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Abstract: Vitamin D deficiency is being recognized as a global issue and has been implicated in
many health issues. Hence, there is an increased interest in developing sensitive, reproducible, and
non-invasive assays to measure Vitamin D levels. This study aimed to apply a sensitive liquid chro-
matography-mass spectrometric assay to hair samples to develop and validate a clinical assay to
provide a quarterly average level of vitamin D in one test. Hair samples were collected from 70 male
university students/young adults and pulverized/sonicated in methanol/water for 2 h to extract Vit-
amin D metabolites. A sensitive liquid chromatographic-mass spectrometric assay was employed
to quantitate vitamin D and metabolites. Of the eight Vitamin D and metabolites screened, only the
primary, clinically significant form of vitamin D (250HD3) was detected and quantified in hair
samples in the range of 17-1541 pg/mg. One-third of the hair samples (21 out of 70) had Vitamin D
levels below the LLOD of the assay (10 pg/mg). The mean and standard deviation values for hair
(250HD3) were 276.7 + 329.9, respectively. This pilot study reveals the potential of the vitamin D
hair test in clinical assays as a complementary test to a vitamin D blood test, which would provide
a quarterly average.
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1. Background

It is estimated that nearly 1 billion people are vitamin D deficient worldwide, either
due to reduced sun exposure or insufficient dietary intake. Vitamin D deficiency is impli-
cated in many diseases, but these associations lack clarity [1,2]. Studies on the role of vit-
amin D in health and disease have been hampered by the difficulty of the assays required,
which, in turn, arises from the complex number of the vitamin D metabolites and issues
in separating them for detection [3-5].

The endogenous and most studied form, vitamin D3, is synthesized in the skin via
exposure of precursor 7-dehydrocholesterol to UVB radiation from sunlight [6,7]. Vitamin
D2 is not naturally formed in humans; instead, it can be consumed via diet and supple-
mentation. Vitamin D (D3 and D2) undergoes hydroxylation processes in the liver to form
250HD; and 250HD,, respectively [8]. Further hydroxylation in the kidney generates the
established active form 1a,25-dihydroxyvitamin D. The half-life of 250HD forms is
around 2 to 3 weeks as compared to the other metabolites, which are around 4 h. In recent
years, a further complexity arose as epimeric forms of 250HD, and 250HD; have been
identified and quantified in health and in various conditions [3,6,9,10]. To date, blood
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tests for the long-lived circulating form (250HD) have been used as a gold standard to
evaluate vitamin D deficiency.

The lack of association of vitamin D levels with the development and progression of
a number of diseases has been the subject of considerable investigation. Recent advances
in the capacity of vitamin D assays have focused on more accurate measurements of blood
levels of the circulating forms (250HD), with some extending the measurements to mul-
tiple forms of vitamin D [4,11,12]. Notable improvements include the separation and
quantification of the epimer forms along with the ability to measure circulating and active
forms simultaneously. These approaches will, for the first time, allow researchers to study
the roles of a variety of forms of vitamin D and by accurate assays to relate the circulating
forms to disease initiation, progression, and alleviation. In due course, it is expected that
these advanced liquid chromatography-tandem mass spectrometric (LC-MS/MS) meth-
ods will be routinely available for clinical assessments of a range of biomarkers, including
vitamin D forms.

With methods available to simultaneously quantify 10 forms of vitamin D in blood
[13], further advances are most likely to arise from innovative approaches for the analysis
of these metabolites in other body matrices. Current blood-based assays present a number
of limitations. Owing to expense [14] and custom, an individual blood test is common, yet
it provides only a single, time-point snapshot of a complex biomarker. This adds difficulty
to any study investigating the putative association of vitamin D levels and/or supplemen-
tation with disease initiation or progression. In such trials, a wide range of confounding
factors exist, ranging from variations in levels of vitamin D depending on diet, sun expo-
sure, skin type, and metabolic differences [15].

