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Abstract

COMPUTER Vision involves many challenging problems.
While early work utilized classic methods, in recent years

solutions have often relied on deep neural networks. In this
study, we explore those two classes of methods through two ap-
plications that are at the limit of the ability of current computer
vision algorithms, i.e., faint edge detection and multispectral
image registration. We show that the detection of edges at a
low signal-to-noise ratio is a demanding task with proven lower
bounds. The introduced method processes straight and curved
edges in nearly linear complexity. Moreover, performance is of
high quality on noisy simulations, boundary datasets, and real
images. However, in order to improve accuracy and runtime, a
deep solution was also explored. It utilizes a multiscale neural
network for the detection of edges in binary images using edge
preservation loss. The second group of work that is considered
in this study addresses multispectral image alignment. Since
multispectral fusion is particularly informative, robust image
alignment algorithms are required. However, as this cannot be
carried out by single-channel registration methods, we propose
a traditional approach that relies on a novel edge descriptor us-
ing a feature-based registration scheme. Experiments demon-
strate that, although it is able to align a wide field of spec-
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tral channels, it lacks robustness to deal with every geometric
transformation. To that end, we developed a deep approach for
such alignment. Contrarily to the previously suggested edge
descriptor, our deep approach uses an invariant representation
for spectral patches via metric learning that can be seen as a
teacher-student method. All those pieces of work are reported
in five published papers with state-of-the-art experimental re-
sults and proven theory. As a whole, this research reveals that,
while traditional methods are rooted in theoretical principles
and are robust to a wide field of images, deep approaches are
faster to run and achieve better performance if, not only suffi-
cient training data are available, but also they are of the same
image type as the data on which they are applied.
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Chapter 1

Introduction

COMPUTER vision and image processing involve many
challenging problems. While early methods utilized

’classic’ approaches, work in the last decade has focused on
deep neural network architectures to solve them. Here, ’clas-
sic’ refers to approaches that are not learning-based, such
as engineered feature descriptors, theoretic-based algorithms,
search methods and usage of theoretically proven thresholds.
In this study, I explore the differences between classic and deep
learning (DL) approaches in order to gain better insight regard-
ing which is more suitable for a given imaging modality and
what are their associated constraints. Its focus is on the DL
part of the non-classic methods, i.e., I do not cover machine
learning algorithms that are not deep. This is motivated by the
fact that, DL has become the leading and most reported ma-
chine learning approach. Actually, currently, around 25 per-
cent of the papers presented at computer-vision conferences
take advantage of DL. Moreover, a session dedicated to DL
has become the norm on the program of a variety of scientific
venues. For example, in CVPR 2019, 25% of the published
papers were assigned to the Deep Learning subject area.
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In order to perform that investigation, I have focused on two
computer vision tasks that are at the limit of the ability of cur-
rent computer vision algorithms: faint edge detection in noisy
images and multispectral registration of images.

Edge detection is one of the earliest problems that has been
tackled by image processing and computer vision [24, 45, 15].
Although many approaches have been proposed to address this
task, they still fail to detect edges when they are faint and the
images are noisy as shown in [51, 50]. Those limitations are
particularly problematic as these kinds of edges can be found in
most imaging domains including satellite, medical, low-light,
and even natural images.

With the development of multi-sensor cameras that capture
images from different modalities, multispectral image align-
ment has become a very important computer vision task. In-
deed, robust alignment between the different image channels
forms the basis for informative image fusion, and for data fu-
sion. Examples for image fusion and its applications are de-
scribed in detail in [66]. E.g., object detection can be de-
rived from color visible to infrared given an accurate multi-
spectral alignment. Moreover, cross-spectral alignment can-
not be carried out by single-channel registration methods like
scale-invariant-feature-transform (SIFT) [41, 12].

1.1 Computer vision

Computer vision is a multi-disciplinary field that is related to
artificial intelligence and image processing. It deals with how a
computer can gain an understanding of, usually, the real world
from images and videos. In a sense, computer vision is the
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opposite of computer graphics. Computer graphics transforms
data into images while computer vision translates images into
relevant data. From an engineering perspective, computer vi-
sion attempts to mimic the ability of the human visual sys-
tem. Subdomain of computer vision includes object recogni-
tion, scene understanding, object tracking, image alignment,
3D reconstruction, motion estimation, and image restoration.

The field of computer vision is a well-studied area with a
plethora of related works. Early methods were focused on low
level tasks such as edge detection [15], noise removal [10] and
optical flow computing [42]. More advanced works addressed
complex problems like image alignment [12], image process-
ing using wavelets [48] and object detection using machine
learning classifiers [17]. In the next sub-sections, I will briefly
introduce the technical domains that are at the core of this piece
of research, i.e., faint edge detection, multispectral registration
and deep learning.

1.2 Faint edge detection

Edge detection is the problem of identifying the pixels in an
image where there are image intensity discontinuities. In other
words, edges are composed of the pixels where image inten-
sity levels change slightly to sharply. Typically, these edges
are organized as a set of curved lines in the image. Edges can
be modeled as either sharp step edges or a smooth transition
between two segments with a significant difference in intensity
levels. Edge detection is fundamental to computer vision and
image processing as it is the basis for higher-level computer vi-
sion tasks like feature extraction, feature detection, and motion

3



estimation.
Unfortunately, all the methods for regular edge detection are

not geared to handle faint edges and noisy images [14]. To that
end, researchers addressed the challenging task of faint edge
detection in noisy images. [23] introduced a method to detect
straight edges in nearly linear complexity by matched filters.
My work, [51], was the first to address the problem for curved
edges that also worked in nearly linear complexity. I utilized
a dynamic programming approach and a binary multiscale par-
titioning of the image to compute the curved matched filter in
practical time. In [50] introduced theoretical results of thresh-
old limitation, concluding on how faint an edge can be and still
be detected. I was first to introduce a Convolutional Neural
Network (CNN) approach for the task, improving the accu-
racy of the previous methods on noisy simulations [52]. Be-
cause of the versatility of neural networks, my approach also
delivered a high-quality performance for other vision tasks in-
volving noisy images. I proposed methods for noisy image
classification and natural image denoising using edge preser-
vation losses and multi-scale CNN. Recent works introduced
sub-linear approaches for faint edge detection [28, 73].

1.3 Multispectral registration

Image registration and alignment is a process of transforming
two or more images into one coordinate system. In standard
image registration, the input data are multiple images captured
by the same sensor. Multimodal, or multispectral when the
modalities are different spectral channels, image registration
also permits processing images from different sensors. Here,
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registration is essential in order to integrate those heteroge-
neous data and gray levels into a single system or image. It is
often used in medical imaging, panoramas creation, and multi-
sensor cameras. The registration methods can be classified into
two groups, i.e., intensity-based like [42] and feature-based
like [12]. Registration is carried out using transformation mod-
els that can be as simple as only dealing with translation and
scaling and as complex as integrating affine, projection, and
nonlinear transformations. This process can be performed on
either the spatial or the frequency domain.

Image registration allows producing image fusion, image
panoramas, matching stereo, and recover an object’s shape.
While early method relied on Fast-Fourier-Transform [58] to
solve complex geometric relations, more advanced methods
used complex engineered descriptors for the alignment [12].
However, all those methods for single-channel registration fail
when attempting to register multi-modal data. To that end, a
group of works developed a unique method for cross-spectral
alignment.

1.4 Deep learning in computer vision

In recent years, deep learning techniques have been revolu-
tionizing computer vision. Analysis of the program of recent
computer vision conferences like CVPR 2019 shows that deep
learning has become a leading topic among the published pa-
pers, see Table 1.1. Deep learning is a specific type of machine
learning method that has only started being particularly suc-
cessful around 2010. That was made possible thanks to, in par-
ticular, the availability of GPUs computing and large datasets
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Topic Percentage
Deep Learning 24.4
Recognition 22.1
Face, Gesture, and Body Pose 10.8
Low-Level Vision 10.6
Image and Video Synthesis 8.6
Vision and Language 8.2
Segmentation, Grouping, and Shape 7.6
3D from Multiview and Sensors 7.6

Table 1.1: Topics of the papers presented at CVPR 2019 and their respective per-
centage.

