behavior of aluminum becomes moredominant so that the inclusion of GNPs has less 

significant effect on the impact performance of specimens. 

• Visual inspections of the damaged area and SEM observations reveal that the addition ofGNPs 

enhances the adhesion betweenadjacent layers of the composite plies as well as between the resin and 

fibers, thereby relatively suppressingmatrix/fiber debonding, fiber pull-out, delamination and matrix 

cracking within the composite laminate of FMLs. Accordingly, it reduces permanent deformation, 

breakage area and aluminum/composite debonding extent. 

• The GNPs incorporation changesthe fracture and fiber surfacesfrom smooth to rough surface 

features,induces the deflection of propagating crack fronts, and promotes the load transfer capacity 

from matrix to fibers, thus increasing the impact resistance and the required strain energy to perforate 

the reinforced FMLs. 
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• The size of impact damage area, absorbed energy, maximumdeflection and peak load increase with 

the increasing of impact energy irrespective of the constitution of specimens. 

• In aircrafts, low-velocity impact damages often occur on the ground during maintenance operations, 

service trucks and cargo containers. The results of this study indicate that the incorporation of GNPs 

has a positive influence on the behavior of specimens when the impact energy is lower than the 

perforationlimit. Consequently, it is recommended to use GNPs-modified FMLs in the design of new 

aircraft structures. 
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Figure Captions: 

Figure 1. The mechanical behavior comparison of epoxy resin with different percentages of GNPs in tensile, 

compressive and flexural tests: (a) comparison of strength; (b) comparison of modulus [5]. 

Figure 2.Schematic diagram of modified epoxy preparation. 

Figure 3. Lay-up configuration of FML panels. 

Figure 4. (a) Fixture installation on the drop-weight apparatus; (b) schematic of fixture 

Figure 5. XRD patterns of: (a) GNPs; (b) unmodified and modified epoxy. 

Figure 6. Load–deflection curves of composite and FML panels under quasi-static loading [5]. 

Figure 7. Damage morphologies of FMLs subjected to quasi-static loading: (a) unmodified panel; (b) modified 

panel [5]. (Magnification of damaged area is denoted by the circle) 

Figure 8. Low-velocity impact response of unmodified and modified composite panels impacted at 33 J: (a) 

absorbed energy; (b) central deflection; (c) contact force; (d) contact stiffness. 

Figure 9. Damage morphologies of composites subjected to 33 J impact energy: (a) unmodified panel; (b) 

modified panel. (Magnification of damaged area is denoted by the circle) 

Figure 10. Low-velocity impact response of unmodified and modified FML panels impacted at 33 J: (a) 

absorbed energy; (b) central deflection; (c) contact force; (d) contact stiffness. 

Figure 11. Damage morphologies of FMLs subjected to 33 J impact energy: (a) unmodified panel; (b) modified 

panel. (Magnification of damaged area is denoted by the circle) 

Figure 12. Low-velocity impact response of unmodified and modified FML panels impacted at 44 J: (a) 

absorbed energy; (b) central deflection; (c) contact force; (d) contact stiffness. 

Figure 13. Damage morphologies of FMLs subjected to 44 J impact energy: (a) unmodified panel; (b) modified 

panel. (Magnification of damaged area is denoted by the circle) 

Figure 14. Low velocity impact response of unmodified and modified FML panels impacted at 82 J: (a) 

absorbed energy; (b) central deflection; (c) contact force; (d) contact stiffness. 

Figure 15. Damage morphologies of FMLs subjected to 82 J impact energy: (a) unmodified panel; (b) modified 

panel. 

Figure 16. The comparison of FML responses under different loading rates. 

Figure 17. Absorbed energy-time curves of unmodified FMLs under different impact energies. 

Figure 18. Maximum deflection in tested specimens under different impact energies. 

Figure 19. Maximum impact energies of tested specimens under different impact energies. 

Figure 20. Bending stiffness of tested specimens under different impact energies. 

Figure 21. COR curves for the tested FMLs under different impact energies. 
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Figure 22. CR and X-CT results and corresponding cross-sectional view of tested FMLs. 

Figure 23. (a) Breakage (b) Debonding and (c) Total damage areas of the FML panels. 

Figure 24. SEM images of Modified FML before impact: (a) over-view of sectional region; (b) close view of 

composite region; (c) and (d) close view of aluminum/composite bonding 

Figure 25. SEM images of FMLs after impact: (a) over-view of sectional region; (b) and (c) close view of 

damage mechanism. 

Figure 26. SEM images of FMLs after quasi-static: (a) and (b) over-view of sectional region; (c)-(h) close view 

of damage mechanism. 
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Table Captions: 

Table 1. Type and mechanical properties of materials. 

Table 2. Summary of the quasi-static indentation and the low-velocity impact results. 
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