Further complications arise with the use of the circulating forms of vitamin D
(250HD3 and 250HD3) beyond the fact that they are precursors and not the active form.
Several studies have failed to find a clear correlation between the levels of circulating and
active forms [4,13,16-18]. It is known that the circulating forms of vitamin D (250HD)
are present at a comparatively higher concentration (nmol/L) as compared to the active
forms of vitamin D (1a25(OH)2D) present at (pmol/L) and, furthermore, it is also known
that metabolic and regulatory factors could also intercede to alter the levels of circulatory
forms, which, in turn, will further compromise and reduce the concentrations of the ac-
tive downstream forms of vitamin D [3]. Recently, using in vitro, cell-based studies, the
epimer was shown to have a range of commensurate activities (coactivator peptide re-
cruitment and anti-proliferative cellular effects) but also higher stability compared to the
established active form [19]. Thus, the epimer forms have interfered with assays to date
and, now that methods have been developed to discard their effect on accuracy, they ap-
pear to have an activity that cannot be disregarded for trials of supplementation of asso-
ciation of vitamin D and disease onset and progression.

A distillation of these issues points to a very complex field with an increasing number
of questions rather than answers. In consequence, much debate surrounds the establish-
ment of levels of vitamin D required for health maintenance. It is generally accepted that
large parts of the Western world population are deficient in vitamin D [2,20], especially in
dark winter months when little vitamin D; can be made. However, agreement on accepta-
ble levels of the circulating form 250HD is far from in reach. For example, in the UK, the
Scientific Advisory Committee on Nutrition and the Food Standards Agency define sub-
optimal vitamin D as the circulating form (250HD) being below 25 nmol/L [21]. In con-
trast, the US Institute of Medicine recommends vitamin D intake to give blood status to
be <50 nmol/L [22]. Others have proposed that levels should be considerably higher, with
optimal vitamin D status as being between 100-250 nmol/L and deficiency being defined
as <120 nmol/L [23,24].

Given the range of issues surrounding any planned trial involving the association of
vitamin D with the disease, it may be timely to look further afield in terms of biomarker
status. With the continuous development of more sensitive instrumentation, the analysis
of alternative biological samples is becoming a reality. One approach to overcome various
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barriers would be the development of a hair-based assay. Given that human cranial hair
grows at a rate of some 1 cm per month, hair samples frequently offer an assay window
of three months or more. The technology has been developed over recent years and is now
admissible in a court of law for a range of forensic applications such as drug abuse. With
the standardization of hair-based assays, the potential for biomedical tests for a range of
biomarkers is considerable. As well as the advantage of hair samples providing measure-
ments over several months, ease of sample collection, transport, storage, and reduced in-
fection risks are also attractive. A recent study published preliminary results of an LC-
MS-based hair test for a vitamin D (25(OH)Ds) test conducted on a limited sample of three
individuals [25].

Along with the methodological advances, equipment manufacturers have been de-
veloping much more sensitive mass spectrometers to extend the range of analytes that
may be detected at physiologically relevant levels in a variety of matrices. Further ad-
vances in instrument software allow rapid analysis of a large number of analytes in a sin-
gle scan lasting only minutes. This approach, termed Dynamic Multiple Reaction Moni-
toring, has been used to simultaneously measure several hundred drugs and their metab-
olites in minutes by focusing on selected peaks in an interval. Using this approach, 10
forms of vitamin D were quantified in blood in a 6-minute run time [4]. These combined
advances suggest that a new era of biomedical analyses for small molecules is approach-
ing.

The aims of this pilot study were (1) to develop and validate a hair-based assay
method for eight forms of vitamin D (including 250HD;) and (2) to trial the procedure as

part of a larger study on university students.

2. Methods
2.1. Study and Participants

For the current study, 70 healthy Emirati male students (age 18-35) from UAE Uni-
versity were recruited in December 2019, and signed consent forms were obtained from
all the volunteers, as per the UAE University ethical approval protocol number (UAEU
Ref# SNA/fa/19-15). Around 500 mg of hair sample were cut directly from the vertex pos-
terior of the head regions and kept in a labeled, sealed, plastic bag in a cold and dark place
before sample processing.