[63]. The domain DL originates from, i.e., artificial neural net-
works (ANNs), was founded in the 40’s [47]. Deep learning
allows computational models with the architecture of multiple
hidden layers and non-linear activations to process and learns a
representation of data [35]. In other words, deep learning is the
class of machine learning algorithms that uses multiple layers
to extract high-level features from raw input.

One of the earlier ANN algorithms, back from the 50’s, is
the Perceptron [60], an algorithm for supervised learning of
binary classifier based on a single artificial neuron. The Per-
ceptron introduced supervised learning of a classifier based on
a linear prediction combining weights and a feature vector. In
1989, the idea of using back-propagation to train a neural net-
work for handwritten recognition was proposed [36]. After-
ward, deep methods introduced a neural network for the clas-
sification of handwritten digits [37]. Advanced work presented
the classification of a natural image to pre-known classes [33].
Then, classification formed to basics for deep learning-based
object detection [40]. Recently, generative adversarial net-
works (GANs) were introduced to create naturally looking ar-
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tificial images [57]. Deep and machine learning can be useful
to real-life applications going from plant identification [38] to
brain-seizure detection [21].

A recent study [56] compared traditional approaches to deep
learning-based ones. They ”laid down many arguments why
traditional CV techniques are still very much useful even in the
age of DL”. They claim that, although DL has changed the
limits of the ability of computer vision in such a way that more
problems can be addressed and sometimes even solved, knowl-
edge of classic computer vision should be maintained since it
still has advantages. For instance, classic algorithms are of-
ten more robust to variability in the image, and the theory be-
hind them can inform us about the nature of the problem. One
should note that the nature of that study is quite unlike mine.
Not only does it focus on a very different set of challenges,
i.e., panorama generation, 3D vision and Simultaneous Local-
ization And Mapping (SLAM), but it is based on surveys and
opinions instead of experiments.

1.5 Aims and objectives

The first aim of this study is to advance fields of computer vi-
sion, more specifically faint edge detection and multispectral
image alignment, by developing novel (both classic and deep
learning-based) approaches. Its second aim is to gain an in-
sight into the respective strengths and weaknesses of classic
and deep approaches when addressing computer vision chal-
lenges. Those aims will be achieved by completing the follow-
ing technical objectives:
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1.5.1 Classic detection of faint edges using hierarchical partitioning

Detection of faint edges in noisy images is a challenging task
that requires a tailored method as methods for regular edge de-
tection fail at low Signal-to-Noise Ratios (SNRs). I propose
to address this problem by applying a matched filter to curved
edges. A matched filter smooths the noise along the edge and
maximizes the contrast across the edges. As curved edge loca-
tions in the image are unknown a priori, it is intended to apply a
smart search for curved edges which should offer nearly linear
complexity in the image pixels. This search is expected to be
performed by multiscale binary partitioning of the image. This
study will also investigate theoretical questions such as: how
faint can an edge be while still be detectable?

1.5.2 CNN-based detection of faint edges relying on edge preservation
loss

As in many applications, neural networks have proved to out-
perform classic solutions, I also intend to investigate the faint
edge detection challenge by exploiting a multi-scale neural net-
work. While improving detection accuracy is of prime inter-
est, the potential for faster processing using GPUs is also at-
tractive. By performing this study, I also wish to understand
fundamental questions regarding CNN-based approaches such
as: How easy an approach can be transformed to other vision
tasks? How relevant is edge information to computer vision
tasks? Are edge detection maps and gradients informative for
tasks involving noisy images? Can faint edge detection be car-
ried out by a CNN?
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1.5.3 Classic registration of multispectral images using a novel edge
descriptor

As multispectral image alignment can form the basis for im-
age fusion, it allows taking advantage of different spectra to
analyze the content of a scene. I propose to approach this chal-
lenging task by aligning images using feature point calculation
of geometry alignment based on an edge descriptor that is in-
variant to spectra. Experiments should reveal the limitation of
the proposed descriptor both in terms of the spectral field of
alignment and types of geometric transformations.

1.5.4 Deep registration of multispectral images relying on invariant
descriptor learning

By definition, manually engineered descriptors are sub-
optimal. Therefore, the design of an invariant descriptor us-
ing deep learning schemes is an attractive proposition. It is
proposed to extend the previous classic method by generating
automatically a descriptor using metric learning taking advan-
tage of a pseudo-Siamese network that can be seen as a teacher-
student architecture. An important aspect of this study is also
the understanding if such descriptors can be learned from mini-
mal data acquisition and labeling. I would like to address a fun-
damental question: Is deep learning an appropriate approach to
conduct multispectral registration?

1.5.5 Deep learning solutions versus classic methods

Having proposed both classic and deep learning-based state-
of-the-art solutions for diverse applications, I will be in a po-
sition to compare those two types of approaches and obtain
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some general insight into their strengths and limitations. In
addition to accuracy and runtime speed, some more fundamen-
tal aspects will be studied. They include the complexity of
their development, their theoretical background, their reliance
on data and/or previous knowledge, and their robustness when
applied in other similar domains and/or more extreme condi-
tions.

1.6 Scientific contribution

In this thesis, novel ideas are presented leading to novel algo-
rithms for faint edge detection and multispectral image align-
ment, and a comparison of classic and deep approaches.

1.6.1 Classic detection of faint edges

Figure 1.1: Rectangle-Partition-Tree of an image. My classic method for detection
of faint edges search for every curve between every two boundary points ∀p1, p2
the best concatenation of sub-curves by breaking point p3. This search for curves
is done recursively in a bottom-up dynamic-programming-like approach. For an
image with N pixels, the complexity is O(N1.5) in the full mode and O(N logN )
in the optimized mode.
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The challenge I address is the detection of curved edges of
arbitrary shapes at low SNRs. My approach is to average the
noise and maximize the contrast using a matched filter. Even
though the search space of such curves in an image is of expo-
nential size, an efficient polynomial approach can detect edges
sufficiently by designing a classic algorithm for computer vi-
sion. Indeed, an important issue is the ability to detect curved
edges accurately in a practical run-time.

My classic approach for faint edge detection utilizes a
matched filter. This filter smoothes the noise along the curve
and maximizes the contrast across the edge and therefore al-
lows detection of curved edges at low SNRs. However, as the
edge locations are unknown apriori, I search for their location
using dynamic programming like algorithm. My approach re-
lies on a Rectangle-Partition-Tree (RPT) of the image pixels
as described in Figure 1.1. At the bottom level, I scan every
straight-line edge in a 5× 5 tiling of the image. Every higher-
level contains rectangles divided into 2 sub-rectangles. In Fig-
ure 1.1, p1 is a boundary point on the left sub-rectangle, p2 is a
pixel on the right one. For every such pair ∀p1, p2 I search for
the best middle pixel p3 that maximizes the curve contrast. The
full mode of this approach costs O(N 1.5) in terms of complex-
ity for an image with N pixels. In my optimized mode, I select
smartly the k best candidates of p3, achieving an O(N logN)
complexity, which is more practical for big images.

Given, the best curve candidates the algorithm found, I in-
troduce a theoretical function for thresholding them. For a
curve of length L and width w, where the algorithm search
for KL such curves, and the Gaussian noise level in the image
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is σ, the derived threshold is:

T (L,KL) = σ

√
2 lnKL

wL
. (1.1)

Since I derived a closed-form for KL in my method, I can infer
the minimal detectable contrast of a faint edge. By L → ∞ I
prove that the faintest edge that can be detected is a function
of:

T∞ = Ω(
σ√
w

). (1.2)

In conclusion, I developed a multiscale algorithm for the de-
tection of faint curved edges in noisy images. My approach is
nearly linear and utilizes a proven threshold and lower bound.

1.6.2 CNN-based detection of faint edges

Figure 1.2: My FED-CNN network of a U-Net Architecture is the multi scale CNN
that I used to mimic the hierarchical tree approach of my classic algorithm. This
deep neural network was trained by an edge preservation loss.