2.2. Standards and Reagents

All reagents were of high-purity LCMS grade. Vitamin D3 (6,19,19-d3) as (internal
standard), vitamin D3, vitamin D2, 250HD2, 250HD3, 1a25(0OH):D2, 1a25(0OH).D3, 3-
epi-250HD3, 3-epi-250HD2, dichloromethane, methanol, deionized water, formic acid,
ammonium formate, acetonitrile, and hexane were purchased from Emirates Scientific
LLC Dubai, UAE.

2.3. Calibrant and Stock Solutions

Stock solutions of vitamin D analytes and internal standard Vitamin D3 (6,19,19-d3)
were prepared by diluting and dissolving them in methanol solvent and acquiring a 1-
mg/mL concentration. The standard mixture solutions were prepared by diluting the in-
dividual stock solutions Individual stock solutions were diluted to prepare a mixture of
individual analytes in methanol arriving at a concentration of 1 pg/mL. Moreover, work-
ing solutions of the individual standards were also prepared in methanol at various con-
centrations. These solutions were then spiked at different concentrations in hair powder.
Calibrants and quality control samples were prepared in blank human hair samples hav-
ing no vitamin D forms detected. All solutions were stored in amber glass tubes at —20 °C
until further analysis. Blank hair was selected from one of the 70 human hair samples
(collected in large quantities). The selection of blank hair was carried out by collecting six
different lots of presumed vitamin D-free human hair (collected in large quantities, i.e.,
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full head shave). All hair samples were ground, and representative samples were collected
from all six. The chosen representative sample was extracted and run on the LC-MS/MS
method in triplicate as described in the Method section. It was found that there were no
interferences from the matrix, and no vitamin D metabolites’ peaks were found in a few
of the selected samples. One sample was chosen out of the six, which was the cleanest of
the blank samples, with no interfering peaks that were expected at the retention time of
any of the vitamin D metabolites” peaks and hair matrix. The chosen blank human hair
sample was selected for the preparation of the calibration curve and quality controls.

2.4. Sample Pre-Treatment

About 3-cm length of human hair corresponding to approximately 3 months of
growth and about 500 mg of weight was washed with methanol/water mixture (this was
to remove sweat sebum and exogenous hair product and contaminants) and then dried at
room temperature under a gentle stream of N2. Then, the hair sample was pulverized into
a fine powder using a mini ball mill (Fritsch and Gerhardt UK Ltd., Brackley, UK). Then,
200 mg of the ground hair was weighed in a weighing boat and transferred to a test tube.
Washing was also collected and analyzed for any traces of vitamin D metabolites, but
none was detected.

2.5. Sample Extraction

Standards and internal standard Vitamin D3 (6,19,19-d3) were added to the cali-
brants, quality controls, and to the hair samples under investigation, and they were soni-
cated in 2 mL methanol/water mixture (50:50; v/v) for 2 h, followed by centrifugation at
1250% g for 15 min. Then, the top layer was collected and filtered through a syringe filters’
PTFE membrane (0.45 pm) into new test tubes and then a gentle stream of N2 was used
to dry-down the sample at 40 °C. We tried the extraction method with methanol alone
followed by water alone and, when methanol was used together with water, got good
extraction recovery (50:50; v/v). The sample was reconstituted in 50 uL of methanol: water
(50:50, v/v), and 20 pL were injected into the LCMS/MS system.

2.6. LC-MS/MS System

The LC-MS/MS system is comprised of an 8060 tandem mass spectrometer, in com-
bination with the Nexera ultra-high-pressure liquid chromatography (UHPLC) system
(Shimadzu, Japan). The Nexera X2 UHPLC consisted of a modular system design with a
pump, auto-sampler, column oven, and degasser. This system uses small particle columns
and has a higher pressure tolerance. The auto-sampler has the capacity for high-speed
injection, multi-solvent loops, and injection port rinsing. The mass spectrometer (MS) was
operated using the positive electrospray ionization (ESI) mode. The LCMS-8060 is oper-
ated using Shimadzu’s Lab Solutions software that was used for instrument control, data
handling, and analysis.

Ascentis Express F5 column, of dimensions 150mm x 2.1mm x 2.7 um, was used for
the chromatographic separation that was achieved. An HPLC guard column was con-
nected to the above column for physical filtration. The column thermostat was kept at 50
°C. An injector wash program was used to rinse the needle with a methanol/water (75:25)
mixture after each sample injection to minimize sample contamination. All mobile phases
used were prepared from LC-MS grade solvents. Mobile phase A consisted of 5 mM of
ammonium formate (0.315 g/L) in water (pH 6 adjusted with formic acid), and mobile
phase B consisted of methanol with 5 mM of ammonium formate (0.315 g/L). The flow
rate of the mobile phase was set to 0.5 mL/min with a binary gradient pump. The gradient
elution program was used for optimum chromatography. Mobile phase B started at 80%
from 0—4.0 min and linearly increased to 100% B; from 4.0-10 min it was kept at 100% B;
from 10-14 min, before decreasing to initial conditions, it was 80% B. At 14.1-20.0 min.,
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mobile phase A started at 20% and linearly decreased down to 0% A before increasing to
20% A again, at the timings shown above.

Positive electrospray ionization mode was used for the operation of mass spectrom-
eter at a capillary temperature of about 350 °C and a spray voltage of about 4500 V. The
drying gas flow was 10 L/min and nebulizing gas flow was set to 3 L/min.

The protonated molecules of analytes generated acted as precursor ions, which were
broken down to produce ions during the collision-induced dissociation during MS/MS
analysis. The precursor and product were measured together in multiple reaction moni-
toring (MRM) mode and were used for the analysis of all analytes. The most abundant
MRM ion transitions for each analyte are given in Table 1 below.

Table 1. Retention times, MRM transitions, and collision energy conditions of each analyte.

llision E
Analytes Retention Time (Min) Precursor (m/z) Product (m/z) Co ISI(ZI;]) nergy

385 367 -13
Vitamin-D3 15.104 385 259 -16
385 91 -55
o 3971 379.4 -17
Vitamin-D2 15.072 3971 69 9
383.2 365.3 -15
250HD3 698 383.2 107.1 -30
395.1 377.3 -17

250HD2 7.7
>0 6 395.1 81.1 -38
. 383.2 365.3 -15
3-epi-250HD3 7.69 3832 1071 30
. 395.1 377.3 -17
3-epi-250HD2 8.52 3951 811 a8
1a25(0OH)2 D3 3.82 399.1 381.3 -14
4111 135.3 -13

1a25(0OH)2-D2 .94
a25(0H) 3948 4111 133.1 12
IS [vitamin D3 6.97 386.35 368.25 -15
(6,19,19-d3)] ' 386.35 257.2 -183

2.7. Method Validation

The method was developed and validated for precision, accuracy, linearity, specific-
ity, and recovery according to the US Food and Drug Administration (FDA) guidelines
for method validation [26]. The linearity, intra- and inter-day precision, and accuracy of
the vitamin D assays were calculated from analyzing the quality controls (QCs) at three
different concentrations, namely, quality control low (QCL), quality control medium
(QCM), and quality control high (QCH). QCL, QCM, and QCH were prepared at concen-
trations of 200 pg/mg, 400 pg/mg, and 1200 pg/mg, respectively. In each validation run,
six QCs at each concentration level (QCL, QCM, and QCH) were analyzed along with a
calibration curve. All quality control samples and calibration curves were prepared in hu-
man hair, having no 250HD3 or any other vitamin D observed.

For the recovery experiment, six quality control samples at three different concentra-
tions (QCL, QCM, and QCH) were spiked with vitamin D metabolites in methanol, and
the neat quality controls at the three concentrations were dried down with a gentle stream
of N2 and then reconstituted in methanol: water (50:50, v/v). The same experiment was
repeated with blank hair samples spiked with quality controls at three similar concentra-
tions. The hair samples were passed through the whole process of extraction, filtration,
drying, and reconstitution as described in the Method section above and then compared
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using the peak area results (or area under the normal curve). The extracted and unex-
tracted QCs’ values were employed to calculate the absolute percentage recovery using
the following equation:

(mean extracted QC values)
(mean unextracted QC values)

% Recovery = x 100 (1)

3. Results and Discussion

State-of-the-art LC-MS/MS instruments are very sensitive, offering multiple quanti-
fications and verification points for each analyte. These characteristics confirm analyte
identification and include the retention time on the LC column and the various fragmen-
tation reactions that are characteristic of a particular molecule.