The challenge I address here is similar to the one of the pre-
vious sub-section. However, I propose the detection of curved
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edges of arbitrary shape at low SNR using a deep neural net-
work. I aim to carry out this procedure together with an im-
provement of run-time. Indeed, faint edge detection can be ad-
dressed by deep learning detecting curves of arbitrary shapes.
The expectation was that the DL approach, as in many other
applications, would outperform state-of-the-art classic meth-
ods in terms of accuracy.

To detect edges by the deep approach I need a multiscale
Convolutional Neural Network that mimics my RPT filter. My
Faint-Edge-Detection (FED) network that addresses this re-
quirement is of U-Net architecture as described in Figure 1.2.
Instead of deriving thresholds as in the classic scheme, I should
derive loss functions to train my FED-CNN. To that end, I use
an edge preservation loss which is based on dice-coefficients:
Given an edge result of my network y, and edge label y

′
the

loss is

Di(y, y
′
) = −

∑
p y

′
(p)y(p)∑

p y
′(p) +

∑
p y(p)

. (1.3)

The enumerator maximizes the shared edges while the de-
nominator minimizes the false positive detections. Given my
CNN architecture and edge preservation loss, I can solve other
tasks of noisy images like image denoising. Given an Image-
Denoising CNN, I can improve results by a similar edge preser-
vation loss:

LE = || ∂
∂x
Ic −

∂

∂x
IDCNN(In)||22. (1.4)

In conclusion, my approach for multiscale processing of
noisy images using edge-preservation losses achieved high-
quality results in three tasks, faint edge detection, noisy image
classification, and natural image denoising.
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1.6.3 Classic registration of multispectral images

To gain information from multi-sensor cameras, a pre-
processing step of image alignment is usually needed. Al-
though single-channel registration is a well-studied problem,
in the case of multi-channel, it can be very challenging. Multi-
spectral alignment, even though an ill-posed problem, can be
addressed by engineering features that provide invariant repre-
sentation.

To that end, I need a method that is robust both for geomet-
ric distortions and for cross-spectral changes. My registration
is carried out by a feature-based approach since feature corre-
spondences are the basis for global geometry derivation.

My method utilized an iterative outlier rejection which is
an improvement of the regular Random-Sample-Consensus
(RANSAC). The features are calculated by a Harris Corner
Detector. However, the core of my method is the proposed de-
scriptor. My descriptor is based on edge representation, which
is invariant to different spectra, but also to geometric relations.
The proposed representation is based on Canny Edges, and on
gradient orientations. The justification for this engineered de-
scriptor can be seen in Figure 1.3. Although the original cross-
spectral patches have no correlation between them, their edge
images are of high similarity.

To conclude, I developed a feature-based robust alignment
of multispectral images. That is invariant to a wide field of
spectral channels (Visible and Middle Wave Infrared) and is
also invariant to significant rotation, scaling and translation.
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Figure 1.3: Multispectral patches and their corresponding edge maps that are part
of their edge descriptors. Although the original patches are not correlated their
edge maps attain a significant similarity. Therefore, this kind of descriptor is more
invariant to different spectra than descriptors of inter-spectral alignment.

1.6.4 Deep registration of multispectral images

The challenge I address here is similar to the one of the previ-
ous sub-section. I propose to reuse my classic approach using
the same feature-based method, however, replacing its feature
representation by a CNN. The question I address is how to learn
an invariant descriptor of multispectral feature points. It is pro-
posed to exploit a CNN feature extraction that is learned out of
a cross-spectral image dataset. A deep approach to the teacher-
student scheme can produce a pseudo-Siamese network for es-
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Figure 1.4: My learning architecture for a deep invariant descriptor. This can
be seen as a pseudo-Siamese network or as a teacher-student scheme. The visi-
ble color patch is forwarded through a pre-trained classification network that was
trained on the CIFAR10 dataset. Its corresponding Near-Infrared (NIR) patch is
being used to train the infrared network to produce a similar invariant representa-
tion.

timating the metric between corresponding patches.
Figure 1.4 describes my learning scheme. This architec-

ture can be seen as teacher-student, pseudo-Siamese, or met-
ric learning. The color visible network is pre-trained to clas-
sify images from the CIFAR10 dataset. After this network is
trimmed, it extracts a descriptor for every color visible corner
patch. To obtain a similar network for infrared I trained the
second network by l2 loss. The infrared network is of the same
architecture but with different weights. The input for this learn-
ing method is pairs of aligned cross-spectral patches from my
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dataset.
In comparison, relative to the classic approach, my deep de-

scriptor is more robust to geometric relations and solves a nar-
rower field of spectral channels.

1.6.5 Comparison between classic and deep learning-based ap-
proaches

An important contribution of this study is a comparative per-
spective between classic and deep learning-based approaches
informed by my experiments on both faint edge detection and
multispectral image alignment. It reveals that each one has its
advantages and limitations.

Classic and DL-based approaches have many differences.
DL approaches are based on data while classic ones often rely
on theoretical models. Therefore, DL ones tend to achieve high
performance when processing data similar to those of the train-
ing dataset, whereas classic assumptions often generalize to
other imaging domains as well. While DL ones rely on loss
heuristics and pre-defined CNN architectures, classic methods
are based on proof and theoretic thresholds. In addition, DL
approaches take advantage of CNNs seen as a black box, while
in a classic one the developer is able to justify the algorith-
mic steps. In general, although DL methods have stretched
the limits of computer vision and have won every context,
classic-traditional approaches still have many advantages, in-
cluding relevance to other imaging domains, theoretical foun-
dations, a better understanding of the problems and their solu-
tions, proven algorithms steps, which provides a degree of trust
in the code that cannot be delivered by that relying on a black
box.
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My study has focused on faint edge detection and multi-
spectral image registration which are two problems at the limit
of the ability of computer vision. The conclusion of my work
confirms that each type of approach, classic and deep-learning,
has its advantages. Classic methods are robust to image type
and modality and are based on theoretic foundations. Deep
approaches are faster to develop given a relevant dataset and
achieving higher accuracy on a test set. They are robust to ge-
ometry variabilities and different object appearances.

More specifically, as faint edge detection in the classic
methods assumes both an edge and a noise model, I devel-
oped an algorithm that exploits these assumptions on edges.
Although those models are based on simplifications, the pro-
posed classic method can be applied to other edge domains like
those of natural or medical images. In the deep approach, the
assumptions are replaced by a dataset, and as my works show,
the CNN training achieving better accuracy on the train and
test sets. However, it is limited to other domain transitions.
Similar lessons were gained from multispectral image align-
ment. As the classic method assumed an invariant property of
spectral channels, I developed a descriptor that represents only
the shared information of different spectra. Experimentally,
this assumption delivered invariance to a wide field of spec-
tral images. In the deep-based approach, I trained a CNN to
be invariant by using a set of same and not same cross-spectral
patch pairs. The training process produced a metric between
such pairs of patches. Experiments suggested the CNN ap-
proach to be invariant to a narrower field of imaging domains
but a wider field of geometric transformations. Here again, I
achieved higher accuracy on images similar to the train and
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test sets.

1.7 Thesis outline

This thesis is divided into several chapters as follows:
Chapter 2 surveys previous works related to this thesis con-

tent. It presents early and recent approaches attempting to ad-
dress the tasks discussed in this work.

Chapter 3 is about classic and deep approaches for FED. The
first contribution introduces a classic solution related to the de-
tection of faint edges. It consists of two publications, i.e., a
conference and a journal one. In particular, they discuss exist-
ing methods to detect faint edges in nearly linear complexity.
In addition, I present a deep approach for the detection of faint
edges. The published paper also introduces similar approaches
for noisy image processing using multiscale CNN trained by
edge preservation losses.

Chapter 4 reports on classic and DL methods for multispec-
tral alignment. The classic paper proposes a method to align
and fuse cross-spectral images using a novel edge descriptor.
This method is classic as it relies on an engineered alignment
scheme. I also introduce a deep based method to create an in-
variant descriptor of multispectral image registration which is
learned by a pseudo-Siamese networks.

Chapter 5 discusses the differences between classic and
deep approaches that could be highlighted from work reported
in the published papers.

Chapter 6 reports the conclusions of this thesis, it also con-
tains a discussion and suggests future work.
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Chapter 2

Literature review

SINCE this thesis by publication consists of five published
papers, each of them including a comprehensive literature

review, their content will not be duplicated in this section. In-
stead, I will refer to the relevant sections in those papers so
that the reader can find easily the relevant material in those
manuscripts.

2.1 Faint edge detection

Edge detection is a fundamental problem of computer vision
and image processing. The most basic approach detects edge
by gradient magnitude [24]. Marr and Hildreth detected edge
locations by laplacian zero-crossing [45]. Canny extended the
basic approaches by hysteresis gradient thresholding [15]. A
recent group of works focused on a similar problem of bound-
ary detection in natural images [46]. They introduced machine
learning approaches to detect the boundaries [8, 29, 19]. As
demonstrated on a standard dataset [46], their accuracy could
be improved by deep learning methods [76, 77, 43].

Additional details on previous studies about edge detection
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are found in Chapter 3. More specifically, in paper [51] of
Chapter 3, the previous works Section 2 provides a compre-
hensive literature review on the topic of edge detection, from
early methods up to the state-of-the-art in FED. It shows that
classic methods for regular edge detection are unable to detect
accurately edges under the presence of faint signals and noisy
images. More specifically, current methods do not accurately
detect edges at low SNRs and are highly affected by the pres-
ence of noise. Consequently, they produce false-detections out
of noise gradients and they are not sensitive enough to long
curves with faint contrast.

2.2 Multispectral registration

Image alignment is a classic and useful problem of computer
vision. Image registration allows producing image fusion, im-
age panoramas, matching stereo, and recover an object’s shape.

The field of multispectal image alignment is addressed by
a group of works. A unique descriptor was invented for that
task [3], however, my experiments showed that it was not ac-
curate enough in multispectral alignment. I offered an edge-
based descriptor [54], that together with my improved version
of iterative Random-Sample-Consensus (RANSAC) [22], out-
performed their performance. My engineered descriptor man-
ages to align a wide field of spectral channels, color visible
to middle-wave-infrared (MWIR). Later, [2] introduced clas-
sification CNN for pairs of cross-spectral patches. Their clas-
sifier attempts to decide if a pair of visible and infrared im-
age patches capture the same real-world visual object or not.
However, their approach did not produce a full end-to-end so-
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lution for image alignment. My deep method, [53], introduced
a teacher-student scheme to learn a similarity measure between
cross-spectral edges. My method is robust to complex geomet-
ric relations and achieves high accuracy registration of visible
color to near-infrared (NIR). However, to deal with small ge-
ometric transformations between multimodal images, a deep
learning-based study [6] proposed an end-to-end approach for
computing multispectral optical flow using spatial transformer
networks [30].

Details on previous studies about multispectral image align-
ment are found in Chapter 4. While the classic paper [54] fo-
cuses mainly on classic methods and fusion approaches, the
emphasis of deep manuscript [53] is on DL-based algorithms.
In papers [54] and [53], in the previous works Section 2, there
is a detailed review on alignment methods, from early meth-
ods to most recent studies. These literature reviews reveal that
methods for regular image alignment fail under the problem
of multispectral image registration. Therefore, more work is
needed using both deep and classic approaches to align cross-
spectral images captured by different sensors.

2.3 Deep learning solutions versus classic methods

Early computer vision algorithms utilized classic methods,
while in the last decade the subject faced a major transition
of focus into deep learning-based approaches. First, I intro-
duce classic methods, providing both definitions and examples.
Second, I survey studies that have compared classic and deep in
specific applications. Third, I report on the amount of energy
and computing resources required by deep learning methods.
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This is followed by a discussion on the computational time and
the associated hardware requirement of DL during both train-
ing and test phases. Next, I introduce the issue of adversarial
attacks on deep neural networks. Finally, I discuss the black-
box effect of DL and the development procedure.

One can consider three types of approaches: classic, ML
without DL, and DL. Some ML algorithms have similarities
with the classic ones in the sense that their learned classifier or
regressor are on the top of features extracted in a classic way.
Alternatively, many ML approaches are like DL ones as their
input is, e.g., the original image’s pixels and they learn a whole
function on them. For the algorithm comparison in this work, I
will focus on the main two extremes, i.e., classic and DL. I will
not consider ML that are not DL, since they comprise a large
and heterogeneous group of methods and have a lot of overlap
with the two other approaches.

2.3.1 Classic methods

In this thesis, classic or traditional approaches are defined as
approaches that do not rely on machine learning. Classic meth-
ods are engineered algorithms that rely on theory and/or math-
ematical models and not directly on external data. This is fun-
damentally different from ML approaches that generate mod-
els by learning directly from data, setting algorithm parameters
using methods like gradient descend. Classic approaches are
designed by experiments and intuitions while ML methods are
developed in a more specific way comprising model selection,
objective function, and parameters learning. A typical example
of such traditional algorithms is Canny edge detection [14] that
uses hysteresis of gradients to identify curves in the image. An-
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other classic example is the SIFT [41] descriptor, which is an
engineered and handcrafted representation of an image interest
point. SIFT is the basics of many high-level computer-vision
methods such as panorama stitching and object detection.

2.3.2 Comparison based on specific applications

A recent study [56] compares traditional and deep learning al-
gorithms. Their study investigates three computer vision tasks,
i.e., panorama generation, 3D reconstruction, and Simultane-
ous Localization and Mapping (SLAM). They show that each
approach has its advantages and limitations. They report that
DL enables engineers to achieve greater accuracy on the re-
viewed tasks. Moreover, since the algorithms are trained and
not developed, they require less expert analysis and manual
fine-tuning than classic methods. They also mention that an
additional advantage of DL techniques is their flexibility. For
example, a CNN model can be retrained using a custom dataset
for any related use case. A major new feature brought by DL
has been the unification of feature extraction and classification
within a single framework.

Despite those advantages, classic methods also have some
of their own. The authors claim that in many situations, usage
of DL is probably overkilled with a huge number of parameters
like, e.g., in image denoising [78]. In addition, they feel that
classic methods could have addressed the problem much more
efficiently in fewer lines of code. Moreover, with respect to
feature extraction and representation, they highlight that those
classic descriptors are more general and therefore are suitable
for many image types, whereas features learned from CNN are
specific to the training set.
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There are more studies that inform such a comparison. They
focus on a single application and perform experiments to eval-
uate their difference in terms of accuracy. A recent publication
[11] reports the comparison of a set of classic keypoint descrip-
tors with their deep learning-based competitors [55], [18]. Fol-
lowing the evaluation of those descriptors under various geo-
metric transformations and illumination conditions, they show
that some combinations of classic keypoint detectors and de-
scriptors outperform pre-trained deep models, demonstrating
there is still a value in considering classic feature descriptors.
In contrast to the expectation, the tested deep models did not
outperform the classic approaches dramatically. This can be
explained by the fact that for such an application feature rep-
resentation seems quite intuitive and therefore easy to engineer
by an expert. While they claim that DL helps for illumination
variance mainly, as a whole, contrary to the conclusions seen
in [56] which suggest the general superiority of DL techniques,
here they do not improve significantly performance.

An additional study surveys traditional and DL methods for
face recognition [71]. As it is generally accepted in the com-
munity like in boundary detection for example [76], they report
that CNNs have become the standard since they deliver signifi-
cant accuracy improvements. Since the state of the art for face
recognition is dominated by DL-based approaches, this sug-
gests that problems that are particularly hard to model like this
one benefit greatly from DL when compared to approaches re-
lying on classic feature extraction [11]. Thus, I can infer that
conclusions regarding performance depend on the task that is
considered. This study claims that improvement in CNN re-
sults may be easily achieved by extending the network’s ca-
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pacity and making the dataset bigger. However, these improve-
ments are expensive and deep CNN is slow to train and deploy.