The method was validated for vitamin D3, vitamin D2, 250HD2, 250HD3,
1a25(OH):2D2, 1a25(0OH)2D3, 3-epi-250HD3, 3-epi-250HD?2, and inter-day and intra-
day precision and accuracy values, along with recovery values that were calculated as
summarized in Table 2 below. The lower limit of detection (LOD) was found to be 10
pg/mg for all analytes with a linear range from 15 pg/mg to 2000 pg/mg for all vitamin D
metabolites. The linearity was determined by making sure that the linear regression (R?)
values for the calibration curve were equal to or greater than 0.9996. The calibration curve
was accepted with at least six calibrants on the curve, according to FDA guidelines.

Table 2. Method validation results for intraday/interday precision, accuracy, and recovery.

Analytes Conc. QC’s % Recovery Intraday (n = 6) Interday (n = 6)
(pg/mg) Precision, % CV Accuracy, % Precision, % CV Accuracy, %

200 79 3.23 100.1 4.82 99.8
Vitamin D3 400 77 1.96 100.4 1.95 99.4
1200 88 1.41 99.9 1.39 100.2
200 88 6.3 102.1 94 101.2
Vitamin D2 400 89 10.2 98.5 7.1 99.8
1200 102 8.6 994 3.2 101.3
200 86 4.9 99.9 34 101.1
250HD3 400 89 3.3 100.3 2.7 99.8
1200 111 2.5 99.7 2.3 98.7
200 82 3.5 98.9 3.2 99.8
250HD2 400 99 43 99.4 3.3 98.9
1200 104 2.9 99.9 2.3 97.8
200 75 35 107.2 4.7 100.5
1a25(0OH)2 D3 400 96 21 102.3 10.9 102.6
1200 78 3.3 100.1 8.9 99.9
200 76 7.1 98.8 3.2 100.5
1a25(OH)2 D2 400 87 5.9 99.6 27 100.1
1200 89 3.2 89.9 3.2 100.3
200 78 5.2 98.3 5.3 100.2
3-epi-250HD3 400 89 2.3 102.6 2.1 103.3
1200 97 4.1 100.9 3.6 108.1
200 92 3.8 99.3 43 101.2
3-epi-250HD2 400 94 3.5 98.7 21 99.8
1200 97 3.2 101.2 3.2 99.9

Also shown in Figure 1 are the precursor and product ion pairs and the optimized
collision energies used for the MRM method.
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Figure 1. LC-MS/MS chromatogram showing retention time (top) and product ion mass spectrum of 250HD3 extracted

from human hair matrix under investigation. Figure 1: LC-MSMS MRM spectra for the internal standard, 25 hydroxyvit-
amin D3 (6,19,19-d3), [(386.35 > 257.20)], and 25 hydroxyvitamin D3 (383.20 = 365.3 and 383.30 - 107.10).

Figure 1 shows the LC retention time and MRM used for the analysis of 250HD3 in
hair, in line with the validated procedure developed for hair samples. This key analyte
normally accounts for some 80% of circulating forms and, as it is a precursor to the most
active form (1a,25- dihydroxyvitamin D3). 250HD3 provides a good foundation for the
hair-based assay. The molar mass of 250HD3 is 400.64 g/mol and during electrospray
ionization it quickly loses water to give 383.2 [M+H]* formation.