A practical study carried out a similar comparison for a mo-
bile robot application [44], where the authors focus on the im-
portant problem of visual object detection. They evaluate two
methods: classic feature extraction with a learned classifier ver-
sus object detection with a compact CNN named YOLO v3
[59]. While this study is far from being comprehensive, it can
still inform my comparison. They found that the classic-based
detector does not detect all the objects under varying geome-
tries such as size and rotations, while they report that the tiny
CNN-based detector deals with these variations outperforming
the classic approach.

Table 2.1 summaries the outcomes of the mentioned com-
parison studies.

Subject Deep learning Classic
Features extraction [11] High-Accuracy High-Accuracy
Feature extraction robustness [11] Lightning-Invariant Image-Type-Invariant
Object detection [44] High-Accuracy Moderate-Accuracy
Object detection robustness [44] Geometry-Invariant Geometry-Limited
Face recognition [71] High-Accuracy Moderate-Accuracy

Table 2.1: A table comparing the advantages of deep learning versus classic meth-
ods as reported by the literature.

Although generally, DL approaches tend to perform better
than classic ones, this still depends on the specific application
of interest. For those where the features that are relevant are
well understood and can be engineered to model nature, classic
methods may still have a leading role to play [11]. Indeed, hu-
man intuition and expertise about the solution may not be eas-
ily learned by a deep neural network. However, where objects
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vary according to complex distributions, like people and faces,
DL detection and recognition are much more robust as can be
seen in [44] and [71]. In general, deep approaches are invari-
ant to illumination and geometry, while classic ones are more
robust to image type and modality. This may be explained by
the fact that classic approaches use assumptions that are usu-
ally modality invariant, while deep approaches are designed to
be flexible to the variance in the training set, for example, in
terms of varying geometries and lightning conditions.

2.3.3 Energy, computing resources and associated hardware require-
ments

Many researchers have discussed the limitations of deep neu-
ral networks by considering other aspects than accuracy per-
formance. [26] criticizes the training phase and its associated
large energetic footprint. As better results are usually achieved
by increasing a network’s size, one may want to train larger
and larger networks with tens of millions of parameters. In
their study they claim that training a network with 65 million
parameters, which is the size required for achieving accurate
results on a typical DL framework such as PyTorch, requires
27kWh energy - this amount of energy is equivalent to light-
ing a led bulb for two months - and costs between 41 to 140
USD of Cloud computing. Another publication, which also
discusses the resources needed for DL [67], mentions that, al-
though large neural networks improve the accuracy of NLP al-
gorithms, they rely on the availability of large computational
devices. They report that the training of an NLP standard DL
model like the one proposed in [9] requires 120 hours which
can cost up to 180 USD of cloud computing and electricity.
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Both studies reach the same conclusion that, while deep meth-
ods deliver high accuracy, they are not as efficient as their pre-
vious traditional methods in terms of energy and computing re-
sources. Indeed classic methods rely on a much lower number
of parameters, multipliers, and do not require a training phase.

A recent study [31] predicts the computational cost of DL
models. They report that the average-case assumption is that
the training time is linear in the number of floating-point op-
erations in the model. This is a disadvantage of DL since it
requires millions of parameters to work properly, whereas clas-
sic approaches not only do not require any training phase: they,
and standard ML approaches, rely on a number of parameters
of several orders of magnitude smaller. Note that, although in
general there is no linear relationship between the number of
parameters in a DL network and the number of FLOPS, they
share a strong connection. This study also compares differ-
ent hardware platforms from cloud computing to GPUs. The
deeper the network, the more accurately the authors succeeded
at predicting the training time required for convergence. They
conclude that the required time increases with the batch-size
while depending on the optimization method.

In summary, all these studies show that for DL networks
to work properly, important resources are needed. While [26]
discusses their huge footprint, [67] claims that DL methods are
not as efficient as their previous traditional approaches. In ad-
dition, [31] predicts the training time required for a model, and
since it needs to be large to work accurately, they require a huge
amount of time on every potential computing device. In con-
clusion, if a developer decides to use a DL approach to address
a problem, they should take into account not only accuracy but
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also the high energy consumption of the development process,
and the power consumption associated with running it. Thus,
if the accuracy achieved by a classic approach is sufficient, it
may be preferable over its DL alternative.

2.3.4 Adversarial deep learning

One of the major problems of decision systems based on deep
learning is that they can be fooled by adversarial attacks. They
can classify incorrectly as a result of many types of attacks.
Among them, one can mention one-pixel [68], spatial [75], and
physical attacks [34]. A one-pixel attack is a process of chang-
ing the gray-level of single pixels to get a different and wrong
decision. For example, an image of a dog with one defective
pixel can be interpreted as a cat. Spatial attacks apply geo-
metric warping of the image such that it looks the same but
recognized as another object. For example, a tiny geometric
distortion on one digit leads to be classified as another digit.
A physical attack is a sticker that one can put in the real work
on an object, a stop sign for example. Due to this computed
sticker, the object is misidentified: for example, the stop sign
will be detected as a speed limit sign. Although there are ways
to defend deep networks, they are still not as secure as clas-
sic decision algorithms [4]. Indeed, although some classic ap-
proaches may not be secure, their attack cannot be performed
using a systematic approach like these applied to CNNs. Thus,
more hacking skills are generally required to fool them.
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2.3.5 Black box effect and development process

In this subsection, I discuss two issues that have not been cov-
ered yet, i.e., the black-box effect and the development pro-
cess. A problem of DL methods is the limited ability of hu-
mans to interpret them, the infamous black-box effect. Al-
though recent work has investigated approaches to understand
these black boxes by either information provision [65] or visu-
alization [62], this research domain is still in its infancy. More-
over, many DL developers use ablation studies to understand
their trained networks better like in style transfer for example
[20]. Still, the question remains whether one can trust an al-
gorithm that one does not fully understand. A typical example
is the deployment of self-driving cars: this black box effect
creates many legal problems as ethical issues are paramount in
autonomous driving [39].

The availability of DL frameworks has dramatically
changed the way algorithms are developed with respect to tra-
ditional approaches. While classic algorithms require expert
knowledge, DL methods are able to learn from examples given
an engineered model. On one hand, the development phase
is faster and models can easily be recycled for new purposes,
e.g., using transfer learning [70]. On the other hand, the de-
velopment relies on the availability of large datasets [5]. For
some applications, the generation of large enough training sets
may be impossible. In some cases, the images may be biased
on a specific type of examples, leading the trained CNN to be
biased as well. In addition, as very often image labels are not
available, the development process requires manual labeling of
images, a task that is extremely labor-intensive.
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2.4 Literature review summary

As this literature review shows that DL methods have man-
aged to stretch the limits of what is possible in computer vi-
sion, they are clearly very successful and relevant. They have
also changed the software development process which is faster
in many cases. However, DL methods still have their limita-
tions with respect to the classic approaches. They rely on big
datasets and large energy consumption. Moreover, they are of-
ten not able to generalize the learning examples to other imag-
ing types and domains. Thus, classic algorithms have many
advantages: they can be better understood by humans, they do
not require large datasets, and the assumptions on which they
are designed are frequently relevant to many test cases. More-
over, they are usually more secure and harder to be hacked.

This chapter is derived from the literature review of faint
edge detection, multispectral registration, and comparisons be-
tween classic and deep learning approaches. These problems
are challenging and regular methods do not solve them accu-
rately. In edge detection, DL stretched the limits of F-measure
achieved on datasets. However, the deep methods require a
large training time, and a large footprint with respect to their
classic predecessors. The first edge detection methods were
based on theory only, they were fast to develop and to run.
More advanced methods utilized complex engineering and ba-
sic machine learning. The classic methods are more explain-
able, while the deep methods achieve higher accuracy. In im-
age registration, engineered methods are still state-of-the-art.
The power and invariance of these descriptors are not easy to
achieve with deep learning approaches. Still, a modern method
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is often a combination of the two, i.e., deep learning and clas-
sic approaches. Regarding the general comparison between the
classic and DL methodologies, there are key differences that
are valid for all problems. Deep learning methods require en-
ergy and resources to train, but they are usually faster to de-
velop. Classic methods may be based on theory foundations,
require significant development time, and are often faster to
run.
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Chapter 3

Faint edge detection

THIS chapter introduces classic and deep manuscripts ad-
dressing the ill-posed problem of faint edge detection in

noisy images and from arbitrary shapes. In the piece of re-
search reported in [51], detection of faint curved edges is car-
ried out by a binary hierarchical partitioning of the image pix-
els. This work is the first to introduce a nearly linear complex-
ity algorithm for detection of faint curved edges. Moreover,
it provides a proven lower bound on how faint an edge can
be and still be detected by the method. The journal paper of
[50] surveys all the nearly linear methods for that problem from
a straight-lines efficient algorithm to the proposed fast curved
edge detection.

To improve the accuracy of FED and robustness to edge ar-
bitrary shapes, I continued the FED effort by using DL tech-
niques. My deep manuscript introduces a CNN-based ap-
proach to detect faint curved edges [52]. This CNN performs
multiscale processing of noisy images and it mimics the clas-
sic hierarchical structures presented in the classic FED pa-
pers. This CNN, which is trained by an edge preservation loss,
achieves the best results on simulations of noisy images and
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step curved edges. Moreover, due to the nature of deep learning
approaches, the proposed scheme can be used to address sim-
ilar problems. This paper also reports highly accurate results
with a similar CNN on noisy image classification and natural
image denoising.

These FED papers where I am the primary author are in-
cluded in this Chapter:

1. Ofir N., Galun M., Nadler B., Basri R. (2016). Fast de-
tection of curved edges at low SNR. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, (pp. 213-221).

2. Ofir N., Galun, M., Alpert, S., Brant A., Nadler B., Basri
R. (2019). On detection of faint edges in noisy images.
IEEE transactions on pattern analysis and machine intelli-
gence, 42(4), 894-908.

3. Ofir N., Keller Y. (2021, January). Multi-scale Processing
of Noisy Images using Edge Preservation Losses. In 2021
25th IEEE International Conference on Pattern Recogni-
tion. (ICPR) IEEE.
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Chapter 4

Multispectral image registration

IN the current chapter I introduce my classic and DL works
regarding multispectral image alignment. The classic pa-

per uses an engineered descriptor, while the DL one takes ad-
vantage of learned representation. One should note that both
approaches are feature-based.

The contribution for classic multispectral image alignment
relies on feature-based registration [54]. The descriptor used
in this scheme is engineered to be invariant to different spec-
tra. The proposed descriptor is edge-based and contains infor-
mation on edge pixels and gradient directions. It is invariant
to spectral channels, translation, scaling, and small rotations.
This work also introduces a fast method to fuse alignment im-
ages that can be applied to real-time multisensor cameras.

The previous contribution is extended by a deep learning-
based approach. I improve the previous method by replac-
ing the descriptor with CNN-based alignment [53]. The pro-
posed invariant learned descriptor is a result of CNN train-
ing by metric learning that can be seen as a teacher-student
scheme. The outcome of the training process is two pseudo-
Siamese networks, one for color visible and the second for
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NIR. The two networks produce similar representations of cor-
responding cross-spectral patches and far representations of
non-corresponding patches. This forms the basics for mul-
tispectral feature-based image registration. As experiments
show, this registration is more robust to geometric transforma-
tion, but less robust to wider spectral fields.

The corresponding manuscripts where I am the primary au-
thor are included in this Chapter:

1. Ofir N., Silberstein, S., Rozenbaum D., Duvdevani Bar S.
(2018, October). Registration and fusion of multi-spectral
images using a novel edge descriptor. In 2018 25th IEEE
International Conference on Image Processing. (ICIP)
IEEE, (pp. 1857-1861).

2. Ofir N., Silberstein, S., Levi H., Rozenbaum D., Duvde-
vani Bar S. (2018, October). Deep Multi-Spectral Reg-
istration Using Invariant Descriptor Learning. In 2018
25th IEEE International Conference on Image Processing.
(ICIP) IEEE, (pp. 1238-1242).
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Chapter 5

Differences between classic and
deep approaches

5.1 Introduction

IN the last decade, deep learning methods have achieved great
success in addressing computer vision problems [56]. My

study shows that these approaches are indeed relevant for ad-
dressing challenges on the limit of processing ability. As could
be seen in the previous chapters, deep learning approaches have
delivered the best algorithmic accuracy on the corresponding
training and test datasets. My experiment shows that the deep
approaches for faint edge detection and multispectral image
alignment are more accurate than the classic methods. How-
ever, shall I abandon the classic approaches? My study has
shown that a first limitation of the deep based methods is
their transfer to another imaging domain. While deep meth-
ods are accurate on images similar to the training set, clas-
sic schemes are more robust to different imaging domains and
modalities [51], [54], [25]. This limitation can be explained
by the probably-approximately-correct model (PAC) [27]. In a
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learning scheme, DL or ML, the learner selects a generalization
function out of the hypothesis classes. In order for the problem
to be learnable, the selected function should have a low gen-
eralization error. However, if the hypothesis class is extended
to other imaging domains after training, the generalization er-
ror would increase. The PAC model has proved limitations on
every learning scheme. Alternatively, models based on classic
methods rely on simplifying assumptions. Consequently, these
are more likely to fit a variety of imaging domains such as real
natural images as in [7]. Indeed traditional schemes are devel-
oped in a different way than DL ones. Although a classic ap-
proach is developed to solve a specific scenario that is modeled
with simplicity, the developed theory and/or heuristics associ-
ated with that simple model is still able to deliver good quality
results on other imaging domains [51], [11].

An additional difference between the classic and deep learn-
ing approaches is related to the process of algorithm devel-
opment, which affects the theoretic findings of a contribution
[51], [11]. Classic methods require algorithms with new data
structures, rigorous complexity analysis, and proven thresh-
olds. On the other hand, deep approaches require different
development mechanisms that include CNN architecture and
loss functions. An advantage of such type of development pro-
cess is that deep methods can be easily transferred to address
similar problems. This is exemplified in my work [52] where
the same architecture was used for faint edge detection, noisy
image classification and natural image denoising. Similarly,
[40] introduced the recycling of classification networks for ob-
ject detection. Thus, a method that shows superiority in faint
edge detection can easily be transformed to achieve the best
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quality in noisy image classification or natural image denois-
ing. While a new dataset and new loss are required, the general
CNN architecture can be reused, e.g., for multiscale processing
of noisy images.

As mentioned in Chapter 2, there are several studies that
compared classic and deep learning approaches through spe-
cific problems: [56] investigated those algorithms applied to
panorama, 3D and SLAM, while [44] compared those ap-
proaches through the applications of robotic vision and visual
object detection. Moreover, [26] and [67] discussed the limi-
tations of DL approaches in terms of the large computing re-
sources they require. This chapter starts by making the com-
parison according to my two applications of study: FED and
multispectral alignment. Then, it goes further to generalize
the highlighted differences between deep learning and classic
methods.

5.2 Comparison of deep learning and classic methods for
faint edge detection

Faint edge detection is a challenging problem that requires spe-
cial approaches for addressing it. Chapter 3 introduced a clas-
sic method to address it using a hierarchical binary partition-
ing of the image pixels. In addition, it suggested a DL-based
approach using a multiscale CNN. As each of those methods
showed strengths and limitations, this section discusses them
based on the outcomes of the specific experiments that were
conducted.

First, accuracy performances of four methods, two from
each type, are compared: Canny [14] - the classic approach
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Figure 5.1: Simulation of faint edges detection in noisy image. The strict F-score
graph along the different signal-to-noise ratios from 0 to 2. Our methods, FED-
CNN and FastEdges which are geared for faint edges detection, achieve best per-
formance.