This validated method was then applied on 70 hair samples (as described under Sec-
tion 2) and the results are shown in Supplementary Table S1, Figures 2 and 3. As can be
seen from Table S1, of the eight forms of vitamin D screened for, we were only able to
detect 250HD3 in the hair samples. Additionally, as shown in Figure 2, there were around
20 samples that did not even show detectable levels of 250HD3, indicating that they had
less than 10 pg/mg levels of 250HD3 in them. Of the remaining 50 samples, the majority
(74%) had 250HD3 ranging from 15-400 pg/mg, about 14% had between 250HD3 be-
tween 500-999 pg/mg, around 8% of the samples had 250HD3 between 1000-1499 pg/mg,
and only two samples (4%) had high levels of 250HD3 between 1500-2000 pg/mg (Figure
2). This distribution is shown in Figure 3, which also indicates the mean of the “Vit D3
positive” samples to be 276.7 pg/mg. The inset in Figure 3 shows the scatter of the 50 Vit.
D3 positive samples.
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Number of samples
N
o
1

250H Vit D3 (pg/mg)

Figure 2. Prevalence and distribution of 25 hydroxyvitamin D3 levels in the hair of young Emirati
males.

Given that the assay can be used to quantify up to eight forms of vitamin D, it is
feasible that, with a larger hair sample and pre-concentration steps, along with advances
in instrument sensitivity, more forms of vitamin D could be quantified.

1600
-t | I — el P
g 12004 % o o
2 1000l L A X )
- —
A 800ftl- >
S GO0 [Hi
I
8 400- - S TEPIE{ T [ EE—
I T ——— Bel6i 10 pg/ig
0 m_"“l”"II""IIIIII... l'---l---p—g-nlg-
0 40 60 80

Sample

Figure 3. Individual 25 hydroxyvitamin D3 levels in the hair of 70 young Emirati males (where
only 50 hair samples had detectable (>10 pg/mg) levels of 250HD3). The inset shows the individ-
ual levels of 250HD3 in the 50 samples.

Recent increases in requests for vitamin D measurement are deemed to be costly and
sometimes confusing [14]. The hair test, focusing on the major form 250HD;, in corrob-
oration with established parity with blood results, would allow clinicians to capture
vitamin D levels in patients over the longer term at reasonable cost to use in conjunction
with routine clinical tests. This ability to make a single measure of a quarterly average
vitamin D level would overcome a number of the issues relating to vitamin D research.
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Further advantages include the non-invasive nature and lack of infection risk, along with
easy storage and transportation of samples.

4. Further Steps

This pilot study revealed the potential for the development of a hair-based assay
for vitamin D, which conveniently offers a quarter-year average for the major circulating
form, which is currently the basis of most clinical assessments. Further work is war-
ranted to develop and validate the procedure to include more metabolites of vitamin D
and to produce a gold-standard test for hair analyses. With increasing interest in other
vitamin D metabolites beyond the circulating forms, further developments should secure
the ability to quantify as many forms as possible via concentration steps, using larger hair
samples and more sensitive instrumentation, which is commercially available. Longitudi-
nal studies correlating blood levels with hair levels would be required once the full range
of analytes that can be measured in hair is established. This point is notable as there is
widening interest in other metabolites in blood-based assays. A further point involves a
further determination of the effect of age, hair color and type, and treatment on the ana-
lytes of interest. Observation of genetic variations that affect assay results such as those
owing to the three major forms of vitamin D binding protein merit investigation [27,28].
It is envisaged that this approach will deliver a suitable test that will allow a single meas-
ure for the determination of sufficient/insufficient status in hair (in pg/mg) over many
months. We also know that in UAE, people are generally deficient in vitamin D levels;
that might be one reason that we were not able to find the remaining metabolites of vita-
min D in hair. But this non-invasive hair test will be very useful in the segmental analysis
of hair to measure vitamin D status over many months.

Limitations of this pilot study, apart from the small sample size, are the lack
of a full spectrum of ethnicity-based hair types, different population groups, age groups,
genders, seasonal variations, and color combinations. Hair from other parts of the human
body and animals could also be investigated in future studies. Further research directions
involve key questions relating to vitamin D levels in reproduction and contributions of
inadequate levels to disease onset and progression. The ability of a vitamin D hair assay
to monitor hypovitaminosis D and the ability of supplementation to normalize this con-
dition would be clinically useful.

Supplementary Materials: The following is available online: Table S1: Concentrations of various
forms of vitamin D in the 70 hair samples.
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