Algorithm SNR = 1 SNR = 2
FED-CNN 0.4 0.62
FastEdges 0.28 0.56
HED 0.14 0.34
Canny 0.08 0.45

Table 5.1: F-score of the methods at SNR 1 and 2. At both SNRs my methods
achieve the best scores.

for edge detection - is used as a reference, Holistically Edge
Detection (HED) [76] - a deep method based on the stan-
dard VGG-16 classification network - and two of my meth-
ods, i.e., Fast Edges [51] - my classic FED solution, and FED-
CNN [52] - my deep learning method. The F-measure is
used as evaluation metric as it is particularly suitable to ac-
cess binary classifiers, such as edge detectors, as it provides
a balance between precision and recall. It is the harmonic
mean of the precision and recall: 2PR

P+R , where precision is
the ratio of true−positive

true−positive+false−positive , and recall is the ratio of
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Algorithm Run-Time (milliseconds)
FED-CNN 10
FED-CNN-CPU 800
FastEdges 2600
Canny 3

Table 5.2: Run time in milli-seconds of the different methods of edge detection.
My runtime is very close to Canny’s time and is order of magnitude faster than
FastEdges. I achieve this improvement mainly by running our network on a GPU,
which is a hardware optimization. The advantage of CNN approaches over classic
methods like FastEdges [51] is that they are easily implemented and accelerated
on a GPU. In addition, due to the simplicity of FED-CNN, its runtime on a CPU is
also faster than FastEdges [51].

true−positive
true−positive+false−negative .

As it can be seen in Figure 5.1 and Table 5.1 from [52],
my deep learning approach achieves the highest F-measure in
this simulation experiment. It does so since the simulation do-
main area is the same domain as the one of the training set, i.e.,
binary images contaminated with Gaussian noise. My classic
method also performs well, but not as well as my DL-based
approach, although the simulations fit its model assumptions.

The second aspect of interest is runtime and computational
complexity. As it can be seen in Table 5.2 from [52], the CPU
runtime of my Intel i9 Sky-Lake processor for my CNN solu-
tion is lower than this of my hierarchical algorithm. Note that
this speedup is explained by the reduction of computational
complexity, from nearly linear [51] to linear [52]. Moreover,
the DL algorithm can easily be accelerated using a GPU, in my
case a GeForce gtx 1070.

Although the deep learning-based FED significantly outper-
forms my classic scheme in both accuracy and speed, the tra-
ditional approach has its clear advantages. Firstly, it has strong
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theoretic foundations. The algorithmic steps are described in
[51], and its calculated complexity, C(N), can be expressed by
the following Equations:

C(N) ≤ 6N 1.5

[ ∞∑

l=0

2−l +
∞∑

l=1

2−l
]

= 18N 1.5, (5.1)

where N is the number of image pixels, and l denotes the hier-
archical level. Moreover, Equation

T∞ = Ω(
σ√
w

). (5.2)

specifies its theoretic lower bound, where σ denotes the noise
standard deviations and w the filter width. The reason that
the minimal detectable contrast is lower-bounded is that the
space of possible curves of the algorithm is exponential in
curve length. The method search for an exponential number
of curves takes polynomial time due to the dynamic program-
ming approach that is used. This bound specifies how faint
an edge can be and still be detected by the classic algorithms.
Although this method assumes step edges with constant con-
trast and Gaussian noise, it achieves accurate results in other
imaging domains. Figure 5.2 shows that it achieves competi-
tive results on the noisy BSDS [46] dataset. Indeed, my faint
edge detection method that was initially developed to address
step edges and Gaussian noise models, see Chapter 3, shows
superiority in addressing edge detection in noisy natural and
medical images.

While this suggests that deep methods are not invariant to
imaging domains, one may wonder if they are not robust in
general. Actually, my study shows that they are highly flexible
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Figure 5.2: Simulation results of my classic FED with the noisy BSDS-500 images
[46]. Left: Precision vs. Recall (PR) of contour detection by various algorithms.
Right: Performance table. ODS refers to the F-Measure at the optimal threshold
across the entire dataset, OIS to the best per image F-measure, and AP to the area
under the PR curve.

to geometric variations such as edge curvatures and geometric
transformations, if the imaging domain remains similar to the
one of the training set.

The last issue investigated here is the transition of an ap-
proach to different problems. As it can be seen in [52], my
CNN architecture that was designed for FED can be easily used
to perform noisy image classification and natural image denois-
ing. Table 5.3 from [52] shows that the CNN applied before a
classification network improves the classification accuracy on
the CIFAR10 and CIFAR100 datasets [33]. Moreover, Tables
5.4 and 5.5 indicate that natural image denoising of high qual-
ity can be carried out by a multiscale CNN trained by an edge
preservation loss.

Finally, regarding data and training requirements, an obvi-
ous advantage of the classic over the deep approach is that it
does not require a dataset for the development process. The
classic method is based on assumptions only, while the CNN
approach learns from many samples of faint edges. This, not
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only simplifies the development process, but also constrains the
performance of the deep learning-based approach as it works
better on samples that are similar to the original dataset.

Algorithm CIFAR10 CIFAR100
resnet(IDCNN) 82.7 53.3
resnetnoisy 77.5 46.0
resnetc 34.1 16.9

Table 5.3: Classification accuracy of the different methods and architectures av-
eraged on all noisy levels. My approach of multi-scale preprocessing by IDCNN
[72] and classification by resnet 20 [69] achieves the highest accuracy.

Algorithm σ = 15 σ = 25 σ = 50

IDCNN-E 31.00/0.9 28.86/0.85 25.95/0.75
IDCNN 30.80/0.89 28.73/0.84 25.93/0.75
DnCNN 31.74/0.9 29.89/0.85 25.69/0.71
BM3D 31.07/0.88 28.26/0.81 24.57/0.67

Table 5.4: Quantitative PSNR(dB) and SSIM results of denoising on the noisy
natural images from the dataset of [46]. My approach, using IDCNN for denoising
achieves the high perceptual score of SSIM [74]. In addition, my distortion score
of PSNR is also competitive relative to the state-of the art approach of DnCNN
[78]. My edge preserving auxiliary loss improve the performance of IDCNN in
denoising in both measurements. The highest SSIM scores are highlighted.

While performance scores are essential when selecting an
approach, the cost of its development is also important. There
are main differences between the development processes of
classic and deep FED. The classic approach requires planning,
analysis, parameter optimization, and complex derivation of
computational complexity and threshold. Moreover, it takes a
significant amount of time to write the code and optimize it. Fi-
nally, good results are hard to get and require non-negligible ef-
fort. On the contrary, the development of the deep CNN-based
method achieved almost all of these in an order of magnitude
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Algorithm σ = 15 σ = 25 σ = 50

IDCNN-E 30.78/0.9 28.61/0.84 25.78/0.74
IDCNN 30.51/0.89 28.53/0.84 25.73/0.74
DnCNN 31.73/0.9 29.16/0.84 26.23/0.71
DeepAM [32] 31.68/0.89 29.21/0.82 26.24/0.72
TRD [16] 31.42/0.88 28.91/0.81 25.96/0.70
MLP [13] - 28.91/0.81 26.00/0.71
CSF [64] 31.24/0.87 28.91/0.81 -
BM3D 31.12/0.87 28.91/0.81 25.65/0.69

Table 5.5: The average PSNR(dB) and SSIM results of different methods on the
BSD68 dataset [61]. The highest SSIM scores are highlighted.

faster. Even the training time, in this case, is negligible with
respect to the development time of the classic approach. Fi-
nally, optimization is performed automatically by training and
testing on a GPU. In addition, the nature of the development
time is different: with DL approaches, it is devoted more to
dataset creation and less to code writing. Consequently, clas-
sic methods need to be developed by computer vision experts,
whereas DL algorithms can be developed by more general ML
specialists.

5.3 Comparison of deep learning and classic methods for
multispectral image registration

I addressed the problem of multispectral image alignment us-
ing a classic approach in Chapter 4 together with a deep learn-
ing method. As shown previously, each approach has its ad-
vantages. Table 5.6 from [53] shows that the deep approach
achieves the highest accuracy in VIS to NIR alignment. It
outperforms my classic approach [54] that relies on a unique
handcrafted edge descriptor. It is also robust to geometric dis-
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Algorithm VIS-NIR
DL solution [53] 0.03
Handcrafted descriptor [54] 0.08
Canny 0.07
Sobel 0.07
Mutual Information 0.11
LGHD 0.21

Table 5.6: Error in pixels of multi-spectral registration when searching for transla-
tion only. My deep method is compared to edge descriptors approach, correlation
of Canny [14], correlation of Sobel [24], maximization of mutual-information and
LGHD [1]. As can be seen (in bold), my deep-algorithm achieves the highest ac-
curacy.

Figure 5.3: Evaluation of registration error across simulated scaling transforma-
tions. Left: error of the translation parameters when solving scales from 0.9 to 1.1.
Right: error of the scaling parameter across the same range of scalings between
the cross-spectral images. The translation error is around 1 pixels while the scaling
error is negligible.

tortions as Figure 5.3 shows. Although the deep approach is
accurate with respect to the traditional method, the handcrafted
descriptor proved to be robust to other imaging domains. As
demonstrated in [54], the classic approach aligns a wider field
of spectral channels. While the deep only works on the VIS
to NIR that it is trained on, the classic method aligns VIS to
MWIR as well.

My research has proved that the feature descriptor can be
engineered in a classic way, or learned by a CNN approach in
a metric learning scheme. In terms of registration error, each
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descriptor has its advantages. While the classic descriptor is ro-
bust to spectral channels, the deep is robust to geometric varia-
tions. The deep learning approach showed that a descriptor can
be useful even though I do not fully understand its meaning and
what it exactly represents.

While registration error is a key element when comparing
deep and classic approaches for multispectral image registra-
tion, other important aspects should also be considered. First,
as the deep approach requires a forward pass of a CNN for
every key point, the processing time of creating a feature de-
scriptor is much slower than when using a classic approach.
Second, while a classic approach does not require training re-
sources, the deep learning method relies on the existence or
creation of a valid multispectral database with a corresponding
aligned image without which it could not operate. Moreover,
its accuracy also depends on the level of information in the key-
point features in that dataset. Third, both approaches have dif-
ferent hardware requirements: whereas the classic methods can
be run easily on a standard CPU, real-time computing can only
be achieved by the DL method if its execution takes place on
a GPU. Not only is an expensive processing platform required,
but also this prevents its usage on some embedded systems. Fi-
nally, in this specific case, there was a major difference regard-
ing the development time that was needed to produce those two
solutions. While the classic method was developed with much
effort, once available, it could be quite rapidly transformed into
its deep variant.
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Feature/Approach DL Classic
Accuracy (Acc.) High Moderate
Acc. for other domains Low Moderate
Speed on CPU Slow Slow/Fast
Speed on GPU Fast /
Theoretical basis Moderate High/Moderate
Training dataset Essential No
Geometric variability Robust Weak
Development Fast Slow
Repurposing ability High Low

Table 5.7: Comparison of the features of DL and classic approaches observed in
this study.

5.4 Conclusion

Table 5.7 summarizes the advantages I found in this study be-
tween deep and classic approaches. Although it reveals that the
DL solutions achieve higher accuracy than the classic ones, the
DL algorithms are not invariant to imaging domains as their us-
age is restricted by the nature of their training sets. Still, CNN
showed high flexibility to complex geometric relations and ob-
jects. The theory behind DL is focused on the loss function
and the CNN architecture, while in classic methods, the devel-
oper can prove an algorithm’s thresholds and bounds. One also
should note that due to the general nature of the CNN archi-
tecture, a CNN-based algorithm can easily be reused for other
vision tasks.

The DL methods discussed in this chapter have intrinsic lim-
itations. First, there is the black-box effect: I do not under-
stand either the CNN filter for FED or the invariant descrip-
tor for multispectral image registration that is learned by my
teacher-student approach. This is a serious drawback even if
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the development of methods for interpreting and understand-
ing deep neural networks is a very dynamic research area [49].
Moreover, the training phase of their development requires a
large footprint with respect to the corresponding classic ap-
proaches. The classic methods also have their qualitative ad-
vantages. They proved more robust to image types and modal-
ities in both problems. This is a consequence of their simplify-
ing assumptions, and the fact to they are not example based.

Deep learning has revolutionized the way computer vision
problems are addressed. It has stretched the limits of what
is now possible and regularly achieved the best quantitative
scores on benchmarks. Moreover, it has made the algorithm
development a process of data collections and neural network
training using loss function. However, traditional methods still
have their strengths, e.g., a lot can be learned from their devel-
opment process. Moreover, as they are mostly based on proven
theories, their algorithms can be described to humans in detail.
This transparency is important as it provides a sense of trust
and, therefore, facilitates their acceptance in real-life applica-
tions. Thus, there is no doubt that trust and transparency are
important challenges that need to be met to ensure the general
adoption of DL solutions.
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Chapter 6

Conclusions

6.1 Summary of contributions

THE study described in this thesis has achieved several con-
tributions. I conducted a meaningful comparison between

classic and deep learning approaches for addressing challenges
in computer vision. The study was performed through the per-
spective of the two problems, faint edge detection, and multi-
spectral image registration. I introduced a nearly linear com-
plexity approaches for straight and curved edge detection. I
developed theoretic thresholds and lower bounds related to the
classic FED, addressing the question of how faint an edge can
be and still be detected by my method. In addition, I introduced
a CNN approach for FED. This approach delivered state-of-
the-art results in my simulations. Moreover, the CNN that was
used for FED showed its robustness to similar computer vision
problems such as classification and noisy images and natural
image denoising.

I also developed a classic feature-based approach for multi-
spectral image alignment that achieved a high quality of regis-
tration under a wide field of spectral channels, as fusion results
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based on those alignments showed. In addition, I improved
this classic approach by making it invariant to the descriptor
by learning it using a teacher-student scheme.

As this whole study has given us insights into computer vi-
sion challenges and the ways to address them, I could conduct
a comparison between classic and deep learning approaches. I
revealed that deep methods are an order of magnitude faster to
develop. In addition, they usually achieve the best accuracy on
test sets, and are robust to certain variabilities such as geometry
transformations and lightning conditions. However, they are
understood mainly as a black-box and require a large footprint
to be trained. Their classic alternatives are based on deeper the-
oretic foundations. Moreover, due to their simple assumptions,
they tend to be more robust to image type and modality.

6.2 Discussion

I have reported in this thesis that classic and deep learning
approaches for addressing challenges in computer vision have
each their advantages and limitations. Each approach is robust
and invariant to different properties of the addressed problem.
Moreover, the process of development of each approach is very
different and relies on distinct theoretic concepts.

My study shows that there is a lower bound on how faint
an edge can be and still be detected. If the space of possible
curved edges is large enough, there are low SNRs that cannot
be detected as they are below the detection threshold. It means
that they are less statistically significant than pure noise.

My research teaches us that it is possible to register multi-
spectral images, even from a wide field of spectral channels.
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Fusion can be carried out under some limited geometric trans-
formations between the channels. Moreover, I have shown that
a CNN architecture can help to improve both alignment accu-
racy and the robustness of alignment in complex relations.

This thesis emphasizes that deep learning methods are more
accurate on test sets, and more invariant to object geometry and
lightning conditions. On the other hand, as classic methods are
able to handle other image types, they may be developed on
simulation and still to be accurate on real images. I have also
highlighted that the development process of each approach is
different. While DL is faster to develop, it requires a large
footprint. Contrarily, classic methods are harder to develop and
require expert knowledge, however, they are associated with
insights on the theoretical foundations of their approach.

6.3 Closing remarks

It has been a pleasure to work on this study tackling challeng-
ing problems, and comparing two main approaches in com-
puter vision. I would also like to thank the reader for their
patience. I hope they have found this thesis interesting and in-
formative.
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